(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-23
(45)【発行日】2022-03-31
(54)【発明の名称】タスク割り当てシステムにおいて予期される実績を推定するための技術
(51)【国際特許分類】
G06Q 10/06 20120101AFI20220324BHJP
H04M 3/523 20060101ALI20220324BHJP
【FI】
G06Q10/06 302
H04M3/523
(21)【出願番号】P 2020038438
(22)【出願日】2020-03-06
(62)【分割の表示】P 2018556358の分割
【原出願日】2018-04-05
【審査請求日】2020-03-06
(32)【優先日】2017-07-10
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-07-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517083224
【氏名又は名称】アフィニティ, リミテッド
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ジア チシティー
(72)【発明者】
【氏名】イッタイ カン
(72)【発明者】
【氏名】ビカシュ カトリ
【審査官】松田 岳士
(56)【参考文献】
【文献】特開2001-230875(JP,A)
【文献】特表2012-507976(JP,A)
【文献】特表2010-503069(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
H04M 3/00
H04M 3/16- 3/20
H04M 3/38- 3/58
H04M 7/00- 7/16
H04M 11/00-11/10
(57)【特許請求の範囲】
【請求項1】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するための方法であって、前記方法は、
前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーが、タスク待ち行列の
サイズまたは利用可能なエージェントの
数を受信することと、
前記少なくとも一つのコンピュータープロセッサーが、前記タスク待ち行列の前記
サイズまたは利用可能なエージェントの前記
数に基づいて、選択の予期される
量を決定することと、
前記少なくとも一つのコンピュータープロセッサーが、前記選択の予期される
量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第一の推定される実績レベルを決定することと、
前記タスク割り当てシステムのスイッチにおいて、前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を含む、方法。
【請求項2】
前記少なくとも一つのコンピュータープロセッサーが、選択の最適量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第二の推定される実績レベルを決定することと、
前記少なくとも一つのコンピュータープロセッサーが、前記タスク割り当てシステムの前記第一の推定される実績レベルと前記第二の推定される実績レベルとの間の差を出力することと
をさらに含む、請求項1に記載の方法。
【請求項3】
前記少なくとも一つのコンピュータープロセッサーが、エージェント労働要員の増加を勧めることをさらに含み、前記エージェント労働要員の増加は、利用可能なエージェントの予期される
数を増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項1に記載の方法。
【請求項4】
前記少なくとも一つのコンピュータープロセッサーが、エージェント労働要員の減少を勧めることをさらに含み、前記エージェント労働要員の減少は、前記タスク待ち行列の前記
サイズを増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項1に記載の方法。
【請求項5】
前記少なくとも一つのコンピュータープロセッサーが、少なくとも一つの待っているタスクと少なくとも一人の利用可能なエージェントとの間の接続を確立することを遅らせることをさらに含み、前記遅らせることは、選択の実際の量を増加し、前記タスク割り当てシステムの実際の実績レベルを増加するように予期される、請求項1に記載の方法。
【請求項6】
前記少なくとも一つのコンピュータープロセッサーが、第一の複数の履歴エージェント-タスク割り当てを受信することであって、前記第一の複数の履歴エージェント-タスク割り当ての各々は、
前記好ましいタスク割り当て方策を決定するために使用された前記第一の複数の履歴エージェント-タスク割り当ての
インサンプルを含む、ことと、
前記少なくとも一つのコンピュータープロセッサーが、
前記インサンプルに基づいて、選択の種々の量の頻度分布を経時的に出力することと
をさらに含む、請求項1に記載の方法。
【請求項7】
前記好ましいタスク割り当て方策は、行動ペアリング方策である、請求項1に記載の方法。
【請求項8】
前記行動ペアリング方策は、対角線モデル行動ペアリング方策またはネットワークフロー行動ペアリング方策である、請求項7に記載の方法。
【請求項9】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するためのシステムであって、
前記システムは、前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーを備え、
前記少なくとも一つのコンピュータープロセッサーは、
タスク待ち行列の
サイズまたは利用可能なエージェントの
数を受信することと、
前記タスク待ち行列の前記
サイズまたは利用可能なエージェントの前記
数に基づいて、選択の予期される
量を決定することと、
前記選択の予期される
量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第一の推定される実績レベルを決定することと、
前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を行うようにさらに構成される、システム。
【請求項10】
前記少なくとも一つのコンピュータープロセッサーは、
選択の最適量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第二の推定される実績レベルを決定することと、
前記タスク割り当てシステムの前記第一の推定される実績レベルと前記第二の推定される実績レベルとの間の差を出力することと
を行うようにさらに構成される、請求項9に記載のシステム。
【請求項11】
前記少なくとも一つのコンピュータープロセッサーは、エージェント労働要員の増加を勧めることを行うようにさらに構成され、前記エージェント労働要員の増加は、利用可能なエージェントの予期される
数を増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項9に記載のシステム。
【請求項12】
前記少なくとも一つのコンピュータープロセッサーは、エージェント労働要員の減少を勧めることを行うようにさらに構成され、前記エージェント労働要員の減少は、前記タスク待ち行列の前記
サイズを増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項9に記載のシステム。
【請求項13】
前記少なくとも一つのコンピュータープロセッサーは、少なくとも一つの待っているタスクと少なくとも一人の利用可能なエージェントとの間の接続を確立することを遅らせることを行うようにさらに構成され、前記遅らせることは、選択の実際の量を増加し、前記タスク割り当てシステムの実際の実績レベルを増加するように予期される、請求項9に記載のシステム。
【請求項14】
前記少なくとも一つのコンピュータープロセッサーは、
第一の複数の履歴エージェント-タスク割り当てを受信することであって、前記第一の複数の履歴エージェント-タスク割り当ての各々は、
前記好ましいタスク割り当て方策を決定するために使用された前記第一の複数の履歴エージェント-タスク割り当ての
インサンプルを含む、ことと、
前記インサンプルに基づいて、選択の種々の量の頻度分布を経時的に出力することと
を行うようにさらに構成される、請求項9に記載のシステム。
【請求項15】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するための製造品であって、前記製造品は、
非一時的プロセッサー読み取り可能な媒体と、
前記媒体上に記憶される命令と
を備え、
前記命令は、前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーによって、前記媒体から読み取り可能であるように構成され、それによって、
タスク待ち行列の
サイズまたは利用可能なエージェントの
数を受信することと、
前記タスク待ち行列の前記
サイズまたは利用可能なエージェントの前記
数に基づいて、選択の予期される
量を決定することと、
前記選択の予期される
量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第一の推定される実績レベルを決定することと、
前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を行うように前記少なくとも一つのコンピュータープロセッサーを動作させる、製造品。
【請求項16】
前記少なくとも一つのコンピュータープロセッサーは、
選択の最適量に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの第二の推定される実績レベルを決定することと、
前記タスク割り当てシステムの前記第一の推定される実績レベルと前記第二の推定される実績レベルとの間の差を出力することと
を行うようにさらに構成される、請求項15に記載の製造品。
【請求項17】
前記少なくとも一つのコンピュータープロセッサーは、エージェント労働要員の増加を勧めることを行うようにさらに構成され、前記エージェント労働要員の増加は、利用可能なエージェントの予期される
数を増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項15に記載の製造品。
【請求項18】
前記少なくとも一つのコンピュータープロセッサーは、エージェント労働要員の減少を勧めることを行うようにさらに構成され、前記エージェント労働要員の減少は、前記タスク待ち行列の前記
サイズを増加し、前記選択の予期される
量を増加し、前記第一の推定される実績レベルを増加するように予期される、請求項15に記載の製造品。
【請求項19】
前記少なくとも一つのコンピュータープロセッサーは、少なくとも一つの待っているタスクと少なくとも一人の利用可能なエージェントとの間の接続を確立することを遅らせることを行うようにさらに構成され、前記遅らせることは、選択の実際の量を増加し、前記タスク割り当てシステムの実際の実績レベルを増加するように予期される、請求項15に記載の製造品。
【請求項20】
前記少なくとも一つのコンピュータープロセッサーは、
第一の複数の履歴エージェント-タスク割り当てを受信することであって、前記第一の複数の履歴エージェント-タスク割り当ての各々は、
前記好ましいタスク割り当て方策を決定するために使用された前記第一の複数の履歴エージェント-タスク割り当ての
インサンプルを含む、ことと、
前記インサンプルに基づいて、選択の種々の量の頻度分布を経時的に出力することと
を行うようにさらに構成される、請求項15に記載の製造品。
【請求項21】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するための方法であって、前記方法は、
前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーが、第一の複数の履歴エージェント-タスク割り当てを受信することと、
前記少なくとも一つのコンピュータープロセッサーが、前記第一の複数の履歴エージェント-タスク割り当ての各結果に基づいて、根底にあるタスク割り当て方策を使用して、前記タスク割り当てシステムのベースライン実績レベルを決定することと、
前記少なくとも一つのコンピュータープロセッサーが、前記好ましいタスク割り当て方策への閾値適合度を超える前記第一の複数の履歴エージェント-タスク割り当てのいずれかを除外することによって、履歴エージェント-タスク割り当ての第一のサブセットを決定することであって、前記閾値適合度は、前記タスク割り当てシステムの仮説上のピーク実績が達成される最適な対角線からの閾値距離である、ことと、
前記少なくとも一つのコンピュータープロセッサーが、前記履歴エージェント-タスク割り当ての第一のサブセットの各結果に基づいて、前記好ましいタスク割り当て方策を使用して前記タスク割り当てシステムの推定される実績レベルを決定することと、
前記少なくとも一つのコンピュータープロセッサーが、前記推定される実績レベルを前記ベースライン実績レベルと比較することによって、前記タスク割り当てシステムにおいて前記好ましいタスク割り当て方策を使用することに起因する予期される利得を出力することと、
前記タスク割り当てシステムのスイッチにおいて、前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を含む、方法。
【請求項22】
前記タスク割り当てシステムは、コンタクトセンターシステムであり、前記第一の複数の履歴エージェント-タスク割り当ての各々は、履歴エージェント-コンタクト割り当てである、請求項21に記載の方法。
【請求項23】
前記好ましいタスク割り当て方策は、行動ペアリング方策である、請求項21に記載の方法。
【請求項24】
前記少なくとも一つのコンピュータープロセッサーが、可能なペアリングの空間全体を通して前記第一の複数の履歴エージェント-タスク割り当てが略一様に分布されることを決定することをさらに含み、前記根底にあるタスク割り当て方策は、FIFOタスク割り当て方策である、請求項21に記載の方法。
【請求項25】
前記少なくとも一つのコンピュータープロセッサーが、より高い実績ランキングを有するエージェントの周りに前記第一の複数の履歴エージェント-タスク割り当てが集まっていることを決定することをさらに含み、前記根底にあるタスク割り当て方策は、実績ベースタスク割り当て方策である、請求項21に記載の方法。
【請求項26】
前記履歴エージェント-タスク割り当ての第一のサブセットを重み付けし直し、前記実績ベースタスク割り当て方策によって導入されるバイアスを削除することをさらに含み、前記推定される実績レベルおよび前記予期される利得は、前記重み付けし直された履歴エージェント-タスク割り当ての第一のサブセットに基づく、請求項25に記載の方法。
【請求項27】
前記少なくとも一つのコンピュータープロセッサーが、前記タスク割り当てシステムにおけるエージェント-タスクペアリングのために対応する選択の履歴平均量に基づいて、前記閾値適合度を決定することをさらに含む、請求項21に記載の方法。
【請求項28】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するためのシステムであって、
