(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-28
(45)【発行日】2022-04-05
(54)【発明の名称】湿気硬化型組成物、硬化物の製造方法
(51)【国際特許分類】
C08L 101/10 20060101AFI20220329BHJP
C08K 3/10 20180101ALI20220329BHJP
C08K 3/11 20180101ALI20220329BHJP
C08K 5/19 20060101ALI20220329BHJP
【FI】
C08L101/10
C08K3/10
C08K3/11
C08K5/19
(21)【出願番号】P 2021531415
(86)(22)【出願日】2020-11-25
(86)【国際出願番号】 JP2020043855
(87)【国際公開番号】W WO2021106943
(87)【国際公開日】2021-06-03
【審査請求日】2021-06-01
(31)【優先権主張番号】P 2019216652
(32)【優先日】2019-11-29
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000227342
【氏名又は名称】日東化成株式会社
(74)【代理人】
【識別番号】110001139
【氏名又は名称】SK特許業務法人
(74)【代理人】
【識別番号】100130328
【氏名又は名称】奥野 彰彦
(74)【代理人】
【識別番号】100130672
【氏名又は名称】伊藤 寛之
(72)【発明者】
【氏名】中川 侑哉
(72)【発明者】
【氏名】今倉 康男
【審査官】三宅 澄也
(56)【参考文献】
【文献】米国特許出願公開第2006/0199886(US,A1)
【文献】特開2005-320412(JP,A)
【文献】中国特許出願公開第109608639(CN,A)
【文献】国際公開第2009/093348(WO,A1)
【文献】特開2002-249672(JP,A)
【文献】特開2014-114434(JP,A)
【文献】特開2003-064305(JP,A)
【文献】中国特許出願公開第102766333(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08K 3/00- 13/08
C08L 1/00-101/14
(57)【特許請求の範囲】
【請求項1】
反応性加水分解性ケイ素含有基を有する重合体[A]と、重合体[A]の硬化に用いる硬化触媒[B]を含む湿気硬化型組成物であって、
前記硬化触媒[B]の含有量は、前記重合体[A]100重量部に対して0.1~20重量部であり、
前記硬化触媒[B]は、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物を含有し、
前記金属アルコキシド[B1]は、化学式(1)で表されるチタン化合物[B1a]とその他金属アルコキシド[B1b]の一方又は両方を含み、且つ前記チタン化合物[B1a]を含み、
前記その他金属アルコキシド[B1b]は、
アルミニウム、ジルコニウム、亜鉛、ナトリウム、カリウム、リチウム、マグネシウム、ホウ素から選択される金属のアルコキシドであり、
前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、湿気硬化型組成物。
(R
1-O)
nTi-A
4-n (1)
(式中R
1は炭素原子数1~10の置換又は非置換の炭化水素基であり、nは1~4の整数であり、Aはβジケトン基である)
【化2】
(式中、R
2、R
3、R
4、R
5は、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Xは、水酸基を表す。)
【請求項2】
請求項1に記載の湿気硬化型組成物であって、
前記反応生成物は、前記金属アルコキシド[B1]と前記アンモニウムヒドロキシド[B2]の混合物を40~100℃で反応させて得られる反応生成物である、湿気硬化型組成物。
【請求項3】
請求項2に記載の湿気硬化型組成物であって、
前記混合物中での、前記アンモニウムヒドロキシド[B2]に対する前記金属アルコキシド[B1]のモル比は、0.1~100である、湿気硬化型組成物。
【請求項4】
請求項1~請求項3の何れか1つに記載の湿気硬化型組成物であって、
前記金属アルコキシド[B1]は、前記チタン化合物[B1a]と前記その他金属アルコキシド[B1b]を含む、湿気硬化型組成物。
【請求項5】
請求項1~
請求項4の何れか1つに記載の湿気硬化型組成物であって、
前記硬化触媒[B]は、透明液体である、湿気硬化型組成物。
【請求項6】
請求項1~
請求項5の何れか1つに記載の湿気硬化型組成物を湿気と接触させる工程を備える、硬化物の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、重合体の硬化に用いる硬化触媒及びその製造方法、湿気硬化型組成物、硬化物の製造方法に関する。
【背景技術】
【0002】
1液型の湿気硬化型ゴム組成物は、一般に硬化速度が速く、また使用前にベースポリマー、架橋剤および触媒等の各種添加剤を秤量して混合する必要がないため、2液型のものに比べ作業性の点で優れている。
【0003】
これらの1液型の湿気硬化型ゴム組成物としては、シリコーン系ゴム、変成シリコーン系ゴム、ウレタン系ゴム、ポリサルファイド系ゴム等のものが知られている。
シリコーン系ゴムの1液型の湿気硬化型ゴム組成物として、オルガノポリシロキサン組成物が広範囲に使用されており、室温で硬化してゴム弾性体を生成する。オルガノシロキサンが架橋重合した-Si-O-結合を主鎖とするシロキサンの高分子化合物は、撥水性、耐熱性、耐候性、耐寒性、電気絶縁性等の性質に優れていることから建築、土木工業、電気、電子工業、自動車工業等の分野で広く使用されている。
【0004】
変成シリコーン系ゴムの1液型の湿気硬化型ゴム組成物としては、ポリエーテルを主鎖とする架橋可能な反応性加水分解性ケイ素官能基を有する重合体を含む組成物がある。この重合体の硬化型組成物は、ポリウレタン系ゴムのものに比べて貯蔵安定性、耐候性、耐発泡性および変色性が良好であり、ポリサルファイド系のものに比べて硬化性に優れ、周囲への汚染性が少なく毒性がない。
【0005】
