(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-25
(45)【発行日】2022-04-04
(54)【発明の名称】研磨装置
(51)【国際特許分類】
B24B 49/12 20060101AFI20220328BHJP
B24B 37/28 20120101ALI20220328BHJP
B24B 37/013 20120101ALI20220328BHJP
H01L 21/304 20060101ALI20220328BHJP
【FI】
B24B49/12
B24B37/28
B24B37/013
H01L21/304 622S
(21)【出願番号】P 2018079177
(22)【出願日】2018-04-17
【審査請求日】2020-10-16
(73)【特許権者】
【識別番号】000107745
【氏名又は名称】スピードファム株式会社
(74)【代理人】
【識別番号】240000327
【氏名又は名称】弁護士法人クレオ国際法律特許事務所
(72)【発明者】
【氏名】田山 遊
(72)【発明者】
【氏名】岩本 陽平
(72)【発明者】
【氏名】吉原 秀明
(72)【発明者】
【氏名】井上 裕介
(72)【発明者】
【氏名】田中 敬
(72)【発明者】
【氏名】加藤 剛敏
【審査官】城野 祐希
(56)【参考文献】
【文献】特開2017-207455(JP,A)
【文献】特開2015-023113(JP,A)
【文献】米国特許出願公開第2013/0210173(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B24B 49/12
B24B 37/28
B24B 37/013
H01L 21/304
(57)【特許請求の範囲】
【請求項1】
回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、前記第1描画を前記表示器に表示させる
ことを特徴とする研磨装置。
【請求項2】
請求項1に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
【請求項3】
回転する定盤によってワークを研磨する研磨機と、
前記定盤に形成された測定孔を介して前記ワークの形状を測定する形状測定器と、
前記形状測定器によって測定された前記ワークの形状情報を記憶するメモリと、
前記形状測定器によって測定された前記ワークの形状情報を表示する表示器と、
前記表示器の表示内容を制御する制御部と、を備え、
前記制御部は、前記形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画と、前記研磨中ワークの研磨以前に研磨加工されたワークの形状描画を時系列で並べた第2描画と、を生成し、前記第1描画及び前記第2描画を同時に前記表示器に表示させる
ことを特徴とする研磨装置。
【請求項4】
請求項3に記載された研磨装置において、
前記メモリは、前記ワークの形状情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられたワークの形状情報に基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
【請求項5】
請求項3又は請求項4に記載された研磨装置において、
前記制御部は、前記メモリに記憶された前記ワークの形状情報を演算処理して得られたワーク形状パターン、又は前記ワークを研磨加工した際の条件的属性と前記ワークの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンに基づいて前記第2描画を生成する
ことを特徴とする研磨装置。
【請求項6】
請求項3から請求項5のいずれか一項に記載された研磨装置において、
前記メモリは、前記ワークの形状情報及び前記ワークの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む予測情報に、このワークを研磨加工した際の条件的属性又は学習的に生成した条件的属性を紐づけて記憶し、
前記制御部は、前記研磨中ワークの予測情報の時系列変化と、前記研磨中ワークの条件的属性にマッチする条件的属性に紐づけられた予測情報の時系列変化との比較演算の結果に基づいて前記研磨中ワークの形状推移を予測し、前記形状推移の予測に基づいて前記研磨中ワークの状態判定を行う
ことを特徴とする研磨装置。
【請求項7】
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの状態判定の結果、前記研磨中ワークの研磨加工を停止すると判定したとき、前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
【請求項8】
請求項2又は請求項6に記載された研磨装置において、
前記制御部は、前記研磨中ワークの形状推移の予測に基づいて前記研磨中ワークが所望のワーク状態になり得ないと判定したとき、前記研磨中ワークが二次的許容状態のときに前記研磨中ワークの研磨加工の停止及び前記研磨中ワークの研磨加工の停止判定の報知のうち、少なくとも一方を行う
ことを特徴とする研磨装置。
【請求項9】
請求項8に記載された研磨装置において、
前記制御部は、前記研磨中ワークの二次的許容状態の現出に対して相関度が高い条件的属性を特定、又は前記研磨中ワークの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定或いは列挙された条件的属性を報知する
ことを特徴とする研磨装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えばシリコンウェーハ等のワークの表面を研磨する研磨装置に関する発明である。
【背景技術】
【0002】
従来から、上定盤と、下定盤と、サンギヤと、インターナルギヤと、キャリアプレートとを備え、キャリアプレートに保持されたシリコンウェーハ等のワークの表面を研磨する研磨装置が知られている(例えば、特許文献1参照)。この研磨装置は、上定盤に形成された貫通穴を介して研磨中のワークの厚さをリアルタイムで計測する計測器を有し、この計測器によるワーク厚さの計測結果に基づいて研磨加工の停止タイミングを判定する。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、従来の研磨装置では、ワーク厚さの測定結果に基づいて研磨加工の停止タイミングを判定している。しかし、研磨加工を継続した場合の将来的なワークの形状変化の推移は、ワーク厚さの一時的な測定結果から予測することは難しい。そのため、研磨加工を続けたときにワーク形状が所望の形状に近づくのか否かを把握できず、所望のワーク形状になったタイミングでのワークの研磨停止が困難であるという問題が生じる。また、研磨加工に関連する諸条件の違いは、研磨終了後のワーク形状にのみに影響を与えるものではなく、研磨中のワーク形状推移にも影響を与えると考えられる。しかしながら、これまでは研磨加工に伴う時系列的なワーク形状変化の推移はユーザーの技量に依存するところが大きく、プロセス改善の効率向上への障害となっていた。
【0005】
本発明は、上記問題に着目してなされたもので、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる研磨装置を提供することを課題としている。
【課題を解決するための手段】
【0006】
上記目的を達成するため、本発明の研磨装置は、回転する定盤によってワークを研磨する研磨機と、定盤に形成された測定孔を介してワークの形状を測定する形状測定器と、形状測定器によって測定されたワークの形状情報を記憶するメモリと、形状測定器によって測定されたワークの形状情報を表示する表示器と、表示器の表示内容を制御する制御部と、を備えている。
そして、制御部は、形状測定器によって測定された現在研磨中のワークである研磨中ワークの形状描画を時系列で並べた第1描画を生成し、この第1描画を表示器に表示させる。
【発明の効果】
【0007】
この結果、研磨中のワークの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークの研磨加工を停止できる。
【図面の簡単な説明】
【0008】
【
図1】実施例1の研磨装置の全体構成を概略的に示す説明図である。
【
図2】実施例1のサンギヤとインターナルギヤとキャリアプレートの位置関係を示す説明図である。
【
図3A】実施例1の研磨装置において、測定孔がワーク上を通過した際の通過軌跡を示す説明図である。
【
図3B】実施例1の研磨装置において、ワークの断面形状を表した断面形状線を示す説明図である。
【
図4】実施例1の研磨装置で生成される第1描画を示す説明図である。
【
図5】実施例1の研磨装置で生成される第2描画を示す説明図である。
【
図6】実施例1にて実行する研磨停止判定処理の流れを示すフローチャートである。
【
図7】実施例1にて実行する第2描画生成処理の流れを示すフローチャートである。
【
図8】実施例1の研磨装置における表示器の画面を示す説明図である。
【
図9A】第1ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図9B】第2ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図10A】第3ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図10B】第4ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図11】実施例2の研磨装置の全体構成を概略的に示す説明図である。
【
図12】実施例2にて実行する研磨停止判定処理の流れを示すフローチャートである。
【
図13A】第5ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図13B】第6ワークを研磨加工したときの形状描画を時系列で並べた説明図である。
【
図14A】ワーク研磨時間とワーク中央部の平坦度との関係を示す説明図である。
【
図14B】ワーク研磨時間とワーク外周領域の平坦度との関係を示す説明図である。
【発明を実施するための形態】
【0009】
以下、本発明の研磨装置を実施するための形態を、図面に示す実施例1及び実施例2に基づいて説明する。
【0010】
(実施例1)
以下、実施例1の研磨装置1の構成を「全体構成」、「研磨機の詳細構成」、「形状測定器の詳細構成」、「メモリの詳細構成」、「表示器の詳細構成」、「制御部の詳細構成」、「研磨停止判定処理構成」、「第2描画生成処理構成」に分けて説明する。
【0011】
[全体構成]
実施例1の研磨装置1は、半導体ウェーハ、水晶ウェーハ、サファイアウェーハ、ガラスウェーハ或いはセラミックウェーハといった、薄板状のワークWの表裏両面を研磨する両面研磨装置である。研磨装置1は、
図1に示すように、研磨機10と、形状測定器20と、メモリ30と、表示器40と、制御部50と、を備えている。
【0012】
[研磨機の詳細構成]
研磨機10は、回転する下定盤11及び上定盤12によってワークWを研磨する。研磨機10は、軸線L1を中央とする同心に配置された円板状の下定盤11及び上定盤12と、下定盤11の中央部に回転自在に配置されたサンギヤ13と、下定盤11の外周側に配置されたインターナルギヤ14と、下定盤11及び上定盤12の間に配置され且つワーク保持穴15a(
図2参照)が形成されたキャリアプレート15と、を有している。また、下定盤11の上面には研磨パッド11aが貼付され、上定盤12の下面には研磨パッド12aが貼付されている。さらに、上定盤12には、研磨スラリを供給する供給孔(図示せず)が設けられている。
【0013】
ここで、キャリアプレート15は、
図2に示すように、サンギヤ13及びインターナルギヤ14に噛み合う。そして、キャリアプレート15は、サンギヤ13及びインターナルギヤ14が回転することで自転しながら軸線L1の周囲を回転(公転)する。
【0014】
ワークWは、キャリアプレート15のワーク保持穴15a内に配置される。そして、回転する下定盤11に貼付された研磨パッド11aと回転する上定盤12に貼付された研磨パッド12aに挟まれた状態でキャリアプレート15が自転及び公転することで、ワークWは研磨パッド11a及び研磨パッド12aにより研磨加工される。すなわち、研磨パッド11a及び研磨パッド12aの表面がワークWを研磨する研磨面となる。
