IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人立命館の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-28
(45)【発行日】2022-04-05
(54)【発明の名称】発電装置
(51)【国際特許分類】
   H01M 8/16 20060101AFI20220329BHJP
   H01M 4/86 20060101ALI20220329BHJP
   H01M 4/90 20060101ALI20220329BHJP
   H01M 4/96 20060101ALI20220329BHJP
   H01M 8/023 20160101ALI20220329BHJP
【FI】
H01M8/16
H01M4/86 B
H01M4/86 M
H01M4/90 X
H01M4/90 Y
H01M4/90 Z
H01M4/96 B
H01M8/023
【請求項の数】 6
(21)【出願番号】P 2017251538
(22)【出願日】2017-12-27
(65)【公開番号】P2019117742
(43)【公開日】2019-07-18
【審査請求日】2020-12-24
(73)【特許権者】
【識別番号】593006630
【氏名又は名称】学校法人立命館
(74)【代理人】
【識別番号】100111567
【弁理士】
【氏名又は名称】坂本 寛
(74)【代理人】
【識別番号】110000280
【氏名又は名称】特許業務法人サンクレスト国際特許事務所
(72)【発明者】
【氏名】田口 耕造
(72)【発明者】
【氏名】グエン トラン ダン
【審査官】山本 雄一
(56)【参考文献】
【文献】特開2016-103454(JP,A)
【文献】特開2019-003730(JP,A)
【文献】特開平10-233226(JP,A)
【文献】特開2013-098077(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86- 4/98
H01M 8/00- 8/0297
H01M 8/08- 8/2495
(57)【特許請求の範囲】
【請求項1】
水を分解することができる第1の触媒を含むアノード電極と、
前記アノード電極に電気的に接続されたカソード電極と、
前記アノード電極と前記カソード電極との間を区画し前記アノード電極で発生したプロトンの透過を許容するセパレータと、を備え、
前記第1の触媒が炭素材料であり、
前記カソード電極には、プロトンと電子と酸素とが水になる酸化還元反応を促進する第2の触媒が含まれてい、発電装置。
【請求項2】
前記第1の触媒が活性炭である、請求項1に記載の発電装置。
【請求項3】
前記第2の触媒が、フェリシアン化カリウム又は塩化銅である、請求項1又は2に記載の発電装置。
【請求項4】
水を分解することができる第1の触媒を含むアノード電極と、
前記アノード電極に電気的に接続されたカソード電極と、
前記アノード電極と前記カソード電極との間を区画し前記アノード電極で発生したプロトンの透過を許容するセパレータと、を備え、
前記カソード電極には、プロトンと電子と酸素とが水になる酸化還元反応を促進する第2の触媒が含まれて、
前記第2の触媒が、フェリシアン化カリウム又は塩化銅である、発電装置。
【請求項5】
前記第1の触媒が活性炭である、請求項に記載の発電装置。
【請求項6】
水を分解することができる第1の触媒を含むアノード電極と、
前記アノード電極に電気的に接続されたカソード電極と、
前記アノード電極と前記カソード電極との間を区画し前記アノード電極で発生したプロトンの透過を許容するセパレータと、を備え、
前記セパレータが、防水処理を施した紙である、発電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発電装置に関する。
【背景技術】
【0002】
従来、微生物の代謝反応を利用して有機物である燃料を電気エネルギーに変換し、発電する装置が知られている。一般に、この種の発電装置は微生物燃料電池と呼ばれ、アノード電極とカソード電極とを備えている。そして、微生物燃料電池は、燃料としての有機物が微生物によって分解されるときに発生する電子をアノード電極にて回収し、アノード電極から外部回路を経由してカソード電極へ移動させる。また、アノード電極において発生したプロトンは、カソード電極へ移動した電子と酸素と反応して水を生じさせる(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2015-170466号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
