(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-29
(45)【発行日】2022-04-06
(54)【発明の名称】信頼されたモバイルコンピューティングデバイスに関連してビークル内カメラを使用するシームレスな運転者の認証
(51)【国際特許分類】
G06F 21/32 20130101AFI20220330BHJP
G06T 7/00 20170101ALI20220330BHJP
【FI】
G06F21/32
G06T7/00 510F
(21)【出願番号】P 2020529580
(86)(22)【出願日】2019-11-18
(86)【国際出願番号】 US2019062035
(87)【国際公開番号】W WO2020256765
(87)【国際公開日】2020-12-24
【審査請求日】2020-10-20
(32)【優先日】2019-06-17
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502208397
【氏名又は名称】グーグル エルエルシー
【氏名又は名称原語表記】Google LLC
【住所又は居所原語表記】1600 Amphitheatre Parkway 94043 Mountain View, CA U.S.A.
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】シン,ハヌマント・プラサド・アール
(72)【発明者】
【氏名】クラガ,ピオトル
(72)【発明者】
【氏名】チュー,ウェン-シェン
(72)【発明者】
【氏名】セングプタ,クンタル
(72)【発明者】
【氏名】ジョンソン,ジョセフ・エドウィン,ジュニア
【審査官】宮司 卓佳
(56)【参考文献】
【文献】特開2009-286342(JP,A)
【文献】特開2016-055789(JP,A)
【文献】国際公開第2015/001791(WO,A1)
【文献】特開2014-203353(JP,A)
【文献】特開2019-032694(JP,A)
【文献】特開2002-288670(JP,A)
【文献】特開2009-284442(JP,A)
【文献】特開2019-083015(JP,A)
【文献】特開2007-128262(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06F 21/32
G06T 7/00
(57)【特許請求の範囲】
【請求項1】
モバイルコンピューティングデバイスが、ビークルのビークルコンピューティングシステムとの接続を確立することと、
前記接続を確立した後、前記モバイルコンピューティングデバイスが、前記ビークルのユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを前記ビークルコンピューティングシステムから受け取ることとを含み、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像は、前記ビークルの少なくとも部分に接続される画像キャプチャデバイスによってキャプチャされ、さらに、
前記モバイルコンピューティングデバイスが、前記第1の特徴データと、前記モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、前記ビークルの前記ユーザと前記以前に登録されたユーザとの間のマッチを決定することと、
前記モバイルコンピューティングデバイスが、前記マッチに基づいて前記ビークルの前記ユーザを認証することと、
前記モバイルコンピューティングデバイスが、前記ビークルの前記ユーザについての認証データを前記ビークルコンピューティングシステムに送信することとを含み、前記認証データは、前記マッチを示
し、
前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第2の特徴データは少なくとも1つの特徴ベクトルに関連付けられ、かつ、複数のポーズバケットのうちの少なくとも1つのポーズバケットに含まれ、
前記複数のポーズバケットのうちの各ポーズバケットは、前記以前に登録されたユーザの前記顔のピッチ角のそれぞれの範囲と、前記以前に登録されたユーザの前記顔のヨー角のそれぞれの範囲とに関連付けられ、さらに、
前記以前に登録されたユーザの登録処理において、
前記複数のポーズバケットに含まれる各ポーズバケットに、前記以前に登録されたユーザの特徴が関連付けられたか否かをディスプレイに視覚的に表示することと、
前記以前に登録されたユーザに対して、頭を移動させるようにガイドすることとを含む、方法。
【請求項2】
前記ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、
前記モバイルコンピューティングデバイスが、前記ビークルの前記ユーザについての前記認証データを前記ビークルコンピューティングシステムに送信することは、前記インフォテインメントヘッドユニットへ前記ビークルの前記ユーザをログインするよう、ユーザアカウント情報にアクセスすることを前記ビークルコンピューティングシステムに行わせる、請求項1に記載の方法。
【請求項3】
前記ビークルの前記ユーザについての前記認証データは、前記モバイルコンピューティングデバイスまたは前記ビークルの前記ユーザのうちの少なくとも1つに関連付けられる一意識別情報を含む、請求項1~2のいずれか1項に記載の方法。
【請求項4】
前記接続を確立することは、前記ビークルの前記ビークルコンピューティングシステム
と前記モバイルコンピューティングデバイスとをセキュアにペアリングすることを含み、前記モバイルコンピューティングデバイスは、前記ビークルコンピューティングシステム上の前記ビークルの前記ユーザのユーザアカウントに関連付けられる信頼されたデバイスを含む、請求項1~3のいずれか1項に記載の方法。
【請求項5】