前記システムは、前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーを備え、
前記少なくとも一つのコンピュータープロセッサーは、
前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーによって、第一の複数の履歴エージェント-タスク割り当てを受信することと、
前記第一の複数の履歴エージェント-タスク割り当ての各結果に基づいて、根底にあるタスク割り当て方策を使用して前記タスク割り当てシステムのベースライン実績レベルを決定することと、
前記好ましいタスク割り当て方策への閾値適合度を超える前記第一の複数の履歴エージェント-タスク割り当てのいずれかを除外することによって、履歴エージェント-タスク割り当ての第一のサブセットを決定することであって、前記閾値適合度は、前記タスク割り当てシステムの仮説上のピーク実績が達成される最適な対角線からの閾値距離である、ことと、
前記履歴エージェント-タスク割り当ての第一のサブセットの各結果に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの推定される実績レベルを決定することと、
前記推定される実績レベルを前記ベースライン実績レベルと比較することによって、前記タスク割り当てシステムにおいて前記好ましいタスク割り当て方策を使用することに起因する予期される利得を出力することと、
前記タスク割り当てシステムのスイッチにおいて、前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を行うようにさらに構成される、システム。
【請求項29】
前記タスク割り当てシステムは、コンタクトセンターシステムであり、前記第一の複数の履歴エージェント-タスク割り当ての各々は、履歴エージェント-コンタクト割り当てである、請求項28に記載のシステム。
【請求項30】
前記好ましいタスク割り当て方策は、行動ペアリング方策である、請求項28に記載のシステム。
【請求項31】
前記少なくとも一つのコンピュータープロセッサーは、可能なペアリングの空間全体を通して前記第一の複数の履歴エージェント-タスク割り当てが略一様に分布されることを決定するようにさらに構成され、前記根底にあるタスク割り当て方策は、FIFOタスク割り当て方策である、請求項28に記載のシステム。
【請求項32】
前記少なくとも一つのコンピュータープロセッサーは、より高い実績ランキングを有するエージェントの周りに前記第一の複数の履歴エージェント-タスク割り当てが集まっていることを決定するようにさらに構成され、前記根底にあるタスク割り当て方策は、実績ベースタスク割り当て方策である、請求項28に記載のシステム。
【請求項33】
前記少なくとも一つのコンピュータープロセッサーは、前記履歴エージェント-タスク割り当ての第一のサブセットを重み付けし直し、前記実績ベースタスク割り当て方策によって導入されるバイアスを削除するようにさらに構成され、前記推定される実績レベルおよび前記予期される利得は、前記重み付けし直された履歴エージェント-タスク割り当ての第一のサブセットに基づく、請求項32に記載のシステム。
【請求項34】
前記少なくとも一つのコンピュータープロセッサーは、前記タスク割り当てシステムにおけるエージェント-タスクペアリングのために対応する選択の履歴平均量に基づいて、前記閾値適合度を決定するようにさらに構成される、請求項28に記載のシステム。
【請求項35】
タスク割り当てシステムにおいて好ましいタスク割り当て方策を検証するための製造品であって、前記製造品は、
非一時的プロセッサー読み取り可能な媒体と、
前記媒体上に記憶される命令と
を備え、
前記命令は、前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーによって、前記媒体から読み取り可能であるように構成され、それによって、
前記タスク割り当てシステムに通信可能に結合されかつ前記タスク割り当てシステムにおいてタスク割り当て動作を実行するように構成される少なくとも一つのコンピュータープロセッサーによって、第一の複数の履歴エージェント-タスク割り当てを受信することと、
前記第一の複数の履歴エージェント-タスク割り当ての各結果に基づいて、根底にあるタスク割り当て方策を使用して前記タスク割り当てシステムのベースライン実績レベルを決定することと、
前記好ましいタスク割り当て方策への閾値適合度を超える前記第一の複数の履歴エージェント-タスク割り当てのいずれかを除外することによって、履歴エージェント-タスク割り当ての第一のサブセットを決定することであって、前記閾値適合度は、前記タスク割り当てシステムの仮説上のピーク実績が達成される最適な対角線からの閾値距離である、ことと、
前記履歴エージェント-タスク割り当ての第一のサブセットの各結果に基づいて、前記好ましいタスク割り当て方策を使用して、前記タスク割り当てシステムの推定される実績レベルを決定することと、
前記推定される実績レベルを前記ベースライン実績レベルと比較することによって、前記タスク割り当てシステムにおいて前記好ましいタスク割り当て方策を使用することに起因する予期される利得を出力することと、
前記タスク割り当てシステムのスイッチにおいて、前記好ましいタスク割り当て方策に基づいて、タスクとエージェントとの間の接続を確立することと
を行うように前記少なくとも一つのコンピュータープロセッサーを動作させる、製造品。
【請求項36】
前記タスク割り当てシステムは、コンタクトセンターシステムであり、前記第一の複数の履歴エージェント-タスク割り当ての各々は、履歴エージェント-コンタクト割り当てである、請求項35に記載の製造品。
【請求項37】
前記好ましいタスク割り当て方策は、行動ペアリング方策である、請求項35に記載の製造品。
【請求項38】
前記少なくとも一つのコンピュータープロセッサーは、可能なペアリングの空間全体を通して前記第一の複数の履歴エージェント-タスク割り当てが略一様に分布されることを決定するようにさらに動作させられ、前記根底にあるタスク割り当て方策は、FIFOタスク割り当て方策である、請求項35に記載の製造品。
【請求項39】
前記少なくとも一つのコンピュータープロセッサーは、より高い実績ランキングを有するエージェントの周りに前記第一の複数の履歴エージェント-タスク割り当てが集まっていることを決定するようにさらに動作させられ、前記根底にあるタスク割り当て方策は、実績ベースタスク割り当て方策である、請求項35に記載の製造品。
【請求項40】
前記少なくとも一つのコンピュータープロセッサーは、前記履歴エージェント-タスク割り当ての第一のサブセットを重み付けし直し、前記実績ベースタスク割り当て方策によって導入されるバイアスを削除するようにさらに動作させられ、前記推定される実績レベルおよび前記予期される利得は、前記重み付けし直された履歴エージェント-タスク割り当ての第一のサブセットに基づく、請求項39に記載の製造品。
【請求項41】
前記少なくとも一つのコンピュータープロセッサーは、前記タスク割り当てシステムにおけるエージェント-タスクペアリングのために対応する選択の履歴平均量に基づいて、前記閾値適合度を決定するようにさらに動作させられる、請求項35に記載の製造品。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の参照)
本国際特許出願は、2017年7月10日に出願された米国特許出願第15/645,277号、および、2017年7月13日に出願された米国特許出願第15/648,788号に対する優先権を主張し、各米国特許出願は、本明細書において完全に記述されているかのように、その全体が本明細書において参照によって援用される。
【0002】
(開示の分野)
本開示は、概して、タスク割り当てシステムにおける実績に関し、より具体的に、タスク割り当てシステムにおいてタスク割り当て方策の予期される実績を推定するための技術に関する。
【背景技術】
【0003】
(開示の背景)
典型的なタスク割り当てシステムは、ある期間に有限数のタスクを有限数の労働者(「エージェント」)に割り当てる。タスク割り当てシステムの一つの例は、コンタクトセンター(例えば、コールセンター)である。コールセンターにおいて、有限数のエージェントは、所与のシフトの間または他の期間に利用可能であり、有限数の発信者は、シフトの間にコールセンターに電話をかけてくる。電話をかける様々な必要性および理由を有する各発信者は、コールセンターエージェントのうちの一人に割り当てられるタスクを表す。
【0004】
典型的なタスク割り当て方策は、どのタスクがどのエージェントに割り当てられるかを決定する。典型的には、タスク割り当て方策は、あるタイプのエージェントがあるタイプのタスクでよりよく実績を出すという洞察に由来し、これらのエージェントは、これらの洞察に基づいて特定のタスクを割り当てられる。コールセンターの例において、洞察は、販売に熟練したエージェントが、購入することを求める発信者の販売待ち行列に優先的に割り当てられるべきである一方で、技術的サポートに熟練したエージェントは、技術的問題のソリューションを求める発信者の技術的サポート待ち行列に優先的に割り当てられるべきであるというものであり得る。
【0005】
典型的なタスク割り当て方策は、いくつかの事例において、典型的なタスク割り当てシステムの実績を向上させることに効果的であり得るが、他の事例においては、それらは、最良の場合で実績に実質的な影響を有さないか、最悪の場合で実績を低下させることもある。典型的には、典型的なタスク割り当て方策が効果的でないこともある事例は、異なるタイプのタスクに割り当てられるエージェントの比較優位性を説明しないものである。
【0006】
上記に鑑みると、タスク割り当てシステムにおけるある期間にわたる有限数のタスクの有限数のエージェントへの割り当てのための異なるタスク割り当て方策の予期される実績の推定を可能にするシステムの必要性があり得ることが理解され得る。
【発明の概要】
【課題を解決するための手段】
【0007】
(開示の概要)
タスク割り当てシステムにおいてタスク割り当て方策の予期される実績を推定するための技術が、開示される。一つの特定の実施形態において、技術は、方法として実現され得、該方法は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てを受信することと、少なくとも一つのコンピュータープロセッサーによって、エージェントをタスクとペアリングするための方策に基づいて、複数のサンプルを決定することと、少なくとも一つのコンピュータープロセッサーによって、サンプルに基づいて方策の予期される実績を決定することと、少なくとも一つのコンピュータープロセッサーによって、予期される実績を出力することと、少なくとも一つのコンピュータープロセッサーによって、予期される実績に基づいてタスク割り当てシステムの実績を最適化することとを含む。
【0008】
この特定の実施形態の他の様態に従って、タスク割り当てシステムは、コンタクトセンターであり得、方策は、コンタクトをコンタクトセンターエージェントに割り当て得る。
【0009】
この特定の実施形態の他の様態に従って、方法は、複数の履歴エージェントタスク割り当てのうちの少なくとも一つの重複する履歴エージェントタスク割り当てを含む複数のサンプルを決定することによって、少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てをオーバーサンプリングすることをさらに含み得る。
【0010】
この特定の実施形態の他の様態に従って、方法は、少なくとも一つのコンピュータープロセッサーによって、サンプルにおいてバイアスを決定することと、少なくとも一つのコンピュータープロセッサーによって、予期される実績においてバイアスを考慮することをさらに含み得る。
【0011】
この特定の実施形態の他の様態に従って、バイアスは、サンプルにおけるエージェントのサブセットの過剰出現、またはサンプルにおけるタスクタイプのサブセットの過剰出現に起因し得る。
【0012】
この特定の実施形態の他の様態に従って、予期される実績を決定することは、少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当ての複数のサンプルを決定することを含み得る。
【0013】
この特定の実施形態の他の様態に従って、方法は、少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てを履歴エージェントタスク割り当ての第一のサブセットおよび第一のサブセットと異なる履歴エージェントタスク割り当てのホールドアウトサブセットに区分することと、少なくとも一つのコンピュータープロセッサーによって、第一のサブセットに基づいて方策を生成することとをさらに含み得、サンプルは、ホールドアウトサブセットのサブセットであり、予期される実績を決定することは、ホールドアウトサブセットに基づく。
【0014】
この特定の実施形態の他の様態に従って、方法は、ホールドアウトサブセットにおいて、エージェントを方策と異なるタスクとペアリングするための第二の方策に起因する履歴エージェントタスク割り当てを過剰出現させることをさらに含み得る。
【0015】
この特定の実施形態の他の様態に従って、予期される実績を決定することは、複数のホールドアウトサブセットに基づき得る。
【0016】
この特定の実施形態の他の様態に従って、方法は、複数のホールドアウトサブセットに基づいて、予期される実績に関連付けられる標準誤差を決定することをさらに含み得る。
【0017】
この特定の実施形態の他の様態に従って、サンプルは、サンプルの予期される実績と方策のピーク実績との間の実績差の量に関連付けられ得る。
【0018】
別の特定の実施形態において、技術は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーを含むシステムとして実現され得、少なくとも一つのコンピュータープロセッサーは、上記の方法におけるステップを実行するように構成される。
【0019】
別の特定の実施形態において、技術は、製造品として実現され得、該製造品は、非一時的プロセッサー読み取り可能な媒体と、媒体上に記憶される命令とを含み、該命令は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、媒体から読み取り可能であるように構成され、それによって、上記の方法におけるステップを実行するように少なくとも一つのコンピュータープロセッサーを動作させる。
【0020】
別の特定の実施形態において、技術は、方法として実現され得、該方法は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てを受信することと、少なくとも一つのコンピュータープロセッサーによって、エージェントをタスクとペアリングするための方策に基づいて複数のうちの少なくとも一つの重み付けを決定することと、少なくとも一つのコンピュータープロセッサーによって、重み付けに基づいて方策の予期される実績を決定することと、少なくとも一つのコンピュータープロセッサーによって、予期される実績を出力することとを含む方法であって、方策の予期される実績は、タスク割り当てシステムが方策を使用するように構成される場合、タスク割り当てシステムの実績が最適化され得ることを実証する。
【0021】
この特定の実施形態の他の様態に従って、タスク割り当てシステムは、コンタクトセンターであり得、方策は、コンタクトをコンタクトセンターエージェントに割り当てる。
【0022】
