(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-17
(45)【発行日】2022-03-28
(54)【発明の名称】電気化学的ストレージ用の複合材料
(51)【国際特許分類】
H01M 4/38 20060101AFI20220318BHJP
H01M 4/36 20060101ALI20220318BHJP
H01M 4/62 20060101ALI20220318BHJP
H01M 4/587 20100101ALI20220318BHJP
H01M 4/1395 20100101ALI20220318BHJP
【FI】
H01M4/38 Z
H01M4/36 A
H01M4/36 E
H01M4/62 Z
H01M4/587
H01M4/1395
【外国語出願】
(21)【出願番号】P 2019001776
(22)【出願日】2019-01-09
(62)【分割の表示】P 2017092843の分割
【原出願日】2011-01-18
【審査請求日】2019-02-07
(32)【優先日】2010-01-18
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2010-03-19
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】512188041
【氏名又は名称】エネヴェート・コーポレーション
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ベンジャミン・パーク
(72)【発明者】
【氏名】アレクサンダー・ゴーコヴェンコ
(72)【発明者】
【氏名】ラビ・ザオウク
(72)【発明者】
【氏名】ウィリアム・シャンク
(72)【発明者】
【氏名】ジェニス・ターロン・テキシドール
(72)【発明者】
【氏名】ローター・ステフェンズ
【審査官】小森 利永子
(56)【参考文献】
【文献】特開2001-143695(JP,A)
【文献】特開2009-146580(JP,A)
【文献】特開平11-238527(JP,A)
【文献】特開2001-160392(JP,A)
【文献】特開2004-022433(JP,A)
【文献】特開2000-195503(JP,A)
【文献】特開平11-339778(JP,A)
【文献】特開2001-006682(JP,A)
【文献】国際公開第98/024135(WO,A1)
【文献】特開2000-272911(JP,A)
【文献】特開2003-165715(JP,A)
【文献】特開2009-032693(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/13-4/62
C01B 32/00-32/991
(57)【特許請求の範囲】
【請求項1】
電池電極に使用する複合材料膜の形成方法であって、
前駆体およびケイ素粒子を含む混合物を提供するステップと、
前記前駆体を、
マトリクス相として硬質炭素を含む一種または複数種の炭素相に変換するために、前記混合物を熱分解するステップであって、前記ケイ素粒子と前記硬質炭素との間にケイ素炭化物層が形成される、ステップとを含み、
前記前駆体を熱分解するステップの結果、前記混合物が、自立複合材料膜を形成し、
前記ケイ素粒子が、前記複合材料膜の全体にわたって分散されており、
前記一種または複数種の炭素相が、前記複合材料膜の10重量%~25重量%の硬質炭素を含
み、
前記複合材料膜が、50重量%以上70重量%以下のケイ素粒子を含む、方法。
【請求項2】
基板上に前記混合物をキャストするステップと、
前記混合物を乾燥するステップとをさらに含む、請求項1に記載の方法。
【請求項3】
ホットプレス中に乾燥された前記混合物を配置するステップをさらに含む、請求項2に記載の方法。
【請求項4】
前記混合物を提供するステップが、10nmから40μmの平均最大寸法を有するケイ素粒子を提供するステップを含む、請求項1から3の何れか一項に記載の方法。
【請求項5】
前記混合物を提供するステップが、前記混合物中に導電性粒子を提供するステップを含む、請求項1から4の何れか一項に記載の方法。
【請求項6】
前記混合物を提供するステップが、前記混合物中に銅、ニッケルまたはステンレス鋼の粒子を提供するステップを含む、請求項1から5の何れか一項に記載の方法。
【請求項7】
前記複合材料膜が、電気化学的に活性である、請求項1から
6の何れか一項に記載の方法。
【請求項8】
前記炭素相の少なくとも1つが、電気化学的に活性であり、かつ導電性である、請求項1から
7の何れか一項に記載の方法。
【請求項9】
前記炭素相の少なくとも1つが、連続相である、請求項1から
8の何れか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2010年3月19日に出願された米国仮出願第61/315845号明細書、および2010年1月18日に出願された米国仮出願第61/295993号明細書の利益を主張し、その各々の全体が、参照により、本願明細書に組み込まれる。
【0002】
本出願は、ケイ素および炭素を含む複合材料に関する。特に、本出願は、電池電極に使用する複合材料に関する。
【背景技術】
【0003】