前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記特徴データを受け取ることは、前記モバイルコンピューティングデバイスが、前記ビークルコンピューティングシステムから、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記特徴データの暗号化されたコピーを受け取ることを含む、請求項1~4のいずれか1項に記載の方法。
【請求項6】
前記モバイルコンピューティングデバイスが、前記複数のポーズバケットのうちの特定のポーズバケットに含まれる特徴データを前記第2の特徴データから選択することをさらに含み、
前記特定のポーズバケットは、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第1の特徴データに関連付けられ、
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記第1の特徴データと、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる選択された前記特徴データとに基づく、請求項
1~5のいずれかに記載の方法。
【請求項7】
前記モバイルコンピューティングデバイスが、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第1の特徴データと、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる選択された前記特徴データとの間の類似性を示す類似性スコアを決定することをさらに含み、
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記類似性スコアがしきい値類似性スコアを満たすと決定することに応答して行われる、請求項
6に記載の方法。
【請求項8】
前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第2の特徴データは、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる複数の特徴データを含み、前記方法はさらに、
前記モバイルコンピューティングデバイスが、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第1の特徴データと、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データの各特徴データとに基づいて、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データの各特徴データについてのそれぞれの類似性スコアを決定することを含み、各類似性スコアは、前記ビークルの前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第1の特徴データと、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データの前記それぞれの特徴データとの間の類似性を示し、
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付け
られる前記複数の特徴データについての前記それぞれの類似性スコアに基づく、請求項1~
7のいずれか1項に記載の方法。
【請求項9】
前記モバイルコンピューティングデバイスが、前記それぞれの類似性スコアに基づいて、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データのうちの最も高くランク付けされた特徴データを決定することをさらに含み、
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データのうちの前記最も高くランク付けされた特徴データに基づく、請求項
8に記載の方法。
【請求項10】
前記モバイルコンピューティングデバイスが、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記複数の特徴データのうちの2つ以上の特徴データについての前記類似性スコアに基づいて、複合類似性スコアを決定することをさらに含み、
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記複合類似性スコアがしきい値類似性スコアを満たすと決定することに応答する、請求項
8に記載の方法。
【請求項11】
前記ビークルの前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することは、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる2つ以上の特徴データの各々についての前記それぞれの類似性スコアが、しきい値類似性スコアを満たすと決定することに応答する、請求項
10に記載の方法。
【請求項12】
前記モバイルコンピューティングデバイスが、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像の前記第2の特徴データを、マシンラーニングモデルを使用して登録フェーズ中に決定することをさらに含む、請求項1~
11のいずれか1項に記載の方法。
【請求項13】
前記モバイルコンピューティングデバイスはウェアラブルデバイスを含む、請求項1~
12のいずれか1項に記載の方法。
【請求項14】
ビークルのビークルコンピューティングシステムが、モバイルコンピューティングデバイスとの接続を確立することを含み、前記ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、さらに、
前記ビークルコンピューティングシステムが、前記ビークルの内部におけるユーザの存在を決定することと、
前記ビークルの内部における前記ユーザの前記存在を決定した後、前記ビークルコンピューティングシステムが、前記ビークルの少なくとも部分に接続される画像キャプチャデバイスを使用して、前記ユーザの顔の少なくとも1つの画像をキャプチャすることと、