以上のような微生物燃料電池は、微生物や燃料としての有機物が必要である。そのため、発電装置の出力が微生物の状態によって変動し、熱等の影響によって所望の機能を得られない可能性がある。
本発明は、微生物を用いずに発電をすることができる発電装置を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明の発電装置は、水を分解することができる第1の触媒を含むアノード電極と、
前記アノード電極に電気的に接続されたカソード電極と、
前記アノード電極と前記カソード電極との間を区画し前記アノード電極で発生したプロトンの透過を許容するセパレータと、を備えている。
【0006】
上記構成を有する発電装置によって、アノード電極が水を分解することによりプロトンと電子とを生成することができ、生成された電子をカソード電極に移動させることで外部負荷に電力を供給することができ、カソード電極側において、セパレータを透過したプロトンと電子とを酸素とを反応させることで水に戻すことができる。したがって、アノード電極に微生物や燃料が無くても発電を行うことができる。
【0007】
好ましくは、前記第1の触媒が活性炭である。
活性炭の触媒としての作用によって水を分解することができる。また、導体である活性炭を用いることによってアノード電極の電気抵抗を低下させることができる。
【0008】
好ましくは、前記カソード電極には、プロトンと電子と酸素とが水になる酸化還元反応を促進する第2の触媒が含まれている。
このような構成によって、水の電気分解を促進し、出力を高めることができる。
【0009】
好ましくは、前記第2の触媒が、フェリシアン化カリウムである。
また、好ましくは、前記第2の触媒が塩化銅である。
【0010】
好ましくは、前記セパレータは、疎水化処理を施した紙である。
このような構成によって、簡単且つ安価にセパレータを作製することができる。
【発明の効果】
【0011】
本発明によれば、微生物を用いずに発電をすることができる。
発電装置の出力を高めることができる。
【図面の簡単な説明】
【0012】
図1】第1の実施形態に係る発電装置としての水分解電池を概略的に示す説明図である。
図2】発電装置の具体的構造を示す斜視図である。
図3】(a)は発電装置の平面図、(b)は同底面図である。
図4】発電装置を展開した状態の斜視図である。
図5】展開した筐体の平面図である。
図6】展開した筐体の底面図である。
図7】(a)は図3(a)のA-A線における模式的な断面図、(b)は図3のB-B線における模式な断面図である。
図8】第2の実施形態に係る発電装置の具体的構造を示す斜視図である。
図9】(a)は発電装置の平面図、(b)は同底面図である。
図10】発電装置を展開した状態の斜視図である。
図11】展開した筐体の平面図である。
図12】展開した筐体の底面図である。
図13】(a)は図9(a)のC-C線における模式的な断面図、(b)は図9のD-D線における模式的な断面図である。
図14】他の実施形態に係る発電装置の具体的構造を示す斜視図である。
図15】発電装置の筐体にカソード電極を形成する様子を示す斜視図である。
図16】アノード電極の種類を変化させたときの水分解電池の特性を示すグラフである。
図17】アノード電極の種類を変化させたときの水分解電池の特性を示すグラフである。
図18】アノード電極の種類を変化させたときの水分解電池の特性を示すグラフである。
図19】水分解電池の最大電力密度を示すグラフである。
図20】水分解電池の最大電力密度を示すグラフである。
図21】アノード電極を形成するカーボンペーパーの数を変化させたときの水分解電池の特性を示すグラフである。
図22】アノード電極を形成するカーボンペーパーの数を変化させたときの水分解電池の特性を示すグラフである。
図23】水分解電池の最大電力密度を示すグラフである。
図24】水分解電池の最大電力密度を示すグラフである。
図25】アノード領域に供給する溶液の種類を変えたときの水分解電池の特性を示すグラフである。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、図面を参照して説明する。
[第1の実施形態]
図1は、第1の実施形態に係る発電装置としての水分解電池の概略的に示す説明図である。
本実施形態の水分解電池10は、水を分解する作用を利用して発電を行うものである。水分解電池10は、筐体11と、アノード電極12と、カソード電極13と、セパレータ14とを備えている。
【0014】
