(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-16
(45)【発行日】2022-03-25
(54)【発明の名称】探傷装置
(51)【国際特許分類】
G01N 25/72 20060101AFI20220317BHJP
【FI】
G01N25/72 A
(21)【出願番号】P 2018019232
(22)【出願日】2018-02-06
【審査請求日】2021-01-20
(73)【特許権者】
【識別番号】391021385
【氏名又は名称】株式会社KJTD
(74)【代理人】
【識別番号】110000176
【氏名又は名称】一色国際特許業務法人
(72)【発明者】
【氏名】西谷 豊
(72)【発明者】
【氏名】福井 涼
(72)【発明者】
【氏名】羽深 嘉郎
【審査官】前田 敏行
(56)【参考文献】
【文献】特開2015-187564(JP,A)
【文献】特開2009-122050(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 25/00-25/72
G01J 5/00
(57)【特許請求の範囲】
【請求項1】
裁頭円錐面の形状に形作られた鏡面が内面に形成されたリフレクタと、
前記鏡面を撮像する赤外線カメラと、
被検体を加熱する加熱器と、を備え、
前記被検体が前記鏡面の内側且つ前記裁頭円錐面の中心軸上に配置され、前記赤外線カメラが前記鏡面を介して前記被検体を撮像する
探傷装置。
【請求項2】
前記加熱器が、加熱光を前記鏡面に向けて照射する光加熱器であり、
前記光加熱器によって照射された前記加熱光が前記
鏡面によって前記被検体に向けて照射されることによって前記被検体が加熱される
請求項1に記載の探傷装置。
【請求項3】
前記赤外線カメラの光軸と前記裁頭円錐面の中心軸とが同軸状に配置されている
請求項1又は2に記載の探傷装置。
【請求項4】
前記被検体を前記裁頭円錐面の中心軸の方向に送る送り装置を更に備え、
前記赤外線カメラが、前記被検体よりも、前記裁頭円錐面の中心軸に関する径方向の外側に配置されている
請求項1又は2に記載の探傷装置。
【請求項5】
前記光加熱器と前記鏡面との間に配置され、前記光加熱器によって照射される前記加熱光を透過させ、前記赤外線カメラの感知波長帯域の光を反射させるダイクロイックミラーを更に備え、
前記ダイクロイックミラーが前記裁頭円錐面の中心軸に対して傾斜し、
前記赤外線カメラが前記ダイクロイックミラーに向けられ、
前記赤外線カメラが前記ダイクロイックミラー及び前記鏡面を介して前記被検体を撮像する
請求項2に記載の探傷装置。
【請求項6】
前記赤外線カメラの光軸が前記ダイクロイックミラーによって屈曲し、
屈曲した前記赤外線カメラの光軸と前記裁頭円錐面の中心軸とが同軸状に配置されている
請求項5に記載の探傷装置。
【請求項7】
前記赤外線カメラと前記鏡面との間に配置され、前記赤外線カメラの感知波長帯域の光を透過させ、前記光加熱器によって照射される前記加熱光を反射させるダイクロイックミラーを更に備え、
前記ダイクロイックミラーが前記裁頭円錐面の中心軸に対して傾斜し、
前記光加熱器が前記ダイクロイックミラーに向けられ、
前記光加熱器が前記ダイクロイックミラー及び前記鏡面を介して前記被検体に前記加熱光を照射する
請求項2に記載の探傷装置。
【請求項8】
前記赤外線カメラの光軸と前記裁頭円錐面の中心軸とが同軸状に配置されている
請求項7に記載の探傷装置。
【請求項9】
前記被検体を前記裁頭円錐面の中心軸の方向に送る送り装置を更に備え、
前記赤外線カメラ、前記光加熱器及び前記ダイクロイックミラーが、前記被検体よりも、前記裁頭円錐面の中心軸に関する径方向の外側に配置されている
請求項5又は7に記載の探傷装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検体の表面の温度分布を表す画像を撮像することによって被検体を探傷する探傷装置に関する。
【背景技術】
【0002】