前記ビークルコンピューティングシステムが、前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる第1の特徴データを決定することと、
前記ビークルコンピューティングシステムが、前記ユーザについての認証データを受け取ることとを含み、前記認証データは、前記第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、前記ユーザと、前記以前に登録されたユーザとの間のマッチを示し、さらに、
前記ビークルコンピューティングシステムが、前記ユーザについての前記認証データに基づいて、前記インフォテインメントヘッドユニットに前記ユーザをログインするよう、ユーザアカウント情報にアクセスすることを含
み、
前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第2の特徴データは少なくとも1つの特徴ベクトルに関連付けられ、かつ、複数のポーズバケットのうちの少なくとも1つのポーズバケットに含まれ、
前記複数のポーズバケットのうちの各ポーズバケットは、前記以前に登録されたユーザの前記顔のピッチ角のそれぞれの範囲と、前記以前に登録されたユーザの前記顔のヨー角のそれぞれの範囲とに関連付けられ、さらに、
前記以前に登録されたユーザの登録処理において、
前記複数のポーズバケットに含まれる各ポーズバケットに、前記以前に登録されたユーザの特徴が関連付けられたか否かをディスプレイに視覚的に表示することと、
前記以前に登録されたユーザに対して、頭を移動させるようにガイドすることとを含む、方法。
【請求項15】
前記ビークルコンピューティングシステムが、前記ユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第1の特徴データを前記モバイルコンピューティングデバイスに送信することをさらに含み、
前記ユーザについての前記認証データを受け取ることは、前記第1の特徴データを送信した後、前記ビークルコンピューティングシステムが、前記ユーザについての前記認証データを前記モバイルコンピューティングデバイスから受け取ることを含む、請求項
14に記載の方法。
【請求項16】
前記ビークルコンピューティングシステムが、前記以前に登録されたユーザの前記顔の前記少なくとも1つの画像に関連付けられる前記第2の特徴データを前記モバイルコンピューティングデバイスから受け取ることと、
前記ビークルコンピューティングシステムが前記第1の特徴データと前記第2の特徴データとを比較することと、
前記ビークルコンピューティングシステムが、前記比較に基づいて、前記ユーザと前記以前に登録されたユーザとの間の前記マッチを決定することとをさらに含み、
前記認証データは前記マッチの指示を含む、請求項
14に記載の方法。
【請求項17】
少なくとも1つのプロセッサと、
命令を格納する少なくとも1つのコンピュータ読取可能記憶デバイスとを含み、前記命令は、前記少なくとも1つのプロセッサによって実行されると、請求項1~
16のいずれか1項に記載の方法を前記少なくとも1つのプロセッサに行なわせる、システム。
【請求項18】
少なくとも1つのプロセッサに、請求項1~
16のいずれか1項に記載の方法を実行させるためのプログラム。
【発明の詳細な説明】
【背景技術】
【0001】
背景
自動車、モータサイクル、航空機およびウォータークラフトのようなビークルは、機能を実行し、ビークルの乗員に情報、娯楽、支援および/または環境制御を提供するための1つ以上のコンピューティングシステムを含み得る。たとえば、自動車は、音楽、ビデオもしくは他のコンテンツを再生するためのエンターテインメントシステム、情報およびナビゲーション支援を提供するためのナビゲーションシステム、ビークル内キャビンを暖房もしくは冷房するための温度制御システム、サンルーフもしくはウィンドウシェードのような車のさまざまなコンポーネントもしくは機能を調節するための制御システム、または、これらの上記機能のうちのいくつかもしくはすべてを行なう「インフォテインメントシステム(infotainment system)」を含み得る。現代のビークルは、ディスプレイデバイス(たとえば存在感知ディスプレイ)と、オペレーティングシステムおよび1つ以上のアプリケーションを実行するように構成される計算エンジンとを有するインフォテインメントヘッドユニット(IHU: infotainment head unit)を備えている。
【発明の概要】
【課題を解決するための手段】
【0002】
概要
一般に、本願は、ビークル内カメラと、ビークルに通信可能に結合される信頼されたモバイルコンピューティングデバイスとを用いる、ビークルの運転者のシームレスな認証を行なうための技術を記載する。信頼されたモバイルコンピューティングデバイスは最初に、さまざまな異なるポーズの既知のユーザの顔のデータ(たとえばキャプチャされた画像に関連付けられる顔の特徴データ)をキャプチャするために登録プロセスを行い得る。信頼されたデバイスは、ポーズバケット(pose bucket)のグループのうちのそれぞれのポーズバケットに、当該既知のユーザのデータの各グループを割り当て得る。信頼されたデバイスは、既知のユーザについてのユーザアカウントに既知のユーザのデータを関連付けることにより、データを登録する。その後、信頼されたデバイスは、ビークル内部に位置している未知のユーザの認証データ(たとえば、計算された顔特徴情報のような計算されたテストデータ)を受け取り得、ビークルのビークル内カメラを使用して認証画像がキャプチャされ、計算されたデータ(たとえば特徴データ)が画像から取得され、信頼されたデバイスによって使用される。信頼されたデバイスは、未知のユーザについての認証特徴データを既知のユーザの登録された特徴データと比較することにより、未知のユーザを認証し得る。