前記シリコーン系ゴムおよび変成シリコーン系ゴムが、硬化物となる過程における反応機構は、水共存下における反応性加水分解性ケイ素含有基の縮合反応もしくは付加反応によるとされており、ポリマー化が進行し3次元網目構造のポリマー硬化体が形成されるものと考えられている。この反応において硬化を速やかに進行させるために、硬化触媒が使用される(特許文献1~5)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開平8-41358号公報
【文献】特開昭60-161457号公報
【文献】特公昭63-42942号公報
【文献】特開2003-147220号公報
【文献】特許5446265号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
この反応性加水分解性ケイ素含有基を有するシリコーン系ゴムおよび変成シリコーン系ゴムの硬化組成物の硬化触媒として、従来から錫カルボン酸塩化合物、アルキル錫塩化合物などが使用されてきたが、内分泌撹乱物質として生体への影響が懸念されていることから、こうした物質を使用しない湿気硬化型組成物として、カルボン酸とアミンの併用触媒(特許文献1)が提案されているが、施工時に充分な硬化速度が得られないという問題点がある。
【0008】
特許文献2および特許文献3では、ジイソプロポキシチタンビス(アルキルアセトアセトネート)等のチタン酸エステル化合物を触媒として使用することが提案されているが、組成物中の添加剤や充填剤中に含まれる水分で分解されやすく、また、施工時の湿度により、硬化速度にばらつきが生じるため、安定した硬化物が得られない等の問題点がある。
【0009】
特許文献4では、テトラカルボン酸チタン化合物を触媒として使用することが提案されているが、硬化速度について実用的な満足度は得られないという問題点がある。
特許文献5では、第4級アンモニウム塩を触媒として使用することが提案されているが、施工時に充分な硬化速度が得られないという問題点がある。
【0010】
そこで、安全性が高く(毒性、環境汚染性が低く)、実用的な硬化速度を有する硬化触媒の開発が望まれていた。
【0011】
前記従来技術に鑑みて、本発明は、安全性が高く、実用的な硬化速度を有する硬化触媒を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明によれば、反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いる硬化触媒[B]であって、前記硬化触媒[B]は、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物を含有し、前記金属アルコキシド[B1]は、化学式(1)で表されるチタン化合物[B1a]とその他金属アルコキシド[B1b]の一方又は両方を含み、前記その他金属アルコキシド[B1b]は、チタン以外の金属のアルコキシドであり、前記アンモニウムヒドロキシド[B2]は、化学式(2)で表される、硬化触媒[B]が提供される。
【0013】
本発明者は鋭意検討を行ったところ、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物を含有する硬化触媒[B]を用いた場合には、重合体[A]の硬化速度が大幅に高まることを見出し、本発明の完成に到った。この触媒は、錫を含まないので、安全性が高い。また、廉価に製造が可能である。
【発明を実施するための形態】
【0014】
以下、本発明を詳細に説明する。
【0015】
本発明の硬化触媒[B]は、反応性加水分解性ケイ素含有基を有する重合体[A]の硬化に用いられる。重合体[A]は、室温で液状のものが好ましい。
【0016】
1.重合体[A]
重合体[A]は、反応性加水分解性ケイ素含有基を、分子末端または側鎖に1分子当たり少なくとも1個有する。反応性加水分解性ケイ素含有基は、重合体[A]分子の末端に存在していても、側鎖に存在していてもよく、さらに末端と側鎖の両方に存在していてもよい。反応性加水分解性ケイ素含有基は、重合体[A]の1分子当たり少なくとも1個あればよいが、硬化速度、硬化物性の点からは、1分子当たり平均して1.5個以上あるのが好ましい。反応性加水分解性ケイ素含有基を前記主鎖重合体に結合させる方法としては公知の方法が採用できる。
【0017】
反応性加水分解性ケイ素含有基は、加水分解性基(例:ハロゲン、アルコキシ、アルケニルオキシ、アシロキシ、アミノ、アミノオキシ、オキシム、アミド)又は水酸基からなる反応性基と結合したケイ素原子を有する基であり、湿気や架橋剤の存在下、必要に応じて触媒などを使用することにより縮合反応を起こす性質を有する。具体的には、ハロゲン化シリル基、アルコキシシリル基、アルケニルオキシシリル基、アシロキシシリル基、アミノシリル基、アミノオキシシリル基、オキシムシリル基、アミドシリル基などが挙げられる。
【0018】
ここで、1つのケイ素原子に結合した反応性加水分解性基の数は1~3の範囲から選択される。また、1つのケイ素原子に結合した反応性加水分解性基は1種であってもよく、複数種であってもよい。さらに反応性加水分解性基と非反応性加水分解性基が1つのケイ素原子に結合していてもよく、加水分解性基と水酸基が1つのケイ素原子に結合していてもよい。反応性加水分解性ケイ素含有基としては、取り扱いが容易である点で、特にアルコキシシリル基(モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基を含む)が好ましい。
【0019】
また上記のアルコキシシリル基のうち、トリアルコキシシリル基は、活性が高く良好な硬化性が得られること、また、得られる硬化物の復元性、耐久性、耐クリープ性に優れることから好ましい。一方、ジアルコキシシリル基、モノアルコキシシリル基は、貯蔵安定性に優れ、また、得られる硬化物が高伸び、高強度であることから好ましい。
反応性加水分解性ケイ素含有基がジアルコキシシリル基である重合体[A]と、トリアルコキシシリル基である重合体[A]を併用すると、硬化物の物性と硬化性とのバランスが取れ好ましい。
【0020】
重合体[A]としては、有機重合体[A1]、オルガノポリシロキサン[A2]が例示される。
【0021】
(有機重合体[A1])
本発明に用いる有機重合体[A1]の主鎖としては炭素原子を有するもの、例えば、アルキレンオキシド重合体、ポリエステル重合体、エーテル・エステルブロック共重合体、エチレン性不飽和化合物の重合体、ジエン系化合物の重合体などが挙げられる。