被検体の内部に存在する欠陥を非破壊的に探知する方法として、サーモグラフィー法がある(例えば、特許文献1,2参照)。サーモグラフィー法は、被検体の表面の温度分布を表す画像を解析することによって欠陥を探知する方法である。サーモグラフィック法では、被検体を加熱し、被検体の表面から発した赤外線を赤外線カメラによって取り込むことによって温度分布画像を取得する。被検体の加熱には、光加熱器によって発せられる光が利用される。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-99296号公報
【文献】特開2016-156733号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、探傷時間及び探傷回数の削減を図るべく、赤外線カメラによって被検体を撮像する範囲を広くすることが望まれる。
【0005】
そこで、本発明は、上記事情に鑑みてなされたものである。本発明が解決しようとする課題は、赤外線カメラによってできる限り広い範囲で被検体を撮像することである。
【課題を解決するための手段】
【0006】
以上の課題を解決するために、探傷装置が、裁頭円錐面の形状に形作られた鏡面が内面に形成されたリフレクタと、前記鏡面を撮像する赤外線カメラと、被検体を加熱する加熱器と、を備え、前記被検体が前記鏡面の内側且つ前記裁頭円錐面の中心軸上に配置され、前記赤外線カメラが前記鏡面を介して前記被検体を撮像する。
【0007】
被検体が裁頭円錐面状の鏡面の内側且つその裁頭円錐面の中心軸上に配置されているため、赤外線カメラが被検体の外周の広い範囲を撮像する。よって、探傷時間及び探傷回数の削減を図れる。
【発明の効果】
【0008】
本発明によれば、被検体の外周の広範囲を撮像することができる。
【図面の簡単な説明】
【0009】
【発明を実施するための形態】
【0010】
以下、図面を参照して、本発明の実施形態について説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されている。本発明の範囲を以下の実施形態及び図示例に限定するものではない。
【0011】
〔第1の実施の形態〕
図1は、第1の実施の形態の探傷装置10の概略断面図である。
探傷装置10はリフレクタ11、赤外線カメラ12、加熱用発光器13及びコンピュータ19を備える。
【0012】
リフレクタ11は裁頭円錐面の形状に形成されている。リフレクタ11が裁頭円錐体型の内部空間11aを有し、その内部空間11aが裁頭円錐体の底部及び頂部において開口する。以下、その底部の開口11cを挿入口11cといい、その頂部の開口11dを光通過口11dという。
【0013】
リフレクタ11の内面には、鏡面11bが形成されている。鏡面11bは、中心軸11e回りの回転面(surface of revolution)としての裁頭円錐面に形作られている。その裁頭円錐面の頂角の角度は90°であるが、それに限らない。
【0014】
リフレクタ11が銀白色の金属材料、例えばアルミニウムからなり、鏡面11bが金属光沢性を有する。鏡面11bは光を反射する反射面となる。なお、リフレクタ11の内面に銀白色の金属材料の膜が蒸着、スパッタリング又はメッキにより形成されることによって、金属光沢性の鏡面11bが形成されるものとしてもよい。
【0015】
被検体2が挿入口11cに挿入されて、保持具等によってリフレクタ11の中心線上に保持されている。その被検体2の一部は、内部空間11aに配置されているとともに、周囲を鏡面11bによって囲まれている。被検体2が光通過口11dから内部空間11aの外へ突き出ていないことが好ましい。被検体2は例えばボルト、ねじ、ナット、シャフト、ピン、リンク、リベット、チューブ又はピストンである。
【0016】
被検体2が中心軸11e上に配置されている。好ましくは、被検体2と鏡面11bは同軸状に配置されている。
【0017】
リフレクタ11の光通過口11dの先には、赤外線カメラ12が配置されている。赤外線カメラ12は赤外線カメラであり、赤外線カメラ12の感知波長帯域は赤外線帯域である。例えば、赤外線カメラ12は8~14μmの波長帯域の遠赤外線又は2~5μmの中赤外帯域を感知する。
【0018】
赤外線カメラ12がリフレクタ11の光通過口11d及び鏡面11bに向けられている。赤外線カメラ12は、鏡面11bに映った被検体2の赤外線像を撮像する。赤外線カメラ12の光軸12aと鏡面11bの中心軸11eは同軸状に配置されている。鏡面11bが裁頭円錐面状に形成されているので、被検体2の外周面の全体に亘って鏡面11bに映った被検体2の赤外線像が赤外線カメラ12によって撮像される。被検体2の外周面の形状は特に限定するものではないが、例えば円柱面又は多角柱面である。