比較に基づいて、信頼されたデバイスは、認証プロセスの結果をビークルに送り、ビークルは、次いでビークルのインフォテインメントヘッドユニットにおいて、(たとえば、そのユーザのプロファイルおよび/またはアカウント情報に基づいて)認証されたユーザのためにカスタマイズされるログイン動作を行ない得る。結果として、さまざまな記載される技術によって、このユーザデータのセキュリティを保護するために、信頼されたデバイス上にのみ承認されたユーザの登録特徴データを格納しつつ、ビークルの運転者のシームレスかつ信頼性のある認証が可能になる。いくつかの場合、信頼されたモバイルコンピューティングデバイスは、登録された特徴データをビークルコンピューティングシステムに送信し得る。ビークルコンピューティングシステムは、次いで、未知のユーザについての認証特徴データを既知のユーザの受け取られた登録された特徴データと比較することにより、ビークルにおいて未知のユーザの認証を行なうように構成され得る。
【0003】
一例において、方法は、モバイルコンピューティングデバイスが、ビークルのビークルコンピューティングシステムとの接続を確立することと、接続を確立した後、モバイルコンピューティングデバイスが、ビークルのユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データをビークルコンピューティングシステムから受け取ることとを含み、ビークルのユーザの顔の少なくとも1つの画像は、ビークルの少なくとも部分に接続される画像キャプチャデバイスによってキャプチャされる。当該例示的な方法はさらに、モバイルコンピューティングデバイスが、第1の特徴データと、モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ビークルのユーザと以前に登録されたユーザとの間のマッチを決定することと、モバイルコンピューティングデバイスが、マッチに基づいてビークルのユーザを認証することと、モバイルコンピューティングデバイスが、ビークルのユーザについての認証データをビークルコンピューティングシステムに送信することとを含み、認証データは、マッチを示す。
【0004】
別の例において、コンピュータ読取可能記憶媒体は、命令を格納しており、命令は、実行されると、少なくとも1つのプロセッサに、ビークルのビークルコンピューティングシステムとの接続を確立することと、接続を確立した後、ビークルのユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データをビークルコンピューティングシステムから受け取ることとを行わせ、ビークルのユーザの顔の少なくとも1つの画像は、ビークルの少なくとも部分に接続される画像キャプチャデバイスによってキャプチャされ、さらに、第1の特徴データと、モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ビークルのユーザと以前に登録されたユーザとの間のマッチを決定することと、マッチに基づいて、ビークルのユーザを認証することと、ビークルのユーザについての認証データをビークルコンピューティングシステムに送信することとを行わせ、認証データは、マッチを示す。
【0005】
別の例において、モバイルコンピューティングデバイスは、少なくとも1つのプロセッサと、少なくとも1つのコンピュータ読取可能記憶デバイスとを含んでいる。少なくとも1つのコンピュータ読取可能記憶デバイスは、命令を格納しており、命令は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、ビークルのビークルコンピューティングシステムとの接続を確立することと、接続を確立した後、ビークルのユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データをビークルコンピューティングシステムから受け取ることとを行わせ、ビークルのユーザの顔の少なくとも1つの画像は、ビークルの少なくとも部分に接続される画像キャプチャデバイスによってキャプチャされ、さらに、第1の特徴データと、モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ビークルのユーザと以前に登録されたユーザとの間のマッチを決定することと、マッチに基づいて、ビークルのユーザを認証することと、ビークルのユーザについての認証データをビークルコンピューティングシステムに送信することとを行わせ、認証データは、マッチを示す。
【0006】
別の例において、方法は、ビークルのビークルコンピューティングシステムが、モバイルコンピューティングデバイスとの接続を確立することを含み、ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、さらに、ビークルコンピューティングシステムが、ビークルの内部におけるユーザの存在を決定することと、ビークルの内部におけるユーザの存在を決定した後、ビークルコンピューティングシステムが、ビークルの少なくとも部分に接続される画像キャプチャデバイスを使用して、ユーザの顔の少なくとも1つの画像をキャプチャすることとを含む。当該例示的な方法はさらに、ビークルコンピューティングシステムが、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを決定することと、ビークルコンピューティングシステムが、ユーザについての認証データを受け取ることとを含み、認証データは、第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ユーザと、以前に登録されたユーザとの間のマッチを示し、さらに、ビークルコンピューティングシステムが、ユーザについての認証データに基づいて、インフォテインメントヘッドユニットにユーザをログインするよう、ユーザアカウント情報にアクセスすることを含む。
【0007】