典型的には、リチウムイオン電池は、セパレータ、および/または、アノードとカソードとの間の電解質を含む。ある種類の電池において、セパレータ、カソード、およびアノード材料が、シートまたは膜状に、個別に形成される。その後、カソード、セパレータ、およびアノードのシートが積層され、または、カソードとアノードと(例えば電極)が分離するセパレータとともに巻かれ、電池を形成する。巻かれるカソード、セパレータおよびアノードにおいて、各シートは、クラック、ブレーキ、機械的破損等の破損を生じることなく巻かれるように、十分に変形可能でありまたは柔軟でなければならない。典型的な電極は、導電性金属(例えば、アルミニウムおよび銅)上に、電気化学的に活性な材料層を含む。膜は、巻かれ、または細かく切断され、その後、積層体に層状化される。積層体は、交互の電気化学的に活性な材料であって、それらの間にセパレータを備えたものである。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許出願公開第12/838368号明細書
【発明の概要】
【課題を解決するための手段】
【0005】
ある実施形態において、複合材料が提供される。複合材料は、0重量%より大きく、約90重量%未満のケイ素粒子と、0重量%より大きく、約90重量%未満の1種または複数種の炭素相と、を含むことが可能である。さらに、1種または複数種の炭素相の少なくとも1つが、実質的に連続相である。
【0006】
ケイ素粒子は、約1μm未満の平均最大寸法を有しうる。いくつかの実施形態において、ケイ素粒子は、複合材料の約20重量%から約80重量%を含む。
【0007】
実質的に連続相である1種または複数種の炭素相の少なくとも1つが、電気化学的に活性であり、導電性であることが可能である。いくつかの実施形態において、実質的に連続相である1種または複数種の炭素相の少なくとも1つが、硬質炭素を含む。
【0008】
また、複合材料は、他の粒子を含みうる。例えば、1種または複数種の炭素相は、グラファイト粒子を含むことが可能である。複合材料は、導電性粒子、金属粒子等を含みうる。
【0009】
複合材料は、実質的に、電気化学的に活性であることが可能である。さらに、複合材料は、自立型でありうる。ある実施形態において、本明細書に記載された複合材料を含む電池電極が提供される。
【0010】
ある実施形態において、本明細書に記載された複合材料の使用方法が提供される。この方法は、複合材料の最大重量容量のわずか約70%未満の重量容量における複合材料を使用するステップを含むことが可能である。
【0011】
ある実施形態において、複合材料の形成方法が提供される。この方法は、前駆体およびケイ素粒子を含む混合物を提供するステップ、並びに、前駆体を1種または複数種の炭素相に変換し、複合材料を形成するために、前駆体を熱分解するステップを含むことが可能である。
【0012】
前駆体を熱分解した後、混合物が、自立複合構造を形成しうる。1種または複数種の炭素相の少なくとも1つが、実質的に連続相であることが可能である。実質的に連続相である1種または複数種の炭素相の少なくとも1つが、硬質炭素を含むことが可能である。いくつかの実施形態において、ケイ素粒子が、複合材料の約20重量%から約80重量%を含む。さらなる実施形態において、ケイ素粒子は、混合物中において0重量%より大きく約80%未満を含み、前駆体は、混合物中において、約5重量%であり、約80重量%未満を含む。
【0013】
混合物が、溶媒をさらに含みうる。前駆体は、炭化水素化合物、ポリイミド、フェノール樹脂等を含むことが可能である。この方法は、基板上に混合物をキャストするステップと、膜を形成するように混合物を乾燥するステップと、基板から膜を取り外すステップと、ホットプレスで膜を硬化するステップと、をさらに含むことが可能である。また、この方法は、複合材料から電池電極を形成するステップを含みうる。
【図面の簡単な説明】
【0014】
【
図1】前駆体を含む混合物を形成するステップと、混合物をキャストするステップと、混合物を乾燥するステップと、混合物を硬化するステップと、前駆体を熱分解するステップと、を含む複合材料の形成方法の実施形態を図示する。
【
図2】C/2.6の平均レートにおける放電容量のプロットである。
【
図3】C/3の平均レートにおける放電容量のプロットである。
【
図4】C/3.3の平均レートにおける放電容量のプロットである。
【
図5】C/5の平均レートにおける放電容量のプロットである。
【
図6】C/9の平均レートにおける放電容量のプロットである。
【
図8】C/9の平均レートにおける放電容量のプロットである。
【
図9A】20重量%のSiの固定パーセントに対するグラファイト粒子および2611cからのPI誘導炭素の様々な重量パーセントの関数としての可逆容量のプロットである。
【
図9B】20重量%のSiの固定パーセントに対するグラファイト粒子および2611cからのPI誘導炭素の様々な重量パーセントの関数としての不可逆容量のプロットである。
【
図10】炭素の重量パーセントの関数としての第一サイクル放電容量のプロットである。
【
図11】熱分解温度の関数としての可逆(放電)および不可逆容量のプロットである。
【
図12】金属箔支持層を備えない4.3cm×4.3cmの複合アノード膜の写真である。
【
図13】サイクルにさらされる前の複合アノード膜の走査型電子顕微鏡(SEM)写真である(焦点ずれの部分は、アノードの底部であり、焦点が合っている部分は、複合膜の切断された端部である)。
【
図14】サイクルにさらされる前の複合アノード膜の他のSEM写真である。
【
図15】10回のサイクルにさらされた後の複合アノード膜のSEM写真である。
【
図16】10回のサイクルにさらされた後の複合アノード膜の他のSEM写真である。
【
図17】300回のサイクルにさらされた後の複合アノード膜のSEM写真である。
【
図18】複合アノード膜の断面のSEM写真を含む。
【発明を実施するための形態】
【0015】