【0015】
上定盤12は、上面に取り付けられた支持スタッド16a及び取付部材16bを介して、ロッド16に固定されている。ロッド16は、第5駆動装置M5によって上下方向に伸縮される。すなわち、上定盤12は、ロッド16が伸縮することで上下動する。
【0016】
研磨機10の中央には、軸線L1に沿って起立した第1駆動軸17aが配置されている。第1駆動軸17aは、第1駆動装置M1によって回転されるシャフトである。この第1駆動軸17aの上端部には、ドライバ18が固定されている。これにより、ドライバ18は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。
【0017】
ドライバ18は、上定盤12に設けたフック12bが係合する溝部(不図示)が外周面に形成されている。そして、ロッド16が伸長して上定盤12が下方に移動し、フック12bがドライバ18の溝部に係合することで、ドライバ18と上定盤12とが一体となって回転する。すなわち、上定盤12は、第1駆動装置M1によって第1駆動軸17aと一体的に回転される。
【0018】
サンギヤ13の中央部の穴13aには、第2駆動軸17bが貫通状態で固定されている。第2駆動軸17bは、両端が開放した中空管であり、第1駆動軸17aが回転自在に貫通している。また、第2駆動軸17bは、第2駆動装置M2によって回転される。これにより、サンギヤ13は、第2駆動装置M2によって第2駆動軸17bと一体的に回転される。
【0019】
下定盤11の中央部の下部には、第3駆動軸17cが形成されている。第3駆動軸17cは、両端が開放した中空管であり、第2駆動軸17bが回転自在に貫通している。また、第3駆動軸17cは、第3駆動装置M3によって回転される。これにより、下定盤11は、第3駆動装置M3によって第3駆動軸17cと一体的に回転する。
【0020】
インターナルギヤ14には、第4駆動軸17dが形成されている。第4駆動軸17dは、両端が開放した中空管であり、第3駆動軸17cが回転自在に貫通している。また、第4駆動軸17dは、第4駆動装置M4によって回転される。これにより、インターナルギヤ14は、第4駆動装置M4によって第4駆動軸17dと一体的に回転する。
【0021】
さらに、上定盤12には、中央から径方向に沿って所定距離離れた位置に測定孔19が形成されている。この測定孔19は、上定盤12及び研磨パッド12aを貫通し、測定光であるレーザ光を透過する窓部材19aが装着されている。
【0022】
[形状測定器の詳細構成]
形状測定器20は、ワークWに向けて測定光を照射し、ワークWで反射した測定光を受光して研磨中のワークWの厚さを測定する。また、この形状測定器20は、計測したワークWの厚さからワークWの断面形状を求める。形状測定器20は、測定ユニット21と、厚さ測定部22と、形状演算部23と、を有している。
【0023】
測定ユニット21は、上定盤12に取り付けられており、上定盤12と一体となって回転する。また、測定ユニット21は、上定盤12の測定孔19の窓部材19aを介してワークWに向けて測定光であるレーザ光を照射するレーザ光源(図示せず)と、ワークWで反射した反射光を受光する受光部(図示せず)とを有する。受光部が受光した受光信号は送信部21aにより、厚さ測定部22へ送信される。
【0024】
厚さ測定部22は、例えば光反射干渉法でワークWの厚さを測定するものである。この厚さ測定部22は、測定ユニット21から送信された受光信号を受信する受信部22aを有し、この受信部22aが受信した受光信号に基づいてワークWの厚さを求める。
【0025】
ここで、上定盤12の回転により、
図3Aに示すように、測定孔19がワークWの面上を通過している期間中、測定ユニット21からのレーザ光がワークWの面上に連続的に照射される。そのため、厚さ測定部22は、測定孔19の通過軌跡Na~Nc上のワークWの各面内位置の厚さを連続的に測定する。そして、この厚さ測定部22は、測定孔19が各通過軌跡Na~Ncを通過している間(ワークWの一端W1a~W3aから他端W1b~W3bまでの測定孔19の通過期間中)、連続した多数の厚さデータからなるデータ列を、その通過ごとに出力する。これにより、厚さ測定部22は、測定孔19がワークWの面上を通過するごとに、ワークWの各面内位置の厚さを測定した複数の連続したデータからなるデータ列を出力する。なお、厚さ測定部22から出力されたデータ列は、メモリ30に記憶される。
【0026】
形状演算部23は、ワークWの断面形状を求めるものである。ワークWの断面形状を求める間隔は任意に設定可能である。実施例1では、例えば15秒間に取得されたデータ列に基づいてワークWの断面形状を求め、15秒間隔で新たにワークWの断面形状を求める。また、形状演算部23によって作成されたワーク断面形状などの形状情報や、その形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン等は、メモリ30に記憶される。
【0027】
また、形状演算部23は、
図3Bに示すような断面形状線T1を求める。この断面形状線T1は、ワークWの断面形状を示す形状描画である。断面形状線T1は、厚さ測定部22によってワークWの厚さを測定するごとに求められる。これにより、同一のワークWについて求められた断面形状線T1を時系列で並べることで、当該ワークWの形状変化の推移が示される。また、当該ワークWの研磨終了時の断面形状線T1により、ワークWの最終ワーク形状である加工結果情報が示される。なお、形状演算部23によって求められた断面形状線T1の情報(ワークWの断面形状の情報)は、メモリ30に記憶される。
【0028】
[メモリの詳細構成]
メモリ30は、形状測定器20及び制御部50からデータの読み書きが可能な記憶装置である。このメモリ30には、厚さ測定部22によって求められたワークWの厚さの情報や、形状演算部23によって求められたワークWの断面形状の情報(以下、「ワークWの形状情報」という)等が記憶される。
【0029】
また、このメモリ30は、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。ここで、「条件的属性」とは、研磨条件や、研磨環境、装置特性等のワークWの研磨加工に影響を与え、ワークWの研磨状態に対して相関を持つ各種のパラメータである。「条件的属性」としては、例えば、研磨機10の運転条件、研磨スラリ条件、研磨パッド条件、キャリアプレート条件、ワーク条件、研磨プロセス条件等がある。
【0030】
なお、研磨機10の運転条件とは、例えば下定盤11や上定盤12の回転速度、サンギヤ13やインターナルギヤ14の回転速度、上定盤12の加工荷重設定値及び単位圧力、荷重スロープ、下定盤11や上定盤12の冷却水温度、キャリアプレート15の自転及び公転の回転速度、研磨機10の振動状態や傾き特性等である。研磨スラリ条件とは、例えば研磨スラリの種類・温度・流量、スラリライフ、スラリpH値等である。研磨パッド条件とは、例えば研磨パッド11aや研磨パッド12aの種類・厚さ・溝形態・表面粗さ、研磨パッドライフ、変性物堆積度、シーズニング条件等である。キャリアプレート条件とは、キャリアプレート15の材質・厚さ・ワーク保持穴15aや捨て穴の形状・撓み特性、キャリアプレートライフ、摩耗発生部位等である。ワーク条件とは、ワークWの種類・研磨開始時厚さ・研磨開始時形状、バッチ内におけるワーク厚さのばらつき等である。研磨プロセス条件とは、バッチ内での形状変化の推移情報、連続研磨回数、ワーク研磨量、研磨時間、キャリアプレート15とワークWの厚さ差等である。
【0031】
[表示器の詳細構成]
表示器40は、制御部50からの表示指令に基づき、現在研磨中のワークWの形状情報や、過去に研磨加工したワークWの形状情報、ワークWの形状情報を演算処理して得られたワーク形状パターン、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン、ワークWの研磨停止判定をしたこと等任意の情報を表示する。表示器40は、例えば研磨機10に取り付けられている。この表示器40は、研磨機10のユーザーが目視可能な画面40a(
図8参照)を有している。
【0032】
[制御部の詳細構成]
制御部50は、CPU(Central Processing Unit)からなる制御演算部51と、サブメモリ52と、入力装置53等を備えている。この制御部50は、サブメモリ52に記憶されたプログラムや、入力装置53を介して研磨機10のユーザーによって入力されたワークWの加工目標や条件的属性等に基づき、制御演算部51から第1駆動装置M1~第5駆動装置M5に制御指令を出力し、研磨機10の動作を制御する。
【0033】
また、この制御演算部51は、研磨中のワークWの形状描画を時系列で並べた第1描画P1を表示器40に表示させると共に、形状情報に基づいてワーク形状の推移を予測し、この予測結果に応じてワークWの研磨加工を停止するか否かを判定する研磨停止判定処理を実施する。すなわち、この制御演算部51は、第1描画生成部54と、第2描画生成部55と、表示制御部56と、形状推移予測部57と、状態判定部58と、を有している。
【0034】
第1描画生成部54では、形状測定器20によって測定された現在研磨加工しているワーク(以下、「研磨中ワークWα」という)の形状情報をメモリ30から抽出する。ここで、メモリ30から抽出する形状情報は、研磨中ワークWαの研磨開始から、形状情報の抽出直前に行った測定までの間に得られた形状情報である。そして、この第1描画生成部54では、抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べた第1描画P1(
図4参照)を生成する。
なお、研磨中ワークWαの形状情報は、研磨中ワークWαの研磨加工の進行に伴って測定回数が増えるごとに増加する。そのため、第1描画P1は、測定回数に応じて
図4の左側に示す図から、
図4の右側に示す図のように次第に変化していく。
【0035】
第2描画生成部55では、研磨中ワークWαの条件的属性を取得した上で、過去、つまり研磨中ワークWαの研磨以前に研磨加工したワークWのうち、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(以下、「形状参考ワークWβ」という)の形状情報、又は研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた典型的な形状情報をメモリ30から抽出する。
ここで、メモリ30から抽出する形状情報は、メモリ30に記憶された形状情報のうちの所望範囲から抽出される。
【0036】
なお、「典型的な形状情報」とは、ワークWを研磨加工した際の典型的な形状推移として、算術的に得られた抽象的且つ代表的な形状情報であり、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである。また、以下では、形状参考ワークWβの形状情報又は典型的な形状情報を含んで「選択マスターの形状情報」という。
【0037】
また「研磨中ワークWαの条件的属性にマッチする」とは、研磨時の条件的属性が、研磨中ワークWαの条件的属性と少なくとも一部が同一である場合、又は、研磨中ワークWαの条件的属性と少なくとも一部が類似する場合を指す。例えば、研磨中ワークWαの条件的属性として、「下定盤11の回転速度=A」、「上定盤12の回転速度=B」、「スラリ種類=C」、「キャリア材質=D」と設定されている場合には、「下定盤11の回転速度=A±x」、「上定盤12の回転速度=B±y」、「スラリ種類=C又はC´」、「キャリア材質=D又はD´」等の条件的属性が「研磨中ワークWαの条件的属性にマッチする」と判定され、これらの条件的属性に紐づけられた選択マスターの形状情報がメモリ30から抽出される。なお、条件的属性がマッチしているか否かの判定基準については、任意に設定することができる。
【0038】
そして、この第2描画生成部55では、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて、この選択マスターの形状描画(断面形状線T1)を研磨開始から研磨停止までの時系列で順に並べた第2描画P2(