この特定の実施形態の他の様態に従って、少なくとも一つの重み付けは、ゼロまたはイプシロンであり得る。
【0023】
この特定の実施形態の他の様態に従って、方法は、少なくとも一つのコンピュータープロセッサーによって、サンプルにおいてバイアスを決定することと、少なくとも一つのコンピュータープロセッサーによって、予期される実績においてバイアスを考慮することとをさらに含み得る。
【0024】
この特定の実施形態の他の様態に従って、バイアスは、エージェントのサブセットの過剰な重み付け、またはタスクタイプのサブセットの過剰な重み付けに起因し得る。
【0025】
この特定の実施形態の他の様態に従って、予期される実績を決定することは、サンプルにおける少なくとも二つの重み付けされたペアリングに対応する少なくとも二つの重み付けされた結果を組み合わせることを含む。
【0026】
別の特定の実施形態において、技術は、システムとして実現され得、該システムは、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーを含み、少なくとも一つのコンピュータープロセッサーは、上記の方法におけるステップを実行するように構成される。
【0027】
別の特定の実施形態において、技術は、製造品として実現され得、該製造品は、非一時的プロセッサー読み取り可能な媒体と、媒体上に記憶される命令とを含み、命令は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、媒体から読み取り可能であるように構成され、それによって、上記の方法におけるステップを実行するように少なくとも一つのコンピュータープロセッサーを動作させる。
本発明は、例えば、以下を提供する。
(項目1)
方法であって、該方法は、
タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てを受信することと、
該少なくとも一つのコンピュータープロセッサーによって、エージェントをタスクとペアリングするための方策に基づいて、複数のサンプルを決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該サンプルに基づいて、該方策の予期される実績を決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該予期される実績を出力することと、
該少なくとも一つのコンピュータープロセッサーによって、該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を含む、方法。
(項目2)
前記タスク割り当てシステムは、コンタクトセンターであり、前記方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目1に記載の方法。
(項目3)
前記複数の履歴エージェントタスク割り当てのうちの少なくとも一つの重複する履歴エージェントタスク割り当てを含む複数のサンプルを決定することによって、該複数の履歴エージェントタスク割り当てを、前記少なくとも一つのコンピュータープロセッサーによって、オーバーサンプリングすることをさらに含む、項目1に記載の方法。
(項目4)
前記少なくとも一つのコンピュータープロセッサーによって、前記サンプルにおいてバイアスを決定することと、
該少なくとも一つのコンピュータープロセッサーによって、前記予期される実績において該バイアスを考慮することと
をさらに含む、項目1に記載の方法。
(項目5)
前記バイアスは、前記サンプルにおけるエージェントのサブセットの過剰出現、または該サンプルにおけるタスクタイプのサブセットの過剰出現に起因する、項目4に記載の方法。
(項目6)
前記予期される実績を決定することは、
前記少なくとも一つのコンピュータープロセッサーによって、前記複数の履歴エージェントタスク割り当ての複数のサンプルを決定することを含む、項目1に記載の方法。
(項目7)
前記少なくとも一つのコンピュータープロセッサーによって、前記複数の履歴エージェントタスク割り当てを履歴エージェントタスク割り当ての第一のサブセット、および該第一のサブセットと異なる履歴エージェントタスク割り当てのホールドアウトサブセットに区分することと、
該少なくとも一つのコンピュータープロセッサーによって、該第一のサブセットに基づいて、前記方策を生成することと
をさらに含み、
前記サンプルは、該ホールドアウトサブセットのサブセットであり、
前記予期される実績を決定することは、該ホールドアウトサブセットに基づく、項目1に記載の方法。
(項目8)
前記方策と異なるエージェントをタスクとペアリングするための第二の方策に起因する履歴エージェントタスク割り当てを、前記ホールドアウトサブセットにおいて、過剰出現させることをさらに含む、項目7に記載の方法。
(項目9)
前記予期される実績を決定することは、複数のホールドアウトサブセットに基づく、項目1に記載の方法。
(項目10)
前記複数のホールドアウトサブセットに基づいて、前記予期される実績と関連付けられる標準誤差を決定することをさらに含む、項目9に記載の方法。
(項目11)
前記サンプルは、該サンプルの予期される実績と前記方策のピーク実績との間の実績差の量と関連付けられることをさらに含む、項目1に記載の方法。
(項目12)
方法であって、該方法は、
タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、複数の履歴エージェントタスク割り当てを受信することと、
該少なくとも一つのコンピュータープロセッサーによって、エージェントをタスクとペアリングするための方策に基づいて、複数のうちの少なくとも一つの重み付けを決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該重み付けに基づいて、該方策の予期される実績を決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該予期される実績を出力することと
を含み、
該方策の該予期される実績は、タスク割り当てシステムが該方策を使用するように構成される場合、該タスク割り当てシステムの実績が最適化され得ることを実証する、方法。
(項目13)
前記タスク割り当てシステムは、コンタクトセンターであり、前記方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目12に記載の方法。
(項目14)
少なくとも一つの重み付けは、ゼロまたはイプシロンである、項目12に記載の方法。
(項目15)
前記少なくとも一つのコンピュータープロセッサーによって、サンプルにおいてバイアスを決定することと、
該少なくとも一つのコンピュータープロセッサーによって、前記予期される実績において該バイアスを考慮することと
をさらに含む、項目12に記載の方法。
(項目16)
前記バイアスは、エージェントのサブセットの過剰な重み付け、またはタスクタイプのサブセットの過剰な重み付けに起因する、項目15に記載の方法。
(項目17)
前記予期される実績を決定することは、サンプルにおける少なくとも二つの重み付けされたペアリングに対応する少なくとも二つの重み付けされた結果を組み合わせることを含む、項目12に記載の方法。
(項目18)
システムであって、該システムは、
タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーを含み、該少なくとも一つのコンピュータープロセッサーは、
複数の履歴エージェントタスク割り当てを受信することと、
エージェントをタスクとペアリングするための方策に基づいて、複数のサンプルを決定することと、
該サンプルに基づいて、該方策の予期される実績を決定することと、
該予期される実績を出力することと、
該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を行うように構成される、システム。
(項目19)
前記タスク割り当てシステムは、コンタクトセンターであり、前記方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目18に記載のシステム。
(項目20)
前記少なくとも一つのコンピュータープロセッサーは、
前記複数の履歴エージェントタスク割り当てのうちの少なくとも一つの重複する履歴エージェントタスク割り当てを含む複数のサンプルを決定することによって、該複数の履歴エージェントタスク割り当てをオーバーサンプリングするようにさらに構成される、項目18に記載のシステム。
(項目21)
前記少なくとも一つのコンピュータープロセッサーは、
前記サンプルにおいてバイアスを決定することと、
前記予期される実績において該バイアスを考慮することと
を行うようにさらに構成される、項目18に記載のシステム。
(項目22)
前記バイアスは、前記サンプルにおけるエージェントのサブセットの過剰出現、または該サンプルにおけるタスクタイプのサブセットの過剰出現に起因する、項目21に記載のシステム。
(項目23)
前記予期される実績を決定することは、前記複数の履歴エージェントタスク割り当ての複数のサンプルを決定することを含む、項目18に記載のシステム。
(項目24)
前記少なくとも一つのコンピュータープロセッサーは、
前記複数の履歴エージェントタスク割り当てを履歴エージェントタスク割り当ての第一のサブセット、および該第一のサブセットと異なる履歴エージェントタスク割り当てのホールドアウトサブセットに区分することと、
該第一のサブセットに基づいて、前記方策を生成することと
を行うようにさらに構成され、
前記サンプルは、該ホールドアウトサブセットのサブセットであり、
前記予期される実績を決定することは、該ホールドアウトサブセットに基づく、項目18に記載のシステム。
(項目25)
製造品であって、該製造品は、
非一時的プロセッサー読み取り可能な媒体と、
該媒体上に記憶される命令と
を含み、該命令は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、該媒体から読み取り可能であるように構成され、それによって、
複数の履歴エージェントタスク割り当てを受信することと、
エージェントをタスクとペアリングするための方策に基づいて、複数のサンプルを決定することと、
該サンプルに基づいて、該方策の予期される実績を決定することと、
該予期される実績を出力することと、
該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を行うように該少なくとも一つのコンピュータープロセッサーを動作させる、製造品。
(項目26)
前記タスク割り当てシステムは、コンタクトセンターであり、前記方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目25に記載の製造品。
(項目27)
前記少なくとも一つのコンピュータープロセッサーは、
前記複数の履歴エージェントタスク割り当てのうちの少なくとも一つの重複する履歴エージェントタスク割り当てを含む複数のサンプルを決定することによって、該複数の履歴エージェントタスク割り当てをオーバーサンプリングするようにさらに動作させられる、項目25に記載の製造品。
(項目28)
前記少なくとも一つのコンピュータープロセッサーは、
前記サンプルにおいてバイアスを決定することと、
前記予期される実績において該バイアスを考慮することと
を行うようにさらに動作させられる、項目25に記載の製造品。
(項目29)
前記バイアスは、前記サンプルにおけるエージェントのサブセットの過剰出現、または該サンプルにおけるタスクタイプのサブセットの過剰出現に起因する、項目28に記載の製造品。
(項目30)
前記予期される実績を決定することは、前記複数の履歴エージェントタスク割り当ての複数のサンプルを決定することを含む、項目25に記載の製造品。
(項目31)
方法であって、該方法は、
タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、第一の複数の履歴エージェントタスク割り当てを受信することと、
該少なくとも一つのコンピュータープロセッサーによって、複数の好ましいタスク割り当て方策の各々に対して、適合度を決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該好ましいタスク割り当て方策に対して、閾値適合度を決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該閾値適合度内にある該第一の複数の履歴エージェントタスク割り当てのサブセットに基づいて、予期される実績を決定することと、
該少なくとも一つのコンピュータープロセッサーによって、該予期される実績を出力することと、
該少なくとも一つのコンピュータープロセッサーによって、該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を含む、方法。
(項目32)
前記少なくとも一つのコンピュータープロセッサーによって、前記好ましいタスク割り当て方策に対して、適合度の複数の閾値を決定すること
をさらに含む、項目31に記載の方法。
(項目33)
前記少なくとも一つのコンピュータープロセッサーによって、前記好ましいタスク割り当て方策の達成の種々の程度で、該好ましいタスク割り当て方策の実績の相関を決定すること
をさらに含む、項目32に記載の方法。
(項目34)
前記予期される実績は、前記実績の相関にも基づく、項目33に記載の方法。
(項目35)
前記少なくとも一つのコンピュータープロセッサーによって、前記好ましいタスク割り当て方策を使用して生成される第二の複数の履歴エージェントタスク割り当てを受信することと、
該少なくとも一つのコンピュータープロセッサーによって、該第二の複数の履歴エージェントタスク割り当てに基づいて、前記実績の相関を分析することと
をさらに含む、項目34に記載の方法。
(項目36)
前記第二の複数の履歴エージェントタスク割り当ては、前記第一の複数の履歴エージェントタスク割り当ての第一の日付範囲と異なる第二の日付範囲をカバーする、項目35に記載の方法。
(項目37)
前記第二の複数の履歴エージェントタスク割り当ての各々は、前記好ましいタスク割り当て方策を使用して、ペアリングされ、前記第一の複数の履歴エージェントタスク割り当ての各々は、異なるタスク割り当て方策を使用して、ペアリングされた、項目35に記載の方法。
(項目38)
前記第二の複数の履歴エージェントタスク割り当ては、前記第一の複数の履歴エージェントタスク割り当てから、履歴エージェントタスク割り当てのうちのいくつかを含む、項目35に記載の方法。
(項目39)
前記第二の複数の履歴エージェントタスク割り当ての各々は、前記第一の複数の履歴エージェントタスク割り当ての各々と異なる、項目35に記載の方法。
(項目40)
前記タスク割り当てシステムは、コンタクトセンターであり、前記好ましいタスク割り当て方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目31に記載の方法。
(項目41)
複数の履歴エージェントタスク割り当ては、履歴エージェントタスク割り当てのスーパーセットのホールドアウトセットである、項目31に記載の方法。
(項目42)
前記閾値適合度内にある複数の履歴エージェントタスク割り当ての前記サブセットは、ホールドアウトセットのサンプルである、項目31に記載の方法。
(項目43)
システムであって、該システムは、
タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーを含み、該少なくとも一つのコンピュータープロセッサーは、
第一の複数の履歴エージェントタスク割り当てを受信することと、
複数の好ましいタスク割り当て方策の各々に対して、適合度を決定することと、
該好ましいタスク割り当て方策に対して、閾値適合度を決定することと、
該閾値適合度内にある該第一の複数の履歴エージェントタスク割り当てのサブセットに基づいて、予期される実績を決定することと、
該予期される実績を出力することと、
該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を行うように構成される、システム。
(項目44)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策に対して、適合度の複数の閾値を決定するようにさらに構成される、項目43に記載のシステム。
(項目45)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策の達成の種々の程度で、該好ましいタスク割り当て方策の実績の相関を決定するようにさらに構成される、項目44に記載のシステム。
(項目46)
前記予期される実績は、前記実績の相関にも基づく、項目45に記載のシステム。
(項目47)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策を使用して生成される第二の複数の履歴エージェントタスク割り当てを受信することと、
該第二の複数の履歴エージェントタスク割り当てに基づいて、前記実績の相関を分析することと
を行うようにさらに構成される、項目46に記載のシステム。
(項目48)
前記第二の複数の履歴エージェントタスク割り当ては、前記第一の複数の履歴エージェントタスク割り当ての第一の日付範囲と異なる第二の日付範囲をカバーする、項目47に記載のシステム。
(項目49)
前記第二の複数の履歴エージェントタスク割り当ての各々は、前記好ましいタスク割り当て方策を使用して、ペアリングされ、前記第一の複数の履歴エージェントタスク割り当ての各々は、異なるタスク割り当て方策を使用して、ペアリングされた、項目47に記載のシステム。
(項目50)
前記第二の複数の履歴エージェントタスク割り当ては、前記第一の複数の履歴エージェントタスク割り当てから、履歴エージェントタスク割り当てのうちのいくつかを含む、項目47に記載のシステム。
(項目51)
前記第二の複数の履歴エージェントタスク割り当ての各々は、前記第一の複数の履歴エージェントタスク割り当ての各々と異なる、項目47に記載のシステム。
(項目52)
前記タスク割り当てシステムは、コンタクトセンターであり、前記好ましいタスク割り当て方策は、コンタクトをコンタクトセンターエージェントに割り当てる、項目43に記載のシステム。
(項目53)
複数の履歴エージェントタスク割り当ては、履歴エージェントタスク割り当てのスーパーセットのホールドアウトセットである、項目43に記載のシステム。
(項目54)
前記閾値適合度内にある複数の履歴エージェントタスク割り当ての前記サブセットは、ホールドアウトセットのサンプルである、項目53に記載のシステム。
(項目55)
製造品であって、該製造品は、
非一時的プロセッサー読み取り可能な媒体と、
該媒体上に記憶される命令と
を含み、該命令は、タスク割り当てシステムに通信可能に結合された少なくとも一つのコンピュータープロセッサーによって、該媒体から読み取り可能であるように構成され、それによって、
第一の複数の履歴エージェントタスク割り当てを受信することと、
複数の好ましいタスク割り当て方策の各々に対して、適合度を決定することと、
該好ましいタスク割り当て方策に対して、閾値適合度を決定することと、
該閾値適合度内にある該第一の複数の履歴エージェントタスク割り当てのサブセットに基づいて、予期される実績を決定することと、
該予期される実績を出力することと、
該予期される実績に基づいて、該タスク割り当てシステムの実績を最適化することと
を行うように該少なくとも一つのコンピュータープロセッサーを動作させる、製造品。
(項目56)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策に対して、適合度の複数の閾値を決定するようにさらに動作させられる、項目55に記載の製造品。
(項目57)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策の達成の種々の程度で、該好ましいタスク割り当て方策の実績の相関を決定するようにさらに動作させられる、項目56に記載の製造品。
(項目58)
前記予期される実績は、前記実績の相関にも基づく、項目57に記載の製造品。
(項目59)
前記少なくとも一つのコンピュータープロセッサーは、
前記好ましいタスク割り当て方策を使用して生成される第二の複数の履歴エージェントタスク割り当てを受信することと、
該第二の複数の履歴エージェントタスク割り当てに基づいて、前記実績の相関を分析することと
を行うようにさらに動作させられる、項目58に記載の製造品。
【0028】
本開示は、ここで、添付の図面に示されるような特定の実施形態を参照して、より詳細に説明される。本開示は、下記で特定の実施形態を参照して説明されるが、本開示は、その特定の実施形態に限定されないということが理解されるべきである。本明細書において説明されるような本開示の範囲内にあり、かつそれに関して本開示が著しく有用なものであり得る、付加的な実装、修正および実施形態、ならびに他の使用分野を、本明細書における教示へのアクセスを有する当業者は、認識するであろう。
【図面の簡単な説明】
【0029】
本開示のより完全な理解を容易にするために、ここで、同じ要素が同じ番号を用いて参照される、添付の図面が参照される。これらの図面は、本開示を限定すると解釈されるべきでなく、例証に過ぎないことが意図される。
【0030】
【
図1】
図1は、本開示の実施形態に従う、タスク割り当てシステムのブロック図を示す。
【
図2】
図2は、本開示の実施形態に従う、コンタクトセンターのブロック図を示す。
【
図3A】
図3Aは、本開示の実施形態に従う、タスク割り当てモデルの概略図を表す。
【
図3B】
図3Bは、本開示の実施形態に従う、コンタクトペアリングモデルの概略図を表す。
【
図4A】
図4Aは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4B】
図4Bは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4C】
図4Cは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4D】
図4Dは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4E】
図4Eは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4F】
図4Fは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4G】
図4Gは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4H】
図4Hは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4I】
図4Iは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4J】
図4Jは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図4K】
図4Kは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定の概略図を示す。
【
図5】
図5は、本開示の実施形態に従う、タスク割り当てペイアウトマトリックスの概略図を示す。
【
図6A】
図6Aは、本開示の実施形態に従う、予期される実績推定方法のフロー図を示す。
【
図6B】
図6Bは、本開示の実施形態に従う、予期される実績推定方法のフロー図を示す。
【
図7】
図7は、本開示の実施形態に従う、予期される実績推定方法のフロー図を表す。
【
図8】
図8は、本開示の実施形態に従う、予期される実績推定方法のフロー図を表す。
【
図9】
図9は、本開示の実施形態に従う、予期される実績推定方法のフロー図を表す。
【発明を実施するための形態】
【0031】
典型的なタスク割り当てシステムは、ある期間に有限数のタスクを有限数の労働者(「エージェント」)に割り当てる。タスク割当システムの一つの例は、コンタクトセンター(例えば、コールセンター)である。コールセンターにおいて、有限数のエージェントは、所与のシフトの間または他の期間に利用可能であり、有限数の発信者が、シフトの間にコールセンターに電話をかけてくる。電話をかける様々な必要性および理由を有する各発信者は、コールセンターエージェントのうちの一人に割り当てられるタスクを表す。
【0032】
典型的なタスク割り当て方策は、どのタスクがどのエージェントに割り当てられるかを決定する。典型的には、タスク割り当て方策は、あるタイプのエージェントがあるタイプのタスクでよりよく実績を出すという洞察に由来し、これらのエージェントは、これらの洞察に基づいて特定のタスクを割り当てられる。コールセンターの例において、洞察は、販売に熟練したエージェントが、購入することを求める発信者の販売待ち行列に優先的に割り当てられるべきである一方で、技術的サポートに熟練したエージェントは、技術的問題のソリューションを求める発信者の技術的サポート待ち行列に優先的に割り当てられるべきであるというものであり得る。
【0033】
典型的なタスク割り当て方策は、いくつかの事例において、典型的なタスク割り当てシステムの実績を向上させることに効果的であり得るが、他の事例においては、それらは、最良の場合で実績に実質的な影響を有さないか、最悪の場合で実績を低下させることもある。典型的には、典型的なタスク割り当て方策が効果的でないこともある事例は、異なるタイプのタスクに割り当てられたエージェントの比較優位性を説明しないものである。比較優位性の一般的な説明は、例えば、本明細書において参照によって援用される、CowenおよびTabarrokによるModern Principles:Microeconomics、第二版(2011年)のpp.16-19に見出され得る。
【0034】
上記に鑑みると、タスク割り当てシステムにおけるある期間での有限数のタスクの有限数のエージェントへの割り当てのための異なるタスク割り当て方策の予期される実績の推定を可能にするシステムの必要性があることが理解され得る。
【0035】
図1は、本開示の実施形態に従う、タスク割り当てシステム100のブロック図を示す。本明細書における説明は、一つ以上のモジュールを含み得るタスク割り当てシステムにおいて予期される実績を推定するためのシステムならびに方法のネットワーク要素、コンピューター、および/または構成要素を説明する。本明細書において使用される場合、「モジュール」という用語は、コンピューティングソフトウェア、ファームウェア、ハードウェア、および/またはそれらの様々な組み合わせを指すと理解され得る。しかし、モジュールは、ハードウェア、ファームウェア上に実装されないソフトウェア、または非一時的プロセッサー読み取り可能な記録可能記憶媒体上に記録されないソフトウェアとして解釈されるべきでない(すなわち、モジュール自体は、ソフトウェアでない)。モジュールは、例示的であることが留意される。モジュールは、様々な用途をサポートするために、組み合わせられ、統合され、分離され、および/または複製され得る。さらに、特定のモジュールにおいて実施されるように本明細書において説明される機能は、特定のモジュールにおいて実施される機能の代わりに、または特定のモジュールにおいて実施される機能に加えて、一つ以上の他のモジュールにおいて、および/または一つ以上の他のデバイスによって、実施され得る。また、モジュールは、互いにローカルまたはリモートである複数のデバイスおよび/または他の構成要素にわたって実装され得る。追加的に、モジュールは、一つのデバイスから移動させられて別のデバイスに追加され得、および/または両方のデバイス内に含まれ得る。
【0036】
図1に示されるように、タスク割り当てシステム100は、タスク割り当てモジュール110を含み得る。タスク割り当てシステム100は、スイッチ、または様々なエージェントの間でタスクを割り当てることを助けるための他のタイプのルーティングハードウェアおよびソフトウェアを含み得、そのルーティングハードウェアおよびソフトウェアは、待ち行列もしくは切り替え構成要素、または他のインターネットベース、クラウドベースもしくはネットワークベースのハードウェアもしくはソフトウェアソリューションを含む。
【0037】
タスク割り当てモジュール110は、入ってくるタスクを受信し得る。
図1の例において、タスク割り当てシステム100は、所与の期間にm個のタスク、タスク130A~130mを受信する。m個のタスクの各々は、サービスまたは他のタイプのタスク処理のために、タスク割り当てシステム100のエージェントに割り当てられ得る。
図1の例において、n人のエージェント、エージェント120A~120nが、所与の期間に利用可能である。mおよびnは、任意の1以上の大きい有限の整数であり得る。コンタクトセンターなどの現実世界のタスク割り当てシステムにおいて、シフトの間にコンタクトと対話するために、コンタクトセンターにログインしている数十人のエージェント、数百人のエージェントなどがあり得、コンタクトセンターは、シフトの間に、数十のコンタクト、数百のコンタクト、数千のコンタクト(例えば、コール)などを受信し得る。
【0038】
「L0」環境として知られる、いくつかの環境において、m個のタスクのうちの一つ(例えば、タスク130A)が、エージェントへの割り当てに対して準備ができた状態であり得、n人のエージェントのうちの一人(例えば、エージェント120A)が、割り当てられるタスクを受信する準備ができた状態であり得る。L0環境において、利用可能なタスクまたはエージェントの選択はなく、タスク割り当て方策は、タスク130Aをエージェント130Aに割り当て得る。
【0039】
「L1」環境として知られる、他の環境において、m個のタスクのうちの一つ(例えば、タスク130A)が、エージェントへの割り当てに対して準備ができた状態であり得、複数のエージェント(例えば、エージェント120Aおよび120B)が、割り当てられるタスクを受信する準備ができた状態であり得る。L1環境において、複数の利用可能なエージェントの間での選択があり、タスク割り当て方策は、タスク130Aをエージェント120Aまたは120Bのいずれかに割り当て得る。
【0040】
「L2」環境として知られる、さらに他の実施形態において、複数のタスク(例えば、タスク130Aおよび130B)が、エージェントへの割り当てに対して準備ができた状態であり得、n人のエージェントのうちの一人(例えば、エージェント120A)が、割り当てられるタスクを受信する準備ができた状態であり得る。L2環境において、複数の利用可能なタスクの間での選択があり、タスク割り当て方策は、タスク130Aまたは130Bのいずれかをエージェント120Aに割り当て得る。
【0041】