典型的な炭素アノード電極は、銅シート等の電流コレクタを含む。炭素は、不活性バインダ材料とともにコレクタ上に堆積される。炭素は、優れた電気化学的特性を有し、また導電性であるため、炭素がしばしば使用される。電流コレクタ層(例えば、銅層)が除去された場合、炭素は、それ自体を機械的に支持することが出来なくなる。従って、従来の電極は、電極として機能することが可能なコレクタ等の支持構造を必要とする。本出願に記載された電極(例えば、アノードまたはカソード)複合材料は、自立した電極を製造することが可能である。機械的支持体およびアノード構造における電流コレクタに導電性炭化ポリマーが使用されるため、金属箔電流コレクタに対する要求は、取り除かれ、または最小化される。ある種の従来のリチウム-イオン電池電極における非-導電性バインダ中に懸濁された微粒子炭素とは対照的に、炭化ポリマーは、電極全体において実質的に連続した導電性炭素相を形成することが可能である。炭化ポリマーを利用する炭素複合混合物の利点には、例えば、1)高容量、2)強化された過充電/放電保護、3)金属箔電流コレクタの除去(または最小化)による低い不可逆容量、および4)簡素化された製造により見込まれるコスト削減が含まれることが可能である。
【0016】
再充電可能なリチウム-イオンセルに現在使用されているアノード電極は、典型的には、グラムあたり約200ミリアンペアアワーの比容量を有する(金属箔電流コレクタ、導電性添加剤、およびバインダ材料を含む)。大部分のリチウムイオン電池アノードに使用されている活性材料であるグラファイトは、グラムあたり372ミリアンペアアワー(mAh/g)の理論的エネルギー密度を有する。それに比べて、ケイ素は、4200mAh/gの高い理論的容量を有する。しかしながら、ケイ素は、リチウムが挿入されると300%を超えて膨らむ。この膨張のため、ケイ素との電気的な接触を維持するには、ケイ素を含むアノードが、ケイ素ために拡張されなければならない。
【0017】
また、本出願は、炭化ポリマーを使用するモノリシック、自立型アノードの新規な製造方法を説明する。ポリマーは、導電性であり電気化学的に活性なマトリクスに変換されるため、結果として得られる電極は、金属箔またはメッシュ電流コレクタが除外されまたは最小化されることが可能であるように十分に導電性である。また、サイクルの間、変換されたポリマーは、ケイ素粒子に対する膨張バッファとして機能し、高度なサイクル寿命を得ることが可能である。ある実施形態において、結果として得られる電極は、実質的に活性材料からなる電極である。さらなる実施形態において、結果として得られる電極は、実質的に活性材料である。電極は、例えば、1)ケイ素の使用、2)金属電流コレクタの除去または大幅な低減、および3)全体が(またはほぼ全体が)活性材料からなることにより、約500mAh/gから約1200mAh/gの間の高いエネルギー密度を有することが可能である。
【0018】
本明細書において説明される複合材料は、大部分の従来のリチウムイオン電池のアノードとして使用されることが可能であり;また、これらは、付加的な添加物とのいくつかの電気化学的結合においてカソードとして使用されうる。複合材料は、二次電池(例えば、再充電可能)または一次電池(例えば、再充電不可能)のいずれかにおいて使用されることも可能である。ある実施形態において、複合材料は、自立構造である。さらなる実施形態において、複合材料は、自立モノリシック構造である。例えば、コレクタは、複合材料からなる電極に含まれなくてよい。ある実施形態において、複合材料は、“Carbon Electrode Structures for Batteries”との表題の特許文献1において議論されたような炭素構造を形成するために使用されることが可能であり、特許文献1の全体が、参照により、本明細書に組み込まれる。さらに、本明細書において説明される複合材料は、例えば、ケイ素複合材料、炭素複合材料、および/またはケイ素-炭素複合材料であることが可能である。
【0019】
図1は、複合材料の形成方法100の一実施形態を図示する。例えば、複合材料の形成方法は、前駆体を含む混合物を形成するステップ、ブロック101を含むことが可能である。この方法は、前駆体を炭素相に変換するために、前駆体を熱分解するステップをさらに含むことが可能である。前駆体混合物は、グラファイト活性材料、刻まれたまたは粉砕された炭素繊維、炭素ナノファイバー、炭素ナノチューブ、および/または他の炭素等の炭素添加物を含みうる。前駆体が熱分解された後、結果として得られる炭素材料は、自立モノリシック構造であることが可能である。ある実施形態において、複合材料を形成するために、1つまたは複数の材料が混合物に追加される。例えば、ケイ素粒子が、混合物に追加されることが可能である。炭化前駆体は、複合材料を一緒に保持する電気化学的に活性な構造を生じる。例えば、炭化前駆体は、実質的に連続相であることが可能である。ケイ素粒子は、複合材料の全体にわたって分散されうる。有利には、炭化前駆体は、構造材料であり、ならびに、電気-化学的に活性かつ導電性の材料となる。ある実施形態において、均一な複合材を形成するために、混合物に追加された材料粒子は、複合材料の全体にわたって均一に分散される。
【0020】