図5参照)を生成する。なお、第2描画生成部55は、ワークWの研磨中、常に研磨中ワークWαの条件的属性を監視する。そして、例えば、スラリ流量異常発生などにより、あるバッチの進行中に、研磨中ワークWαの条件的属性が当初の設定又は想定された状態から逸脱した場合には、研磨中ワークWαの条件的属性の逸脱パターンに基づいて新たな条件的属性の組み合わせを編集する。そして、新たに編集された条件的属性の組み合わせに紐づけられた選択マスターの形状情報をメモリ30から抽出する。そして、新たに抽出した選択マスターの形状情報に基づいて、第2描画P2を再度生成する。また、この第2描画生成部55では、第2描画P2を再生成する際、学習機能により導いた形状描画の仮想パターンに基づいて生成してもよい。
【0039】
表示制御部56では、第1描画生成部54によって生成された第1描画P1と、第2描画生成部55によって生成された第2描画P2とを、表示器40の画面40aに表示させる制御指令を表示器40に出力する。また、この表示制御部56は、状態判定部58が研磨機10による研磨加工を停止すると判定したとき、この研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力する。
【0040】
形状推移予測部57では、第1描画生成部54によって抽出された研磨中ワークWαの形状情報の時系列変化と、第2描画生成部55によって抽出された選択マスターの形状情報の時系列変化とを比較演算する。そして、この形状推移予測部57は、比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。なお、この形状推移予測部57によって予測する研磨中ワークWαの形状推移とは、最終的な研磨形状を含む測定ごとに得られるワーク形状の推移である。
【0041】
そして、この形状推移予測部57による形状情報の時系列変化の比較演算は、例えば以下の手順で行う。すなわち、選択マスターの断面形状線T1を条件的属性ごとに時系列で並べる。そして、条件的属性ごとの選択マスターの形状推移パターンを生成し、形状推移パターンに関するデータベースを構築する。ここで、選択マスターは、研磨時の条件的属性が研磨中ワークWαの条件的属性にマッチしている。そのため、研磨中ワークWαの形状推移は、選択マスターと同様になると考えられる。
【0042】
そのため、形状推移予測部57は、研磨中ワークWαの断面形状線T1と、データベース化された形状推移パターンとをパターン認識することで比較する。そして、選択マスターの形状推移を参考にして、現在の研磨中ワークWαの研磨段階が、研磨開始から研磨停止までの間のどの段階であるかを推定する。さらに、形状推移予測部57は、研磨中ワークWαの現在の研磨段階と選択マスターの形状推移に基づき、研磨中ワークWαの今後の形状推移を予測する。
なお、この形状推移予測部57は、機械学習機能を備えており、形状推移パターンや経時的変動パターンを機械学習的に随時更新する。さらに、研磨加工の進行に伴って、研磨中ワークWαの研磨加工中に監視していた条件的属性が、無視できる範囲を超えて変化したときには、この形状推移予測部57は、即座に新たな条件的属性に基づいてその後の研磨中ワークWαの形状予測を行い、演算して出力する。
【0043】
状態判定部58では、形状推移予測部57にて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、「研磨状態」には、研磨中ワークWαのワーク形状が研磨加工を停止可能なワーク形状に達した研磨停止状態や、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。
【0044】
[研磨停止判定処理
構成]
図6は、実施例1の制御部50の制御演算部51にて実行される研磨停止判定処理の流れを示すフローチャートである。以下、
図6に基づいて、実施例1の研磨停止判定処理の各ステップを説明する。
【0045】
ステップS1では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS2へ進む。NO(ワーク研磨なし)の場合はステップS1を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、制御演算部51から第1駆動装置M1~第5駆動装置M5への制御指令を伴い、研磨加工指令フラグが立っているか否かに基づいて行う。
【0046】
ステップS2では、ステップS1でのワーク研磨中との判定に続き、形状測定器20によって測定した研磨中ワークWαの形状情報をメモリ30から抽出し、ステップS3へ進む。
【0047】
ステップS3では、ステップS2での研磨中ワークWαの形状情報の抽出に続き、このステップS2にて抽出した研磨中ワークWαの形状情報に基づいて、研磨中ワークWαの形状描画を研磨機10による研磨開始から情報抽出の直前に行った測定までの時系列で順に並べた第1描画P1(
図4参照)を生成し、ステップS4へ進む。
【0048】
ステップS4では、ステップS3での第1描画P1の生成に続き、このステップS3にて生成した第1描画P1と、後述する第2描画生成処理にて生成された第2描画P2(
図5参照)とを読み込み、ステップS5へ進む。
ここで、第2描画P2を生成する処理(第2描画生成処理)は、
図6に示す研磨停止判定処理の各ステップと並行して実行されており、第2描画P2は、研磨中ワークWαの研磨中に条件的属性が変化した場合は、適宜差し替えられる。
【0049】
ステップS5では、ステップS4での第1描画P1及び第2描画P2の読み込みに続き、ステップS3にて生成し、ステップS4にて読み込んだ第1描画P1と、ステップS4にて読み込んだ第2描画P2とを表示器40の画面40a上に同時に表示させる制御指令を表示器40に出力し、ステップS6へ進む。
なお、実施例1では、
図8に示すように、表示器40は、第1描画P1及び第2描画P2の各X軸及びZ軸の比率を同一に揃えると共に、第1描画P1と第2描画P2とを水平方向に並べて画面40aに表示する。また、表示器40は、研磨中ワークWαの条件的属性(一部又は全部)も同時に画面40aに表示する。なお、全ての条件的属性を表示するか否かは、画面40aの表示スペースや条件的属性をモニターすることの利便性等を勘案して設定すればよい。また、研磨中ワークWαの条件的属性は、画面40aに表示しなくてもよい。
【0050】
ステップS6では、ステップS5での表示器40への制御指令の出力に続き、第2描画P2を生成する際に抽出した選択マスターの形状情報の時系列変化と、ステップS2にて抽出した研磨中ワークWαの形状情報の時系列変化とを比較演算し、この比較演算結果から研磨中ワークWαの今後の形状推移を予測し、ステップS7へ進む。
なお、第2描画P2を生成する際に抽出した選択マスターの形状情報は、第2描画P2を差し替えた場合には、差し替えた第2描画P2に応じて変化する。
【0051】
ステップS7では、ステップS6での研磨中ワークWαの形状推移の予測に続き、この予測した形状推移に基づいて研磨中ワークWαの研磨状態を判定し、ステップS8へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨加工を停止可能なワーク形状に達した「研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
【0052】
ステップS8では、ステップS7での研磨中ワークWαの研磨状態の判定に続き、このステップS7にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS9へ進む。NO(研磨継続)の場合にはステップS2へ進む。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS7にて「研磨停止状態」と判定されたときに行われる。
【0053】
ステップS9では、ステップS8での研磨停止の判定に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。
【0054】
ステップS10では、ステップS9での研磨停止判定の報知に続き、研磨機10による研磨中ワークWαの研磨加工を停止し、エンドへ進む。
ここで、研磨機10による研磨加工の停止は、制御演算部51から第1駆動装置M1~第5駆動装置M5へ停止制御指令を出力することで行う。
【0055】
[第2描画生成処理構成]
図7は、実施例1の制御部50の第2描画生成部55にて実行される第2描画生成処理の流れを示すフローチャートである。以下、
図7に基づいて、実施例1の第2描画生成処理の各ステップを説明する。
【0056】
ステップS11では、研磨機10によるワークWの研磨加工が実行されているか否かを判定する。YES(ワーク研磨中)の場合にはステップS12へ進む。NO(ワーク研磨なし)の場合はステップS11を繰り返す。
ここで、研磨機10によるワーク研磨実施の判定は、研磨停止判定処理におけるステップS1と同様に行う。
【0057】
ステップS12では、ステップS11でのワーク研磨中との判定に続き、現在研磨加工している研磨中ワークWαの条件的属性を取得し、ステップS13へ進む。
ここで、研磨中ワークWαの条件的属性は、この研磨中ワークWαの研磨開始時に研磨機10のユーザーにより入力装置53を介して入力されたり、サブメモリ52に予め記憶されたり、CPUを介してセンサー等により変化状態を監視されたりしている。
【0058】
ステップS13では、ステップS12での研磨中ワークWαの条件的属性の取得に続き、過去に研磨加工したワークWのうち、ステップS12にて取得した条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS14へ進む。
【0059】
ステップS14では、ステップS13での選択マスターの形状情報の抽出に続き、このステップS13にて抽出した選択マスターの形状情報に基づいて、選択マスターの形状描画を研磨機10による研磨開始から研磨停止までの時系列で順に並べた第2描画P2(
図5参照)を生成し、ステップS15へ進む。
【0060】
ステップS15では、ステップS14での第2描画P2の生成に続き、研磨中ワークWαの研磨が継続するか否かを判定する。YES(研磨継続)の場合にはステップS16へ進む。NO(研磨停止)の場合には第2描画P2の生成や差し替えは不要としてエンドへ進み、第2描画生成処理を終了する。
ここで、研磨中ワークWαの研磨継続との判定は、研磨中ワークWαの研磨状態に基づいて研磨加工の継続が必要な「研磨継続状態」と判定されたときに行われる。
【0061】
ステップS16では、ステップS15での研磨継続との判定に続き、研磨中ワークWαの条件的属性を再度取得し、ステップS17へ進む。
【0062】
ステップS17では、ステップS16での研磨中ワークWαの条件的属性の再取得に続き、研磨中ワークWαの条件的属性の状態に変化が生じたか否かを判断する。YES(変化あり)の場合にはステップS18へ進む。NO(変化なし)の場合にはステップS15へ戻る。
ここで、研磨中ワークWαの条件的属性に状態変化が生じたか否かは、ステップS16にて取得した研磨中ワークWαの条件的属性と、それ以前に取得した研磨中ワークWαの条件的属性とを比較し、その乖離に基づいて判断する。なお、研磨中ワークWαの条件的属性に状態変化が生じた場合とは、研磨加工の進行に伴って、条件的属性が当初設定した状態から大きく逸脱した場合や、条件的属性が想定から大きく変動した場合などである。
【0063】
ステップS18では、ステップS17での条件的属性の状態変化ありとの判断に続き、ステップS16にて取得した変化した後の研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性を編集し、ステップS19へ進む。
ここで、条件的属性の編集とは、研磨中ワークWαの条件的属性に基づいて、選択マスターの条件的属性として、ワークWの研磨加工に与える影響の高い条件的属性や、特定の条件に応じた条件的属性を選択又は置換することである。
【0064】
ステップS19では、ステップS18での条件的属性の編集に続き、このステップS19にて編集された条件的属性に最もマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報、又は典型的な形状情報)をメモリ30から抽出し、ステップS20へ進む。
【0065】