【0022】
前記アルキレンオキシド重合体としては、
〔CH2CH2O〕n
〔CH(CH3)CH2O〕n
〔CH(C2H5)CH2O〕n
〔CH2CH2CH2CH2O〕n
などの繰り返し単位の1種または2種以上を有するものが例示される。ここで、nは同一又は異なって2以上の整数である。これらアルキレンオキシド重合体は単独で用いてもよく、2種以上を併用してもよい。また、上記の繰り返し単位を2種以上含む共重合体も使用できる。
【0023】
ポリエステル重合体としては、酢酸、プロピオン酸、マレイン酸、フタル酸、クエン酸、ピルビン酸、乳酸等のカルボン酸およびその無水物ならびにそれらの分子内および/または分子間エステルおよびそれらの置換体等を繰返し単位として有するものが例示される。
【0024】
エーテル・エステルブロック共重合体としては、上述したアルキレンオキシド重合体に用いられる繰り返し単位および上述したポリエステル重合体に用いられる繰り返し単位の両方を繰返し単位として有するものが例示される。
【0025】
また、エチレン性不飽和化合物及びジエン系化合物の重合体としては、エチレン、プロピレン、アクリル酸エステル、メタクリル酸エステル、酢酸ビニル、アクリロニトリル、スチレン、イソブチレン、ブタジエン、イソプレン、クロロプレンなどの単独重合体、またはこれらの2種以上の共重合体が挙げられる。より具体的にはポリブタジエン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、エチレン-ブタジエン共重合体、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸エステル共重合体、ポリイソプレン、スチレン-イソプレン共重合体、イソブチレン-イソプレン共重合体、ポリクロロプレン、スチレン-クロロプレン共重合体、アクリロニトリル-クロロプレン共重合体、ポリイソブチレン、ポリアクリル酸エステル、ポリメタクリル酸エステルなどが挙げられる。これらは単独で用いてもよく、あるいは2種類以上を併用してもよい。
【0026】
有機重合体[A1]としては、分子内に含窒素特性基等の極性基を有する有機重合体を用いることもできる。上記含窒素特性基の具体例としては(チオ)ウレタン基,アロファネート基,その他のN-置換ウレタン基,N-置換アロファネート基等の(チオ)ウレタン基由来の結合基、(チオ)ウレア基,ビウレット基,それ以外のN-置換ウレア基,N,N'-置換ウレア基、N-置換ビウレット基,N,N'-置換ビウレット基等の(チオ)ウレア基由来の結合基、アミド基、N-置換アミド基等のアミド基由来の結合基、イミノ基由来の結合基に代表される含窒素特性基や、(チオ)エステル基、(チオ)エーテル基等が挙げられるが、これらに限定されるわけではない。これらのなかでは、硬化性の高さから含窒素特性基が好ましく、合成の容易さから、(チオ)ウレタン基由来の結合基、(チオ)ウレア由来の結合基がより好ましい。また、該含窒素特性基は、上記有機重合体[A1]中に1個だけ含まれていてもよく、さらに1種又は2種以上の含窒素特性基が複数含まれていてもよい。ここで「(チオ)」及び「N-置換」の表記は上記と同様である。
【0027】
有機重合体[A1]中に上記含窒素特性基等の極性基が含まれると、硬化物の強靱性が向上するうえ、硬化性及び接着強さが高まる。特に、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、より硬化性が高まる。その理由としては、該含窒素特性基の極性基同士が、水素結合等の相互作用により強く引き合うことが挙げられる。該含窒素特性基の極性基同士が強く引き合うことにより、硬化性樹脂の分子同士も強く結びつく(ドメイン形成する)ことで硬化物に強靱性が発現すると考えられるのである。また、上記架橋性ケイ素基が含窒素特性基等の極性基を介して主鎖に連結されている場合、該含窒素特性基同士ドメイン形成に際し、それに伴って該架橋性ケイ素基同士も近接することによって、該架橋性ケイ素基同士の接触確率も向上し、さらに、該含窒素特性基中の極性基による触媒硬化によって該架橋性ケイ素基同士の縮合反応性が向上することが考えられる。
【0028】
このような有機重合体[A1](変成シリコーン系ポリマー)は、例えば、特公昭61-18569号公報に記載されている方法等の公知の方法によって製造することができるか、或いは市販されている。市販品としては、例えば、株式会社 カネカ製のカネカMSポリマーシリーズ(MSポリマーS203、MSポリマーS303、MSポリマーS903、MSポリマーS911、MSポリマーSAX520等)、サイリルシリーズ(サイリルポリマーSAT200、サイリルポリマーMA430、サイリルポリマーMAX447等)、MAシリーズ、SAシリーズ、ORシリーズ;旭硝子株式会社製のESシリーズ(ES-GX3440ST等),ESGXシリーズ等、が例示される。
【0029】
本発明で用いる有機重合体[A1]の数平均分子量は、特に制限はないが、過度に高分子のものは高粘度であり、硬化性組成物とした場合、使用上困難となる為、30000以下が望ましい。このような有機重合体は、公知の方法によって製造することができるが、上記した株式会社カネカ製のカネカMSポリマー等の市販品を使用してもよい。
【0030】
(オルガノポリシロキサン[A2])
本発明に用いるオルガノポリシロキサン[A2]は、主鎖がSi-Oで表されるシロキサン結合で構成されたものであり、さらにシロキサン結合を構成するケイ素原子に有機基が結合している。このような有機基としては、具体的にはメチル、エチル、プロピル、ブチル等のアルキル基;シクロヘキシル等のシクロアルキル基;ビニル、イソプロペニル、置換ビニル等のアルケニル基;アリル基、クロチル、メタリル等の置換アリル基;フェニル、トルイル、キシリル等のアリール基;ベンジル、フェニルエチル等のアラルキル基;及びこれら有機基の水素原子の全部もしくは一部がハロゲン原子で置換された基、例えばクロロメチル基、3,3,3-トリフルオロプロピル基などが挙げられる。
【0031】
オルガノポリシロキサン[A2]としては、
(-Si(R)2-O-)m
(式中、Rは同一又は異なって有機基、mは2以上の整数を示す。)
で表される繰り返し単位を有するものが例示される。具体例としては、
(-Si(CH3)2-O-)m