「L3」環境として知られる、さらに他の環境において、複数のタスク(例えば、タスク130Aおよび130B)が、エージェントへの割り当てに対して準備ができた状態であり得、複数のエージェント(例えば、エージェント120Aおよび120B)が、割り当てられるタスクを受信する準備ができた状態であり得る。L3環境において、複数の利用可能なエージェントおよびタスクの間での選択があり、タスク割り当て方策は、(例えば、一連の割り当てまたは単一のバッチ割り当てにおいて)利用可能なタスクのうちのいくつかまたはすべてを利用可能なエージェントのうちのいくつかまたはすべてとペアリングし得る。
【0042】
これらの環境L0~L3、およびそれらの間の様々な移行は、コンタクトセンターのコンテクストに関して、例えば、本明細書において参照によって援用される米国特許出願第15/395,469号において詳細に説明される。
【0043】
いくつかの実施形態において、タスク割り当て方策モジュール140は、タスク割り当てシステム100に通信可能に結合され得る、および/またはタスク割り当てシステム100において動作するように構成され得る。タスク割り当て方策モジュール140は、個別のタスクを個別のエージェントに割り当てる(例えば、コンタクトをコンタクトセンターエージェントとペアリングする)ために、一つ以上のタスク割り当て方策(または「ペアリング方策」)を実装し得る。
【0044】
様々な異なるタスク割り当て方策が、考案され得、タスク割り当て方策モジュール140によって実装され得る。いくつかの実施形態において、先入れ/先出し(「FIFO」)方策が、実装され得、例えば、(L1環境において)最も長い時間待っているエージェントは、次に利用可能なタスクを受信する、または、(L2環境において)最も長い時間待っているタスクは、次に利用可能なタスクに割り当てられる。他のFIFOおよびFIFOのような方策は、個別のタスクまたは個別のエージェントに固有の情報に頼ることなく、割り当てを行い得る。
【0045】
他の実施形態において、タスク割り当てに対してより実績の高いエージェントを優先するために使用され得る実績ベースルーティング(PBR)方策が、実装され得る。PBRのもとでは、例えば、利用可能なエージェントの間で最も実績が高いエージェントが、次に利用可能なタスクを受信する。他のPBRおよびPBRのような方策は、特定のエージェントについての情報を使用するが、特定のタスクまたはエージェントについての情報に頼ることなく、割り当てを行い得る。
【0046】
さらに他の実施形態において、行動ペアリング(BP)方策が、特定のタスクおよび特定のエージェントの両方についての情報を使用して、タスクをエージェントに最適に割り当てるために使用され得る。対角線モデルBP方策またはネットワークフローBP方策などの様々なBP方策が、使用され得る。これらのタスク割り当て方策および他のものは、コンタクトセンターのコンテクストに関して、例えば、本明細書において参照によって援用される米国特許第9,300,802号および米国特許出願第15/582,223号において詳細に説明される。
【0047】
いくつかの実施形態において、履歴割り当てモジュール150は、タスク割り当てモジュール110および/またはタスク割り当て方策モジュール140などの他のモジュールを介して、タスク割り当てシステム100に通信可能に結合され得る、および/またはタスク割り当てシステム100において動作するように構成され得る。履歴割り当てモジュール150は、既に行われたエージェントタスク割り当てについての情報を監視、記憶、検索および/または出力することなどの様々な機能に責任を有し得る。例えば、履歴割り当てモジュール150は、所与の期間におけるタスク割り当てについての情報を収集するために、タスク割り当てモジュール110を監視し得る。履歴タスク割り当ての各記録は、エージェント識別子、タスクおよび/またはタスクタイプ識別子ならびに結果情報などの情報を含み得る。
【0048】
いくつかの実施形態において、およびいくつかのコンテクストに対して、付加的な情報が記憶され得る。例えば、コールセンターのコンテクストにおいて、履歴割り当てモジュール150は、コールが開始した時間、コールが終了した時間、ダイヤルされた電話番号および発信者の電話番号についての情報も記憶し得る。別の例では、ディスパッチセンター(例えば、「技術者派遣」)のコンテクストにおいて、履歴割り当てモジュール150は、運転者(すなわち、フィールドエージェント)がディスパッチセンターを出発する時間、勧められたルート、取られたルート、推定される移動時間、実際の移動時間、顧客の場所で顧客のタスクを処理することに費やされた時間の量についての情報も記憶し得る。
【0049】
いくつかの実施形態において、履歴割り当てモジュール150は、ある期間(例えば、先週、先月、昨年など)にわたる履歴割り当てのセットに基づいて、ペアリングモデルまたは同様のコンピュータープロセッサー生成モデルを生成し得、ペアリングモデルまたは同様のコンピュータープロセッサー生成モデルは、タスク割り当てモジュール110に対してタスク割り当ての勧めまたは命令を行うために、タスク割り当て方策モジュール140によって使用され得る。他の実施形態において、履歴割り当てモジュール150は、履歴割り当て情報をタスク割り当て方策モジュール140または予期される実績推定モジュール160などの別のモジュールに送り得、ペアリングモデルおよび/またはペアリングモデルに基づくペアリング方策を生成する。
【0050】
いくつかの実施形態において、予期される実績推定モジュール160は、タスク割り当てモジュール110および/または履歴割り当てモジュール150などの他のモジュールを介して、タスク割り当てシステム100に通信可能に結合され得る、および/またはタスク割り当てシステム100において動作するように構成され得る。予期される実績推定モジュール160は、例えば、履歴割り当てモジュール150から受信され得る履歴割り当て情報を使用して、(例えば、ペアリングモデルとともに)タスク割り当て方策の予期される実績を推定し得る。予期される実績を推定するための技術、ならびに予期される実績推定モジュール160によって様々なタスク割り当て方策および様々なコンテクストに対して実施される他の機能は、後のセクションにおいて、本開示全体を通じて説明される。
【0051】
いくつかの実施形態において、予期される実績推定モジュール160は、推定され予期される実績を出力し得るか、または別様に報告もしくは使用し得る。推定され予期される実績は、タスク割り当て方策の質を評価し、例えば、異なるタスク割り当て方策(もしくは異なるペアリングモデル)が使用されるべきであるかどうかを決定するために使用され得るか、または、タスク割り当てシステム100が最適化されるか、もしくは別様にタスク割り当て方策を使用するように構成される場合、タスク割り当てシステム100内で達成され得る予期される全体的な実績(もしくは実績の向上)を予測するために使用され得る。
【0052】
上述の通り、様々なコンテクストが、コンタクトセンターおよびディスパッチセンターを含むがこれに限定されないタスク割り当てシステム100に類似する実施形態を使用し得る。コンタクトセンターに関する一つのそのような例は、
図2を参照して以下に説明される。
【0053】
図2は、本開示の実施形態に従う、コンタクトセンター200のブロック図を示す。コンタクトセンター200は、それが、コンタクトセンターにおいてタスク(すなわち、「コンタクト」)をエージェントに割り当てるための特殊化されたコンテクストである限りにおいて、タスク割り当てシステム100(
図1)に類似する。インバウンドの環境において、コンタクトは、電話をかけるか、または別様に(例えば、ライブテキストチャット、ビデオチャット、電子メール、ソーシャルメディアを介して)コンタクトセンター200のスイッチまたは他の構成要素に接続し得る。アウトバウンドの環境において、コンタクトは、電話をかけ得るか(もしくは、電話をかけ直し得るか)、または別様にアウトバウンドのダイヤラーもしくはコンタクトセンター200の他の構成要素を介して接続され得、同時にまたはその後、エージェントに割り当てられ得る。
【0054】
タスク割り当てシステム100と類似して、コンタクトセンター200は、n人のエージェント220A~220nおよび所与の期間にわたるエージェントへの割り当てのために着信するm個のコンタクト230A~230mを有する。スイッチ210、またはPBX/ACDもしくはロードバランサーなどの類似するルーティング構成要素が、個別のコンタクトを個別のエージェントに接続し得る。
【0055】
タスク割り当てモジュール140に類似して、コンタクトペアリング方策モジュール240(例えば、BPモジュールおよび/またはベンチマーキングモジュール)は、コンタクトペアリング方策に従って、スイッチ210に対して、ペアリングの勧めまたは命令を行い得る。
【0056】
履歴割り当てモジュール150と類似して、履歴コンタクトペアリングモジュール250は、既に行われたエージェントコンタクトペアリングについての情報を監視、記憶、検索および/または出力し得る。履歴コンタクトペアリングモジュール250は、スイッチ210に対してタスク割り当ての勧めまたは命令を行うために、コンタクトペアリング方策モジュール240によって使用され得るペアリングモデルを生成し得る。他の実施形態において、履歴コンタクトペアリングモジュール250は、ペアリング方策との使用のためのペアリングモデルを生成するために、コンタクトペアリング方策モジュール240または予期される実績推定モジュール160などの別のモジュールに履歴割り当て情報を送り得る。以下で詳細に説明される
図3Aおよび
図3Bは、簡易化されたタスク割り当てシステムのためのそのようなペアリングモデルの例を表す。
【0057】
図3Aは、本開示の実施形態に従う、タスク割り当てモデル300Aの概略図を表す。タスク割り当てモデル300Aは、三人のエージェントa
0~a
2および三つのタスクタイプt
0~t
2とともに、例示の目的で、単純なタスク割り当てシステムをモデル化する。いくつかの実施形態において、エージェントおよび/またはタスクタイプは、エージェントまたはタスクタイプについてのいくつかの情報に従って、順序付けられ得る(例えば、対角線BPモデル)。他の実施形態において、エージェントおよびタスクタイプは、特定の順序付けなしにモデルにおいて現われ得る(例えば、ペイアウトマトリックスまたはネットワークフローBPモデル)。
【0058】
タスク割り当てモデル300Aにおいて、各セルは、特定のタスクタイプtiの特定のエージェントakとの可能な割り当てを表す。各セルは、エージェントおよびタスクタイプに対する対話項(機能)g(ak,ti)を含む。例えば、タスクタイプt1のエージェントa2への割り当ては、g(a2,t1)の対話項を有するように示される。任意の所与の対話項の特定の機能的定義は、使用されるタスク割り当て方策、タスク割り当てシステムに対するコンテクスト、タスク割り当てモデル300Aを構築するために使用される所与のエージェントおよびタスクタイプのために利用可能なデータなどに依存する。
【0059】
いくつかの実施形態において、対話項は、特定のペアリングのコストまたは値を表し得る(例えば、販売待ち行列における予期される変換率、顧客サポート待ち行列における予期される顧客満足格付け、ディスパッチセンターにおける技術者派遣の予期されるコストなど)。各場合において、予期される価値は、エージェントおよびタスクのタイプについての情報の組み合わせを使用して、推定され得るか、または別様に決定され得る。
【0060】
図3Bは、本開示の実施形態に従う、コンタクトペアリングモデル300Bの概略図を表す。タスク割り当てモデル300A(
図3A)と同様に、コンタクトペアリングモデル300Bは、三人のエージェントa
0~a
2、およびコンタクトセンターのコンテクストにおけるタスクであり得る三つのコンタクトタイプc
0~c
2とともに、例示の目的で、単純なコンタクトセンターをモデル化する。コンタクトペアリングモデル300Bの各セルは、個別のエージェントおよびコンタクトタイプの各可能なペアリングに対する対話項の値を示す。コンタクトペアリングモデル300Bは、例えば、本明細書において参照によって以前に援用された米国特許第9,300,802号において説明されるように、対角線BP方策に適し得る。
【0061】
対角線モデルと一貫して、好ましいペアリングは、コンタクトペアリングモデル300Bを通る「y=x」45°対角線の同等物に沿って存在し、すなわち、a0とc0、a1とc1およびa2とc2である。対角線に沿って見出されるこれらのセルの各々は、1と評価される対話項を有するように示される。
【0062】
いくつかの状況において、エージェント(L1)またはコンタクト(L2)の最適な選択は、すべてのコンタクト(L1)に対して好ましいエージェントを選択するために、またはすべてのエージェント(L2)に対して好ましいコンタクトを選択するために、必ずしも利用可能でない。限定された選択を有する状況において、ペアリング方策は、最良の利用可能な選択肢を選択し得る。例えば、コンタクトペアリングモデル300Bにおいて示されるような次に最良のペアリングは、y=x対角線の比較的近くにあるセルにある。これらのセルの各々は、0.5と評価される対話項を有するように示される。理想的な対角線のペアからさらにより遠くに移動すると、最も好ましくないペア、a0とc2およびa2とc0があり、それらの両方は、0と評価される対話項を有する。
【0063】
コンタクトセンターに対するコンタクトペアリングモデル300Bなどのペアリングモデルは、タスク割り当てシステムに対する一つの例のコンテクストである。上述の他のコンテクストには、ディスパッチセンターから技術者派遣でディスパッチされる修理技術者、およびコンサルティング会社によって特定のプロジェクトを課されたコンサルティングアソシエイトが含まれる。コンテクストのより多くの例は、エージェント(例えば、保険金請求査定人)へのケース割り当て(例えば、保険金請求)、および小売店において個別の店員とのペアリングのために小売顧客を認識することを含む。これらのコンテクストは、例のタスク割り当てシステムとして役に立ち、本開示の実施形態は、これらのコンテクストに限定されない。
【0064】
タスク割り当てモデル300Aおよびコンタクトペアリングモデル300Bと違い、典型的な仕事割り当て方策は、潜在的に単純な直観に基づいて、労働者(または「エージェント」)をタスクに割り当てる。例えば、コンタクトセンターにおいて、タスクは、エージェントの実績(例えば、PBR)に基づいて、エージェントに割り当てられ得る。同様に、修理技術者は、移動ルートの長さを最小化するように計算された移動ルートを割り当てられ得る。別の例として、コンサルティング会社は、アソシエイトの在職期間に基づいて、アソシエイトを特定のプロジェクトに割り当て得る。
【0065】
これらの場合すべてにおいて、欠けているものは、全体的なシステム内における残りの労働者およびタスクに対する個別の労働者の個別のタスクへの割り当ての影響の評価である。例えば、コンタクトセンター環境において、実績の高いエージェントへのあるタスクの割り当ては、実績の高いまたは実績の低いエージェントに割り当てられるタスクのタイプを十分に考慮せずに、異なるタスクを実績の低いエージェントに割り当てることを必要とし得る。全体として、コンタクトセンター全体の実績は、低減させられ得る。同様に、あるルートを修理技術者に割り当てることは、他のルートの他の修理技術者への割り当てをもたらし得、その結果、全体的なシステム実績は低減させられ得る。