なお、赤外線カメラ12の光軸12aが鏡面11bの中心軸11eからずれていてもよい。また、赤外線カメラ12の光軸12aが鏡面11bの中心軸11eに対して傾斜してもよい。
【0019】
赤外線カメラ12は、エリア型の赤外線撮像素子と、鏡面11bに映った被検体2の赤外線像を赤外線撮像素子に結像する光学レンズと、赤外線撮像素子によって光電変換された被検体2の赤外線像をデジタル画像に変換する画像処理部と、を有する。
【0020】
赤外線カメラ12によって撮像された被検体2の赤外線像はデジタル画像であり、赤外線カメラ12がそのデジタル画像をコンピュータ19に出力する。赤外線カメラ12が短い周期で周期的に撮像するので、デジタル画像が順次コンピュータ19に出力される。赤外線カメラ12からコンピュータ19に出力されるデジタル画像は温度分布を表したサーモグラフィック画像である。なお、赤外線カメラ12によって取得されたデジタル画像が映像信号としてディスプレイに転送され、そのデジタル映像がディスプレイに表示されてもよい。
【0021】
コンピュータ19は赤外線カメラ12から入力したデジタル画像の解析処理を実行する。例えば、コンピュータ19は、赤外線カメラ12から入力したデジタル画像の各画素の階調値の時間変化をフーリエ変換する関数解析処理を実行する。デジタル画像は温度分布を表したサーモグラフィック画像であるので、各画素の階調値は温度を表す。
【0022】
リフレクタ11の光通過口11dの先には、加熱用発光器13が配置されている。加熱用発光器13がリフレクタ11の光通過口11d及び鏡面11bに向けられている。加熱用発光器13が加熱光を鏡面11bに向けて照射する。加熱光の波長帯域は、赤外線カメラ12の感知波長帯域よりも短い。加熱光の波長帯域は特に限定するものではないが、例えば可視光帯域、紫外線帯域、近赤外線帯域又は赤外線帯域である。加熱光の波長帯域は、紫外線帯域、可視光帯域、近赤外線帯域、中赤外線帯域のうち2以上の帯域を含んでいてもよい。
【0023】
加熱用発光器13から出射した加熱光は鏡面11bにより反射し、被検体2の表面に入射する。また、加熱用発光器13から出射した加熱光の一部が被検体2の表面に直接入射する。これら反射光や直接光によって被検体2が加熱され、被検体2の表面から赤外線が放射される。被検体2の表面の温度が高い程、被検体2の表面から放射される赤外線のエネルギーが高い。被検体2に剥離、ひび割れ、亀裂、ボイド等の欠陥が存在すると、その部分の熱伝導が低いので、結果として被検体2の表面温度にムラが発生したり、表面温度の時間変化率が不均一になったりする。
【0024】
被検体2の表面から発した赤外線は鏡面11bにより反射し、赤外線カメラ12に入射する。これにより、被検体2の赤外線像が赤外線カメラ12によって撮像される。
【0025】
加熱用発光器13は複数の光加熱器14を有する。これら光加熱器14は、赤外線カメラ12の視野の外側において赤外線カメラ12の光軸12a及び鏡面11bの中心軸11eに関する周方向に配列されている。これら光加熱器14は等間隔で配列されていることが好ましい。なお、光加熱器14の数が2である場合、一方の光加熱器14の光源14aは、他方の光加熱器14の光源14aに対して、鏡面11bの中心軸11eに関して対称配置されていることが好ましい。
これら光加熱器14がリフレクタ11の光通過口11d及び鏡面11bに向けられている。
なお、光加熱器14の数が2である場合、一方の光加熱器14は、他方の光加熱器14に対して、鏡面11bの中心軸11eに関して対称配置されている。
【0026】
各光加熱器14は光源14a及び反射器14bを備える。反射器14bは例えば放物面型のリフレクタである。光源14aが反射器14bの焦点に配置されている。反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心軸14cがリフレクタ11の内部空間11aを通る。光源14aが反射器14bの焦点に配置されているので、反射器14bの中心軸14cは光加熱器14の光軸でもある。光源14aは例えばフィラメント式のランプ、放電管式のランプ又は半導体発光素子である。より具体的には、光源14aは、フィラメント式のランプとしてのハロゲンランプ、放電管式ランプとしてのキセノンランプ、半導体発光素子としての発光ダイオード、又は、半導体発光素子としての半導体レーザーダイオードである。