(-Si(C2H5)2-O-)m
(-Si(Ph)2-O-)m
(-Si(-CH=CH2)2-O-)m
などの繰り返し単位の1種または2種以上を有するものが例示される。ここでmは同一又は異なって2以上の整数である。オルガノポリシロキサン[A2]は単独の主鎖から構成されていてもよく、あるいは2種以上の主鎖から構成されていてもよい。
【0032】
オルガノポリシロキサンは直鎖状であっても、3官能形(R'SiO1.5)または4官能形(SiO2)を含む分岐状のものであってもよい。また、硬化物の物性や用途により、必要に応じて2官能形(R'2SiO)や1官能形(R'3SiO0.5)を組み合わせてもよい(ここで、R'は有機基)。さらに加水分解性ケイ素含有基は分子末端、分子鎖の途中の何れに結合していてもよい。
なお、オルガノポリシロキサンは一般的に平均組成式としてRaSiO4-a/2で示される(例えば、特開2005-194399号や特開平8-151521号公報等)。上記の表記はこれに従った。
【0033】
本発明で用いるオルガノポリシロキサン[A2]の粘度は特に制約はないが過度に高粘度のものは、作業性が低下したり、得られる硬化物の物性が損なわれたりするおそれがあるので、25℃における粘度が0.025~100Pa・sの範囲にあるのが望ましい。このようなオルガノポリシロキサンは、公知の方法によって製造することができるが、GE東芝シリコーン(株)製のトスシールシリーズ、信越化学工業(株)製のシーラントシリーズ、東レダウコーニング(株)製のSHシリーズ等の市販品を使用することができる。
【0034】
2.硬化触媒[B]
硬化触媒[B]は、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物を含有する。
【0035】
<金属アルコキシド[B1]>
金属アルコキシド[B1]は、チタン化合物[B1a]とその他金属アルコキシド[B1b]の一方又は両方を含む。
【0036】
チタン化合物[B1a]は、化学式(1)で表される。
(R1-O)nTi-A4-n (1)
(式中R1、炭素原子数1~10の置換又は非置換の炭化水素基、nは1~4であり、Aはβジケトン基である)
【0037】
nは、例えば、1、1.5、2、2.5、3、3.5、4であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0038】
R1で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であり、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、飽和又は不飽和炭化水素基が挙げられる。飽和炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~10であり、1~6が好ましく、1~4がさらに好ましい。この炭素数は、具体的には例えば、1、2、3、4、5、6、7、8、9、10であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。炭化水素基としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、2-エチルヘキシル、ノニル、デシルが挙げられる。
【0039】
Aで示されるβジケトン基としては、2,4-ペンタンジオン、2,4-ヘキサンジオン、2,4-ペンタデカンジオン、2,2,6,6-テトラメチル-3,5-ヘプタンジオン、1-フェニル-1,3-ブタンジオン、1-(4-メトキシフェニル)-1,3-ブタンジオン等の1-アリール-1,3-ブタンジオン、1,3-ジフェニル-1,3-プロパンジオン、1,3-ビス(2-ピリジル)-1,3-プロパンジオン、1,3-ビス(4-メトキシフェニル)-1,3-プロパンジオン等の1,3-ジアリール-1,3-プロパンジオン、3-ベンジル-2,4-ペンタンジオン等のジケトン類、メチルアセトアセテート、エチルアセトアセテート、ブチルアセトアセテート、t-ブチルアセトアセテート、エチル3-オキソヘキサノエート等のケトエステル類、N,N-ジメチルアセトアセタミド、N,N-ジエチルアセトアセタミド、アセトアセトアニリド等のケトアミド類、ジメチルマロネート、ジエチルマロネート、ジフェニルマロネート等のマロン酸エステル類、N,N,N',N'-テトラメチルマロンアミド、N,N,N',N'-テトラエチルマロンアミド等のマロン酸アミド類が挙げられ、2,4-ペンタンジオン、1-アリール-1,3-ブタンジオン、1,3-ジアリール-1,3-プロパンジオン等のジケトン類が特に好ましい
【0040】
化学式(1)で表されるチタン化合物の具体例としては、テトラメトキシチタン、トリメトキシエトキシシチタン、トリメトキシイソプロポキシチタン、トリメトキシブトキシチタン、ジメトキシジエトキシチタン、ジメトキシジイソプロポキシチタン、ジメトキシジブトキシチタン、メトキシトリエトキシチタン、メトキシトリイソプロポキシチタン、メトキシトリブトキシチタン、テトラエトキシチタン、トリエトキシイソプロポキシチタン、トリエトキシブトキシチタン、ジエトキシジイソプロポキシチタン、ジエトキシジブトキシチタン、エトキシトリイソプロポキシチタン、エトキシトリブトキシチタン、テトライソプロポキシチタン、トリイソプロポキシブトキシチタン、ジイソプロポキシジブトキシチタン、テトラブトキシチタン、ジイソプロポキシチタンビス(アセチルアセトナート)などがあげられ、
触媒活性、化合物の安定性、取扱い性の点から、テトライソプロポキシチタンが更に好ましい。
上記のチタン化合物[B1a]は、単独で使用してもよいし、2種以上を併用してもよい。
【0041】
その他金属アルコキシド[B1b]は、チタン以外の金属のアルコキシドである。その他金属アルコキシド[B1b]としては、アルミニウム、ジルコニウム、亜鉛、ナトリウム、カリウム、リチウム、マグネシウム、ホウ素から選択される金属のアルコキシドが挙げられる。その他金属アルコキシド[B1b]に含まれる金属アルコキシドは、1種であっても、2種以上であってもよい。
【0042】
その他金属アルコキシド[B1b]のアルコキシ基は、化学式(3)で表すことができる。化学式(3)中のR6の説明は、化学式(1)のR1と同様である。*は、結合部を表す。
R6-O-* (3)
【0043】