筐体11は、アノード電極12が配置されるアノード領域17を備えており、このアノード領域17内には外部から供給された水分を貯留することができる。ただし、発電装置10の不使用時には、アノード領域17は乾燥状態とされる。
アノード電極12とカソード電極13とは外部回路(負荷抵抗)15を介して電気配線により電気的に接続されている。
【0015】
(アノード電極)
アノード電極12は、炭素材料を含む炭素繊維シート材により構成されている。炭素繊維シート材は、炭素繊維をバインダによって結合させたものであり、例えば一般に電極として用いられる市販のカーボンペーパーを用いることができる。炭素材料は、炭素繊維とは異なる材料であり、例えば活性炭である。
本実施形態のアノード電極12に含まれる活性炭は導体(導電材料)であり、アノード電極12の電気抵抗を低下させる。また、活性炭は、水を分解する触媒としても機能する。具体的には、活性炭は、水を分解してプロトン(H)及び電子(e)を生成する機能を有する。また、アノード電極12には、炭素材料として活性炭の他に、導体であるカーボンナノチューブが含まれる。ただし、カーボンナノチューブは省略してもよい。
【0016】
アノード電極12は、例えば次のように作製することができる。まず、カーボンナノチューブと活性炭の粉末とを分散させた水溶液に、炭素繊維シート材を所定時間浸す。これにより炭素繊維シート材にカーボンナノチューブと活性炭とが浸透する。その後、炭素繊維シート材を乾燥させる。この状態のアノード電極12は疎水性となるため、さらにプラズマ処理を施すことによって親水性を高める。カーボンナノチューブは、炭素繊維シート材に活性炭を接合させるためのバインダとしても機能し、炭素繊維シート材に活性炭を安定して接合させることができる。
【0017】
また、カーボンナノチューブを省略する場合には、活性炭を含む水溶液に炭素繊維シート材を所定時間浸し、その後、炭素繊維シートを乾燥させることによってアノード電極12を作製することができる。
【0018】
(カソード電極)
カソード電極13は、炭素材料及び酸化還元用の触媒を含むシート材により構成されている。シート材は、不導体である。シート材は、例えばパルプ等の植物繊維により形成された濾紙が用いられる。炭素材料には、導体(導電材料)であるカーボンナノチューブが用いられる。触媒は、プロトン(H)と電子(e)と酸素(O)が水(HO)になる酸化還元反応を促進する触媒である。触媒としては、例えばフェリシアン化カリウム又はCuClが用いられる。
【0019】
カソード電極13は、例えば、次のように作製することができる。カソード電極13は、カーボンナノチューブと触媒とを含む水溶液を濾紙に付着させて浸透させ、その後乾燥させることによって作製することができる。カソード電極13は、乾燥した環境で用いられる、いわゆるエアカソードである。
【0020】
(セパレータ)
セパレータ14は、アノード領域17で発生したプロトン(水素イオン)を透過可能であり、アノード領域17内の水分の透過を防止するものである。このセパレータ14として、一般的にはプロトン交換膜(PEM)が用いられるが、本実施形態の水分解電池10では、PEMに代えて疎水化処理が施されたシート材がセパレータ14として用いられている。この場合、例えば、不導体であるパルプ等の植物繊維により形成された濾紙(例えば、孔径が約5μm)に防水剤を塗布(疎水化処理)することによってセパレータ14を作製することができる。紙製のセパレータ14は、プロトン交換膜と比べて、安価に作製することができるとともに、使用後の廃棄が容易になるという利点を有する。
【0021】
セパレータ14として孔径がより小さい濾紙(例えば、約0.05μm)を用いれば、濾紙自体で水分の透過を阻止することができるため、疎水化処理を行わなくてもよい。しかし、この場合、濾紙が非常に高価となるため、コストの面では、比較的孔径の大きな濾紙に対して疎水化処理を施すことが好ましい。
【0022】
(発電装置の作用)
図1に示すように、水分解電池10のアノード領域17に水分が供給されると、アノード電極12に含まれる活性炭の触媒としての機能により、水が酸素とプロトン(H)と電子(e)とに分解される。電子(e)は、アノード電極12で回収され、外部回路を経由してカソード電極13に移動する。プロトン(H)は、セパレータ14を透過してカソード電極13に移動する。カソード電極13において、外気から取り込まれた酸素と、カソード電極13に移動した電子(e)及びプロトン(H)との反応により水が発生する。
【0023】