混合物は、様々な異なる成分を含むことが可能である。混合物は、1つまたは複数の前駆体を含むことが可能である。ある実施形態において、前駆体は、炭化水素化合物である。例えば、前駆体は、ポリアミック酸、ポリイミド等を含むことが可能である。他の前駆体は、フェノール樹脂、エポキシ樹脂、および他のポリマーを含む。混合物は、溶媒をさらに含むことが可能である。例えば、溶媒は、N-メチル-ピロリドン(NMP)であることが可能である。他の可能な溶媒は、アセトン、ジエチルエーテル、ガンマブチロラクトン、イソプロパノール、ジメチルカーボネート、エチルカーボネート、ジメトキシエタン等を含む。前駆体および溶媒溶液の例には、PI-2611(HD Microsystems)、PI-5878G(HD Microsystems)、およびVTEC PI-1388(RBI,Inc.)が含まれる。PI-2611は、>60%のn-メチル-2-ピロリドンおよび10~30%のs-ビフェニルジアンヒドリド/p-フェニレンジアミンからなる。PI-5878Gは、>60%のn-メチルピロリドン、10~30%のピロメリットジアンヒドリド/オキシジアニリンのポリアミック酸、5~10%の1,2,4-トリメチルベンゼンを含む10~30%の芳香族炭化水素(石油蒸留物)からなる。ある実施形態において、溶媒中の前駆体の量は、約10重量%~約30重量%である。付加的な材料も、混合物中に含まれることが可能である。例えば、上述のように、グラファイト活性材料を含む炭素粒子またはケイ素粒子、刻まれたまたは粉砕された炭素繊維、炭素ナノファイバー、炭素ナノチューブ、および導電性炭素が、混合物に追加されることが可能である。さらに、混合物を均一化するために、混合物が混合されることが可能である。
【0021】
ある実施形態において、
図1のブロック102において、混合物は、基板上にキャストされる。いくつかの実施形態において、キャストするステップは、ギャップ押し出し(extrusion)、またはブレードキャスティング技術を使用するステップを含む。ブレードキャスティング技術は、基板の上のある距離に制御された平坦な表面(例えば、ブレード)を使用することにより、基板にコーティングを設けるステップを含むことが可能である。液体またはスラリーが、基板に適用されることが可能であり、基板に液体が広がるように、ブレードが、液体によって横切られることが可能である。液体が、ギャップを通過するため、コーティングの厚さは、ブレードと基板との間のギャップによって制御されることが可能である。液体が、ギャップを通過するので、過度の液体は、削ぎ落とされることも可能である。例えば、混合物は、ポリマーシート、ポリマーロール、または、ガラス若しくは金属からなる箔若しくはロール上にキャストされることが可能である。次に、ブロック103において、溶媒を除去するために、混合物は、乾燥されることが可能である。例えば、ポリアミック酸およびNMP溶液は、NMP溶液を除去するために、約110℃で、約2時間の間、乾燥されることが可能である。次に、乾燥された混合物は、基板から取り外されることが可能である。例えば、アルミニウム基板は、HClを用いてエッチングされることが可能である。あるいは、ピーリングまたは基板から乾燥された混合物を取り外す他の機械的なステップによって、乾燥された混合物は、基板から取り外されることが可能である。ある実施形態において、乾燥された混合物は、膜またはシートである。いくつかの実施形態において、ブロック104において、乾燥された混合物は硬化される。乾燥された混合物を平坦に硬化し維持するために、ホットプレスが使用されることが可能である。例えば、ポリアミック酸およびMNP溶液から乾燥された混合物は、約200℃で、約8~16時間の間、ホットプレスされることが可能である。あるいは、キャスティングおよび乾燥を含む全体のプロセスは、標準的な膜-処理装置を使用するロール・ツー・ロールプロセスとして実施されることが可能である。残りうる任意の溶媒またはエッチャントを除去するために、乾燥された混合物は、洗い流されることが可能である。例えば、乾燥された混合物を洗い流すために、脱イオン化(DI)水が使用されることが可能である。ある実施形態において、キャスティングに、テープキャスティング技術が使用されることが可能である。他の実施形態において、キャスティングのために基板が存在せず、アノード膜は、任意の基板から取り外される必要がない。乾燥された混合物は、切断され、または、小さな片に機械的に分割されうる。
【0022】
ブロック105において、前駆体を炭素に変換するために、混合物は、さらに、熱分解にさらされる。ある実施形態において、混合物は、還元性雰囲気下で熱分解される。例えば、不活性雰囲気、真空および/またはアルゴン、窒素、若しくはヘリウムガスの流れが、使用されることが可能である。いくつかの実施形態において、混合物は、約900℃~約1350℃まで加熱される。例えば、ポリアミック酸から形成されるポリイミドは、約1175℃で、約1時間の間、炭化されることが可能である。ある実施形態において、混合物の加熱速度および/または冷却速度は、約10℃/分である。混合物を特定の形状に保つために、ホルダーが使用されうる。ホルダーは、グラファイト、金属等であることが可能である。ある実施形態において、混合物は、平坦に保持される。混合物が熱分解された後、電気的接点を形成するために、タブが熱分解された材料に取り付けられることが可能である。例えば、ニッケル、銅またそれらの合金が、タブに使用されることが可能である。
【0023】
ある実施形態において、本明細書で説明された1つまたは複数の方法は、連続的なプロセスである。例えば、キャスティング、乾燥、硬化および熱分解は、連続的なプロセスで実施されることが可能であり;例えば、混合物は、ガラスまたは金属シリンダーの上にコーティングされることが可能である。シリンダー上で回転する間に、混合物は、乾燥されることが可能であり、膜を形成する。膜は、ロールとして移され、または、剥がされ、さらなる処理のために、他の機械内に送り込まれる。熱分解ステップの前に、押し出し、および工業的に知られている他の膜製造技術が、利用されることも可能である。
【0024】