その他金属アルコキシド[B1b]が複数の配位子を有する場合、そのうちの少なくとも一つがアルコキシ基であればよく、残りは別の官能基であってもよい。別の官能基としては、βジケトン基、カルボキシル基などが挙げられる。βジケトン基の説明は、化学式(1)のAと同様である。
【0044】
その他金属アルコキシド[B1b]としては、アルミニウムトリイソプロポキシド、ジルコニウムテトラプロポキシド、ジンクイソプロポキシド、ソジウムメチラート、カリウムメチラート、リチウムメチラート、マグネシウムエトキシド、ホウ酸トリエチル等が挙げられる。
【0045】
金属アルコキシド[B1]は、チタン化合物[B1a]のみを含んでもよく、その他金属アルコキシド[B1b]のみを含んでもよく、チタン化合物[B1a]とその他金属アルコキシド[B1b]の両方を含んでもよい。
【0046】
金属アルコキシド[B1]中のチタン化合物[B1a]の割合は、例えば30~100質量%であり、50~100質量%が好ましい。この割合は、例えば、30、40、50、60、70、80、90、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0047】
<アンモニウムヒドロキシド[B2]>
アンモニウムヒドロキシド[B2]は、下記式で表される。
【0048】
【化2】
(式中、R
2、R
3、R
4、R
5は、相互に同一または異なって、炭素原子数1~8の置換又は非置換の炭化水素基を表す。Xは、水酸基を表す。)
【0049】
R2、R3、R4、R5で示される置換又は非置換の炭化水素基は、置換又は非置換の、脂肪族又は芳香族の炭化水素基であり、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、直鎖又は分岐アルキル基が好ましい。炭化水素基の炭素数は、1~8であり、1~6が好ましく、1~4がさらに好ましい。この炭素数は、具体的には例えば、1、2、3、4、5、6、7、8であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基などの飽和炭化水素基、ビニル基、アリル基、プレニル基、クロチル基、シクロペンタジエニル基などの不飽和炭化水素基が挙げられ、メチル基、エチル基、ブチル基が好ましい。
【0050】
前記芳香族炭化水素基としては、フェニル基、トリル基、ベンジル基などが挙げられる。
【0051】
炭化水素基の置換基としては、メトキシ基、エトキシ基、ヒドロキシ基、アセトキシ基などが挙げられる。置換されている、脂肪族又は芳香族の炭化水素基としては、メトキシメチル基、メトキシエチル基、エトキシメチル基、エトキシエチル基などのアルコキシアルキル基、ヒドロキシメチル基、ヒドロキシエチル基、3-ヒドロキシプロピル基などのヒドロキシアルキル基、2-アセトキシエチル基などが挙げられる。
【0052】
化学式(2)で表されるアンモニウムヒドロキシドの具体例としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、ベンジルトリエチルアンモニウムヒドロキシド、トリメチルフェニルアンモニウムヒドロキシド、トリス(2-ヒドロキシエチル)メチルアンモニウムヒドロキシドなどが挙げられ、特にテトラメチルアンモニウムヒドロキシドが好ましい
【0053】
<金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応>
金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物は、例えば透明液体であり、両者の混合物を例えば40~100℃で反応させることによって得ることができる。この温度は、具体的には例えば、40、50、60、70、80、90、100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。混合物中での、アンモニウムヒドロキシド[B2]に対する金属アルコキシド[B1]のモル比は、例えば0.1~100であり、0.1、0.5、1、2、3、4、5、6、7、8、9、10、20、50、100であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0054】
3.湿気硬化型組成物
本発明の湿気硬化型組成物は、上記の硬化触媒[B]と重合体[A]を含み、必要に応じ後述する他の添加剤を含めても良い。本発明の湿気硬化型組成物の調製は、乾燥条件下で両者を混合すればよく、その混合形態は特に限定はない。通常、温度15~30℃程度、60%RH以下の雰囲気下で混合すればよい。
【0055】
本発明の湿気硬化型組成物中において、硬化触媒[B]の含有量は、重合体[A]100重量部に対して0.1~20重量部、さらに0.5~10重量部、特に3~8重量部が好ましい。硬化触媒[B]の含有量が0.1重量部未満では硬化性能が不十分であり、20重量部を超えると硬化後の硬化物の復元率、耐候性などの物性、貯蔵中の安定性が悪くなることがある。硬化触媒[B]の含有量は、具体的には例えば、重合体[A]100重量部に対して、0.1、0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20質量部であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
【0056】
本発明の湿気硬化型組成物には、さらに充填剤[C]を配合しても良い。充填剤としては、例えば、炭酸カルシウム、カオリン、タルク、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、含水ケイ酸、クレー、焼成クレー、ガラス、ベントナイト、有機ベントナイト、シラスバーン、ガラス繊維、石綿、ガラスフィラメント、粉砕石英、珪藻土、ケイ酸アルミニウム、水酸化アルミニウム、酸化亜鉛、酸化マグネシウム、二酸化チタン等があげられる。充填剤は、単独で用いてもよく、2種以上を併用してもよい。充填剤を加えることにより、湿気硬化型組成物のハンドリングが良くなる。また、硬化物のゴム補強剤としても働く。最大のメリットは、増量剤として添加することで使用する樹脂の量を減らす事が出来るためコストダウンが出来ることである。
【0057】