アノード電極12は、炭素繊維シート材に活性炭を含ませたものであるので、外部から燃料等を供給しなくても水を供給するだけで発電を行うことができる。そのため、水さえあれば環境を問わずに発電を行うことができる。例えば、屋外において、河水、海水、雨水、廃水(排水)等を用いて発電を行うことができる。また、微生物燃料電池のように、微生物20や有機物も不要である。そのため、電池10をより簡単且つ安価に作製することができる。
【0024】
アノード電極12及びカソード電極13は、カーボンナノチューブを含んでいるので、表面積が拡大し、内部抵抗が低下する。
また、アノード電極12は、活性炭を含んでいるので、より内部抵抗が低下する。そのため、出力電圧を高めることが可能となる。
【0025】
また、カソード電極13には、触媒としてフェリシアン化カリウム又はCuClが含まれているので、カソード電極13において、酸素とプロトンと電子とが水になる酸化還元反応を促進することができ、出力電圧をより高めることができる。
【0026】
(発電装置の具体的構造)
本実施形態の発電装置としての水分解電池10は、例えば非常用バッテリと使用することが想定され、平常時は、乾燥状態で保存され、非常時のみに発電を行って電気機器等に通電を行い、使用後は廃棄される使い捨てタイプとされている。
【0027】
図2は、発電装置の具体的構造を示す斜視図である。図3(a)は発電装置の平面図、図3(b)は同底面図である。
発電装置である水分解電池10の筐体11は、平面視及び底面視において矩形状、具体的には正方形状に形成されている。また、筐体11の表面側と、裏面側とには、それぞれケーブルの端子を接続するための端子接続部33b,34bが設けられている。
【0028】
筐体11は、表面側に配置された第1外装シート材(本発明の第4シート材)31と、裏面側に配置された第2外装シート材32(本発明の第3シート材)とを有している。筐体11は、第1外装シート材31と第2外装シート材32との間に、第1及び第2内装シート材(本発明の第1及び第2シート材)33,34を有している。第1及び第2外装シート材31,32、第1及び第2内装シート材33,34は、1枚のシート材を折り畳むことによって構成されている。
【0029】
図4は、発電装置を展開した状態の斜視図、図5は、展開した筐体の平面図、図6は、展開した筐体の底面図である。
本実施形態の水分解電池10の筐体11は、第1内装シート材33、第2内装シート材34、第1外装シート材31、及び第2外装シート材32がこの順で1列に接続された1枚の帯状のシート材30により構成されている。このシート材30は、前述のカソード電極13及びセパレータ14で用いられるシート材と同種のシート材により構成される。そして、本実施形態の水分解電池10は、筐体11を構成するシート材30を用いてカソード電極及びセパレータが形成されている。本実施形態のシート材30は、不導体である濾紙により形成されている。
【0030】
第1内装シート材33の中央には矩形状の開口33aが形成されている。また、第1内装シート材33の一方の面には、アノード電極12用の端子接続部33bが設けられている。この端子接続部33bは、開口33aの1辺と、これに近接する第1内装シート材33の側辺との間に渡って設けられている。また、端子接続部33bは、図7に示すように、開口33aを介して第1内装シート材33の他方の面側にも設けられている。この端子接続部33bは、導電性を有している。端子接続部33bは、例えば、カーボンナノチューブを分散した水溶液を、第1内装シート材33に浸透させることによって構成されている。
【0031】
図4及び図5に示すように、第2内装シート材34の一方の面には、カソード電極13と端子接続部34bとが設けられている。このカソード電極13及び端子接続部34bは、前述したように、カーボンナノチューブと酸化還元用触媒とを含む水溶液を第2内装シート材34に浸透させることによって設けられている。より具体的には、図15に示すように、カソード電極13と端子接続部34bとを象ったスタンプ40の接触面40aに前記水溶液を付着させ、第2内装シート材34の一方の面に、スタンプ40の接触面40aを接触させることによってカソード電極13と端子接続部34bとを第2内装シート材34に設けることができる。
【0032】
また、図6に示すように、第2内装シート材34の他方の面には、防水剤36が塗布されている。この防水剤は、少なくともカソード電極13の裏面側に重複する範囲に設けられている。より好ましくは、防水剤36は、第2内装シート材34の他方の面全体に施されている。この第2内装シート材34は、水分解電池10のセパレータ14(図1参照)を構成している。すなわち、第2内装シート材34は、アノード電極12側からプロトン(H)の透過を許容し、水分の透過を防止している。
【0033】