前駆体の熱分解は、炭素材料(少なくとも1つの炭素相)を生じる。ある実施形態において、炭素材料は、硬質炭素である。いくつかの実施形態において、前駆体は、硬質炭素を形成するために熱分解されることが可能な任意の材料である。炭化前駆体に加えて、混合物が1つまたは複数の付加的な材料また相を含む場合、複合材料が形成されることが可能である。具体的には、混合物は、ケイ素-炭素(例えば、ケイ素を含む少なくとも1つの第一相および炭素を含む少なくとも1つの第二相)、またはケイ素-炭素-炭素(例えば、ケイ素を含む少なくとも1つの第一相、炭素を含む少なくとも1つの第二相、および炭素を含む少なくとも1つの第三相)複合材料を形成するケイ素粒子を含むことが可能である。ケイ素粒子は、複合材料の比リチウム挿入容量を増大させることが可能である。ケイ素がリチウムイオンを吸収する場合、それにおいて、電極に構造的な完全性の問題を引き起こしうる300+体積パーセントのオーダーの大きな体積増加が認められる。体積膨張に関する課題に加えて、ケイ素は、本質的には導電性ではないが、それが、リチウムと合金化された場合(例えば、リチオ化)に導電性になる。ケイ素が脱リチウム化した場合、ケイ素の表面が、導電性を失う。さらに、ケイ素が脱リチウム化すると、体積が減少し、この結果、ケイ素粒子がマトリクスとの接触を失う可能性がある。また、体積の劇的な変化により、結果として、ケイ素粒子構造の機械的破損を生じ、次々に、それが粉々になる。粉砕化および電気的接触の損失により、それを、リチウム-イオン電池における活性材料としてケイ素を使用するための課題が生じる。ケイ素粒子の初期サイズの減少は、ケイ素粉末のさらなる粉砕化を防ぎ、および、表面の導電性の損失を最小化することが可能である。さらに、複合材料に、ケイ素粒子の体積変化とともに弾性的に変形することが可能な材料を追加することで、ケイ素の表面との電気的接触が失われないことを確保することが可能である。例えば、膨張を吸収する複合材料の能力に寄与し、また、電極のストレージ容量を増大させるリチウムイオンを挿入することが可能である(例えば、化学的に活性)グラファイト等の炭素を、複合材料は含むことが可能である。従って、複合材料は、一種または複数種の炭素相を含みうる。
【0025】
最大寸法のケイ素粒子の実施形態は、約40μm未満、約1μm未満、約10nmと40μmとの間、約10nmと1μmとの間、約500nm未満、約100nm未満、および約100nmを含む。全ての、実質的に全ての、または少なくともいくつかのケイ素粒子は、上記の最大寸法を含みうる。例えば、ケイ素粒子の平均またはメジアン最大寸法は、約40μm未満、約1μm未満、約10nmと40μmとの間、約10nmと1μmとの間、約500nm未満、約100nm未満、および約100nmを含む。複合材料中のケイ素の量は、混合および複合材料のゼロ重量パーセントよりも大きいことが可能である。ある実施形態において、混合物中のケイ素の量は、混合物の0重量%より大きく約90重量%未満の間、または、約30重量%と約80重量%の間である。複合材料中のケイ素の量の実施形態は、0重量%より大きく約35重量%未満、0重量%より大きく約25重量%未満、約10重量%と約35重量%との間、および、約20重量%を含む。あるさらなる実施形態において、混合物中のケイ素の量は、少なくとも約30重量%である。複合材料中のケイ素の量の付加的な実施形態は、約50重量%以上、約30重量%と約80重量%との間、約50重量%と約70重量%との間、および約60重量%と約80重量%との間を含む。さらに、ケイ素粒子は、純ケイ素であってもなくてもよい。例えば、ケイ素粒子は、実質的にケイ素であるか、またはケイ素合金でありうる。一実施形態において、ケイ素合金は、1つまたは複数の他の要素とともに第一構成物質としてケイ素を含む。
【0026】
前駆体から得られた炭素の量は、ポリアミック酸からの約50重量パーセントであることが可能である。ある実施形態において、複合材料中の前駆体からの炭素の量は、約10~25重量%である。前駆体からの炭素は、硬質炭素であることが可能である。硬質炭素は、セ氏2800度を超えて加熱された場合でさえ、グラファイトに変換されない炭素である。熱分解の間に溶けるまたは流れる前駆体は、十分な温度および/または圧力で軟質炭素および/またはグラファイトに変換する。軟質炭素前駆体は流れ、軟質炭素およびグラファイトは、硬質炭素よりも機械的に弱いため、硬質炭素が選択されうる。他の可能な硬質炭素前駆体は、フェノール樹脂、エポキシ樹脂、および極めて高い融点を有するまたは架橋された他のポリマーを含む。複合材料中の硬質炭素の量の実施形態は、約10重量%から約25重量%、約20重量%、約50重量%以上を含む。ある実施形態において、硬質炭素相は、実質的に非晶質である。他の実施形態において、硬質炭素相は、実質的に結晶質である。さらなる実施形態において、硬質炭素相は、非晶質および結晶質炭素を含む。硬質炭素相は、複合材料中のマトリクス相であることが可能である。また、硬質炭素は、ケイ素を含む添加物の孔中に埋め込まれることも可能である。界面においていくつかの材料を形成するために、硬質炭素は、いくつかの添加物と反応しうる。例えば、ケイ素粒子と硬質炭素との間にケイ素炭化物層が存在しうる。
【0027】
ある実施形態において、グラファイト粒子が、混合物に追加される。有利には、グラファイトが、電池中において電気化学的に活性な材料であり、および、ケイ素粒子の体積変化に反応することが可能な弾性変形可能材料である。それが低い不可逆的容量を有するため、現在市場で売られている、ある種のリチウム-イオン電池において、グラファイトは、好ましい活性アノード材料である。さらに、グラファイトは、硬質炭素よりも柔らかく、ケイ素添加物の体積膨張を良好に吸収することが可能である。ある実施形態において、グラファイト粒子の最大寸法は、約0.5マイクロメートルと約20マイクロメートルとの間である。全ての、実質的に全ての、または少なくともいくつかのグラファイト粒子は、本明細書に説明された最大寸法を含みうる。さらなる実施形態において、グラファイト粒子の平均またはメジアン最大寸法は、約0.5マイクロメートルと約20マイクロメートルとの間である。ある実施形態において、混合物は、0重量%よりも大きく、約80重量%未満のグラファイト粒子を含む。さらなる実施形態において、複合材料は、約40重量%から約75重量%のグラファイト粒子を含む。