【0066】
その結果、個別のエージェントは、実際に、割り当てられたタスクでよく実績を出し得るが、残余のタスクを割り当てられた別のエージェントは、著しくより悪く実績を出し得る。直観に反して、各タスク割り当てを独立して最適化することを試みることは、実際は、それを増加させるというよりむしろ、タスク割り当てシステムの全体的な実績を低下させ得る。
【0067】
本開示の実施形態は、タスク割り当て方策の実績をより正確に推定するための技術を提供する。技術は、任意の個別の割り当てられたタスクの場合に、実績を最適化するというよりもむしろ、全体的なシステム実績を最適化するために、ある期間にわたる後続の割り当ての累積効果を考慮する態様で、タスクをエージェントに割り当てる。例えば、タスク割り当て方策は、他のエージェントを他のタスクのタイプに使用する間に、いくつかのエージェントをいくつかのタスクのタイプに使用する比較優位性に影響を与え得る。
【0068】
図4A~4Kは、実績推定を推定するためのいくつかの技術に踏み込んだタスク割り当て方策のための予期される実績推定の概略図を示す。これらの例は、主に、異なる条件下でのタスク割り当てシステムにおいて対角線モデルBP方策の予期される実績を推定することを表す。技術は、予期される実績を推定し、方策を検証するために、履歴タスク割り当てデータを使用する。
【0069】
具体的には、以下により詳細に説明されるように、
図4A~4Cは、履歴割り当てデータを使用して対角線BPモデルの予期される実績を推定するための検証技術を例示する。
図4Eおよび4Fは、根底にある履歴割り当てデータにおいてエージェント選択バイアスがある場合、
図4A~4Cを参照して説明される推定技術の正確度を向上させるための技術に関する以下の説明を伴う。
図4Gおよび4Hは、根底にある履歴割り当てデータにおいてタスク選択バイアスがある場合、
図4A~Cを参照して説明される推定技術の正確度を向上させるための技術に関する以下の説明を伴う。
図4Iおよび4Jは、検証されるタスク割り当て方策の推定され予期される実績を根底にある履歴割り当てデータをもたらしたタスク割り当て方策と比較する技術に関する以下の説明を伴う。最後に、
図4Kは、検証されるタスク割り当て方策の推定され予期される実績の現実世界の予期を向上させるために、根底にある履歴割り当てデータに見出される選択の自由の分布を視覚化する技術に関する以下の説明を伴う。
【0070】
図4Aは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Aの概略図を示す。このタスク割り当てシステムにおいて、任意の有限数のエージェントおよびタスクタイプがあり得る。BP方策対角線モデルのもとでは、各エージェントは、0と1との間のエージェントパーセンタイルランキングを割り当てられ得、各タスクタイプは、0と1との間のタスクパーセンタイルランキングを割り当てられ得る。対角線BP方策が理想的な選択とともにピーク実績で動作することが予期される理想的または最適なペアリングが、y=xに沿って破線の対角線(すなわち、タスクパーセンタイルがエージェントパーセンタイルと等しい線)として示される。
【0071】
履歴割り当てデータが、受信され得る。予期される実績推定400Aの概略図において、履歴割り当ての各々は、グラフ上に示される。文字「O」で示される点は、望ましい結果を有したペアリングを表し、文字「X」で示される点は、望ましくない結果を有したペアリングを表す。例えば、コンタクトセンターの販売待ち行列において、「O」は、販売が行われた履歴タスクを示し得、「X」は、販売が行われなかった履歴タスクを示し得る(二項の結果変数)。他の例において、多項または連続結果変数が、使用され得る。
【0072】
タスク割り当てシステムが、FIFOペアリング方策または別の本質的にランダムなもしくは比較的一様に分布するペアリング方策を使用する場合、履歴割り当てのセットは、予期される実績推定400Aなどのグラフ中に比較的一様に分布され得る。すなわち、FIFOのもとでは、所与のタイプに対するタスクが、略等しい利用でエージェントのうちの任意のものに割り当てられ得るという等しい確率がある。いくつかの履歴割り当てが、対角線の近くに現われ得る(対角線BP方策のもとでの好ましいペアリング)一方で、他の履歴割り当ては、対角線からより遠くに現われ得る(好ましくないペアリング)などである。
【0073】
予期される実績推定400Aにおいて、29個の履歴割り当てのフルセットが、示される。セットは、望ましい結果(O)を有する12個のペアリングおよび望ましくない結果(X)を有する17個のペアリングを含む。いくつかの実施形態において、ベースラインまたは根底にあるタスク割り当て方策(例えば、この例におけるFIFO)の推定され予期される実績は、12/29≒41%のように、セット内に見出される望ましい結果の割合として計算され得る。
【0074】
対角線BP方策は、パーセンタイルランキングにおいて最も類似するエージェントと優先的にタスクをペアリングすることによって、他のペアリング方策を向上させることを求め、その結果、これらのペアがチャート上にプロットされた場合、それらは、y=x対角線(すなわち、タスクパーセンタイル=エージェントパーセンタイル)のできるだけ近くに存在するであろう。
【0075】
いくつかの実施形態において、タスク割り当て方策の予期される実績は、履歴割り当てデータを使用して、推定され得る(例えば、検証され得る)。いくつかの実施形態において、検証は、ペアリングモデルを構築するために使用されるものと同じ履歴割り当てを使用して、実施され得る。他の実施形態において、履歴割り当ての一つのセットは、ペアリングモデルを構築するために使用され得、履歴割り当ての異なるセットは、モデルを検証するために使用され得る。
【0076】
履歴割り当てデータでタスク割り当て方策を検証するための洞察は、履歴割り当てを生み出した根底にあるペアリング方策の代わりに、検証されるペアリング方策をタスク割り当てシステムに稼働させている場合に、どのくらいの確率でそれが起きたのかに応じて、履歴割り当てのセットが、サンプリングされ(または、重み付けされるなどし)得るというものである。
【0077】
対角線BP方策の場合に、いくつかの実施形態において使用され、
図4Bおよび4Cによって例示される検証技術の便利な幾何学表現がある。すなわち、履歴ペアリングが理想的な対角線の近くに存在すればするほど、検証される対角線BP方策を使用してそのような履歴ペアリングがより高い確率で起こる。区分が、履歴割り当てを対角線からある距離を超えるサンプルから除外するために確立され得る。
【0078】
良い対角線ペアリングモデルのために、サンプルに対する許容距離(閾値距離または閾値「適合度」)が対角線のより近くに近づく場合、比例してより望ましい結果がサンプル内にあるべきである。
図4Aは、履歴ペアリングの検証セット全体を示し、
図4Bは、比較的大きいサンプル(対角線から比較的遠くにある許容/閾値距離)を示し、
図4Cは、比較的狭いサンプル(対角線から比較的短い許容/閾値距離)を示す。
【0079】
図4Bは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Bの概略図を示す。予期される実績推定400Bにおいて、履歴タスクのプロットが再び示され、対角線から指定された距離を超える二つの領域は、グレーで表示される。予期される実績推定400Bにおいて、残りのサンプルは、望ましい結果(O)を有する10個のペアリングを含む21個の履歴割り当てを含む。それゆえ、理想的なピーク実績からのこの距離を考慮に入れた対角線BP方策の推定され予期される実績は、10/21≒48%であると決定され得る。
【0080】
予期される実績推定400A(
図4A)を参照して示される≒41%の根底にある実績を≒48%の予期される実績と比較すると、根底にある方策に比べて、この対角線BP方策によって提供される予期される改善(または、予期される「向上」)は、約17%であり得る。この予期される向上の推定は、このタスク割り当てシステムにおいて利用可能な(限定された)選択の典型的な量が、ペアリングのこの比較的広いバンド中に分布するペアリングをもたらす傾向があることを想定する。
【0081】
図4Cは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Cの概略図を示す。予期される実績推定400Cは、予期される実績推定400B(
図4B)より狭いペアリングのバンド(すなわち、サンプルに含まれる対角線からより短い許容距離)を表し、除外される領域は、より大きい。予期される実績推定400Cにおいて、12個の履歴割り当てのサブセットは、望ましい結果(O)を有する八つのペアリングを含む。それゆえ、対角線BP方策の推定され予期される実績は、8/12≒67%であると決定され得るか、(より限定されていない)選択のこの量に対する根底にある方策と比べて約63%の向上であると決定され得、それは、この比較的狭いバンド中に分布するペアリングをもたらす傾向にある。
【0082】
図4A~4Cの例において、サンプリングに対するバンドが狭くなる場合、予期される実績は、増加し、根底にあるタスク割り当て方策(例えば、FIFO)と比べて、タスク割り当てシステムの実績を最適化するために、またはそれを別様に増加させるために、この対角線BPモデルが、効果的であり得るという指標である。
【0083】
いくつかの実施形態において、任意に多くのサンプルが、フルセットで始まり、対角線から微小の距離で終わる対角線から異なる距離で測定され得る。
【0084】
バンドが狭くなり、(すべてのペアリングに対して、理想的で最適な選択を有するピーク実績を表す)対角線の辺りの微小のバンドのより近くに近づく場合、ますます多くの履歴タスクが、対角線BP方策がおそらく行われていないペアリングである(対角線により近い好ましいペアリングから遠すぎる)として除外される。この効果は、
図4A~4Cにおいて明らかであり、
図4Aは、29個の履歴割り当て(フルセット)を含み、
図4Bは、21個の履歴割り当てをサンプリングし、
図4Cは、12個のみをサンプリングした。
【0085】
図4Dは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Dの概略図を示す。予期される実績推定400Dは、予期される実績(例えば、望ましい結果のサンプルサイズに対する比率)を閾値適合度の種々の異なる程度に対してプロットする場合の相関曲線を示す。相関曲線は、左上近くで始まり、右下に向かって落ち、閾値適合度が好ましいタスク割り当て方策に向かって狭くなる場合、サンプルの実績が増加する(例えば、タスクを対角線の近くに存在するエージェントとペアリングする)ことを示す。
【0086】
BPタスク割り当て方策を使用した現実世界のタスク割り当てシステムにおいて、実際のタスク割り当ては、ペアリング空間中に見出され得、多くのペアリングは、最適な対角線の比較的近くにあり、他のペアリングは、最適な対角線から比較的遠くにある。閾値適合度の種々の程度における割り当ての分布は、BPタスク割り当て方策がどのくらい良くピーク実績を達成するかを推定することを助け得る。現実世界のこの分布(例えば、BP「オン」データ)を予期される実績推定400Dと比較することは、全体的な予期される実績のますます正確な推定を可能にし得る。いくつかの実施形態において、予期される実績は、適合度の種々の程度にわたるサンプルの実績の単純平均であり得る。他の実施形態において、予期される実績は、適合度の種々の程度にわたるサンプルの実績の加重平均であり得、タスク割り当てシステムが好ましいペアリング方策(例えば、BP方策)を使用している場合、「オン」データの収集において見出されるペアリングの分布に応じて重み付けされ得る。他の実施形態において、他の処方が、予期される実績推定400Dの相関曲線を使用して、タスク割り当てシステムにおいて予期される実績または向上を推定するために、適用され得る。
【0087】
ますます多くの履歴タスクが、ますます狭いサンプルから除外される場合、推定される向上を決定するために利用可能なデータの量は、低下するため、推定の正確度も低下する。実際に、いくつかの十分に狭いバンドにおいて、履歴割り当てデータのうちのすべてが、除外され得、定義されない(「0/0」の)予期される実績を有する空のサンプルをもたらす。
【0088】
その結果として、テストされた各バンドに対して予期される実績推定(例えば、標準誤差)の予期される正確度を計算することは、いくつかの実施形態において有益であり得る。これらの実施形態において、正確度または誤差情報は、所与の予期される実績推定の信頼性を評価することを助けるために、利用可能であろう。
【0089】
上記のように、これらの実施形態において、任意に多数の推定及び正確度/誤差測定は、ますます狭いバンドに踏み込み、何も残らなくなるまでバンドが最適なペアリングにますます近づく場合、ますます多くの履歴タスクを除外することによって、行われ得る。
【0090】
図4A~4Cにおいて示される例は、履歴データの単一のセットを使用した。いくつかの実施形態において、この検証プロセスは、履歴データの任意に多くの異なるセットに対して繰り返され得る。いくつかの実施形態において、一つ以上の履歴割り当てセットの各々は、ペアリング方策を作成するために使用される「トレーニングセット」と完全にまたは少なくとも部分的に異なる「ホールドアウトセット」または「検証セット」であり得る。他の実施形態において、履歴割り当てセットのうちのいくつかまたはすべては、ペアリング方策を作成するために使用される履歴割り当てのより大きいセットから取られる「インサンプル」であり得る。
【0091】
いくつかの実施形態において、ホールドアウトセットまたはインサンプルセットのいずれかに対して、これらのサンプルは、単一の履歴割り当てを複数のサンプルにわたって複数回数えて、オーバーサンプリングされ得、そのようなオーバーサンプリング技術が、より正確な予期される実績推定を決定するために役立つ状況に対して行われる。単純化した例に対して、ホールドアウトセットがA~Eとラベル付けされた五つの履歴割り当てを含む場合、第一のサンプルは、履歴割り当てA、BおよびCを含み得、第二のサンプルは、履歴割り当てB、CおよびDを含み得、第三のサンプルは、履歴割り当てC、DおよびEを含み得るなどである。この例において、履歴割り当てBは、オーバーサンプリングされ、少なくとも第一および第二のサンプルに含まれる。別の例において、例えば、閾値適合度を狭めるためにオーバーサンプリングする場合、第一の(最も大きい)サンプルは、履歴割り当てA~Eを含み得、第二の(より小さい)サンプルは、履歴割り当てB~Dを含み得るなどであり、最も小さいサンプルに対しては、履歴割り当てBのみを含み得る。
【0092】
本開示の実施形態は、K分割法(k-fold)、ランダム法(random)、タイム法(time)、ランダムタイム法(random time)、無作為ローリング法(random rolling)、オフデータ法(off data)、トレーンオン/オフ法(train on/off)、トレーンオフ法(train off)、リフト曲線法(lift curve)などの様々な異なる検証技術のうちの一つ以上を使用し得る。いくつかの実施形態において、検証技術は、コールセンターシステム環境における時間に基づく変化に対する正規化も含み得る。一般化されたK分割検証技術およびこれらの他の技術のうちのいくつかは、例えば、JamesらによるAn Introduction to Statistical Learning(2013年)pp.29-33および176-86、ならびにHastieらによるThe Elements of Statistical Learningの第二版(2008)のpp.219-57において詳細に説明され、上記の文献は、本明細書において参照によって援用される。