ステップS20では、ステップS19での選択マスターの形状情報の抽出に続き、このステップS19にて抽出した選択マスターの形状情報に基づいて第2描画P2を再度生成する。そして、選択マスターの形状情報を再度抽出する時点までに生成された第2描画P2を、この新たに生成した第2描画P2に差し替えて、ステップS15へ戻る。
【0066】
以下、作用を説明する。
まず、「ワーク研磨停止時の課題」を説明し、続いて、実施例1の研磨装置1の作用を「研磨停止作用」、「形状推移の予測精度向上作用」に分けて説明する。
【0067】
[ワーク研磨停止時の課題]
研磨装置1の研磨機10によってワークWの両面を研磨する際、ワークWの厚さ及び断面形状は研磨加工の進行に伴って次第に変化していく。特にワークWの断面形状は、他の条件的属性が望ましい状態で一定の場合、キャリアプレート15とワークWとの厚さ差によって決まることが一般的となるが、研磨加工が進むにつれて例えば「中央凸・外周ダレ形状」から「フラット形状」を経て「中央凹・外周タチ形状」のように推移する。なお、「中央凸形状」とは、ワークWの中央部の厚さが外周領域よりも大きい形状である。また「外周ダレ形状」とは、ワークWの外周縁に向かって次第に厚さが小さくなっていく形状である。また「フラット形状」とは、ワークWの全面がほぼ平坦な形状である。また「中央凹形状」とは、ワークWの中央部の厚さが外周領域よりも小さい形状である。また「外周タチ形状」とは、ワークWの外周縁に向かって次第に厚さが大きくなっていく形状である。
【0068】
そして、ワークWの厚さが狙い厚さ範囲(T1≦厚さ≦T2)に収まっているときに研磨加工を停止することで、ワークWは所望の厚さになる。一方、ワークWの断面形状は、後工程の加工プロセスにおける設定にもよるが、一般的にはワークWの全面がほぼ平坦である「フラット形状」であることが好ましいことが多い。そのため、ワークWの研磨加工は、厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」になったときに停止することが望まれている。
【0069】
これに対し、ワークWの厚さをリアルタイムで測定し、測定するごとに測定結果に基づいて研磨中のワークWの形状描画を生成する。そして、このワークWの形状描画を研磨機10のユーザーがモニタリングし、ワークWの厚さが狙い厚さ範囲に収まり、断面形状が「フラット形状」に到達したと思われるタイミングで研磨機10を停止することが行われる。
【0070】
しかしながら、ワークWの研磨時の条件的属性の違い等の影響より、ワークWの断面形状の変化の過程(形状推移)が異なることがある。また、ワークWの断面形状は、ワークWの研磨時の条件的属性との相関によって「フラット形状」のような所望の形状にならない場合があり、その場合には、二次的に許容可能な断面形状で研磨加工を停止する必要が生じる。
【0071】
一方、ワークWの形状描画を一時的にモニタリングするだけでは、ワーク形状が将来的にどのように変化していくのかを予測することが難しい。すなわち、例えば、現時点で「弱中央凸形状」のワークWの場合、研磨加工を継続することで「フラット形状」になる場合と、「外周タチ形状」になる場合がある。現時点のワーク形状である「弱中央凸形状」を一時的にモニタリングしただけでは、その後のワーク形状は不明であり、適切なタイミングで研磨加工を停止できない結果、ワークWが「外周タチ形状」になってしまい、ワーク外周領域でのSFQR(Site front least squares range)が悪化するおそれがある。また、ワークWが「フラット形状」になったのに研磨停止タイミングが適時よりも遅れることも生じうる。
【0072】
つまり、ワークWの形状描画を一時的にモニタリングするだけでは、研磨中のワークWの形状変化の推移を把握できない。そのため、ワークWの形状変化の推移に基づいて、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングでワークWの研磨加工を停止できないという問題が生じる。
【0073】
[研磨停止作用]
実施例1の研磨装置1では、研磨機10によるワークWの研磨中に形状測定器20によりワークWの厚さ及び断面形状を測定する。そして、この研磨装置1は、形状測定器20で測定したワークWの厚さ及び断面形状の情報を、メモリ30に記憶する。
【0074】
一方、研磨機10によってワークWの研磨加工を実行したとき、制御部50の制御演算部51はワークWの研磨中であると判定し、
図6のフローチャートに示すステップS1からステップS2、ステップS3、ステップS4の各処理を順に行う。つまり、第1描画生成部54は、研磨中ワークWαの形状情報をメモリ30から抽出し、抽出した研磨中ワークWαの形状情報に基づいて第1描画P1を生成する。また、表示制御部56は、第1描画生成部54にて生成された第1描画P1と、第2描画生成部55にて生成された第2描画P2とを読み込み、表示器40の画面40aに第1描画P1及び第2描画P2を表示させる制御指令を出力する。
【0075】
これにより、表示器40の画面40aには、第1描画P1と第2描画P2とが同時に表示される。このように、実施例1の研磨装置1では、形状測定器20によって研磨中ワークWαの形状を測定した際、第1描画P1が表示器40に表示される。
【0076】
ここで、第1描画P1は、研磨中ワークWαの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、連続的に描画された研磨中ワークWαの形状描画を一覧的に認識することができる。これにより、ユーザーは、研磨開始から現在(第1描画生成時点)までの間の研磨中ワークWαの形状変化の推移を把握することができる。この結果、ユーザーは、研磨中ワークWαの形状変化の推移に基づいて、研磨中ワークWαの今後の形状推移を予測できる。そのため、ユーザーによるマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、所望のワーク形状になったタイミング或いは、所望のワーク形状になるタイミングで研磨加工を停止しやすい。
【0077】
また、ユーザーが研磨中ワークWαの形状描画を条件的属性に紐づいた状態で一覧的に認識できることにより、このユーザーは、研磨機10の装置設計や、スラリ等の副資材の設計、副資材選択、さらに加工条件の選択等のワーク研磨時の条件的属性の改善立案を容易に行うことができる。そして、ユーザーは、より効率的にプロセス改善立案を行うことができ、ひいては、最終ワーク形状が所望の形状となるウェーハの生産性向上を図ることができる。
【0078】
しかも、この実施例1では、第1描画P1と第2描画P2とが表示器40の画面40aに同時に表示される。そのため、研磨機10のユーザーは、画面40aを目視することで、第1描画P1及び第2描画P2を同時にモニタリングすることができる。
【0079】
ここで、第2描画P2は、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づき、この選択マスターの形状描画(断面形状線T1)を時系列で順に並べたものである。そのため、研磨機10のユーザーは、第1描画P1をモニタリングすると同時に、第2描画P2を確認することで、第2描画P2に示される選択マスターの形状推移を参考にして、研磨中ワークWαの今後の形状変化の推移をより正確に予測することができる。この結果、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合に、さらに適切なタイミングで研磨加工の停止が可能となる。さらに、場合によっては、条件的属性をあえて変更させ、最終ワーク形状や研磨終了のタイミングを調整することもできる。
【0080】
一方、この実施例1の研磨装置1では、第1描画P1及び第2描画P2を表示器40の画面40aに表示させた後、
図6のフローチャートに示すステップS6からステップS7、ステップS8の各処理を順に行う。つまり、形状推移予測部57は、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。また、状態判定部58は、形状推移予測部57によって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。
【0081】
そして、この状態判定部58により、研磨中ワークWαの研磨加工を停止すると判定された場合には、
図6のフローチャートに示すステップS9の処理を行う。つまり、表示制御部56は、研磨中ワークWαの研磨停止を判定した旨を、表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたことが表示され、研磨停止判定が報知される。
【0082】
この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。なお、後述するように制御部50からの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーが研磨機10の停止動作を認識することが可能となる。
【0083】
その後、
図6のフローチャートに示すステップS10の処理を行う。つまり、制御部50の制御演算部51は、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。これにより、実施例1の研磨装置1では、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。
【0084】
そして、この実施例1の研磨装置1では、制御部50の制御演算部51が有する形状推移予測部57及び状態判定部58により、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。さらに、この比較演算の結果に基づいて研磨中ワークWαの形状変化の推移を予測する。そして、この研磨中ワークWαの形状変化の推移に基づき、研磨中ワークWαの研磨状態を自動的に認識する。
【0085】
ここで、選択マスターの形状情報は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられている。そのため、この選択マスターの時系列変化は、研磨中ワークWαの条件的属性と形状推移との相関を反映したものとなる。これにより、この研磨装置1では、研磨中ワークWαの形状推移の予測精度を向上させ、研磨中ワークWαの状態判定を適切に行うことができる。そして、研磨中ワークWαの状態判定が適切に行われることで、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
【0086】
さらに、この実施例1の研磨装置1では、研磨中ワークWαの研磨状態に応じて研磨加工の停止又は研磨加工の継続を判定し、適切と判定されるタイミングで研磨機10を自動停止する。このように研磨停止を自動的に行うことで、研磨停止のタイミングが適時よりも遅れることを防止できる。また、装置制御の組み方によっては、研磨中ワークWαの条件的属性を意図的に変更し、最終ワーク形状や研磨終了のタイミングを調整することもできる。
【0087】
また、この実施例1では、第2描画生成部55において研磨停止判定処理と並行して第2描画生成処理が実施され、研磨中ワークWαの研磨が開始されてから終了するまでの間、研磨中ワークWαの条件的属性が変化するか否かを監視する。そして、研磨中ワークWαの条件的属性が変化したときには、研磨停止判定処理でのその時点でのステップの如何に拘らず、第2描画P2が差し替えられる。
【0088】
すなわち、研磨機10によってワークWの研磨加工を実行したとき、第2描画生成部55はワークWの研磨中であると判定し、
図7のフローチャートに示すステップS11からステップS12、ステップS13、ステップS14の各処理を順に行う。つまり、第2描画生成部55は、研磨中ワークWαの条件的属性を取得し、その取得された条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報(形状参考ワークWβの形状情報又は典型的な形状情報)をメモリ30から抽出する。そして、この第2描画生成部55は、抽出した選択マスターの形状情報に基づいて第2描画P2を生成する。
【0089】
第2描画P2を生成したら、第2描画生成部55は、ステップS15の処理を行い、研磨中ワークWαの研磨加工が継続されるか否かを判定する。そして、研磨加工が継続する場合には、ステップS16、ステップS17の各処理を順に行い、研磨中ワークWαの条件的属性を再度取得して、この条件的属性に変化が生じたか否かを判定する。