中でも、硬化後の硬化性組成物の優れた表面ノンタック、50%モジュラス、作業性および耐候性等を維持する点から、炭酸カルシウム、酸化チタンが好ましい。炭酸カルシウムを使用する場合は、その割合を、重合体[A]100重量部に対して、1~200重量部とするのが好ましく、50~200質量部とするのがさらに好ましい。上記範囲であると、硬化後の特性を損なわない。
【0058】
本発明の湿気硬化型組成物には、さらに他の硬化触媒、硬化促進剤、着色剤、可塑剤、硬化遅延剤、タレ防止剤、老化防止剤、溶剤等、硬化性組成物に通常添加される添加剤を加えてもよい。
【0059】
他の硬化触媒としては、例えば、ジブチルスズジラウレート、ジブチルスズビス(アセチルアセトネート)等の有機スズ化合物、アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物、ジルコニウムテトラ(アセチルアセトナート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物、等の金属硬化触媒、1-アミノ-2-エチルヘキサン、3-(トリメトキシシリル)プロピルアミン、N-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N,N,N',N'-テトラメチル-N''-[3-(トリメトキシシリル)プロピル]グアニジン、1,5,7-トリアザビシクロ-[4,4,0]デカ-5-エン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン等のアミン化合物等が挙げられる。
【0060】
硬化促進剤としては、例えば、公知の種々のアミノ基置換アルコキシシラン化合物、またはその縮合物を使用することが出来る。具体的に例示すると、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、δ―アミノブチル(メチル)ジエトキシシラン、N,N-ビス(トリメトキシシリルプロピル)エチレンジアミンおよび、これらの部分加水分解等があげられ、これらは基材への密着性を向上させる効果もある。
【0061】
着色剤としては、具体的には、酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等が使用される。
【0062】
可塑剤としては、具体的には、ジブチルフタレート、ジオクチルフタレート、ブチルベンジルフタレート等のフタル酸エステル類;アジピン酸ジオクチル、コハク酸ジオクチル、コハク酸ジイソデシル、オレイン酸ブチル等の脂肪酸カルボン酸エステル類;ペンタエリスリトールエステル類等のグリコールエステル類;リン酸トリオクチル、リン酸トリクレジル等のリン酸エステル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤;塩素化パラフィン等が使用される。
【0063】
タレ防止剤としては、具体的には、水添ヒマシ油、無水ケイ酸、有機ベントナイト、コロイド状シリカ等が使用される。
【0064】
また、他の添加剤としては、フェノール樹脂、エポキシ樹脂等の接着付与剤、紫外線吸収剤、ラジカル連鎖禁止剤、過酸化物分解剤、各種の老化防止剤等が使用される。
【0065】
本発明の硬化型組成物は、室温で十分に安定であるため貯蔵性に優れ、かつ、湿気に接触すると配合された硬化触媒[B]により硬化反応が自発的に進行する。また、スナップタイム(半ゲル化し流動性が無くなるまでの時間)やタックフリータイム(表面タックの無くなるまでの時間)も短く作業性に優れる。
【0066】
上記の特性から、本発明の硬化型組成物は1液型シーリング材として用いることができる。具体的には、建築物、船舶、自動車等の車両のシーリング材、接着剤、密封剤、防水用の目止め材等の用途に好適に用いられる。
【実施例】
【0067】
次に実施例をあげて本発明を具体的に説明するが、本発明の範囲はこれによって限定されるものではない。
【0068】
<製造例1(反応性生物1)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン(東京化成工業(株)製)85.2g(0.3mol)を仕込み、攪拌しながら、37%テトラブチルアンモニウムヒドロキシド(以下、「TBAH」)メタノール溶液(東京化成工業(株)製)70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物1:80gを得さらにイソプロパノールを25 g添加し透明液体を105g得た。
【0069】
TBAHのNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.29-3.33 (m, 8H), δ=1.65-1.70 (m, 8H), δ=1.43-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0070】
反応生成物1のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.37-3.40 (m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0071】
TBAHの3.29-3.33の化学シフト、及び反応生成物1の3.37-3.40の化学シフトは、それぞれ、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。このため、反応生成物1では、TBAHと比較して、α水素原子の化学シフトが+0.08 ppmシフトしていることが確認された。
【0072】
<製造例2(反応性生物2)>
テトライソプロポキシチタンの代わりに、テトラメトキシチタン(東京化成工業(株)製)を用いた以外は、製造例1と同様の操作を行って、反応生成物2を得た。
【0073】
反応生成物2のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.37-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0074】
反応生成物2の3.37-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物2では、TBAHと比較して、α水素原子の化学シフトが+0.08 ppmシフトしていることが確認された。
【0075】