別の例において、コンピュータ読取可能記憶媒体は、命令を格納しており、命令は、実行されると、少なくとも1つのプロセッサに、モバイルコンピューティングデバイスとの接続を確立することと、ビークルの内部におけるユーザの存在を決定することと、ビークルの内部におけるユーザの存在を決定した後、ビークルの少なくとも部分に接続される画像キャプチャデバイスを使用して、ユーザの顔の少なくとも1つの画像をキャプチャすることと、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを決定することと、ユーザについての認証データを受け取ることとを行わせ、認証データは、第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ユーザと、以前に登録されたユーザとの間のマッチを示し、さらに、ユーザについての認証データに基づいて、インフォテインメントヘッドユニットにユーザをログインするよう、ユーザアカウント情報にアクセスすることを行わせる。
【0008】
別の例において、ビークルコンピューティングシステムは、少なくとも1つのプロセッサと、少なくとも1つのコンピュータ読取可能記憶デバイスとを含む。少なくとも1つのコンピュータ読取可能記憶デバイスは命令を格納しており、命令は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、モバイルコンピューティングデバイスとの接続を確立することを行わせ、ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、さらに、ビークルの内部におけるユーザの存在を決定することと、ビークルの内部におけるユーザの存在を決定した後、ビークルの少なくとも部分に接続される画像キャプチャデバイスを使用して、ユーザの顔の少なくとも1つの画像をキャプチャすることと、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを決定することと、ユーザについての認証データを受け取ることとを行わせ、認証データは、第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ユーザと、以前に登録されたユーザとの間のマッチを示し、さらに、ユーザについての認証データに基づいて、インフォテインメントヘッドユニットにユーザをログインするよう、ユーザアカウント情報にアクセスすることを行わせる。
【0009】
1つ以上の例の詳細を添付の図面および以下の説明で述べる。本開示の他の特徴、目的および利点は、記載および図面ならびに添付の請求の範囲から明白になるであろう。
【図面の簡単な説明】
【0010】
【
図1】本開示の1つ以上の局面に従った、ビークルのユーザを認証するためにモバイルコンピューティングデバイスと通信するように構成される例示的なビークルコンピューティングシステムを含むビークルの内部の側面図を示す概念図である。
【
図2】本開示の1つ以上の局面に従った、ビークルの内部のさらなる詳細を示す概念図である。
【
図3】本開示の1つ以上の局面に従った、顔登録動作を行なう例示的なコンピューティングデバイスを示す概念図である。
【
図4】本開示の1つ以上の局面に従った、例示的なコンピューティングシステムを示すブロック図である。
【
図5】本開示の1つ以上の局面に従った、例示的な運転者乗込および認証プロセスを示す図である。
【
図6】本開示の1つ以上の局面に従った例示的な顔登録プロセスを示す図である。
【
図7】本開示の1つ以上の局面に従った、例示的なコンピューティングシステムによって行なわれる例示的な動作を示すフローチャートである。
【
図8】本開示の1つ以上の局面に従った、例示的なビークルコンピューティングシステムによって行なわれる例示的な動作を示すフローチャートである。
【発明を実施するための形態】
【0011】
詳細な説明
上述したように、現代のビークルは、ディスプレイデバイス(たとえば存在感知ディスプレイ)と、オペレーティングシステムおよび1つ以上のアプリケーションを実行するように構成される計算エンジンとを有するインフォテインメントヘッドユニット(IHU)を備えている。IHUは、ユーザが運転中にリッチでパーソナライズされたエクスペリエンスを有することを可能にする。いくつか例示すると、IHUによって提供されるアプリケーションによって、ユーザは、好みの音楽を聞いたり、Eメールをブラウズしたり、または、お気に入りの行き先および/もしくは頻繁な行き先を選択したりすることが可能になり得る。ユーザのパーソナライズされたエクスペリエンスは、IHU上のユーザごとのアカウントにユーザ固有のプロファイルが格納されることにより達成され得る。
【0012】
いくつかの場合において、アカウントが最初に作成された時にビークルとペアリングされるキーフォブまたは外部デバイス(たとえば携帯電話)は、ユーザを識別し、IHUにログインさせ得る。しかしながら、キーフォブまたは外部デバイスが単に存在するだけでは必ずしも、ビークルの特定のユーザ、既知のユーザまたは以前に識別されたユーザの認証が達成されない。ある場合において、IHUはさらに、IHUへのログインのための明示的な許可を可能にするために、既知の信頼されたデバイスのユーザが当該ユーザのデバイス上にパーソナルパスコードまたはパスワードを入力することを促し得る。しかしながら、このアプローチは潜在的に、シームレスな「乗り込んで運転(get-in-and drive)」というエクスペリエンスについてのユーザの期待を打ち消し得る。
【0013】
現代の自動車は、異なるレベルの自律運転をサポートする。いくつかの自動車は、運転者の注意深さを監視するために、または、自律モードへの安全なハンドオフ(handoff)および/または自律モードからの安全なハンドオフを決定するために、車内カメラを使用する。1つのアプローチは、パーソナルモバイルデバイス上でのフェイスアンロック機能と同様の顔ベースの識別を提供するために車内カメラを活用することである。しかしながら、この顔ベースの認証プロセスは典型的に、カメラが異なるポーズのユーザの顔特徴/バイオメトリック特徴をキャプチャするために、方向付けされたパターンでユーザが顔を移動させることを伴い得る登録ステップを伴う。各ポーズは、そのポーズに関連付けられる顔特徴または他のバイオメトリック特徴の別個のグループに関連付けられ得る。ビークル内においてビークルのカメラを使用して登録を直接的に行なうことには、ある困難が存在し得る。ユーザは、運転者に対向するカメラを見ている間、同時に、ユーザの頭を移動させるためにビークルから任意の視覚的指示または他の指示を受け取り得ないからである。