【0090】
そして、研磨中ワークWαの条件的属性に変化が生じたと判定した場合には、研磨加工の途中で条件的属性が変化したと判断し、
図7のフローチャートに示すステップS18からステップS19、ステップS20の処理を行う。つまり、選択マスターの条件的属性を、再度取得した研磨中ワークWαの条件的属性に基づいて編集しなおし、この編集しなおした条件的属性に最もマッチする条件的属性に紐づけられた選択マスターに基づいて、新たな第2描画P2を生成する。そして、それまでの第2描画P2を新しいものに差し替える。
【0091】
これにより、研磨加工の進行に伴って研磨中ワークWαの条件的属性が変化しても、第2描画P2を研磨中ワークWαの条件的属性の変化に応じた最新の描画とすることができ、その後の研磨中ワークWαの形状予測を適切に行うことができる。
【0092】
以下に具体例を挙げて説明する。
図9Aに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的大きくへこんでいる「強凹形状」の断面形状の第1ワークW1は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。そして、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第1ワークW1の断面形状は「フラット形状」になる。
【0093】
一方、
図9Bに示すように、研磨初期の研磨段階Aにおいて、中央部が比較的小さく突出している「弱凸形状」の断面形状の第2ワークW2は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、断面形状が「弱凹形状(中央部が小さくへこんだ状態)」となる。しかしながら、その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第2ワークW2の断面形状は「強凹形状(中央部が大きくへこんだ状態)」になってしまう。
【0094】
これに対し、実施例1の研磨装置1では、第1ワークW1や第2ワークW2の形状描画を時系列で順に並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる。そのため、この第1描画P1から第1ワークW1や第2ワークW2のそれぞれの形状推移を把握し、その後の形状変化を予測することができる。
【0095】
つまり、実施例1の研磨装置1では、研磨段階Bのとき、第1ワークW1では「中央部のへこみが次第に浅くなってきているので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、第2ワークW2では「中央部のへこみが次第に深くなってきているので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、研磨開始時のワーク形状に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。
【0096】
また、実施例1の研磨装置1では、研磨中ワークWαの形状情報の時系列変化と、選択マスターの時系列変化とを比較演算する。このため、現在バッチの形状推移だけでは今後のワーク形状の変化の推移を予測できない場合であっても、形状推移を適切に予測することができる。
【0097】
図10Aに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第3ワークW3を「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行う場合について説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第3ワークW3の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cで、この第3ワークW3の断面形状は「フラット形状」になる。
【0098】
一方、
図10Bに示すように、研磨開始時に中央部が比較的大きく突出した「強凸形状」である第4ワークW4を「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行う場合を説明する。研磨初期の研磨段階Aにおいて「強凸形状」の第4ワークW4の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bで、「弱凸形状(中央部が小さく突出した状態)」となる。さらに、研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第4ワークW4の断面形状は「弱凸・弱タチ形状(中央部及び周縁部がそれぞれ小さく突出した状態)」になる。
【0099】
ここで、まだデータの蓄積が不十分で条件的属性と強い相関度を持った形状推移の予測ができない場合、例えば、研磨中ワークWαの研磨直前(例えば1バッチ前)に研磨加工したワークの形状推移から、現在バッチと同一傾向の形状推移を示す現在バッチのある時点以降の研磨中ワークWαの形状推移を予測することが可能である。すなわち、実施例1の研磨装置1では、選択マスターとして、例えば研磨中ワークWαの1バッチ前に研磨加工したワークを採用する。そして、選択マスターの時系列変化と、第3ワークW3や第4ワークW4の形状情報の時系列変化とを比較演算することで、現在バッチやその前後に行われるバッチにおいて使用された研磨機10の条件的属性を推定することができる。
【0100】
つまり、実施例1の研磨装置1では、「ワーク周縁部が反りにくい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「中央部の突出が浅くなっても外周領域のタチが出にくいので、研磨段階Cまで研磨加工した方がよい」と判定できる。一方、「ワーク周縁部が反りやすい条件的属性」の研磨機10で研磨加工を行うときには、研磨段階Bのときに「研磨加工の進行に伴って外周領域にタチが進んでしまうので、研磨段階Cまで研磨するよりも研磨段階Bで研磨加工を停止した方がよい」と判定できる。このように、実施例1の研磨装置1は、ユーザーによって選択された研磨機10の条件的属性、或いは与えられた研磨機10の条件的属性に応じて研磨停止の最良タイミングを適切に判定し、所望のワーク形状に研磨することができる。
【0101】
[形状推移の予測精度向上作用]
実施例1の研磨装置1では、ワークWの形状情報に対して、当該ワークWの研磨時の条件的属性を紐づけてメモリ30に記憶する。そして、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報をメモリ30から抽出し、この抽出された選択マスターの形状情報に基づいて第2描画P2を生成する。
【0102】
そのため、第2描画P2によって示される選択マスターの形状推移は、研磨中ワークWαにおける条件的属性と形状推移との相関を反映したものとなる。そして、このような第2描画P2を第1描画P1と同時に表示することで、これらの描画をモニタリングしたユーザーによる研磨中ワークWαの形状推移の予測精度を向上することができる。
【0103】
また、選択マスターの形状情報として、ワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターン(典型的な形状情報)を用いた場合では、選択マスターの形状情報として、形状参考ワークWβの形状情報を用いた場合よりも、第2描画P2によって示されるワーク形状の推移精度を向上することができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。
【0104】
また、実施例1では、形状推移予測部57が機械学習機能を備え、データベース化された形状推移予測パターンを機械学習的に随時更新する。これにより、研磨中ワークWαの現時点以降の形状推移予測は、自動的により正確になっていく。
【0105】
さらに、形状推移の予測精度が向上することで、ワーク形状の推移の予測に基づいて研磨中ワークWαの状態判定を行う際、ワーク状態の判定をより適切に行うことができる。この結果、より高精度に最適なタイミングでの研磨停止を行うことが可能となる。
【0106】
次に、効果を説明する。
実施例1の研磨装置1にあっては、下記に列挙する効果を得ることができる。
【0107】
(1) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1を生成し、この第1描画P1を表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは所望のワーク形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
【0108】
(2) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった最適なタイミング、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
【0109】
(3) 回転する定盤(下定盤11及び上定盤12)によってワークWを研磨する研磨機10と、
定盤(上定盤12)に形成された測定孔19を介してワークWの形状を測定する形状測定器20と、
形状測定器20によって測定されたワークWの形状情報を記憶するメモリ30と、
形状測定器20によって測定されたワークWの形状情報を表示する表示器40と、
表示器40の表示内容を制御する制御部50と、を備え、
制御部50は、形状測定器20によって測定された現在研磨中のワークである研磨中ワークWαの形状描画を時系列で並べた第1描画P1と、研磨中ワークWαの研磨以前に研磨加工されたワーク(選択マスター)の形状描画を時系列で並べた第2描画P2と、を生成し、第1描画P1及び第2描画P2とを同時に表示器40に表示させる構成とした。
これにより、研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミング或いは研磨中ワークWαが所望の形状になるタイミングで研磨中ワークWαの研磨加工を停止できる。
【0110】
(4) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク(選択マスター)の形状情報に基づいて第2描画P2を生成する構成とした。
これにより、研磨中ワークWαの形状推移の予測精度の向上を図ることができる。
【0111】
(5) 制御部50は、ワークWを研磨加工した際の条件的属性とワークWの形状情報との相関度に基づいて生成したワーク形状パターン(典型的な形状情報)に基づいて第2描画P2を生成する。
これにより、第2描画P2によって示されるワーク形状の推移精度を向上させ、研磨中ワークWαの形状推移の予測をより正確に行うことができる。
【0112】
(6) メモリ30は、ワークWの形状情報に、このワークWを研磨加工した際の条件的属性を紐づけて記憶し、
制御部50は、研磨中ワークWαの形状情報の時系列変化と、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた形状情報(選択マスターの形状情報)の時系列変化との比較演算の結果に基づいて研磨中ワークWαの形状推移を予測し、この研磨中ワークWαの形状推移の予測に基づいて研磨中ワークWαの状態判定を行う構成とした。
これにより、研磨中ワークWαの形状推移の予測精度を向上させて状態判定を適切に行うことができ、研磨中ワークWαが所望の形状になった、或いは研磨中ワークWαが所望の形状になる最適なタイミングで研磨加工を停止することができる。
【0113】
(7) 制御部50は、研磨中ワークWαの状態判定の結果、研磨中ワークWαの研磨加工を停止すると判定したとき、研磨中ワークWαの研磨加工を停止させると共に、研磨中ワークWαの研磨加工を停止判定したことを報知する構成とした。
これにより、研磨中ワークWαの研磨停止を適切なタイミングで自動的に行うと共に、研磨機10のユーザーに研磨加工の停止を報知することができる。
【0114】
(実施例2)
実施例2の研磨装置は、研磨中ワークWαの最終的なワーク形状が二次的に許容可能なワーク形状になったときの責任パラメータを特定すると共に、当該責任パラメータを報知する例である。以下、実施例2の研磨装置を説明する。なお、実施例1の研磨装置1と同等の構成については、実施例1と同一の符号を付し、詳細な説明を省略する。