<製造例3(反応生成物3)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)およびアルミニウムトリイソプロポキシド(東京化成工業(株)製)20.4g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物3:92gを得、さらにイソプロパノールを25g添加し透明液体を117g得た。
【0076】
反応生成物3のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.36-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0077】
反応生成物3の3.36-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物3では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
【0078】
<製造例4(反応生成物4)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)およびジルコニウムテトライソプロポキシド(東京化成工業(株)製)32.7g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物4:101gを得、さらにイソプロパノールを25 g添加し透明液体を126g得た。
【0079】
反応生成物4のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.36-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0080】
反応生成物4の3.36-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物4では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
【0081】
<製造例5(反応生成物5)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)およびジンクジイソプロポキシド(和光純薬工業(株)製)18.3g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物5:92gを得、さらにイソプロパノールを25 g添加し透明液体を117g得た。
【0082】
反応生成物5のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.36-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0083】
反応生成物5の3.36-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物5では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
【0084】
<製造例6(反応生成物6)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)および28%ソジウムメチラート(和光純薬工業(株)製)19.3g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物6:85.4gを得、さらにイソプロパノールを25 g添加し透明液体を110g得た。
【0085】
反応生成物6のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.37-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0086】
反応生成物6の3.37-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物6では、TBAHと比較して、α水素原子の化学シフトが+0.08ppmシフトしていることが確認された。
【0087】
<製造例7(反応生成物7)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)および30%カリウムメチラート(和光純薬工業(株)製)23.3g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物7:87gを得、さらにイソプロパノールを25 g添加し透明液体を112g得た。
【0088】
反応生成物7のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.37-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0089】
反応生成物7の3.37-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物7では、TBAHと比較して、α水素原子の化学シフトが+0.08ppmシフトしていることが確認された。
【0090】
<製造例8(反応生成物8)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)および10%リチウムメチラート(和光純薬工業(株)製)38.0g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物8:83.8gを得、さらにイソプロパノールを25 g添加し透明液体を109g得た。
【0091】
反応生成物8のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.37-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0092】
反応生成物8の3.37-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物8では、TBAHと比較して、α水素原子の化学シフトが+0.08ppmシフトしていることが確認された。
【0093】
<製造例9(反応生成物9)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)およびマグネシウムエトキシド(東京化成工業(株)製)11.4g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物9:91.4gを得、さらにイソプロパノールを25 g添加し透明液体を113g得た。