【0014】
本願は、ビークル内カメラと、ビークルに通信可能に結合される信頼されたモバイルコンピューティングデバイスとを用いて、ビークルの運転者のシームレスな認証を行なうための技術を記載する。当該技術は、顔画像情報のユーザプライバシーを保証しつつ、信頼性のある認証メカニズムおよびシームレスなユーザエクスペリエンスを提供し得る。信頼されたモバイルコンピューティングデバイスは最初に、さまざまな異なるポーズの既知のユーザの顔の画像データ(たとえば、顔特徴データのような計算されたデータ)をキャプチャするために、登録プロセスを行ない得る。本願明細書において使用されるように、「画像データ」という用語は、たとえばユーザの顔のキャプチャされた画像から計算されるかまたは別の態様で決定されるデータ(たとえば特徴データ)を指す。信頼されたデバイスは、既知のユーザの画像データの各グループをポーズバケットのグループのうちのそれぞれのポーズバケットに割り当て得る。信頼されたデバイスは、既知のユーザについてのユーザアカウントに既知のユーザの画像データを関連付けることによって画像データを登録する。次いで、信頼されたデバイスは、ビークルの内部に位置している未知のユーザの認証画像データ(たとえば画像に関連付けられる計算された顔特徴データのようなテスト画像データ)を受け取り得る。認証画像は、ビークルのビークル内カメラを使用してキャプチャされ、計算された画像データ(たとえば特徴データ)は、画像から得られるとともに、信頼されたデバイスによって使用される。信頼されたデバイスは、当該未知のユーザについての認証特徴データを、既知のユーザの登録された特徴データと比較することにより、未知のユーザを認証し得る。当該比較に基づいて、信頼されたデバイスは、ビークルへ認証プロセスの結果を送信し、次いで、ビークルは、IHUにおいて、認証されたユーザのために(たとえば、そのユーザのプロファイルおよび/またはアカウント情報に基づいて)カスタマイズされるログイン動作を行ない得る。いくつかの場合、信頼されたモバイルコンピューティングデバイスは、登録された特徴データをビークルコンピューティングシステムに送信し得、ビークルコンピューティングシステムは次いで、未知のユーザについての認証特徴データを既知のユーザの受け取られた登録された特徴データと比較することによって、ビークルにおいて未知のユーザの認証を行なうように構成され得る。
【0015】
いくつかの例では、コンピューティングデバイスは、未知のユーザの顔の認証特徴データに関連付けられるポーズバケットを決定し得、認証特徴データに関連付けられるポーズバケットと同じポーズバケットに含まれる既知のユーザの特徴データを選択し得、かつ、未知のユーザが既知のユーザであるか否かを決定するために、選択された特徴データを認証特徴データと比較し得る。別の例として、コンピューティングデバイスは、既知のユーザの登録された特徴データのどれが未知のユーザについての認証特徴データに最も類似しているか決定するために、認証特徴データを登録された特徴データのグループの各々と比較し得る。コンピューティングデバイスは、ポーズバケットにかかわらず、既知のユーザの最も類似した登録された特徴データに基づいて、未知のユーザが既知のユーザであるか否かを決定し得る。
【0016】
いくつかの異なるポーズバケットに含まれる特徴データを登録することによって、信頼されたデバイスは、ビークルの現在のユーザのような未知のユーザを認証するためにより正確に顔認識を行ない得る。たとえば、いくつかのポーズバケットに含まれる既知のユーザの特徴データを登録することによって、認証特徴データに関連付けられるポーズバケット(たとえば未知のユーザの顔のポーズ)が、既知のユーザの登録された特徴データを含むポーズバケット(たとえば登録された特徴データにおける既知のユーザのポーズ)に類似する確率が増加し得る。未知のユーザの認証特徴データのポーズが既知のユーザの1つ以上の登録された特徴データのポーズに類似する確率を増加させることによって、未知のユーザが実際は既知の承認されたユーザである場合に当該未知のユーザを誤って拒絶する確率が低減され得る。いくつかの場合において、未知のユーザの認証特徴データのポーズが既知のユーザの1つ以上の登録された特徴データのポーズに類似する確率を増加させることによって、未知のユーザが既知の承認されたユーザでない場合に当該未知のユーザを誤って受け入れる確率が低減され得る。これにより、コンピューティングデバイスは、未知のユーザのポーズにかかわらず、未知のユーザの特徴データをより正確に認証し得る。
【0017】
図1は、例示的なビークルコンピューティングシステム100を含むビークル(たとえば自動車)の内部の側面図を示す概念図である。
図1は、ビークルコンピューティングシステム100のコンポーネントに加えて、ビークル内部の断面視図を示す。ビークルコンピューティングシステム100は、ユーザ入力を検出および処理するように構成される。
【0018】
図1に示されるビークルは自動車であってもよいが、本開示の局面はさらに、トラック、モータサイクル、航空機、ウォータークラフト、電車または他のビークルを含む他のタイプのビークルに適用可能であってもよい。
図1では、運転者150は通常、シート152を占有し得る。自動車のシート152は、シート152の乗員が物理的にハンドル154を制御し得るように、ビークルのハンドル154の直接的に後ろに位置決めされ得る。シート152は、