【0027】
図1に示す例では、反射器14bの中心軸14cが赤外線カメラ12の光軸12a及び鏡面11bの中心軸11eに対して斜交する。これに限らず、反射器14bの中心軸14cが赤外線カメラ12の光軸12a及び鏡面11bの中心軸11eに対して平行であってもよい。この場合、反射器14bの中心軸14cがリフレクタ11の鏡面11bに交差する。
【0028】
続いて、探傷装置10の動作及び使用方法について説明する。
まず、光源14aを点灯させる。光源14aによって放射された加熱光が反射器14bによって鏡面11bに向けて反射する。反射器14bにより反射した加熱光が鏡面11bにより反射して、被検体2の表面に入射する。これにより、被検体2が加熱される。
【0029】
加熱用発光器13がリフレクタ11の鏡面11bに向けられているので、被検体2の表面の広い範囲に加熱光が照射される。
【0030】
次に、光源14aを消灯させる。
次に、赤外線カメラ12の撮像処理をすると、鏡面11bに映った被検体2の赤外線像が赤外線カメラ12によって撮像される。被検体2の表面温度が変化することで、被検体2の表面の赤外線放射量も変化する。被検体2の表面温度の変化速度は、その表面の下の欠陥の有無の影響を受ける。そこで、赤外線カメラ12によって撮像されるデジタル画像の変化に基づいて欠陥を検出することができる。なお、光源14aの点灯期間中に赤外線カメラ12の撮像処理をしてもよい。
次に、赤外線カメラ12からコンピュータ19に転送されたデジタル画像の解析処理をコンピュータ19に実行させる。
【0031】
本実施形態では、被検体2が裁頭円錐面型のリフレクタ11の内部空間11aに配置されており、赤外線カメラ12がリフレクタ11の鏡面11bに向けられている。それゆえ、被検体2の表面の広い範囲が赤外線カメラ12によって撮像される。特に、赤外線カメラ12の光軸12aと鏡面11bの中心軸11eは同軸状に配置されているので、被検体2の全周に亘って鏡面11bに映った被検体2の赤外線像が赤外線カメラ12によって撮像される。よって、探傷時間及び探傷回数の削減を図れる。
【0032】
鏡面11bの頂角の角度が90°であるので、被検体2のうち赤外線カメラ12に近い部分から鏡面11bを経由して赤外線カメラ12までの光線の軌跡の長さは、被検体2のうち赤外線カメラ12から遠い部分から鏡面11bを経由して赤外線カメラ12までの光線の軌跡の長さに殆ど等しい。それゆえ、赤外線カメラ12が被検体2の全体に合焦する。
【0033】
なお、光源14aが直管ランプであってもよい。この場合、光源14aの長手方向は、鏡面11bの中心軸11eに関する径方向に対して平行な方向であり、反射器14bは例えば放物柱面型のリフレクタであり、光源14aがその放物柱面の焦線に配置されている。反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心面がリフレクタ11の鏡面11bに交差する。なお、反射器14bの形状は他の形状、例えば半円柱面型であってもよい。
【0034】
また、光源14aが、鏡面11bの中心軸11eを囲うようなリング型のランプであってもよい。この場合、反射器14bがリング型であり、鏡面11bの中心軸11eを通る切断面における反射器14bの形状は放物線状である。
【0035】
〔第2の実施の形態〕
図2は、第2の実施の形態の探傷装置10Aの概略断面図である。
以下の説明では、第2実施形態の探傷装置10Aが第1実施形態の探傷装置10と相違する点について説明する。また、探傷装置10Aと探傷装置10との間で互いに対応する構成要素には、同一の符号を付す。
【0036】
加熱用発光器13が1灯の光加熱器14を有し、この光加熱器14がリフレクタ11に正対する。即ち、光加熱器14の光軸、つまり反射器14bの中心軸14cと、鏡面11bの中心軸11eとが同軸状に配置されている。なお、反射器14bの中心軸14cが鏡面11bの中心軸11eからずれていてもよい。また、加熱用発光器13は、第1実施形態における加熱用発光器13と同様に、複数の光加熱器14を有していてもよい。