【0094】
反応生成物9のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.36-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0095】
反応生成物9の3.36-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物9では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
【0096】
<製造例10(反応生成物10)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:85.2g(0.3mol)およびホウ酸トリエチル(東京化成工業(株)製)14.6g(0.1mol)を仕込み、攪拌しながら、37%TBAHメタノール溶液70g(0.1mol)を内温60℃で30分かけて滴下し、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度10mmHg)してイソプロパノールおよびメタノールを留出させて反応生成物10:94.6gを得、さらにイソプロパノールを25 g添加し透明液体を115g得た。
【0097】
反応生成物10のNMR測定を行ったところ、以下の結果が得られた。
1H NMR (600 MHz CDCl3): δ=3.36-3.40(m, 8H), δ=1.66-1.72 (m, 8H), δ=1.45-1.49 (m, 8H), δ=1.02 (t, 7.2Hz, 12H), δ=0 (TMS)
【0098】
反応生成物10の3.36-3.40の化学シフトは、TBAHのブチル基のα水素原子(N-CH2の水素原子)に帰属する。反応生成物10では、TBAHと比較して、α水素原子の化学シフトが+0.07ppmシフトしていることが確認された。
【0099】
<製造例11(ジアセチルアセトナトチタンジイソプロポキシド)>
窒素導入管を取り付けた500mL4つ口丸底フラスコに、テトライソプロポキシチタン:71.1g(0.25mol)を仕込み、攪拌しながら、2,4-ペンタンジオン:50.0g(0.50mol)を内温20~50℃の範囲で30分間かけて滴下し、油浴で加熱し内温87~90℃を保ち、そのまま1時間攪拌した。その後、減圧濃縮(最終減圧度14mmHg)してイソプロパノールを留出させて留出物:30g、500mL丸底フラスコ内に赤色濃縮液チタン錯体91gを得た。
【0100】
<比較製造例1(酢酸チタントリイソプロポキシド)>
窒素導入管を取り付けた1000ml四つ口ナス型フラスコに、テトライソプロポキシチタン200.00g(0.70368mol)、酢酸42.2g(0.703681mol)を量り込み、攪拌機にて充分に混合した。内温110℃付近になるまで撹拌を続けたのち、減圧することでイソプロピルアルコールを留去し、黄色液体の酢酸チタントリイソプロポキシドを196g(98%)で得た。
【0101】
<比較製造例2(テトラブチルアンモニウム・オクチル酸塩)>
窒素導入管を取り付けた100ml四つ口ナス型フラスコに、37%テトラブチルアンモニウムヒドロキシドメタノール溶液70g(0.1mol)、オクチル酸14.2g(0.1mol)を量り込み、攪拌機にて充分に混合した。減圧濃縮でメタノールを留去したさせて、無色液体のテトラブチルアンモニウム・オクチル酸塩を80g得た。
【0102】
(湿気硬化型組成物の調製)
上記製造例で得た各成分及び市販の成分を用い、表1~表3に示す配合割合(質量部)で配合し、混練して湿気硬化型組成物を調製した。なお、材料の配合、混練、硬化までの操作は25±1℃、50~60%RHの雰囲気下で行った。
【0103】
<タックフリータイムの測定>
得られた湿気硬化型組成物について、タックフリータイム(エチルアルコールで清浄した指先で、表面の3箇所に軽く触れ、混練終了時から試料が指先に付着しなくなるまでに要した時間)を測定した。タックフリータイムの測定の結果を表1~表3に示す。
【0104】
【0105】
【0106】
【0107】
実施例1~16および比較例1~3に示すように、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]を単独で使用した時よりも、金属アルコキシド[B1]とアンモニウムヒドロキシド[B2]の反応生成物を使用した時に、顕著な活性向上が認められる。
【0108】
また、比較例4に示すように、金属アルコキシド[B1]以外の金属アルコキシドと、アンモニウムヒドロキシド[B2]の組み合わせでは、活性が低い。さらに、比較例5に示すように、金属アルコキシド[B1]と、アンモニウムヒドロキシド[B2]以外の第4級アンモニウム塩の組み合わせも活性が低い。
【0109】
表1~表3に示す材料の詳細は次のとおりである。
【0110】
(重合体[A])
MSポリマー SAX520:シリル基含有有機重合体((株)カネカ製)
MSポリマー S303:シリル基含有有機重合体((株)カネカ製)
【0111】
(硬化触媒[B])
反応生成物1~10:製造例1~10で製造したもの
【0112】
(その他の触媒)
テトライソプロポキシチタン:東京化成工業(株)製 ジアセチルアセトナトチタンジイソプロポキシド:製造例11で製造したもの
テトラブチルアンモニウムヒドロキシド:37%テトラブチルアンモニウムヒドロキシド、東京化成工業(株)製
酢酸チタントリイソプロポキシド:比較製造例1で製造したもの
テトラブチルアンモニウム・オクチル酸塩:比較製造例2で製造したもの
【0113】
(充填剤)
カーレックス300:炭酸カルシウム(丸尾カルシウム(株)製)
FR-41:酸化チタン(古河ケミカルズ(株)製)
【0114】
(その他添加剤)
DINP:可塑剤(ジェイプラス(株))
ディスパロン6500:タレ止め剤(楠本化学(株)製)
Songsorb 3260P:紫外線吸収剤(SONGWON製)
Sabostab UV-70:光安定化剤(SONGWON製)
Irganox245:酸化防止剤(BASFジャパン(株)製)
KBE-1003:脱水剤(信越シリコーン工業(株)製)
KBM-603:接着付与剤(信越シリコーン工業(株)製)