【0115】
実施例2の研磨装置1Aでは、
図11に示すように、制御部50Aの制御演算部51Aが、第1描画生成部54と、第2描画生成部55と、表示制御部56Aと、形状推移予測部57Aと、状態判定部58Aと、パラメータ特定部59と、相関度データ処理部60と、を有している。
【0116】
実施例2の形状推移予測部57Aでは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、この比較演算の結果に基づいて、研磨中ワークWαの今後の形状推移を予測する。さらに、この形状推移予測部57Aでは、研磨中ワークWαの今後の形状推移の予測に基づき、相関度データ処理部60の支援を必要に応じて受けながら、研磨中ワークWαの最終的なワーク形状(以下、「最終ワーク形状」という)が、所望のワーク形状になり得るか否かについて予測する。
【0117】
ここで、「所望のワーク形状(以下、「所望状態」という)」とは、予め設定した第1形状条件を満足する形状である。一方、最終ワーク形状が所望状態になり得ないと予測した場合には、形状推移予測部57Aは、相関度データ処理部60の支援を必要に応じて受けながら、最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かについて予測する。なお、「二次的に許容可能なワーク形状(以下、「二次的許容状態」という)」とは、最終ワーク形状が所望状態になり得ない、つまり、研磨加工を継続しても第1形状条件を満足しない、と判定したときに設定される第2形状条件を満足する形状である。
【0118】
実施例2の状態判定部58Aでは、形状推移予測部57Aにて予測した研磨中ワークWαの今後の形状推移に基づき、研磨中ワークWαの現在の研磨状態を判定する。ここで、この状態判定部58Aによって判定される「研磨状態」には、研磨中ワークWαのワーク形状が所望状態に達した第1研磨停止状態や、研磨中ワークWαのワーク形状が二次的許容状態に達した第2研磨停止状態、即時の研磨停止が必要な第3研磨停止状態、研磨機10による研磨加工の継続が必要な研磨継続状態、等が含まれる。
【0119】
パラメータ特定部59では、形状推移予測部57Aにて最終ワーク形状が二次的許容状態になり得ると判定されたとき、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまう(所望状態になり得ない)ことに対して相関度が高い条件的属性(以下、「責任パラメータ」という)を特定する。また、このパラメータ特定部59では、責任パラメータを相関度強度が高い順に列挙してもよい。
【0120】
このパラメータ特定部59による責任パラメータの特定は、例えば以下の手順で行う。すなわち、相関度データ処理部60によって探索され、メモリ30に記憶されたワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い条件的属性を「責任パラメータ」として特定する。なお、この責任パラメータは、一つであってもよいし、複数であってもよい。
【0121】
また、パラメータ特定部59による責任パラメータの相関度強度の高さ順の列挙は、例えば以下の手順で行う。すなわち、ワーク形状の異常状態と相関度強度の高い条件的属性のデータと、二次的許容状態になり得ると判定された研磨中ワークWαの条件的属性とを照合する。そして、相関度強度が相対的に高い順に条件的属性を複数選択し、選択した順に責任パラメータを列挙する。なお、選択する条件的属性の数は二つ以上であればよい。
【0122】
なお、研磨パッド上の温度分布のデータや、ベアリングの振動や温度のデータ等、ワークWの研磨中に監視している状態情報の異常と、ワーク形状の異常状態との相関を分析することも可能である。そのため、単一のワーク形状推移だけでなく、多数のバッチをまたぐワーク形状推移のトレンドと、条件的属性の推移トレンド間の相関を監視することで、責任パラメータや、責任パラメータの相関度強度の特定精度を向上することができる。なお、これらの相関分析とそれに基づく予測モデルの更新や、予測精度の随時更新には、多変量解析や人工知能(機械学習、ディープラーニング)等を用いることができる。
【0123】
そして、実施例2の表示制御部56Aでは、研磨停止判定を行った旨を表示器40の画面40aに表示させる制御指令を表示器40に出力するとき、状態判定部58Aが「第1研磨停止状態」と判定した場合には、ワーク形状が所望状態である旨を表示させる制御指令を出力する。また、状態判定部58Aが「第2研磨停止状態」と判定した場合には、ワーク形状が二次的許容状態である旨と、パラメータ特定部59によって特定された責任パラメータの情報、又は相関度強度が高い順に列挙された責任パラメータの情報とを表示させる制御指令を出力する。さらに、状態判定部58Aが「第3研磨停止状態」と判定された場合には、ワーク形状が許容外形状である旨を表示させる制御指令を出力する。
【0124】
相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を実行する。この相関度データ処理部60による相関度強度の探索は、例えば以下の手順で行う。
【0125】
すなわち、過去に行ったワークWの研磨結果に基づいて、所定の条件的属性についての異常(例えばスラリ流量の不連続)が生じた場合の異常の状態認識と、研磨中ワークWαのワーク形状が二次的許容状態になる場合の形状推移(以下、「ワーク形状の異常状態」という)との関係をそれぞれ演算的に求める。なお、例えばスラリ流量の不連続の状態認識は、スラリ流量が所定値を下回った時間の長さを閾値と比較することによって行う。
【0126】
そして、ワーク形状の異常状態が生じたときの条件的属性ごとに、ワーク形状の異常状態との相関度強度を、例えば回帰分析によって相関係数を算出するなどして探索する。また、過去に行ったワークWの研磨結果から、所定の条件的属性と、そのときのワークWの形状推移との関係を求める。そして、この所定の条件的属性とワーク形状推移との関係に基づき、研磨加工に伴う所望の形状推移や所望の最終ワーク形状と、実際の形状推移や最終ワーク形状との乖離が生じる原因として疑わしいパラメータを特定することで、条件的属性とワーク形状推移及び最終ワーク形状との相関度強度を探索してもよい。この相関度強度データは、特定した異常の状態の認識及び条件的属性と関連付けてメモリ30に記憶される。
【0127】
なお、この相関度データ処理部60は、ワークWの条件的属性と、研磨時のワークWの形状推移及び最終ワーク形状との相関度強度の探索を専用に行う専用演算部である。そのため、この相関度データ処理部60は、ワークWの研磨加工中か否かを問わずに、相関度探索の演算を実行することができる。
【0128】
次に、
図12に示すフローチャートを用いて、実施例2の研磨装置1Aにて実行される研磨停止判定処理を説明する。実施例1における研磨停止判定処理と同一の処理は、実施例1と同一の符号を付し、詳細な説明を省略する。なお、実施例2の研磨装置1Aにおいても、
図12に示す研磨停止判定処理と並行して第2描画P2を生成する第2描画生成処理を実行する。実施例2にて実行される研磨停止判定処理では、第2描画生成処理によって生成された第2描画P2を必要なタイミング(ステップS4)で読み込む。
【0129】
実施例2にて実行される研磨停止判定処理では、ステップS6において選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算する。そして、この比較演算結果から研磨中ワークWαの今後の形状推移を予測すると、ステップS61へと進む。
【0130】
ステップS61では、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が所望のワーク形状になり得るか否かを判定する。YES(所望状態になり得る)の場合にはステップS71へ進む。NO(所望状態になり得ない)の場合にはステップS62へ進む。
【0131】
ステップS62では、ステップS61での最終ワーク形状が所望状態になり得ないとの判定に続き、研磨中ワークWαの今後の形状推移の予測に基づき、研磨中ワークWαの最終ワーク形状が二次的に許容可能なワーク形状になり得るか否かを判定する。YES(二次的許容状態になり得る)の場合には、研磨加工を続行すると共にステップS63へ進む。NO(二次的許容状態になり得ない)の場合にはステップS71へ進む。
【0132】
ステップS63では、ステップS62での最終ワーク形状が二次的許容状態になり得るとの判定に続き、研磨中ワークWαの最終ワーク形状が二次的許容状態となってしまうことに対して相関度が高い条件的属性である責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙し、ステップS71へ進む。
【0133】
ステップS71では、ステップS61での最終ワーク形状が所望状態になり得るとの判定、ステップS62での最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないとの判定、ステップS63での責任パラメータの特定、又は相関度強度が高い順の責任パラメータの列挙のいずれかに続き、研磨中ワークWαの今後の形状推移の予測に基づいて研磨中ワークWαの研磨状態を判定し、ステップS81へ進む。
ここで、研磨中ワークWαの研磨状態は、研磨中ワークWαのワーク形状が所望状態に達した「第1研磨停止状態」、研磨中ワークWαのワーク形状が二次的許容状態に達した「第2研磨停止状態」、直ちに研磨加工を停止する「第3研磨停止状態」、研磨加工の継続が必要な「研磨継続状態」のいずれかに判定される。
【0134】
なお、「第1研磨停止状態」か否かの判定は、ステップS61にて最終ワーク形状が所望状態になり得るとの判定がなされたときに行われる。また「第2研磨停止状態」か否か判定は、ステップS63にて責任パラメータの特定、又は相関度強度が高い順に責任パラメータの列挙がなされたときに行われる。また、「第3研磨停止状態」との判定は、ステップS62にて最終ワーク形状が所望状態及び二次的許容状態のいずれにもなり得ないと判定されたときに行われる。さらに「研磨継続状態」との判定は、最終ワーク形状が所望状態又は二次的許容状態のいずれかになると判定されたものの、研磨中ワークWαの現在のワーク形状が所望状態又は二次的許容状態に達していないときに行われる。
【0135】
ステップS81では、ステップS71での研磨中ワークWαの研磨状態の判定に続き、このステップS71にて実施した研磨状態の判定に基づいて、研磨機10による研磨中ワークWαの研磨加工を停止するか否かを判定する。YES(研磨停止)の場合にはステップS91へ進む。NO(研磨継続)の場合にはステップS2へ戻る。
ここで、研磨中ワークWαの研磨停止との判定は、ステップS71にて「第1研磨停止状態」、「第2研磨停止状態」、「第3研磨停止状態」のいずれかの判定がなされたときに行われる。
【0136】
ステップS91では、ステップS81での研磨停止の判断に続き、表示器40の画面40a上に研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαの状態を表示させる制御指令を表示器40に出力し、研磨停止判定を報知してステップS10へ進む。
ここで、ステップS71にて「第1研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示させる制御指令を出力する。また、ステップS71にて「第2研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが「二次的許容状態」であることを表示させる制御指令を出力する。さらに、ステップS71にて「第3研磨停止状態」との判定がなされた場合には、研磨停止を判定した旨と共に研磨中ワークWαが、所望状態及び二次的許容状態のいずれでもないことを意味する「許容外形状」であることを表示させる制御指令を出力する。
【0137】
次に、実施例2の研磨装置1Aの作用を説明する。
実施例2の研磨装置1Aでは、研磨機10によってワークWの研磨加工を実行したとき、実施例1と同様に第1描画P1及び第2描画P2を表示器40の画面40aに表示させる。その後、