【0037】
光加熱器14と鏡面11bとの間には、ダイクロイックミラー15が反射器14bの中心軸14c及び鏡面11bの中心軸11eと斜交するように配置されている。反射器14bの中心軸14c及び鏡面11bの中心軸11eとダイクロイックミラー15の法線との成す角は45°である。ダイクロイックミラー15は、赤外線カメラ12の感知波長帯域の光、つまり赤外線帯域の光を反射させ、それ以外の帯域の光(特に、光加熱器14によって照射される光)を透過させる。
【0038】
赤外線カメラ12は、ダイクロイックミラー15よりも、鏡面11bの中心軸11eに関する径方向外側に配置されている。赤外線カメラ12がダイクロイックミラー15に向けられており、赤外線カメラ12の光軸12aがダイクロイックミラー15により90°に屈曲する。赤外線カメラ12からダイクロイックミラー15までの赤外線カメラ12の光軸12aは、鏡面11bの中心軸11eとダイクロイックミラー15との交点に交差する。ダイクロイックミラー15からリフレクタ11までの赤外線カメラ12の光軸12aと鏡面11bの中心軸11eとは、同軸状に配置されている。
【0039】
光加熱器14から発せられた加熱光はダイクロイックミラー15を透過する。ダイクロイックミラー15を透過した加熱光は鏡面11bにより反射して、被検体2の表面に入射する。また、ダイクロイックミラー15を透過した加熱光の一部は被検体2の表面に直接入射する。これにより被検体2が加熱され、被検体2の表面から赤外線が放射される。被検体2の表面温度が変化することで、被検体2の表面の赤外線放射量も変化する。
【0040】
被検体2の表面から発した赤外線は鏡面11bによって反射して、更にダイクロイックミラー15によって反射する。反射した赤外線が赤外線カメラ12に入射する。これにより、被検体2の赤外線像が赤外線カメラ12によって撮像される。
【0041】
以上のように、ダイクロイックミラー15が設けられているので、ダイクロイックミラー15からリフレクタ11までの間の領域では、赤外線カメラ12の光軸12aと鏡面11bの中心軸11eと光加熱器14の光軸とが同軸状に配置される。それゆえ、1灯の光加熱器14であっても被検体2の表面を全周に亘って均一に加熱することができる上、被検体2の全周に亘って鏡面11bに映った被検体2の赤外線像を赤外線カメラ12により撮像することができる。
【0042】
なお、光加熱器14の位置と赤外線カメラ12の位置を入れ替え、ダイクロイックミラー15は光加熱器14によって照射される加熱光を反射させ、それ加熱光の帯域以外の帯域の光を透過させるものとしてもよい。この場合、赤外線カメラ12が第1実施形態の場合と同様に、赤外線カメラ12がリフレクタ11の光通過口11d及び鏡面11bに向けられ、赤外線カメラ12の光軸12aと鏡面11bの中心軸11eは同軸状に配置されている。また、光加熱器14が、ダイクロイックミラー15よりも、鏡面11bの中心軸11eに関する径方向の外側に配置されている。光加熱器14がダイクロイックミラー15に向けられており、光加熱器14の光軸がダイクロイックミラー15により90°に屈曲する。
【0043】
また、光源14aが直管ランプであってもよい。この場合、光源14aの長手方向は鏡面11bの中心軸11eの直交方向である。更に反射器14bは例えば放物柱面型のリフレクタであり、光源14aがその放物柱面の焦線に配置されている。更に反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心面がリフレクタ11の鏡面11bの中心軸11eを通る。
【0044】
また、光源14aが、鏡面11bの中心軸11eを囲うようなリング型のランプであってもよい。この場合、反射器14bがリング型であり、鏡面11bの中心軸11eを通る切断面における反射器14bの形状は放物線状である。
【0045】
また、第1実施形態の場合と同様に、加熱用発光器13が複数灯の光加熱器14を有し、これら光加熱器14が赤外線カメラ12の光軸12a及び鏡面11bの中心軸11eに関する周方向に配列されていてもよい。