【0093】
先行する例において、根底にあるタスク割り当て方策は、FIFOであり得、それは、可能なペアリングの空間中に比較的一様に分布した履歴割り当てをもたらした。しかし、いくつかのタスク割り当てシステムにおいて、異なるタスク割り当て方策が、用いられ得、利用バイアスをエージェントおよび/またはタスクに導入する。
図4Eおよび4Fは、PBRに起因するエージェント利用バイアスの例を示し、
図4Gおよび4Hは、タスク優先順位付け方策(例えば、コールセンターにおける優先されたまたは「VIP」コールルーティング)に起因するタスク利用バイアスの例を示す。
【0094】
図4Eは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Dの概略図を示す。この例において、履歴割り当てのうちのほとんどは、より高いパーセンタイルランキングを有するエージェントの辺りのグラフの右側に向かって集まっている。この例において、エージェントパーセンタイルは、エージェント実績に比例し、このエージェント利用バイアスは、履歴割り当てに対する根底にあるペアリング方策としてPBRを使用したことに起因する。他の実施形態またはコンタクトセンター環境において、パーセンタイルは、実績以外のメトリックに対応し得る。例えば、エージェントパーセンタイルは、エージェントの全体的な実績(例えば、生成される収益の額)に関わらず、コールの結果に影響を与える各エージェントの能力に比例し得る。
【0095】
その結果として、より低いパーセンタイルでは、エージェントに利用可能な比例して少ないデータがある。よって、修正されないままである場合、このバイアスは、
図4Fを参照して以下に説明されるように、予期される実績推定を歪ませ得る、または偏らせ得る。
【0096】
図4Fは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Eの概略図を示す。予期される実績推定400Eは、予期される実績推定400Dと同じ履歴割り当てを表し、対角線からより遠くにあるバンドの外側の領域は、除外されている。
【0097】
履歴割り当てを含むサブセットは、偏った分布も有し、より高いランキングのエージェントに向かって歪んでいる。このバンドに対して予期される実績を推定する単純な手法は、合計11個の履歴エージェントタスクのうち、九つの望ましい結果があることに気づくことであろう。しかし、これらの望ましい結果のうちの多くは、より実績の高いエージェントの辺りで集まっているため、非現実的に高い予期される実績推定につながり得る。
【0098】
それゆえ、いくつかの実施形態において、予期される実績は、所与のスライス内で見出される履歴割り当ての数に応じ比例して、履歴割り当ての各垂直スライスを重み付けすることによってより正確に推定され得る。この方法(すなわち、「エージェントパーセンタイル修正」または「AP修正」)で履歴割り当てのサブセットを重み付けし直すことは、バイアスを根底にあるPBR方策から削除し得、予期される実績のより正確な推定をもたらす。
【0099】
図4Gは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Fの概略図を示す。この例において、履歴割り当てのうちのほとんどは、より高いパーセンタイルランキングを有するエージェントの辺りのグラフの上部に向かって集まっている。この例において、タスク利用バイアスは、履歴割り当てに対する根底にあるペアリング方策として、このタスク優先順位付け方策を使用したことに起因する。
【0100】
その結果として、より低いパーセンタイルでは、タスクに利用可能な比例して少ないデータがある。よって、修正されないままである場合、このバイアスは、
図4Hを参照して以下に説明されるように、予期される実績推定を歪ませ得る、または偏らせ得る。
【0101】
図4Hは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Gの概略図を示す。予期される実績推定400Gは、予期される実績推定400Fと同じ履歴割り当てを表し、対角線からより遠くにあるバンドの外側の領域は、除外されている。
【0102】
履歴割り当てを含むサブセットは、偏った分布も有し、より高いランキングのタスクに向かって歪んでいる。このバンドに対して予期される実績を推定する単純な手法は、合計11個の履歴エージェントタスクのうち、九つの望ましい結果があることに気づくことである。しかし、これらの望ましい結果のうちの多くは、より実績の高いエージェントの辺りに集まっているため、非現実的に高い予期される実績推定につながり得る。
【0103】
それゆえ、いくつかの実施形態において、予期される実績は、所与のスライス内に見出される履歴割り当ての数に応じ比例して、履歴割り当ての各水平スライスを重み付けすることによってより正確に推定され得る。この方法(すなわち、「タスクパーセンタイル修正」もしくは「TP修正」、または、コンタクトセンターのコンテクストに対しては、「コンタクトパーセンタイル修正」もしくは「CP修正」)で履歴割り当てのサブセットを重み付けし直すことは、根底にあるタスク/コンタクト優先順位付け方策からバイアスを削除し得、予期される実績のより正確な推定をもたらす。
【0104】
いくつかの実施形態において、根底にあるタスク割り当て方策が、検証において、タスク割り当て方策と比べてどのくらい良く(またはどのくらい悪く)実績を最適化するかを測定することは、役立ち得る。
図4Iおよび4Jは、対角線BPペアリング方策に適用される一つのそのような技術の例を表す。
【0105】
図4Iは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Hの概略図を示す。x軸は、「ピーク実績の実現」とラベル付けされ、原点に近い「高い」から右側の「低い」に進む。対角線BPモデルに対して、ピーク実績の高い実現は、理想的で最適な対角線に比較的近い履歴割り当てをサンプリングすることを示し、仮説上のピーク実績が、達成され得る。ピーク実績の低い実現は、対角線からより遠くに広がるより広いバンドにおいて履歴割り当てをサンプリングすることを示す。
【0106】
y軸は、「サンプルサイズ」とラベル付けされ、原点に近い0から上部のn(ここでは、n個の履歴割り当てのフルセットのサイズ)に進む。対角線BPモデルに対して、サンプルサイズは、バンドサイズがますます小さくなる場合、減少する。バンドサイズが、対角線に沿ってピーク実績に近づく場合、サンプルサイズは、やがて0まで落ちる。バンドサイズが低い実績に近づく場合、サンプルサイズは、やがてnに到達し、履歴割り当てのセット全体を包含する。
【0107】
根底にあるタスク割り当て方策がFIFOであり、それにより履歴割り当てが各バンド中に比較的平等に分布し得る場合、幅がピーク実績に向かって低下すると、サンプルサイズがバンドの幅の二乗に比例して低下するという事実が、しばしばあり得る。そのようなものとして、FIFOは、タスク割り当てシステム内のベースライン実績レベルを表す中立の方策である。予期される実績推定400Hにおいて、破線の曲線は、各サンプルサイズに対するこのベースライン実績レベルを表す。
【0108】
この例において、実線の曲線は、サンプルサイズがピーク実績(比較的狭いバンド)の比較的高い実現に対して急に増加するように、破線のベースライン実績曲線の「上で曲がる」。これらの環境において、履歴割り当ては、対角線のより近くに比例して集まっているように思われ得る。これらの環境において、履歴割り当てを生成した根底にある方策は、検証されるタスク割り当て方策と比べる場合、ピーク実績の比較的高い実現を既に達成し得る。よって、根底にある(既存の)方策に対する予期される向上は、FIFOと比べて、比較的低いものであり得る。
【0109】
図4Jは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Iの概略図を示す。予期される実績推定400Iは、予期される実績推定400H(
図4I)と類似するが、この例において、曲線は、サンプルサイズがピーク実績(比較的狭いバンド)の比較的高い実現に対してゆっくりと増加するように、破線のベースライン実績曲線の「下で曲がる」。これらの環境において、履歴割り当ては、対角線のより遠くの領域に比例して集まっているように思われ得る。これらの環境において、履歴割り当てを生成した根底にある方策は、FIFOより悪く実績を出し得、それは、ランダム法よりも悪く実績を出す方策と数学的に同等であり得る。よって、根底にある(既存の)方策に対する予期される向上は、FIFOと比べて、比較的高いものであり得る。
【0110】
いくつかの実施形態において、どのバンドまたはどのバンドの範囲が「現実世界」のタスク割り当てシステムを最も高い確率でモデル化するかを推定すること、またはそれを別様に予測することは、役立ち得る。現実世界のタスク割り当てシステムにおいて、タスク割り当てシステムは、待ちタスクの要求を満たすための利用可能なエージェントの供給が常に変動する場合、経時的に可能な選択の種々の程度を経験する。選択の現実世界の分布は、おそらく、理想的で最適な選択(ピーク実績)と完全に制約され限定された選択(例えば、常に1対1、または「L0」)との間のどこかでピークになる。
【0111】
図4Kは、検証されるタスク割り当て方策の推定され予期される実績の現実世界の予期を向上させるために、根底にある履歴割り当てデータに見出される選択の自由の分布を視覚化する技術を例示する。
【0112】
図4Kは、本開示の実施形態に従う、タスク割り当て方策の予期される実績推定400Jの概略図を示す。これらの実施形態において、選択の種々の程度の分布または頻度についての情報は、履歴割り当て情報と関連付けられ得、バンドまたはバンドの範囲は、他のバンド/サンプルより密接に現実世界のタスク割り当てシステムをモデル化するために決定され得る。このバンドまたはバンドの範囲を識別したので、これらの実施形態は、識別されるバンドまたはバンドの範囲に対する推定され予期される実績および/または標準誤差を最も起こりそうな予期される実績として出力し得る。
【0113】
いくつかの実施形態において、労働要員の勧めが、エージェントの人員配置を増加または低下させることにより、エージェントまたはタスクをそれぞれ選択するためのペアリング方策に利用可能な選択の平均的な量を増加させるために行われ得る。いくつかの実施形態において、ペアリング方策は、利用可能な選択の量があまりにも低いと考えられる場合、ペアリングを遅らせ得、より多くのタスクおよび/またはエージェントのための時間が、ペアリングに対して準備できた状態であることを可能にする。
【0114】
先行する例は、対角線BP方策を主に議論した。いくつかの実施形態において、予期された実績は、ネットワークフローBP方策などの他のタイプのBP方策に対して推定され得る。
【0115】
図5は、開示の実施形態に従う、タスク割り当てペイアウトマトリックス500の概略図を示す。タスク割り当てモデル300A(
図3A)およびコンタクトペアリングモデル300B(
図3B)に類似して、ペイアウトマトリックス500は、三人のエージェントa
0~a
2および三つのタスクタイプt
0~t
2を示す。各セルは、所与のエージェントおよびタスクタイプ割り当てに対する対話項g(a
i,t
k)の値を含む。
【0116】
この例において、三つの好ましいペアリングは、1の予期値を有し、対角線に沿って存在し、他のより好ましくないペアリングは、0.5または0の予期値を有する。コンタクトペアリングモデル300B(
図3B)の例と違い、ペアリングの予期値は、ペアリングが対角線からより遠くになる場合、一貫しては低下しない。例えば、エージェントa
2に対するタスクt
1のペアリング(0の予期値)は、エージェントa
2に対するタスクt
2のペアリング(0.5の予期値)より対角線に近い。
【0117】
いくつかの実施形態において、対角線ペアリング方策は、依然として、タスク割り当てペイアウトマトリックス500の非常に簡易化された例示的な例などの環境に対してさえ、傑出した実績の改善および均衡のとれたエージェント利用を提供し得る。他の実施形態において、ネットワークフロー(または線形計画法)ベースのBP方策などの異なるペアリング方策が、より優れた実績の最適化を提供し得る一方で、例えば、タスク割り当てペイアウトマトリックス500に類似の環境に対して、エージェント利用の所望の均衡を依然として達成し、対角線までのペアリングの距離が短くなる(すなわち、適合度がより近くなる)場合、タスク割り当てペイアウトマトリックス500には、エージェントおよびタスクの順序付けが予期値の一貫した増加を提供しない。タスク割り当てペイアウトマトリックス500は、例えば、本明細書において参照によって以前に援用された米国特許出願第15/582,223号において説明されるネットワークフローBP方策とともに、使用され得る。
【0118】
対角線BP方策と同様に、ネットワークフローBP方策も、履歴割り当てデータを使用して検証され得る。しかし、対角線BP方策における対角線からの距離のような、ネットワークフローBP方策に対する幾何学的類似がないので、これらの検証技術は、それらが
図4A~4Hにおいて例示されたように、図において容易に例示されない。いくつかの実施形態において、履歴割り当ては、理想的または最適な選択の量を考慮に入れると、ネットワークフローBP方策のピーク実績への一つ以上の近似において、繰り返しサンプリング(またはオーバーサンプリング)され得る。例えば、履歴割り当てサンプルサイズ3(または4以上)が、決定され得る。
【0119】
例えば、履歴割り当てのサンプルは、望ましい結果を有するt2に対するa0の好ましいペアリング、望ましい結果を有するt1に対するa1の好ましくないペアリング、望ましくない結果を有するt0に対するa2の好ましくないペアリングを含み得る。このサンプルの根底にある実績は、サンプルにおける望ましい結果の割合、または2/3≒67%として決定され得る。
【0120】
サンプルサイズ3におけるような3の選択を考慮に入れると、ネットワークフロー500Bに従う、好ましくないペアリングは、除外され得る。その結果として、望ましい結果を有する一つの履歴割り当てであるt1に対するa1のみが、サンプルに存在するか、1/1=100%である。
【0121】
これらの実施形態において、任意の一つのサンプルにおいて利用可能なデータの量は、フルセットにおいて見出され得る数十または何千の履歴割り当てと対照的に、非常に制約される(例えば、三つの履歴割り当てのみ)。よって、履歴割り当てを繰り返しサンプリングすることにより、好ましいペアリングの頻度および望ましい結果を有したものの重み付けされた割合を決定することは、特に重要であり得る。
【0122】
対角線BP方策と同様に、根底にある方策が既に部分的に最適化されるかどうかを決定すること、ならびに/または履歴割り当てデータにおけるエージェントおよび/もしくはタスクの過剰出現またはバイアスを修正することは、役立ち得る。
【0123】