図4図6に示すように、第1外装シート材31には、外部から水分解電池10内へ水を供給するための給水孔31aが形成されている。この給水孔31aは、筐体11を折り畳んだ状態でアノード電極12を外部に露出させる。
また、第1外装シート材31の側辺には、筐体11を折り畳んだ状態でアノード電極12用の端子接続部33bを外部に露出させるための切欠部31bが形成されている。
【0034】
第2外装シート材32の側辺には、筐体11を折り畳んだ状態でカソード電極13用の端子接続部34bを外部に露出させるための切欠部32bが形成されている。
筐体11を構成する帯状のシート材30の第2外装シート材32側の端部には、2つの差し込み片35aが設けられている。この差し込み片35aは、図2に示すように、筐体11を折り畳んだ状態で第2内装シート材34と第1外装シート材31との境界に形成されたスリット35bに差し込まれる。これによって、筐体11が折り畳んだ状態で保持される。
【0035】
図4に示すように、アノード電極12は、複数の炭素繊維シート材(シート状電極材)12aを重ね合わせることによって構成され、第1内装シート材33の他方の面、すなわち端子接続部33bとは反対側の面における開口33aに合わせて配置される。
【0036】
図7(a)は、図3(a)のA-A線における模式的な断面図、図7(b)は図3(a)のB-B線における模式的な断面図である。
アノード電極12は、第1内装シート材33と第2内装シート材34との間に挟まれている。第1内装シート材33と第2内装シート材34とは、アノード電極12の周囲において接着材37で接着されている。また、アノード電極12は、第2内装シート材34に設けられた防水剤36に重ね合わされている。
【0037】
第1外装シート材31の給水孔31aからアノード電極12に水が供給されると、図1で説明したように、電子がアノード電極12から端子接続部33bを介して負荷15へ流れ、カソード電極13へ移動する。一方、アノード電極12において発生したプロトン(H)は、セパレータ14を構成する第2内装シート材34を透過してカソード電極13に到り、プロトン(H)と電子(e)と外気の酸素とによって水(HO)が生成される。
【0038】
本実施形態の水分解電池10は、筐体11が紙(濾紙)で形成され、紙を折り畳むことによって構成されている。したがって、水分解電池10をより小型(薄肉)で軽量に形成することができる。
また、本実施形態の水分解電池10は、筐体11を構成する第2内装シート材34と一体にカソード電極13が設けられている。そのため、第2内装シート材34とは別体でカソード電極13を設ける場合に比べて水分解電池10を小型化(薄肉化)かつ軽量化することができる。また、アノード電極12側からプロトン(H)をより迅速にカソード電極13に移動させることができ、酸化還元反応のレスポンスが良好となって発電効率を向上させることができる。
【0039】
カソード電極13は、カーボンナノチューブ及び触媒を含む水溶液を第2内装シート材34に浸透させて乾燥させることにより構成されているので、容易にカソード電極13を形成することができる。また、図16に示すように、スタンプ40を用いることによって、所定形状のカソード電極13を容易に形成することができる。なお、カソード電極13は、スタンプ40以外の方法で第2内装シート材34に形成してもよい。
【0040】
本実施形態の水分解電池10は、アノード電極12が、筐体11とは別体で構成されている。そのため、複数枚の薄い炭素繊維シート材(シート状電極材)12aを重ね合わせてアノード電極12を構成することが容易となる。
【0041】
アノード電極12は、活性炭及びカーボンナノチューブ、又は、活性炭のみを浸透させた複数枚の炭素繊維シート材(シート状電極材)を重ね合わせて接着することにより形成されている。例えば、0.2mmの炭素繊維シート材を3枚重ね合わせて0.6mmのアノード電極12が形成されている。このように複数枚の薄い炭素繊維シート材を重ね合わせてアノード電極12を形成することによって、1枚の分厚い炭素繊維シート材によってアノード電極を形成する場合に比べて、各炭素繊維シート材に対して活性炭及びカーボンナノチューブ、又は、活性炭のみを短時間でより多く含ませることができ、導電性が高いアノード電極12を形成することができる。
【0042】
水分解電池10の筐体11は、シート材30により形成されることで水分解電池10を小型化(薄肉化)かつ軽量化することができる。また、筐体11が1枚のシート材30を折り畳むことにより構成されているので、筐体11を構成する部品の点数を少なくすることができる。
【0043】