図12のフローチャートに示すステップS6、ステップS61の各処理を順に行う。つまり、形状推移予測部57Aは、研磨中ワークWαの形状情報の時系列変化と、選択マスターの形状情報の時系列変化とを比較演算し、その結果に基づいて研磨中ワークWαの今後の形状推移を予測する。そして、この形状推移の予測に基づき、最終ワーク形状が所望状態になり得るか否かを判定する。
【0138】
最終ワーク形状が所望状態になり得ると判定されたときには、
図12のフローチャートに示すステップS71からステップS81の処理を順に行う。つまり、状態判定部58Aは、形状推移予測部57Aによって予測された研磨中ワークWαの形状推移に基づいて、研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。
【0139】
そして、この状態判定部58Aにより、研磨中ワークWαの研磨状態が「第1研磨停止状態」であると判定された場合には、
図12のフローチャートに示すステップS91の処理を行う。つまり、表示制御部56
Aは、研磨中ワークWαの研磨停止を判定した旨と共に研磨中ワークWαが「所望状態」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨加工が停止判定されたことに加え、研磨中ワークWαが「所望状態」であることが表示され、研磨停止判定が報知される。
【0140】
この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状を把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50Aからの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。
【0141】
その後、ステップS10の処理を行い、制御部50Aの制御演算部51Aは、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。
【0142】
一方、研磨中ワークWαの今後の形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定されたときには、
図12のフローチャートに示すステップS62の処理を行う。つまり、形状推移予測部57Aは、研磨中ワークWαの今後の形状推移の予測に基づき、最終ワーク形状が二次的許容状態になり得るか否かを判定する。
【0143】
最終ワーク形状が二次的許容状態になり得ると判定されたときには、
図12のフローチャートに示すステップS63の処理を行う。つまり、パラメータ特定部59は、研磨中ワークWαの最終ワーク形状が二次的許容状態になること(最終ワーク形状が所望状態になり得ないこと)に対して相関度が高い責任パラメータを特定、又は相関度強度が高い順に責任パラメータを列挙する。
【0144】
そして、責任パラメータが特定又は列挙されたら、
図12のフローチャートに示すステップS71からステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの形状推移に基づき、この研磨中ワークWαの現在の研磨状態を判定し、研磨状態の判定結果に基づいて研磨加工を停止するか否かを判定する。そして、状態判定部58Aにより、研磨中ワークWαの研磨状態が「第2研磨停止状態」であると判定されると、表示制御部56
Aは、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「二次的許容状態」であることと、パラメータ特定部59により特定された責任パラメータ又は相関度強度が高い順に列挙された責任パラメータと、を表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと、研磨中ワークWαが「二次的許容状態」であること、責任パラメータ又は相関度強度が高い順に列挙された責任パラメータがそれぞれ表示され、研磨停止判定が報知される。
【0145】
その後、ステップS10の処理を行い、制御部50Aの制御演算部51Aは、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。
【0146】
この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたこと及び研磨中ワークWαのワーク形状に加え、研磨中ワークWαが二次的許容状態になったことに対して相関度が高い責任パラメータを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、適切なタイミングで研磨加工を停止できる。また、制御部50Aからの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作を認識することが可能となる。
【0147】
さらに、責任パラメータ又はその候補を把握できることで、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)を合理的に立案することができる。そして、所望状態のワークWを効率的に得ることが可能になる。そして、所望の最終ワーク形状と実際のワーク形状との乖離度に応じた経験データや、その乖離を解消するための研磨装置1の改善提案の積み増しを促すことができる。
【0148】
なお、
図12のフローチャートに示すステップS62の処理において、最終ワーク形状が二次的許容状態にもなり得ないと判定されたときには、ステップS62からステップS71、ステップS81、ステップS91の処理を順に行う。つまり、状態判定部58Aは、研磨中ワークWαの現在の研磨状態を判定し、研磨中ワークWαの研磨状態が「第3研磨停止状態」で研磨加工を停止すると判定する。そして、表示制御部56
Aは、研磨中ワークWαの研磨停止を判定した旨に加え、研磨中ワークWαが「許容外形状」であることを表示器40の画面40aに表示させる制御指令を出力する。そして、表示器40の画面40aには、研磨中ワークWαの研磨停止が判定されたこと及び研磨中ワークWαが「許容外形状」であることが表示され、研磨停止判定が報知される。
【0149】
その後、ステップS10の処理を行い、制御部50Aの制御演算部51Aは、第1駆動装置M1~第5駆動装置M5へ停止制御指令等研磨加工終了のための諸出力を行う。この結果、研磨機10は所定のシーケンスを経て自動停止し、研磨中ワークWαの研磨加工は終了する。
【0150】
この結果、研磨機10のユーザーは、画面40aを目視することで、研磨停止が判定されたことと、研磨中ワークWαのワーク形状とを把握することができる。これにより、ユーザーがマニュアル操作で研磨機10を制御して研磨加工を停止する場合であっても、直ちに研磨加工を停止できる。また、制御部50Aからの停止制御指令によって研磨機10を停止させる場合であっても、ユーザーは研磨機10の停止動作の認識をすることが可能となる。
【0151】
また、パラメータ特定部59により複数の責任パラメータが特定され、これらの責任パラメータを相関度強度が高い順に表示器40の画面40aに表示させる場合では、研磨中ワークWαが二次的許容状態になったことに対して最も影響が大きい条件的属性を把握しやすくなる。これにより、最終ワーク形状を所望状態にするための必要な対策(条件的属性の改善や研磨機10の改善等)をさらに合理的に立案することが可能となる。
【0152】
以下に具体例を挙げて説明する。
図13Aに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第5ワークW5を「ドレッシング後1バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第5ワークW5の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。その後研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第5ワークW5の断面形状は所望状態である「フラット形状」になる。
【0153】
次に、
図13Bに示すように、研磨加工の開始時に外周領域が比較的研磨された「凸ダレ形状」である第6ワークW6を「ドレッシング後10バッチ目」の研磨機10で研磨する場合を説明する。研磨初期の研磨段階Aで「凸ダレ形状」の第6ワークW6の断面形状は、研磨加工が進行し、厚さが狙い厚さ範囲(T1≦厚さ≦T2)に達した直後の研磨段階Bでは、「フラット・ダレ形状(中央部は平坦で外周領域が過剰に研磨加工された状態)」となる。しかし、さらに研磨加工を継続し、厚さが狙い厚さ範囲の下限(T1)に近くなった研磨段階Cでは、この第6ワークW6の断面形状は「凹ダレ形状(中央部が大きくへこむと共に周縁部が過剰に研磨加工された状態)」になる。
【0154】
ここで、「ドレッシング後1バッチ目」の研磨機10で研磨加工を行うときには、研磨段階Cでは、この第5ワークW5の断面形状は「フラット形状」になるので、最終ワーク形状は所望状態になり得ると予測される。これに対し、「ドレッシング後10バッチ目」の研磨機10で研磨加工を行うときには、いずれの研磨段階であってもワーク断面形状が「フラット形状」にならない。そのため、第6ワークW6の研磨時には、最終ワーク形状は所望状態になり得ないと予測される。しかしながら、研磨段階Bにおける「フラット・ダレ形状」は二次的許容状態に該当するため、この第6ワークW6の最終ワーク形状は二次的許容状態になり得ると予測される。
【0155】
また、この第6ワークW6の研磨時に最終ワーク形状が所望状態である「フラット形状」にならない事象を現出させることに対して相関度が高い条件的属性(責任パラメータ)は、例えばバッチ数の増加に伴って生じた研磨パッド表面の変質であると特定される。
【0156】
そのため、実施例2の研磨装置1Aでは、第6ワークW6の研磨中、第6ワークW6の形状推移を予測した際、この予測に基づいて最終ワーク形状が所望状態(フラット形状)になり得ず、二次的許容状態(フラット・ダレ形状)になり得ると判定する。そして、研磨加工の進行に伴って第6ワークW6のワーク形状が二次的許容状態(フラット・ダレ形状)に達したタイミングで研磨停止判定を報知すると共に、第6ワークW6が二次的許容状態(フラット・ダレ形状)であることと、二次的許容状態になることに対する責任度が重いパラメータとして「研磨パッドの表面変質」を報知する。
【0157】
これにより、研磨停止の最良タイミングを適切に判定し、最終ワーク形状が所望状態ではないものの第2形状条件を満足する二次的許容状態に収めることができる。また、責任パラメータ又はその候補を把握することができるので、ワーク研磨時の条件的属性の改善に寄与し、より効率的なプロセス立案をユーザーができるようになる。また、研磨装置1自体が改善提案をできるようになる。
【0158】
次に、効果を説明する。
実施例2の研磨装置1Aにあっては、下記に列挙する効果を得ることができる。
【0159】
(8) 制御部50Aは、研磨中ワークWαの形状推移の予測に基づいて、この研磨中ワークWαが所望のワーク状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに研磨中ワークWαの研磨加工を停止させると共に、研磨加工の停止判定を報知する構成とした。
これにより、最終ワーク形状が所望状態になり得ない場合であっても、適切なタイミングで研磨加工を停止させ、研磨加工の停止遅れが生じることを防止できる。また、研磨加工の停止タイミングが適時より遅れることを防止して、適切なタイミングで自動的に研磨加工を停止できる。
【0160】
(9) 制御部50Aは、研磨中ワークWαの二次的許容状態の現出に対して相関度が高い条件的属性(責任パラメータ)を特定、又は研磨中ワークWαの二次的許容状態の現出に対して相関度が高い順に条件的属性を列挙し、特定又は列挙された相関度が高い条件的属性(責任パラメータ又はその候補)を報知する構成とした。
これにより、ユーザーが責任パラメータ又はその候補を把握でき、最終ワーク形状を所望状態にするための必要な対策を合理的に立案することができる。
【0161】
以上、本発明の研磨装置を実施例1及び実施例2に基づいて説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
【0162】