【0028】
ある実施形態において、電気化学的に活性でもありうる導電性粒子が、混合物に追加される。このような粒子が、さらに導電性の複合材料、並びに、リチウム化および脱-リチウム化の間に生じた大きな体積変化を吸収することが可能であるさらに機械的に変形可能な複合材料の両方を提供する。ある実施形態において、導電性粒子の最大寸法は、約10ナノメートルと約7ミリメートルとの間である。全ての、実質的に全ての、または少なくともいくつかの導電性粒子は、本明細書に説明された最大寸法を含みうる。さらなる実施形態において、導電性粒子の平均またはメジアン最大寸法は、約10nmと約7ミリメートルとの間である。ある実施形態において、混合物は、ゼロより大きく、最大で約80重量%の導電性粒子を含む。さらなる実施形態において、複合材料は、約45重量%から約80重量%の導電性粒子を含む。導電性粒子は、カーボンブラック、カーボンファイバー、カーボンナノファイバー、カーボンナノチューブ等を含む導電性炭素であることが可能である。電気化学的に活性ではない導電性添加物として考えられる多くの炭素は、一旦、ポリマーマトリクス中で熱分解されると、活性になる。あるいは、導電性粒子は、金属、または、銅、ニッケル、若しくはステンレス鋼を含む合金であることが可能である。
【0029】
ある実施形態において、電極は、本明細書に説明された複合材料を含むことが可能である。例えば、複合材料は、自立モノリシック電極を形成することが可能である。複合材料の熱分解された炭素相(例えば、硬質炭素相)は、まとまり、混合物に追加された粒子を構造的に支持することが可能である。ある実施形態において、自立モノリシック電極は、別個のコレクター層および/または他の支持構造を含まない。いくつかの実施形態において、複合材料および/または電極は、前駆体の熱分解の後に残る微量を超えるポリマーを含まない。さらなる実施形態において、複合材料および/または電極は、非-導電性バインダーを含まない。また、複合材料は、孔を含みうる。例えば、多孔率は、体積多孔率で、約5%から約40%であることが可能である。
【0030】
また、複合材料は、粉末状に形成されうる。例えば、複合材料は、粉末状にすりつぶされうる。複合材料粉末は、電極用の活性材料として使用されることが可能である。例えば、複合材料粉末は、当業界で知られている従来の電極構造を製造するのと同様な方法で、コレクター上に堆積されることが可能である。
【0031】
ある実施形態において、電池または電気化学セル中の電極は、本明細書に説明された複合材料を含むことが可能である。例えば、複合材料は、アノードおよび/またはカソード用に使用されることが可能である。ある実施形態において、電池は、リチウムイオン電池である。さらなる実施形態において、電池は、二次電池であり、または他の実施形態において、電池は、一次電池である。
【0032】
さらに、複合材料の全容量は、電池の寿命を改善するために、電池の使用の間に利用されない場合もある(例えば、電池が機能しなくなる前の充電および放電サイクルの数、または、電池の性能が、有用性レベル下まで低下する)。例えば、約70重量%のケイ素粒子、約20重量%の前駆体からの炭素、および約10重量%のグラファイトを含む複合材料は、約2000mAh/gの最大の重量容量を有し、一方、複合材料は、約550~約850mAh/gの最大の重量容量が使用されうるのみである。複合材料の最大の重量容量は、利用されない場合もあるが、低い容量で複合材料を使用することで、あるリチウムイオン電池よりも高い容量をいまだ得ることが可能である。ある実施形態において、複合材料は、複合材料の最大の重量容量の約70%よりも低い重量容量で使用される、または使用されるだけである。例えば、複合材料は、複合材料の最大の重量容量の約70%を上回る重量容量で使用されない。さらなる実施形態において、複合材料は、複合材料の最大の重量容量の約50%より低い、または、複合材料の最大の重量容量の約30%より低い重量容量で、使用される、または使用されるだけである。
【0033】
(実施例)
アノード製造のための以下の例となるプロセスは、概して、構成要素を一緒に混合するステップと、それらの構成要素を除去可能な基板上にキャストするステップ、乾燥するステップと、硬化するステップと、基板を除去するステップと、次に、得られた試料を熱分解するステップと、を含む。典型的には、N-メチルー2-ピロリドン(NMP)が、溶媒として使用され、任意の混合物の粘度を変更し、ドクターブレード手法を使用して、それをキャスタブルにする。
【実施例1】
【0034】
実施例1において、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、グラファイト粒子(Timcal社からのSLP30)、導電性炭素粒子(Timcal社からのSuper P)、およびケイ素粒子(Alfa Aesar社)が、200:55:5:20の重量比で、5分間の間、Spex 8000D機を使用して、一緒に混合された。次に、混合物は、アルミニウム箔の上にキャストされ、90℃のオーブン中で乾燥され、例えば、NMPである溶媒を取り除いた。この次に、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化するステップが続く。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴンのフロー下で、1175℃で、約1時間、熱分解された。このプロセスにより、15.8重量%のPI 2611由来の炭素、57.9重量%のグラファイト粒子、Super Pから得られた5.3重量%の炭素、および21.1重量%のケイ素の複合物が得られた。