第2外装シート材32は、カソード電極13を外側から覆っているので、当該カソード電極13を保護することができる。また、第1外装シート31は、アノード電極12を外側から覆っているので、当該アノード電極を保護することができる。
【0044】
[第2の実施形態]
図8は、第2の実施形態に係る発電装置の具体的構造を示す斜視図である。図9(a)は発電装置の平面図、図9(b)は同底面図である。
本実施形態の電池10は、筐体11の構造が第1の実施形態とは異なり、その他の構成は第1の実施形態と略同様である。
本実施形態の筐体11は、平面視及び底面視において矩形状、具体的には正方形状に形成されている。また、筐体11の裏面側には、ケーブルの端子を接続するための端子接続部71b,73bが設けられている。
【0045】
図8に示すように、筐体11は、表面側に配置された第1外装シート材(本発明の第1シート材)71と、裏面側に配置された第2外装シート材(本発明の第3シート材)72とを有している。筐体11は、第1外装シート材71と第2外装シート材72との間に、内装シート材(本発明の第2シート材)73を有している。第1及び第2外装シート材71,72、内装シート材73は、1枚のシート材を折り畳むことによって構成されている。
【0046】
図10は、発電装置を展開した状態の斜視図、図11は、展開した筐体の平面図、図12は、展開した筐体の底面図である。
本実施形態の水分解電池10の筐体11は、内装シート材73、第1外装シート材71、及び第2外装シート材72がこの順で1列に接続された1枚の帯状のシート材70により構成されている。このシート材70は、第1例のカソード電極13及びセパレータ14で用いられるシート材と同種のシート材、すなわち不導体である濾紙により形成されている。
【0047】
図10図12に示すように、第1外装シート材71の中央には、外部から水分解電池10内へ水を供給するための給水孔71aが形成されている。この給水孔31aは、筐体11を折り畳んだ状態でアノード電極12を外部に露出させる。また、第1内装シート材33の一方の面には、アノード電極12用の端子接続部71bが設けられている。この端子接続部71bは、給水孔71aと、これに近接する第1外装シート材71の側辺との間に渡って設けられている。この端子接続部71bは、導電性を有している。端子接続部71bは、例えば、カーボンナノチューブを分散した水溶液を、第1外装シート材71に浸透させることによって構成されている。
【0048】
内装シート材73の一方の面には、カソード電極13と端子接続部73bとが設けられている。また、図11に示すように、内装シート材73の他方の面には、防水剤76が塗布されている。これらカソード電極13、端子接続部73b、及び防水材76の構成は、第1例と同様である。内装シート材73は、電池10のセパレータ14(図1参照)を構成し、アノード電極12側からプロトン(H)の透過を許容し、水の透過を防止している。
【0049】
また、内装シート材73の側辺には、筐体11を折り畳んだ状態でアノード電極12用の端子接続部71bを外部に露出させるための切欠部73cが形成されている。
【0050】
第2外装シート材72の側辺には、筐体11を折り畳んだ状態でアノード電極12用の端子接続部71bと、カソード電極13用の端子接続部73bとをそれぞれ外部に露出させるための切欠部72b,72cが形成されている。
【0051】
筐体11を構成する帯状のシート材70の第2外装シート材72側の端部には、固定片75が設けられている。この固定片75は、図8に示すように、筐体11を折り畳んだ状態で第1外装シート材71の表面に両面テープ等で接着されることで、筐体11が折り畳んだ状態で保持される。
【0052】
図10に示すように、アノード電極12は、第1の実施形態と同様に、複数の炭素繊維シート材(シート状電極材)12aを重ね合わせることによって構成され、第1外装シート材71の一方の面、すなわち端子接続部71b側の面における給水孔71aに合わせて配置され、同面に接着される。
【0053】
図13(a)は、図9(a)のC-C線における模式的な断面図、図13(b)は図9(a)のD-D線における模式的な断面図である。
アノード電極12は、第1外装シート材71と内装シート材73との間に挟まれている。アノード電極12は、接着材77で第1外装シート材71に接着されている。また、アノード電極12は、内装シート材73に設けられた防水剤76に重ね合わされている。
【0054】
第1外装シート材71の給水孔71aからアノード電極12に水が供給されると、図1で説明したように、電子(e)がアノード電極12から端子接続部73bを介して負荷15へ流れ、カソード電極13へ移動する。一方、アノード電極12において発生したプロトン(H)は、セパレータ14を構成する内装シート材73を透過してカソード電極13に到り、プロトン(H)と電子(e)と外部の酸素によって水(HO)が生成される。