【0046】
〔第3の実施の形態〕
図3は、第3の実施の形態の探傷装置10Bの概略断面図である。
以下の説明では、第3実施形態の探傷装置10Bが第1実施形態の探傷装置10と相違する点について説明する。また、探傷装置10Bと探傷装置10との間で互いに対応する構成要素には、同一の符号を付す。
【0047】
被検体2が長尺物であり、被検体2の中心軸方向の長さがリフレクタ11の裁頭円錐面の頂部から底部までの長さよりも十分に長い。被検体2が挿入口11cに挿入されており、被検体2と鏡面11bは同軸状に配置されている。
【0048】
被検体2は送り装置16によって鏡面11bの中心軸11eの方向に送られるとともに、送り装置16によって中心軸11e回りに回転駆動される。送り装置16はリフレクタ11の挿入口11cの先に設けられていて、被検体2が送り装置16にセッティングされる。
【0049】
赤外線カメラ12は、リフレクタ11の光通過口11dの先において、リフレクタ11の光通過口11d及び鏡面11bに向けられて配置されている。赤外線カメラ12の光軸12aは、鏡面11bの中心軸11eに対して平行であるとともに、鏡面11bの中心軸11eに対して偏心している。赤外線カメラ12の光軸12aは、鏡面11bに交差する。なお、赤外線カメラ12の光軸12aが鏡面11bの中心軸11eに対して僅かに傾斜してもよい。
【0050】
加熱用発光器13が1灯の光加熱器14を有する。この光加熱器14は、リフレクタ11の光通過口11dの先において、リフレクタ11の光通過口11d及び鏡面11bに向けられて配置されている。光加熱器14の光軸は、つまり反射器14bの中心軸14cは、鏡面11bの中心軸11eに対して平行であるとともに、鏡面11bの中心軸11eに対して偏心している。なお、光加熱器14の光軸が鏡面11bの中心軸11eに対して僅かに傾斜してもよい。また、加熱用発光器13は、第1実施形態における加熱用発光器13と同様に、複数の光加熱器14を有していてもよい。
【0051】
光加熱器14と赤外線カメラ12は鏡面11bの中心軸11eに関する同一半径上に配置されている。また、光加熱器14が、赤外線カメラ12よりも、鏡面11bの中心軸11eに関する径方向の内側に配置されている。なお、赤外線カメラ12が、光加熱器14よりも、鏡面11bの中心軸11eに関する径方向の内側に配置されていてもよい。
光加熱器14及び赤外線カメラ12の両方とも、被検体2よりも、鏡面11bの中心軸11eに関する径方向の外側に配置されている。そのため、被検体2が送り装置16によって中心軸11eの方向に送られても、被検体2が光加熱器14及び赤外線カメラ12に接触しない。
【0052】
続いて、探傷装置10の動作及び使用方法について説明する。
まず、送り装置16を停止させた状態で、光源14aを点灯させる。これにより、被検体2が加熱される。
次に、光源14aを消灯させる。
次に、赤外線カメラ12の撮像処理をすると、鏡面11bに映った被検体2の赤外線像が赤外線カメラ12によって撮像される。なお、光源14aの点灯期間中に赤外線カメラ12の撮像処理をしてもよい。
次に、赤外線カメラ12からコンピュータ19に転送されたデジタル画像の解析処理をコンピュータ19に実行させる。この際、送り装置16を作動させて、送り装置16によって被検体2を鏡面11bの中心軸11eの方向に所定距離だけ送るか、送り装置16によって被検体2を中心軸11e回りに所定角度だけ回転させる。なお、送り装置16によって被検体2の回転と軸方向送りの両方を行ってもよい。
以後、上述した工程を繰り返す。
【0053】
なお、光源14aの点灯中に、送り装置16によって被検体2を移動させながら、赤外線カメラ12の撮像処理をしてもよい。
【0054】
本実施形態では、被検体2が挿入口11cに挿入されており、赤外線カメラ12がリフレクタ11の鏡面11bに向けられている。それゆえ、被検体2の表面の広い範囲が赤外線カメラ12によって撮像される。特に、被検体2が送り装置16によって周方向及び軸方向に送られるので、被検体2の表面全体が赤外線カメラ12による探傷範囲となる。
【0055】
また、光加熱器14と赤外線カメラ12が被検体2を基準として同じ側に配置されているため、光加熱器14によって加熱光が照射される範囲を赤外線カメラ12によって撮影することができる。つまり、被検体2によって陰となる部分は、少ししか赤外線カメラ12の撮影範囲に含まれない。