実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する例を示した。しかしながら、これに限らない。例えば、メモリ30にワークWの形状情報を記憶する際、このワークWの形状情報に対して学習的に生成した条件的属性を紐づけて記憶してもよい。ここで、「学習的に生成した条件的属性」とは、過去に実施された研磨加工時に取得した形状情報と条件的属性との関係(傾向)を学習し、演算した結果得られた条件的属性である。この「学習的に生成した条件的属性」は、例えば、過去に実施された研磨加工において蓄積されたワークWの形状情報に紐づけられた条件的属性に基づき、ワークWの形状情報に応じた条件的属性の傾向を学習し、条件的属性の各々のパラメータの研磨結果における影響度の大小を所与の複雑な条件系の中で自動演算し、その結果を用いて影響度予測を重み付けするなどの演算をして出力された条件的属性等が考えられる。
【0163】
そして、研磨中ワークWαの条件的属性と、学習的に生成した条件的属性とをマッチングして選択マスターの形状情報を抽出し、研磨中ワークWαの形状推移の予測を行う場合では、ユーザーが従来とりがちであった予測パターンや傾向を超えて、より最適に予測するようにできる。
【0164】
すなわち、学習的に生成した条件的属性に紐づけられたワークWの形状情報に基づいて選択マスターの形状情報を抽出することで、ある条件下での特定のパラメータの影響重度を自発的に見出して提示することや、影響重度の調合を行うことができる。また、影響重度を調合するように組まれた学習的アルゴリズムの組み方次第では、ユーザーによる予測の範囲を超えて、純粋に演算結果としての出力が研磨中ワークWαの形状推移の予測範囲を広げることができる。
【0165】
この結果、従来見落としがちであった研磨中ワークWαの形状予測の精度が、ユーザーによる予測精度よりも格段に向上する。また、特定条件下における条件的属性とワーク形状精度の相関を、客観的に高精度に予測することが可能となり、研磨中ワークWαの研磨加工前ないし研磨加工の初期段階において、条件的属性の事前変更を必要に応じて促すことができ、良品収率の向上及び安定に寄与することができる。
【0166】
また、実施例1の研磨装置1では、メモリ30が、ワークWの形状情報に、当該ワークWを研磨加工した際の条件的属性を紐づけて記憶する。そして、形状推移予測部57において、研磨中ワークWαの条件的属性を基準に抽出した選択マスターの形状情報の時系列変化と、研磨中ワークWαの形状情報の時系列変化とを比較演算し、研磨中ワークWαの形状推移を予測する例を示した。つまり、実施例1では、形状参考ワークWβの形状情報、又はワークWを研磨加工した際の条件的属性とワークWの形状情報との間の相関度の学習結果に基づいて生成したワーク形状パターンである典型的な形状情報に基づいて研磨中ワークWαの形状推移を推定する。しかしながら、これに限らない。
【0167】
ワークWの形状情報を演算処理して得られたワーク形状パターンとして、相関度データ処理部60の支援を必要に応じて受け、ワークWの形状的特徴を有する情報を演算処理して得られた所望のワーク形状パターンを用いてもよい。この場合、メモリ30には、ワークWの形状的特徴を有するワーク形状パターンに、このワークWを研磨加工した際の条件的属性を全て紐づけ、条件的属性を必要に応じてグループ化したり、学習の進行に伴って細分化して記憶する。そして、形状推移予測部57は、研磨中ワークWαの形状推移を、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられたワーク形状パターンに基づいて予測してもよい。
【0168】
すなわち、ワークWの形状情報及びワークWの形状情報を演算処理して得られたワーク形状パターンの少なくとも一方を含む情報を「予測情報」といい、メモリ30は、この予測情報に、ワークWを研磨加工した際の条件的属性や、学習的に生成した条件的属性を紐づけて記憶する。そして、制御部50の形状推移予測部57は、研磨中ワークWαの予測情報の時系列変化と、この研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられてメモリ30に記憶された予測情報の時系列変化との比較演算の結果に基づいて、研磨中ワークWαの形状推移を予測する。
【0169】
ここで、「演算処理」とは、例えば条件的属性ごとに選択された複数のワークWの断面形状線を平均化し、条件的属性ごとの平均的な断面形状線を求めることや、所定の断面形状線における厚さの最大値と最小値の差から平坦度を算出すること、複数の断面形状線の最頻値や中央値を用いて所望の断面形状線を求めること、条件的属性とワーク形状との相関度という視点において、ワークWの形状的特徴のグループ又は新たに統計的・演算的に生成されたグループと紐づくワーク形状を、当該グループにおける典型的な形状として算出すること等である。
【0170】
すなわち、例えば過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの中央部の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、
図14Aに示すように、ワーク研磨時間とワーク中央部の平坦度との関係を第1平坦度予測線Laとして生成する。そして、この第1平坦度予測線Laと研磨中ワークWαの中央部の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。
【0171】
また、過去に研磨加工したワークWの形状情報から得られたワーク形状パターンであるワークWの外周領域の平坦度をワーク研磨時間ごとに算出する。続いて回帰分析などを行い、
図14Bに示すように、ワーク研磨時間とワーク外周領域の平坦度との関係を第2平坦度予測線Lbとして生成する。そして、この第2平坦度予測線Lbと研磨中ワークWαの外周領域の平坦度の推移とを比較し、研磨中ワークWαの形状予測を行ってもよい。
【0172】
なお、第1平坦度予測線Laから、ワーク中央部の平坦度は、ワーク研磨時間に応じて次第に低下し、所定時間Taを超えると悪化することがわかる。そのため、ワーク研磨時間が所定時間Taに達したタイミングで研磨中ワークWαの研磨加工を停止することで、中央部の平坦度が良好なワークを得ることができると考えられる。また、第2平坦度予測線Lbから、ワーク外周領域の平坦度は、ワーク研磨時間が所定時間Tbに達するまではマイナス側のほぼ一定値を維持し、ワーク研磨時間が所定時間Tbを超えるとプラス側になり次第に大きくなることがわかる。そのため、ワーク研磨時間が所定時間Tbに達したタイミングで研磨中ワークWαの研磨加工を停止することで、外周領域の平坦度が良好なワークを得ることができると考えられる。
【0173】
また、実施例1では、第2描画生成部55が、研磨中ワークWαの条件的属性にマッチする条件的属性に紐づけられた選択マスターの形状情報に基づいて第2描画P2を生成する例を示した。しかしながら、第2描画P2を生成する際に用いるワークWの形状情報はこれに限らない。例えば、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。また、研磨中ワークWαの条件的属性に拘らず、研磨中ワークWαを研磨加工した研磨機によって研磨中ワークWαの直前よりも以前に研磨加工したワークWの形状情報に基づいて第2描画P2を生成してもよい。
【0174】
また、実施例1及び実施例2では、第2描画生成部55にて、研磨中ワークWαの条件的属性に基づいて抽出した選択マスターの形状情報に基づいて第2描画P2を生成する例を示したが、これに限らず、選択マスターの形状情報に基づいた第2の第2描画、第3の第2描画等、研磨中ワークWαの条件的属性に基づいて複数の選択マスターを抽出し、それらの選択マスターの形状情報に基づいて第2描画を複数生成し、複数の第2描画を表示器40の画面40aに表示したり、複数の第2描画を参考にして研磨中ワークWαの今後の形状変化の推移を予測してもよい。
【0175】
さらに、メモリ30に記憶されたワークWの形状情報を所望範囲から複数抽出し、抽出したワークWの形状情報を平均化したり、抽出したワークWの形状情報から特異データを取得して所望の形状情報を生成する等の演算処理を行って得られた形状的特徴を有するワーク形状パターンに基づいて第2描画P2を生成してもよい。
この場合であっても、第2描画P2によって示されるワーク形状の推移の精度は、選択マスターの形状情報を用いて第2描画P2を生成した場合よりも向上させることができる。そのため、研磨中ワークWαの形状推移の予測をより正確に行い、さらに適切なタイミングで研磨停止を行うことが可能となる。
【0176】
そして、このワークWの形状情報は、研磨機10とは別に設けられた形状測定専用器(例えば、別個の平坦度測定専用器等)によるワーク形状の測定値データと比較した結果を受けて得られた測定値データを必要に応じて補正し、調整を行ってもよい。
【0177】
また、実施例1の研磨装置1では、第1描画P1及び第2描画P2をそれぞれ生成し、表示器40に第1描画P1と第2描画P2とを同時に表示する例を示した。しかしながら、これに限らない。研磨中ワークWαの形状描画を時系列で並べた第1描画P1のみを表示器40に表示させてもよい。この場合であっても、ユーザーは研磨中ワークWαの形状変化の推移を把握することができる。そして、この研磨中ワークWαの形状変化の推移に基づき、所望のワーク形状になったタイミングで研磨中ワークWαの研磨加工を停止できる。
【0178】
また、実施例1の研磨装置1では、研磨中ワークWαの研磨停止を判定したとき、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。
【0179】
また、実施例2では、研磨中ワークWαの形状推移の予測に基づいて、最終ワーク形状が所望状態になり得ないと判定したとき、研磨中ワークWαが二次的許容状態のときに、この研磨加工の停止判定を表示器40に表示して報知すると共に、研磨機10を停止する例を示した。しかしながら、研磨中ワークWαが二次的許容状態のとき、例えば研磨加工の停止判定を行ったことを報知するだけでもよいし、停止判定を報知することなく研磨機10を停止制御して研磨中ワークWαの研磨加工を停止させるだけでもよい。
【0180】
そして、実施例1では、測定ユニット21が上定盤12に取り付けられた例を示したが、これに限らない。例えば、上定盤12の上方に設置された光学ヘッドから測定光であるレーザ光を照射してもよい。この場合では、上定盤12の周方向に沿って複数の測定孔を形成し、上定盤12の回転によってそれぞれの測定孔が光学ヘッドの真下にくるごとにレーザ光が照射され、ワークの厚さを測定する。なお、下定盤11に測定孔を設けて、下定盤11の下方からワークWの下面にレーザ光を照射して厚さを測定するようにしてもよい。
【0181】
また、実施例1において、ワークWの断面形状を求める際、得られたデータ列を移動平均処理や多項式近似曲線描画処理などで厚さデータを平均化するが、これに限らずワークWの断面形状を可視化できればどのような方法であってもよい。
【0182】
また、実施例1及び実施例2では、研磨停止判定処理に並行して第2描画生成処理を実行し、研磨中ワークWαの条件的属性の変化を監視して、適宜第2描画P2を差し替える例を示した。しかしながら、これに限らず、例えば、研磨中と判定した後に取得した研磨中ワークWαの条件的属性に基づいて一度生成した第2描画P2を研磨終了まで維持してもよい。さらに、この場合では、研磨停止判定処理に並行して第2描画生成処理を実行しなくてもよく、研磨停止判定処理の途中(例えば、ステップS1とステップS2の間や、ステップS3とステップS4の間等)に、第2描画生成処理におけるステップS12、ステップS13、ステップS14の各処理を実行してもよい。
【0183】
また、実施例1及び実施例2では、下定盤11と上定盤12を有し、ワークWの両面を同時に研磨可能な両面研磨装置を示したが、ワークWの片面のみを研磨する片面研磨装置であっても、本発明を適用することができる。
【符号の説明】
【0184】
1,1A 研磨装置
10 研磨機
11 下定盤
12 上定盤
20 形状測定器
19 測定孔
30 メモリ
40 表示器
40a 画面
50,50A 制御部
51,51A 制御演算部
54 第1描画生成部
55 第2描画生成部
56,56A 表示制御部
57,57A 形状推移予測部
58,58A 状態判定部
59 パラメータ特定部
60 相関度データ処理部