【0055】
本実施形態の水分解電池10は、筐体11を構成する内装シート材の数が第1の実施形態よりも少なくなっている。したがって、電池10をより小型(薄肉)で軽量に形成することができる。その他の構成は、第1の実施形態と略同様であるため、略同様の作用効果を奏する。
【0056】
[他の実施形態]
図14は、他の実施形態に係る発電装置の具体的構造を示す斜視図である。
発電装置としての水分解電池10は、図14(a)に示すように、第1シート材81と第2シート材82とを備え、第1シート材81と第2シート材82とは、両者の境界で折り畳まれることによって互いに重ね合わされている。水分解電池10は、第1シート材81と第2シート材82との間にアノード電極12を備え、第2シート材82にカソード電極13が一体に形成されたものであってもよい。すなわち、第1の実施形態の水分解電池10における第1,第2外装シート材31,32を省略した形態、又は、第2の実施形態の水分解電池10における第2外装シート材72を省略した形態とすることができる。第1シート材81には給水孔81aが形成され、第2シート材82には防水剤85が施されている。第1シート材81と第2シート材82とは接着材86で接着されている。
【0057】
また、図14(b)に示すように、カソード電極13は、第2シート材82とは別体で形成され、第2シート材82に貼り付けられたものであってもよい。
また、図14(c)に示すように、アノード電極12は、第1シート材81に一体に形成されたものであってもよい。例えば、第1シート材81にアノード電極12の構成材料を浸透させたものや、アノード電極12を第1シート材81に内部に組み込んだものとすることができる。
【0058】
[実験結果]
本出願の発明者は、水分解電池の特性を実験により調べた。以下、その結果について説明する。
図16図18は、アノード電極の種類を変化させたときの水分解電池の特性を示すグラフである。使用したアノード電極は、以下の(A1’)~(A3’)である。
(A1’)0.2mmのカーボンペーパー。
(A2’)0.2mmのカーボンペーパーに、1.5gの活性炭(グラフにおいて「AC」と表記、以下同じ)を混合した20mLのカーボンナノチューブ(グラフにおいて「CNT」と表記、以下同じ)の水溶液を1分間浸透させたもの。
(A3’)0.2mmのカーボンペーパーに、2gの活性炭を混合した10mLの水溶液を1分間浸透させたもの。
【0059】
図16に示す実験では、カソード電極として、ペーパー(濾紙)にカーボンナノチューブの水溶液を浸透させたものを用いた。その結果、アノード電極(A2’)を用いた場合に、最も出力電圧のピークが高くなり、次いで、アノード電極(A3’)を用いた場合に出力電圧が高くなった。また、アノード電極(A1’)を用いた場合、反応直後に僅かに電圧を出力した。
【0060】
図17に示す実験では、カソード電極として、ペーパー(濾紙)に、0.76Mのフェリシアン化カリウム0.32mLを混合した2mLのカーボンナノチューブの水溶液を浸透させたものを用いた。その結果、アノード電極(A3’)を用いた場合に、最も出力電圧のピークが高くなり、次いで、アノード電極(A2’)を用いた場合に出力電圧が高くなった。また、アノード電極(A1’)を用いた場合、反応直後に僅かに電圧を出力した。また、図16の実験と比較して、図17に示す実験では、出力電圧が全体的に上昇した。これは、カソード電極にフェリシアン化カリウムが含まれることによって酸化還元反応が促進されたものと考えられる。
【0061】
図18に示す実験では、カソード電極として、ペーパー(濾紙)に、0.5gのCuClを混合した7mLのカーボンナノチューブの水溶液を浸透させたものを用いた。その結果、図17の結果と同様に、アノード電極(A3’)を用いた場合に、最も出力電圧のピークが高くなり、次いで、アノード電極(A2’)を用いた場合に出力電圧が高くなった。また、アノード電極(A1’)を用いた場合、反応直後に僅かに電圧を出力した。また、図17の実験と比較して、図18に示す実験では出力電圧が全体的に上昇した。これは、カソード電極にCuClが含まれることによって酸化還元反応がより促進されたものと考えられる。
【0062】
図19及び図20は、水分解電池の最大電力密度を示すグラフである。
図19及び図20に示す実験では、アノード電極として次の(A4’)を用いた。また、図19に示す実験ではカソード電極として次の(C1’)を用い、図20に示す実験ではカソード電極として次の(C2’)を用いた。