【0035】
次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図2に示される。
【実施例2】
【0036】
実施例2において、最初に、Turbulaミキサーを使用し、1:9の重量比で、1時間の継続時間の間、(EVNANO Advanced Chemical Materials Co.,Ltd.からの)ケイ素粒子が、NMPと混合された。次に、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、グラファイト粒子(Timcal社からのSLP30)、および炭素ナノファイバー(Pyrograf社からのCNF)が、Si:NMP混合物に追加され、200:55:5:200の重量比であり、約2分間の間、ボルテックスにかけられた。次に、混合物が、21μmの厚さの銅メッシュによって被覆されたアルミニウム箔の上にキャストされた。次に、試料が、90℃のオーブンで乾燥され、例えばNMPである溶媒が取り除かれた。この次に、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化するステップが続いた。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴン下で、1000℃で、約1時間、熱分解された。このプロセスにより、15.8重量%のPI 2611由来の炭素、57.9重量%のグラファイト粒子、5.3重量%のCNF、および21.1重量%のケイ素の複合物が得られた。
【0037】
次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図3に示される。
【実施例3】
【0038】
実施例3において、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、および、325メッシュケイ素粒子(Alfa Aesar社から)が、Turbulaミキサーを使用し、1時間の継続時間の間、40:1の重量比で、一緒に混合された。次に、混合物が、アルミニウム箔上にキャストされ、例えば、NMPである溶媒を取り除くために、90℃のオーブン中で乾燥された。この次に、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化するステップが続いた。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴンのフロー下で、1175℃で、約1時間、熱分解された。このプロセスにより、75重量%のPI 2611由来の炭素、および25重量%のケイ素の複合物が得られた。
【0039】
次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図4に示される。
【実施例4】
【0040】
実施例4において、ケイ素微粒子(Alfa Aesar社から)、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、グラファイト粒子(Timcal社からのSLP30)、粉砕された炭素ファイバー(Fibre Glast Developments社から)、炭素ナノファイバー(Pyrograf社からのCNF)、炭素ナノチューブ(CNANO Technology Limitedから)、導電性炭素粒子(Timcal社からのSuper P)、導電性グラファイト粒子(Timca社からのKS6)が、20:200:30:8:4:2:1:15の重量比で、ボルテックスを使用し、5分間の間、混合された。次に、混合物が、アルミニウム箔上にキャストされた。次に、試料が、90℃のオーブン中で乾燥され、例えば、NMPである溶媒が取り除かれた。この次に、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化するステップが続いた。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴン下で、1175℃で、約1時間、熱分解された。このプロセスにより、初期混合物と類似の複合物であるが、ポリイミド前駆体の初期重量の7.5%であるPI 2611由来の炭素部を含む複合物が得られた。
【0041】
次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図5に示される。
【実施例5】
【0042】
実施例5において、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、および、ケイ素微粒子(Alfa Aesar社から)が、Turbulaミキサーを使用し、1時間の継続時間の間、4:1の重量比で、一緒に混合された。次に、混合物が、炭素ベール(Fibre Glast Developments Corporationから)で覆われたアルミニウム箔上にキャストされ、例えば、NMPである溶媒を取り除くために、90℃のオーブン中で乾燥された。この次に、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化するステップが続いた。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴンのフロー下で、1175℃で、約1時間、熱分解された。このプロセスにより、約23重量%のPI 2611由来の炭素、76重量%のケイ素、およびごくわずかな重量のベールの複合物が得られた。