技術は、作成され検証されるタスク割り当て方策のタイプによって、詳細には変わり得る(例えば、ネットワークフローBP方策検証技術と比べた対角線BP方策検証技術)が、これらの技術は、履歴割り当てデータをサンプリングまたは重み付けすることを伴い得る。いくつかの実施形態において、これらの技術は、繰り返されるサンプリング、オーバーサンプリング、バイアス修正、ピーク実績または最適な選択に向けての近似、予期される実績推定、予期される向上推定(根底にある履歴実績との比較)、正確度/誤差測定、予期される現実世界の向上推定(例えば、利用可能な選択の根底にある分布との比較)などを伴い得る。
図6A~9は、上述の様々な予期される実績推定方法のためのフロー図を表す。
【0124】
図6Aは、本開示の実施形態に従う、予期される実績推定方法600Aのフロー図を示す。ブロック610において、予期される実績推定方法600Aは、開始し得る。
【0125】
ブロック610において、複数の履歴割り当てが受信され得る。いくつかの実施形態において、複数の履歴割り当ては、履歴割り当てモジュール150(
図1)または履歴コンタクトペアリングモジュール250(
図2)などの履歴割り当てモジュールから受信され得る。いくつかの実施形態において、複数の履歴割り当ては、タスク割り当て(ペアリング)モデルまたはタスク割り当て(ペアリング)方策を築き、生成し、構築し、訓練し、改良し、または別様で決定するためにも使用された複数の履歴割り当てのインサンプルであり得る。他の実施形態において、複数の履歴割り当ては、モデル構築のために使用されなかった履歴割り当てを含むアウトサンプル(ホールドアウトセット、検証セットなど)である。複数の履歴割り当てを受信した後、予期される実績推定方法600Aは、ブロック620Aに進み得る。
【0126】
ブロック620Aにおいて、エージェントをタスクとペアリングするための方策に基づく複数の履歴割り当てのサンプルが、決定され得る。いくつかの実施形態において、サンプルは、予期される実績推定モジュール160(
図1および2)などの予期される実績推定モジュールによって決定され得る。いくつかの実施形態において、サンプルは、複数の履歴割り当てを分析し、タスク割り当て方策を使用して十分に高い確率で起こった履歴割り当てをサンプルに含み、十分に高い確率で起こらなかった履歴割り当てをサンプルから除外することによって決定され得る。例えば、対角線BP方策の場合、バンド内または対角線から指定された距離に存在するペアリングを含む。複数の履歴割り当てのサンプルをペアリング方策に基づいて決定した後、予期される実績推定方法600Aは、ブロック630Aに進み得る。
【0127】
ブロック630Aにおいて、サンプルに基づくペアリング方策の予期される実績は、決定され得る。いくつかの実施形態において、予期される実績の決定または推定は、サンプルにおける履歴ペアリングの合計数に対する望ましい結果(例えば、二項変数に対する正の結果または多項もしくは連続変数に対する十分に正の結果)の割合として計算され得る。他の実施形態において、予期される実績推定は、(例えば、PBRのもとでの)エージェントのサブセットの過剰出現または(例えば、タスク優先順位付け方策のもとでの)タスクタイプのサブセットの過剰出現などの根底にある履歴割り当てデータに存在し得るバイアスを考慮するように、修正または別様に調整され得る。いくつかの実施形態において、予期される実績推定は、履歴割り当てのうちのいくつかがオーバーサンプリングされ得る(例えば、サンプル決定技術に従って、同じサンプル内で複数回数えられる)頻度を考慮し得る。ペアリング方策の予期される実績を決定した後、予期される実績推定方法600Aは、ブロック640に進み得る。
【0128】
ブロック640において、決定されるまたは推定され予期される実績は、出力され得る。いくつかの実施形態において、予期される実績推定モジュール160は、推定され予期される実績をタスク割り当てモジュール110(
図1)、スイッチ210(
図2)またはタスク割り当てシステム内の別の構成要素またはモジュールに出力(out)し得るか、または別様にタスク割り当てシステムに通信可能に結合され得る。
【0129】
いくつかの実施形態において、ブロック630において決定される推定され予期される実績を出力した後、予期される実績推定方法600Aは、ブロック620に戻り、異なるサンプルを決定し得る。他の実施形態において、予期される実績推定方法600Aは、ブロック610に戻り、異なる複数の履歴割り当て(例えば、異なるインサンプルまたは異なるホールドアウトセット)を受信し得る。他の実施形態において、予期される実績推定方法600Aは、終了し得る。
【0130】
図6Bは、本開示の実施形態に従う、予期される実績推定方法600Bのフロー図を示す。予期される実績推定方法600Bは、履歴割り当てが、サンプルにおいて含まれるまたは除外される代わりに、重み付けされ得る以外は、予期される実績推定方法600Aに類似する。
【0131】
予期される実績推定方法600Bは、ブロック610で開始し得る。ブロック610において、複数の履歴割り当てが、予期される実績推定方法600Aにおいてのように、受信され得る。複数の履歴割り当てを受信した後、予期される実績推定方法600Bは、ブロック620Bに進み得る。
【0132】
ブロック620Bにおいて、エージェントをタスクとペアリングするための方策に基づく複数の履歴割り当てのうちの少なくとも一つの重み付けが、決定され得る。いくつかの実施形態において、重み付けは、ブロック610において受信される履歴割り当てのうちのすべてに割り当てられ得る。いくつかの実施形態において、ゼロの重み付けは、履歴割り当てのうちのいくつかに割り当てられ得る。これらの実施形態において、ゼロの重みは、予期される実績推定方法600Aのブロック620A(
図6A)におけるような、履歴ペアリングをサンプルから除外することに類似し得る。いくつかの実施形態において、重み付けは、履歴割り当てが検証されるペアリング方策のもとで起こったであろう可能性を示し得る。複数の履歴割り当てのうちの少なくとも一つの重み付けを決定した後、予期される実績推定方法600Bは、ブロック630Bに進み得る。
【0133】
ブロック630Bにおいて、重み付けに基づく方策の予期される実績が、決定され得る。例えば、予期される実績は、重み付けされた履歴割り当ての各々と関連付けられた値の加重平均として計算され得る。予期される実績推定方法600Aのブロック630Aにおいてのように、予期される実績推定は、例えば、根底にある履歴割り当てデータにおけるバイアスを修正するなど、様々な実施形態および状況において調整され得る。予期される実績を決定した後、予期される実績推定方法600Bは、ブロック640に進み得る。
【0134】
ブロック640において、予期される実績は、予期される実績推定方法600Aにおいてのように、出力され得る。様々な実施形態において、予期される実績推定方法600Bは、次の複数の履歴割り当てのために、ブロック610に戻り得るか、次の重み付け決定のために、620Bに戻り得るか、または予期される実績推定方法600Bは、終了し得る。
【0135】
図7は、本開示の実施形態に従う、予期される実績推定方法700のフロー図を表す。予期される実績推定方法700は、ブロック710で開始し得る。
【0136】
ブロック710において、複数の履歴割り当てが、受信され得る。複数の履歴割り当てを受信した後、予期される実績推定方法700は、ブロック720に進み得る。
【0137】
ブロック720において、複数の履歴割り当ては、トレーニングサブセットおよび検証サブセット(ホールドアウトサブセット、アウトサンプル)に区分され得る。複数の履歴割り当てを区分した後、予期される実績推定方法700は、ブロック730に進み得る。
【0138】
ブロック730において、ペアリング方策が、トレーニングサブセットに基づいて生成され得る。例えば、履歴割り当ては、タスク割り当てシステム内で自動的にパターンを識別するために使用され得、および/または、履歴割り当ては、ペアリングモデルまたはペイアウトマトリックスのための値/コストを計算するために使用され得る。ペアリング方策を生成した後、予期される実績推定方法700は、ブロック740に進み得る。
【0139】
ブロック740において、ペアリング方策の予期される実績は、検証サブセットに基づいて、決定され得る。いくつかの実施形態において、予期される実績は、予期される実績推定方法600Aおよび600B(例えば、検証セットのサンプルまたは重み付けをそれぞれ決定すること;サンプルまたは重み付けに基づいて予期される実績をそれぞれ決定すること;および、いくつかの実施形態において、履歴割り当てデータを繰り返しサンプリングまたは重み付けすること)などの本明細書において説明される検証技術のうちの任意のものを使用して決定され得る。ペアリング方策の予期される実績を決定した後、予期される実績推定方法700は、ブロック750に進み得る。
【0140】
ブロック750において、予期される実績が、出力され得る。予期される実績を出力した後、いくつかの実施形態は、ブロック720に戻り、次の検証セットを取得し得るか、またはブロック740に戻り、検証サブセットに基づいて、次の予期される実績を決定し得る。他の実施形態において、予期される実績推定方法700は、終了し得る。
【0141】
図8は、本開示の実施形態に従う、予期される実績推定方法800のフロー図を表す。予期される実績推定方法800は、それが、ブロックのうちのいくつかを複数の検証セットに対して繰り返し得る実施形態を明示的に記載する以外は、予期される実績推定方法700(
図7)に類似する。ブロック810において、予期される実績推定方法800は、開始し得る。
【0142】
ブロック810において、複数の履歴割り当てが、受信され得る。複数の履歴割り当てを受信した後、予期される実績推定方法800は、ブロック820に進み得る。ブロック820において、複数の履歴割り当ては、トレーニングサブセットおよび検証サブセットに区分され得る。複数の履歴割り当てを区分した後、予期される実績推定方法800は、ブロック830に進み得る。ブロック830において、ペアリング方策の予期される実績は、検証セットに基づいて決定され得る。予期される実績を決定した後、予期される実績推定方法800は、ブロック840に進み得る。
【0143】
ブロック840において、次の検証サブセットのための方法の一部を繰り返すかどうかについて決定が行われ得る。そうである場合、予期される実績推定方法800は、例えば、ブロック820に戻り、次の検証サブセットおよび/または次のトレーニングサブセットを区分し、ブロック830に戻り、次の検証サブセットに基づいて予期される実績を決定し得る。そうでない場合、予期される実績推定方法800は、ブロック850に進み得る。
【0144】
ブロック850において、複数の検証サブセットのうちの少なくとも二つに対する組み合わせられた予期される実績(例えば、平均的な予期される実績または加重平均の予期される実績)が、出力され得る。組み合わせられた予期される実績を出力した後、予期される実績推定方法800は、終了し得る。
【0145】
図9は、本開示の実施形態に従う、予期される実績推定方法900のフロー図を表す。予期される実績推定方法900は、
図4A~4Hおよび5A~5Bを参照して説明されるプロセスに類似し、サンプルは、理想的なピーク方策の増加する近似(例えば、対角線BP方策に対する漸次的に狭いバンドまたはネットワークフローBP方策に対する漸次的に増加するサンプルサイズ)における予期される実績を推定するために繰り返し決定される。ブロック910において、予期される実績推定方法900は、開始し得る。
【0146】
ブロック910において、複数の履歴割り当てが、受信され得る。複数の履歴割り当てを受信した後、予期される実績推定方法900は、ブロック920に進み得る。
【0147】
ブロック920において、複数の履歴割り当てのサンプルが、ペアリング方策のピーク実績と比べた実現の程度(例えば、対角線BP方策に対する特定のバンドサイズもしくは対角線からの距離、またはネットワークフローBP方策に対する特定のサンプルサイズ)に基づいて決定され得る。サンプルを決定した後、予期される実績推定方法900は、ブロック930に進み得る。
【0148】
ブロック930において、ペアリング方策の予期される実績が、以前に説明された技術の任意のものを使用して、サンプルに基づいて決定され得る。予期される実績を決定した後、予期される実績推定方法900は、ブロック940に進み得る。
【0149】
ブロック940において、次の実現の程度に対して繰り返されるかどうかについて決定が行われ得る。そうである場合、予期される実績推定方法900は、ブロック920に戻り、次の実現の程度(例えば、対角線BP方策におけるより狭いバンド、またはネットワークフローBP方策におけるより大きいサンプルサイズ)に基づいて、次のサンプルを決定し、ブロック930に進み、この次のサンプルおよび次の実現の程度に基づいて、別の予期される実績を決定し得る。そうでない場合、予期される実績推定方法900は、ブロック950に進み得る。
【0150】
ブロック950において、複数のサンプル、およびピーク実績と比べた予期される実現の程度に基づく予期される実績は、出力され得る。例えば、チャートが、x軸上の実現の各程度に対して、y軸に沿って推定され予期される実績をプロットして提供され得る。他の実施形態において、予期される実績推定は、組み合わされ得る(例えば、平均または加重平均)。他の実施形態において、ピーク実績の「現実世界」の実現の決定は、推定され得、現実世界の実現の程度における予期される実績は、出力され得る。予期される実績を出力した後、予期される実績推定方法900は、終了し得る。
【0151】
この時点で、上記で説明されたような本開示に従う、タスク割り当てシステムにおいて予期される実績を推定することは、入力データの処理および出力データの生成をある程度伴い得るということに留意されるべきである。この入力データ処理および出力データ生成は、ハードウェアまたはソフトウェアにおいて実装され得る。例えば、上記で説明されたような本開示に従うタスク割り当てシステムにおいて予期される実績を推定することと関連付けられる機能を実装するための、予期される実績推定モジュール、または類似もしくは関連した回路において、特定の電子部品が採用され得る。代替的に、命令に従って動作する一つ以上のプロセッサーが、上記で説明されたような本開示に従うタスク割り当てシステムにおいて予期される実績を推定することと関連付けられる機能を実装し得る。もしそのようである場合、そのような命令が一つ以上の非一時的プロセッサー読み取り可能な記憶媒体上(例えば、磁気ディスクまたは他の記憶媒体)に記憶され得るか、または一つ以上の搬送波に組み込まれた一つ以上の信号を介して一つ以上のプロセッサーに送信され得ることは、本開示の範囲内にある。
【0152】
本開示は、本明細書において説明された特定の実施形態によって範囲が限定されるものでない。実際に、本開示の他の様々な実施形態および本開示への修正は、本明細書において説明されたものに加えて、上記の説明および添付の図面から当業者に明白になるであろう。従って、そのような他の実施形態および修正は、本開示の範囲内に該当するように意図される。また、本開示は、本明細書において、少なくとも一つの特定の目的のための少なくとも一つの特定の環境における少なくとも一つの特定の実装の文脈で説明されたが、本開示の有用性は、それに限定されないことと、本開示は、任意の数の目的のための任意の数の環境において有益に実装され得ることとを、当業者は認識するであろう。従って、下記に規定される特許請求の範囲は、本明細書において説明されるような本開示の全体の幅広さおよび趣旨に鑑みて解釈されるべきである。