(A4’)2.5gの活性炭を混合した20mLのカーボンナノチューブの水溶液を、1分間カーボンペーパーに浸透させたもの。
(C1’)0.76Mのフェリシアン化カリウム溶液0.40mLを混合した2mLのカーボンナノチューブの水溶液を、ペーパー(濾紙)に浸透させたもの。
(C2’)0.9gのCuClを混合した7mLのカーボンナノチューブの水溶液を、ペーパー(濾紙)に浸透させたもの。
【0063】
また、図19及び図20の実験では、外部負荷抵抗を0.51kΩ~140kΩの範囲で段階的に変化させたときの時間の経過に伴う出力電圧を計測し、その結果を用いて最大の電力密度を求めた。
その結果、図19に示す実験では、外部負荷が1kΩのときに1.7μW/cmの最大電力密度が得られた。図20についての実験では、外部負荷が0.51kΩのときに57.3μW/cmの最大電力密度が得られた。
【0064】
図21及び図22は、アノード電極を形成するカーボンペーパーの数を変化させたときの水分解電池の特性を示すグラフである。図21及び図22に示す実験では、アノード電極として上記(A4’)を用いた。図21に示す実験では、カソード電極として上記(C1’)を用い、図23に示す実験では、カソード電極として上記(C2’)を用いた。
その結果、図21及び図22のいずれにおいても、アノード電極におけるカーボンペーパーが1層の場合よりも3層の場合の方が高い電圧を出力することができた。
【0065】
図23及び図24は、水分解電池の最大電力密度を示すグラフである。
図23及び図24に示す実験では、アノード電極として次の(A4”)を用いた。また、図19に示す実験ではカソード電極として上記の(C1’)を用い、図20に示す実験ではカソード電極として上記の(C2’)を用いた。
(A4”)4gの活性炭を混合した10mlの水溶液をカーボンシートに1分間浸透させることによって、カーボンペーパーに1cmあたり17mgの活性炭を含ませたもの。
【0066】
また、図23及び図24の実験では、外部負荷抵抗を0.51kΩ~140kΩの範囲で段階的に変化させたときの時間の経過に伴う出力電圧を計測し、その結果を用いて最大の電力密度を求めた。
その結果、図23に示す実験では、外部負荷が1kΩのときに10.4μW/cmの最大電力密度が得られた。図20についての実験では、外部負荷が0.51kΩのときに134.6μW/cmの最大電力密度が得られた。
【0067】
図25は、アノード電極に供給する溶液の種類を変えたときの水分解電池の特性を示すグラフである。
図25に示す実験では、アノード電極に、酸である塩化水素(HCL;pH1)と、塩基である水酸化ナトリウム(NaOH;pH13)と、水(pH7)とをそれぞれ供給し、出力電圧を計測した。その結果、出力電圧は、pHに依存して変化しており、これによって水分解によって発電が行われていることがわかった。
【0068】
本発明は、上記各実施形態に限定されるものではなく、特許請求の範囲に記載された発明の範囲内において、変更することが可能である。本発明は、例えば、以下のように変更することができる。
【0069】
例えば、アノード電極及びカソード電極に含まれる各構成材料の分量は、適宜変更することが可能である。また、アノード電極及びカソード電極の作製方法も適宜変更することができる。
【0070】
上記各実施形態では、酸素とプロトンと電子とが水になる酸化還元反応を促進する触媒として、フェリシアン化カリウム及びCuClを例示したが、これに限定されるものではなく、同様の作用を有する物質を適用することができる。
また、上記各実施形態では、セパレータとして、疎水化処理が施された濾紙が用いられていたが、濾紙以外の紙が用いられていてもよい。また、セパレータとして、一般的なプロトン交換膜(PEM)が用いられていてもよい。
【0071】
本発明の発電装置は、電気機器を駆動するために発電するものに限らず、他の用途のために発電するものであってもよい。例えば、供給された水分の特性等を発電量に応じて検出するセンサとして機能するものや、有機物を含む排水(廃水)を処理する過程で発電するものであってもよい。
【0072】
上記実施形態では、発電装置として1槽型の水分解電池を例示したが、2槽型の水分解電池であってもよい。また、本実施形態の発電装置は、乾燥状態で保存されるものに限らず、アノード電極及び/又はカソード電極が配置される領域に水分が存在しているものであってもよい。
【符号の説明】
【0073】
10 :発電装置(水分解電池)
12 :アノード電極
13 :カソード電極
14 :セパレータ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25