【0043】
次に、得られた電極が、リチウムニッケルマンガンコバルト酸化物(NMC)カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図6に示される。
【実施例6】
【0044】
実施例6において、ポリイミド液体前駆体(HD Microsystems社からのPI 2611)、グラファイト粒子(Timcal社からのSLP30)、および、ケイ素微粒子(Alfa Aesar社から)が、Spex 8000D機を使用し、200:10:70の重量比で、5分間の間、一緒に混合された。次に、混合物が、アルミニウム箔上にキャストされ、溶媒(例えば、NMP)を取り除くために、90℃のオーブン中で乾燥された。乾燥された混合物が、200℃で、ホットプレス中で、ごくわずかな圧力下で、少なくとも12時間の間、硬化された。次に、12.5%のHCl溶液中でのエッチングにより、アルミニウム箔の裏地が除去された。次に、残った膜が、DI水中で洗い流され、乾燥され、次に、アルゴンのフロー下で、1175℃で、約1時間、熱分解された。このプロセスにより、15.8重量%のPI 2611由来の炭素、10.5重量%のグラファイト粒子、および73.7重量%のケイ素の複合物が得られた。
【0045】
次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。各サイクルで600mAh/gに充電されたアノード、およびサイクルあたりの放電容量が記録された。典型的なサイクルグラフが、
図7に示される。
【実施例7】
【0046】
実施例7において、PVDFおよびケイ素粒子(EVNANO Advanced Chemical Materials Coから)、導電性炭素粒子(Timcal社からのSuper P)、導電性グラファイト粒子(Timcal社からのKS6)、グラファイト粒子(Timcal社からのSLP30)、およびNMPが、5:20:1:4:70:95の重量比で混合された。次に、混合物が。銅基板上にキャストされ、次に、例えば、NMPである溶媒を取り除くために、90℃のオーブン中に配置された。次に、得られた電極が、リチウムNMC酸化物カソードに対して、パウチセル構造において試験された。典型的なサイクルグラフが、
図8に示される。
【実施例8】
【0047】
グラファイト粒子(Timcal社からのSLP30)の割合が減少し、ケイ素微粒子(Alfa Aesar社から)の割合が20wt.%に保持される一方で、ポリイミド由来の炭素(例えば、2611c)の割合の変化の効果を見出すために、多くの実験が実施された。
【0048】
図9Aおよび9Bに示されるように、結果は、多くのグラファイトおよび少ない2611cが、比容量を増大させる一方で、不可逆容量を低減させることにより、セル性能に有益であった。2611cの最小化は、結果として得られたアノードの強度に悪影響を及ぼすため、一実施形態において、20wt.%に近い値が、妥協案として好ましいものになることが可能である。
【実施例9】
【0049】
図8と同様に、2611cが、20wt.%に保持され、Siの割合が、グラファイト粒子を消費して増大する場合、得られた電極の第一サイクル放電容量が、増大する。
図10は、高いケイ素容量により、アノードが良好に作動することが可能であることを示す。
【実施例10】
【0050】
1ミル厚さのポリイミドシートが、熱分解され、実施例1の手順に従って試験された。可逆容量および不可逆容量が、熱分解温度の関数としてプロットされた。
図11は、一実施形態において、約1175℃でポリイミドシート(UBE社によるUpilex)を熱分解することが好ましいことを示す。
【0051】
(追加の実施例)
図12は、金属箔支持層を備えない、4.3cm×4.3cmの複合アノード膜の写真である。複合アノード膜は、約30マイクロメートルの厚さを有し、約15.8重量のPI 2611由来の炭素、約10.5重量%のグラファイト粒子、および約73.7重量%のケイ素の組成を有する。
【0052】
図13~18は、複合アノード膜の走査型電子顕微鏡(SEM)の顕微鏡写真である。複合アノード膜の組成は、約15.8重量%のPI 2611由来の炭素、約10.5重量%のグラファイト粒子、および約73.7重量%のケイ素である。
図13および14は、サイクルにさらされる前を示す(焦点ずれの部分は、アノードの底部であり、焦点が合っている部分は、複合膜の切断された端部である)。
図15、16、および17は、各々、10サイクル、10サイクル、および300サイクル後の複合アノード膜のSEM顕微鏡写真である。SEM顕微鏡写真は、ケイ素のいずれの十分な粉砕部が存在しないこと、および、アノードが、固体電解質界面/サイクル後のそれらの上部上に作られた相間(SEI)の過度の層を有さないことを示す。
図18は、複合アノード膜の断面のSEM顕微鏡写真である。
【0053】
様々な実施形態が、上記において説明された。本発明が、これらの特定の実施形態を参照して説明されたが、この説明は、例示を意図するものであり、制限を意図するものではない。添付の特許請求の範囲に定義されるような本発明の真の精神および範囲を逸脱することなく、様々な修正および応用に、当業者は気付きうる。
【符号の説明】
【0054】
100 複合材料の形成方法
101、102、103、104、105 ブロック