【0056】
なお、光源14aが直管ランプであってもよい。この場合、光源14aの長手方向は、鏡面11bの中心軸11eに関する径方向に対して平行な方向である。反射器14bは例えば放物柱面型のリフレクタであり、光源14aがその放物柱面の焦線に配置されている。反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心面がリフレクタ11の鏡面11bに交差する。
【0057】
また、送り装置16が被検体2を鏡面11bの中心軸11eの回りに回転させるのではなく、公転駆動機構が光加熱器14及び赤外線カメラ12を鏡面11bの中心軸11eの回りに公転させるものとしてもよい。
【0058】
〔第4の実施の形態〕
図4は、第4の実施の形態の探傷装置10Cの概略断面図である。
以下の説明では、第4実施形態の探傷装置10Cが第3実施形態の探傷装置10Bと相違する点について説明する。また、探傷装置10Cと探傷装置10Bとの間で互いに対応する構成要素には、同一の符号を付す。
【0059】
この探傷装置10Cでは、複数の赤外線カメラ12が鏡面11bの中心軸11eに関する周方向に配列されている。赤外線カメラ12の数が2である場合、一方の赤外線カメラ12は、他方の赤外線カメラ12に対して、鏡面11bの中心軸11eに関して対称配置されている。
【0060】
また、複数の光加熱器14が鏡面11bの中心軸11eに関する周方向に配列されている。光加熱器14の数が2である場合、一方の光加熱器14は、他方の光加熱器14に対して、鏡面11bの中心軸11eに関して対称配置されている。
【0061】
なお、光源14aが直管ランプであり、反射器14bが放物柱面型のリフレクタであってもよい。この場合、光源14aの長手方向は、鏡面11bの中心軸11eに関する径方向に対して平行な方向である。更に、光源14aは、反射器14bの形状たる放物柱面の焦線に配置されている。更に、反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心面がリフレクタ11の鏡面11bに交差する。光源14aが直管ランプである場合でも、光加熱器14の数は特に限定するものではない。光加熱器14の数が2である場合、一方の光加熱器14の光源14aは、他方の光加熱器14の光源14aに対して、鏡面11bの中心軸11eに関して対称配置されている。反射器14bがリフレクタ11の光通過口11d及び鏡面11bに向けられており、反射器14bの中心面がリフレクタ11の鏡面11bに交差する。
【0062】
〔第5の実施の形態〕
図5は、第5の実施の形態の探傷装置10Dの概略断面図である。
以下の説明では、第5実施形態の探傷装置10Dが第3実施形態の探傷装置10Bと相違する点について説明する。また、探傷装置10Dと探傷装置10Bとの間で互いに対応する構成要素には、同一の符号を付す。
【0063】
光加熱器14と鏡面11bとの間には、ダイクロイックミラー15が配置されている。ダイクロイックミラー15は、被検体2よりも、鏡面11bの中心軸11eに関する径方向の外側に配置されている。そのため、被検体2が中心軸11eの方向に移動しても、被検体2がダイクロイックミラー15に接触しない。反射器14bの中心軸14cとダイクロイックミラー15の法線との成す角は45°である。ダイクロイックミラー15は、赤外線カメラ12の感知波長帯域、つまり赤外線帯域の光を反射させ、それ以外の帯域の光(特に、光加熱器14によって照射される加熱光)を透過させる。
【0064】
赤外線カメラ12は、ダイクロイックミラー15よりも、鏡面11bの中心軸11eに関する径方向の外側に配置されている。赤外線カメラ12がダイクロイックミラー15に向けられており、赤外線カメラ12の光軸12aがダイクロイックミラー15により90°に屈曲する。ダイクロイックミラー15からリフレクタ11までの赤外線カメラ12の光軸12aは鏡面11bに交差する。
【0065】