図1に示されるビークル内において、ルーフ158の下に位置決めされる。ハンドル154は、ダッシュボード156から突出し得る。少なくとも1つの搭乗者シートは、シート152に横方向に隣接して位置決めされ得る。他の搭乗者シートは、シート152の後ろに位置決めされ得るか、または、シート152の前に位置決めされ得る。
【0019】
各々がビークルコンピューティングシステム100に含まれ得るデバイス、コンポーネントおよびモジュールの集合がさらに
図1に示される。ビークルコンピューティングシステム100は、存在感知パネル102およびカメラ104ならびにディスプレイ112および制御ユニット106を含み得るが、これらに限定されない。存在感知パネル102およびカメラ104のようなビークルコンピューティングシステム100の1つ以上のコンポーネントは、自動車の前側の運転者シートおよび前側の搭乗者シートにおいて着座する乗員に直接的かつ物理的にアクセス可能であり得、センターコンソール101内、センターコンソール101の近傍、またはセンターコンソール101上に位置し得る。そのようなコンポーネントは、そのような乗員の容易に手の届くところにあり得、さらにまたは代替的には、バックシートのようなビークルの別の搭乗者エリアに位置決めされ得る。いくつかの例において、コンポーネントは、腕を伸ばしてコンポーネントに到達するためにビークルの乗員が自身のシートにおける位置を変える必要がない場合に、容易に手の届くところにあり得る。換言すると、たとえば、多くの運転者の場合、ハンドル、スティックシフトおよびセンターコンソールの通常の位置が、運転者の容易に手の届くところにあると考えられ得る。さらに以下に記載するように、存在感知パネル102およびカメラ104は、ビークルコンピューティングシステム100のための入力デバイスとして機能し得る。いくつかの例において、ビークルの乗員によって必ずしも物理的なアクセスを必要し得ないビークルコンピューティングシステム100の1つ以上のコンポーネント(いくつかの例では、たとえばディスプレイ112および制御ユニット106)は、ダッシュボード156内に位置決めされ得るか、ダッシュボード156上に位置決めされ得るか、または、ダッシュボード156へ統合され得る。そのようなコンポーネントは、ビークルの乗員に対向するかまたは近傍に位置する自動車ダッシュボードおよび/またはコンソールの部分として統合され得る。この開示においてさらに記載されるように、ビークルコンピューティングシステム100は、グラフィカルユーザインターフェイスを出力し得るディスプレイ112を含み得る。いくつかの場合、付加的なカメラがビークル内に設けられ得る。たとえば、
図1に示されるように、ハンドル154は、ユーザ対向カメラ111を含み得る。いくつかの場合において、付加的なユーザ対向カメラは、ダッシュボード156上、ルーフ158上、コンソール101もしくはパネル102上および/またはディスプレイ112上といった、ビークルの他の要素またはコンポーネント上に位置決めされ得る。いくつか場合において、付加的なカメラは、ビークルのバックミラーまたはウインドシールド上に位置決めされ得る。一般に、車内カメラ(たとえば104/111)は、ビークルの1つ以上の部分またはコンポーネントにマウントされ得るか、または、別の態様で接続され得る。
【0020】
ユーザ150はシート152に着座する。ユーザ150は、運転者であり得るが、ユーザ150はさらに搭乗者または他のビークル乗員であり得る。
図1において、ユーザ150は、しばしば(たとえば、ハンドル154およびダッシュボード156によって特徴付けられる)フロントシートと考えられ得る位置に存在するのが示されるが、ユーザ150は、バックシートを含むビークル内の別の位置に着座し得る。
【0021】
図1の例では、ユーザ150は、ビークルを運転または動作し得、ビークルの1つ以上のコンポーネントとインタラクションし得、および/または、入力デバイスあるいは存在感知パネル102もしくカメラ104において入力を提供し得る。
図1では、ユーザ150が存在感知パネル102とインタラクションしているのが示される。
【0022】
存在感知パネル102は、存在感知パネル102の位置において、1つ以上のタップ、ジェスチャおよび/または他のユーザ入力を検出し得る。そのようなタップ、ジェスチャ、または他の入力は、ユーザ150の1本以上の指に由来し得るか、または、ユーザ150によって使用されるスタイラスもしくは他のデバイスに由来し得る。そのような入力は、存在感知パネル102の表面上にて与えられるか、または、存在感知パネル102の表面のしきい値距離内にて与えられる。
図1の例示において、しきい値距離は、ルーフ158に向かって存在感知パネル102の上を延在し得る。
【0023】
存在感知パネル102の位置において1つ以上の入力を検出することに応答して、存在感知パネル102は、存在感知パネル102によって検出される入力の指示をUIモジュール108に出力し得る。いくつかの例において、UIモジュール108は、入力の指示に基づいて、当該入力に関する情報を決定し得る。そのような情報はたとえば、当該入力に対応する1つ以上のライン、文字または形状を示し得る。UIモジュール108は、当該入力に関する情報を1つ以上のアプリケーションモジュール110に出力し得る。当該入力に関する情報に応答して、1つ以上のアプリケーションモジュール110は、入力に対応する動作を決定し得、および/または、動作を行ない得る。いくつかの例において、当該入力に関する情報に応答して、1つ以上のアプリケーションモジュール110は、当該入力、当該動作、または、行なわれるべき動作に関する情報をディスプレイ112に出力し得る。
【0024】