光加熱器14から発せられた加熱光はダイクロイックミラー15を透過する。ダイクロイックミラー15を透過した加熱光は鏡面11bにより反射して、被検体2の表面に入射する。また、ダイクロイックミラー15を透過した加熱光の一部は被検体2の表面に直接入射する。これにより被検体2が加熱されて、被検体2の表面から赤外線が放射される。被検体2の表面温度が変化することで、被検体2の表面の赤外線放射量も変化する。
【0066】
被検体2の表面から発した赤外線は鏡面11bによって反射して、更にダイクロイックミラー15によって反射する。反射した赤外線が赤外線カメラ12に入射する。これにより、被検体2の赤外線像が赤外線カメラ12によって撮像される。
【0067】
なお、光源14aが直管ランプであり、反射器14bは放物柱面型のリフレクタであってもよい。この場合、光源14aの長手方向は、鏡面11bの中心軸11eに関する径方向に対して平行な方向である。光源14aは、反射器14bの形状たる放物柱面の焦線に配置されている。反射器14bがダイクロイックミラー15、光通過口11d及び鏡面11bに向けられており、反射器14bの中心面が鏡面11bに交差する。
【0068】
また、光加熱器14の位置と赤外線カメラ12の位置を入れ替え、ダイクロイックミラー15は光加熱器14によって照射さられる加熱光を反射させ、それ以外の帯域の光(特に、赤外線カメラ12の感知波長帯域の光)を透過させるものとしてもよい。この場合、赤外線カメラ12が第3実施形態の場合と同様に、赤外線カメラ12がリフレクタ11の光通過口11d及び鏡面11bに向けられている。赤外線カメラ12の光軸12aは、鏡面11bの中心軸11eに対して平行であるとともに、鏡面11bの中心軸11eに対して偏心している。赤外線カメラ12の光軸12aは、鏡面11bに交差する。光加熱器14は、ダイクロイックミラー15よりも、鏡面11bの中心軸11eに関する径方向の外側に配置されている。光加熱器14がダイクロイックミラー15に向けられており、光加熱器14の光軸がダイクロイックミラー15により90°に屈曲する。
【0069】
〔第6の実施の形態〕
図6は、第6の実施の形態の探傷装置10Eの概略断面図である。
下の説明では、第6実施形態の探傷装置10Eが第5実施形態の探傷装置10Dと相違する点について説明する。また、探傷装置10Eと探傷装置10Dとの間で互いに対応する構成要素には、同一の符号を付す。
【0070】
第6実施形態では、光加熱器14の数が複数である。赤外線カメラ12及びダイクロイックミラー15についても同様である。そのため、赤外線カメラ12及びダイクロイックミラー15赤外線カメラ12、光加熱器14及びダイクロイックミラー15からなるグループが複数組ある。それらグループが、鏡面11bの中心軸11eに関する周方向に配列されている。
【0071】
〔変形例〕
以上の第1~第6の実施形態では、光加熱器14によって照射される加熱光が被検体2に入射することによって、被検体2が加熱される。それに対して、光加熱以外の方式の加熱器が被検体2を加熱するものとしてもよい。光加熱以外の方式の加熱器について、以下に挙げる。
【0072】
(1) 加振器を加熱器として利用してもよい。加振器は、高い周波数の振動を被検体2に与えることで被検体2を加熱する。被検体2に存在する欠陥に、振動による摩擦熱が生じることによって、欠陥が加熱される。加振器としては、超音波により被検体2を加振する超音波加振器がある。
【0073】
(2) ファンヒーター方式又はバーナー方式の加熱器が、高温な温風又は火炎を被検体2に放射することによって被検体2を加熱する。
【0074】
(3) 被検体2に当接する抵抗器方式の加熱器が電気エネルギーにより発熱して、被検体2を加熱する。
【0075】
(4) 誘導加熱方式の加熱器が、磁界を発生させて、電磁誘導により被検体2を加熱する。この場合、被検体2が導電体である。被検体2が絶縁体である場合、被検体2に導電体を接触させる。
【0076】
(5) 誘電加熱方式の加熱器が、被検体2の周囲に高周波電界を発生させて、被検体2に誘電損失を発生させることによって被検体2を加熱する。この場合、被検体2が誘電体である。
【符号の説明】
【0077】
2…被検体
10,10A,10B,10C,10D,10E…探傷装置
11…リフレクタ
11b…鏡面
11e…中心軸
12…赤外線カメラ
12a…赤外線カメラの光軸
14…光加熱器(加熱器)
15…ダイクロイックミラー