記載および図示されるように、ビークルコンピューティングシステム100のうちのいくつかまたはすべてがダッシュボード156内に収容され得る。ダッシュボード156は、いくつかの例において、プラスチック、ビニール、ゴム、アルミニウム、鋼または任意の他の好適な材料から構成され得る。制御ユニット106は、少なくとも1つのプロセッサおよび/または少なくとも1つの記憶デバイスを含み得、筐体105内に収容され得る。筐体105も、プラスチック、ビニール、ゴム、アルミニウム、鋼または任意の他の好適な材料から構成され得る。いくつかの例において、筐体105はさらに、ビークルコンピューティングシステム100のために機能を提供する1つ以上の電気コンポーネントを包含するかまたは別の態様で保護する剛性ケースであってもよい。いくつかの例において、筐体105は、自動車ダッシュボードまたはコンソールに取り付けられ得るか、マウントされ得るか、または、別の態様で統合され得る。
【0025】
制御ユニット106は、
図4にさらに示すように、ハードウェア、ファームウェアおよびソフトウェアの組み合わせといった1つまたは1つの以上のモジュールのための動作環境またはプラットホームを提供し得る。たとえば、制御ユニット106は、命令を実行するとともに1つ以上のモジュールのデータを格納し得る1つ以上のプロセッサおよび記憶デバイスを含み得る。制御ユニット106はさらに、いくつかの動作を例示すると、コンポーネントを制御し、コンポーネントを構成し、および/またはコンポーネントと情報を通信するように、存在感知パネル102、カメラ104およびディスプレイ112を含む1つ以上の他のソフトウェアおよび/またはハードウェアコンポーネントに動作可能に結合され得る。
【0026】
ディスプレイ112は、ユーザまたはビークル乗員に視覚情報を出力することができる、液晶ディスプレイ(LCD)、ドットマトリックスディスプレイ、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、e-インク、または、同様のモノクロームもしくはカラーディスプレイのうちのいずれか1つ以上を使用するディスプレイデバイスのような出力デバイスとして機能し得る。いくつかの例において、ディスプレイ112はさらに、入力デバイスとして機能し得る。そのため、ディスプレイ112は入力デバイスおよび出力デバイスの両方として機能する。そのような例において、ディスプレイ112は、統合された存在感知入力デバイスと、ディスプレイデバイスとを含み得る。たとえば、ディスプレイ112は、抵抗型タッチスクリーン、表面音響波タッチスクリーン、容量型タッチスクリーン、投射型容量タッチスクリーン、感圧スクリーン、音響パルス認識タッチスクリーン、または、別の存在感知スクリーン技術といった存在感知スクリーンを使用する存在感知入力デバイスとして機能し得る。ユーザ入力に基づいて、ディスプレイ112はユーザに出力を提示し得る。たとえば、ディスプレイ112は、ビークルコンピューティングシステム100において実行されるアプリケーション(たとえばナビゲーションアプリケーション)のさまざまなユーザインターフェイスを提示し得る。運転者のようなビークルの乗員は、そのようなアプリケーションのうちの1つ以上とインタラクションするようユーザ入力を提供し得る。
【0027】
ビークルコンピューティングシステム100は、支援、通知、エンターテインメント、または、ビークルの乗員とのユーザインタラクションを必要とする他のタスクを行うよう動作し得る。ビークルコンピューティングシステム100は、いくつかの例において、インフォテインメントヘッドユニット(IHU)、インフォテインメントシステムまたはそのサブコンポーネントと称され得る。たとえば、ビークルコンピューティングシステム100は、ビークルの1人以上の乗員のために機能を実行または情報を処理する1つ以上のアプリケーションモジュール110を含み得る。たとえば、ビークルコンピューティングシステム100は、目的地への方向を提供するナビゲーションサービスを提供し得る。ビークルコンピューティングシステム100はさらに、クエリに応答しておよび/またはプリエンプティブな支援または推奨として、情報を提供する情報抽出サービスを提供し得る。ビークルコンピューティングシステム100はさらに、ビークルに関するビークルデータ、または、オーディオもしくはビデオのようなマルチメディアを提供し得る。ビークルコンピューティングシステム100によって提供され得る機能のいくつかの例のみが言及されており、ビークルコンピューティングシステム100は多くの付加的な能力を提供してもよい。この態様および他の態様により、ビークルコンピューティングシステム100は、ビークルの1人以上の乗員のための運転エクスペリエンスまたはライドエクスペリエンスを向上させ得る。
【0028】
いくつかの例において、ビークルコンピューティングシステム100は、存在感知パネル102によって検出される入力、カメラ104によって検出される入力、および/または、存在感知パネル102およびカメラ104の組み合わせによって検出される入力を通じて、制御され得る。ビークルコンピューティングシステム100はさらに、1つ以上の付加的な入力デバイス(たとえばマイクロフォン、物理的なボタンもしくはスイッチ、または、他のタイプの入力デバイス)によって検出される入力を通じて制御され得る。
【0029】
いくつかの例において、存在感知パネル102は単に、存在感知パネル102において直接的かつ物理的に生じ得るユーザ入力によって提供されるタッチ入力のための入力デバイスとして機能し得る。たとえば、存在感知パネル102は、存在感知デバイスを使用するマルチタッチ存在感知入力デバイスとして機能し得、その例としては、抵抗型タッチスクリーンもしくはタッチパネル、表面音響波タッチスクリーンもしくはタッチパネル、容量型タッチスクリーンもしくはタッチパネル、投射型容量タッチスクリーンもしくはタッチパネル、感圧スクリーンもしくはタッチパネル、音響パルス認識タッチスクリーンもしくはタッチパネル、または、別の存在感知スクリーンもしくはタッチパネル技術がある。いくつかの例において、存在感知パネル102は、存在感知パネル102に関連付けられる存在感知コンポーネントにおける対象、当該存在感知コンポーネントの近傍の対象、当該存在感知コンポーネントの範囲内における対象を検出し得る。1つの例示的な範囲として、存在感知パネル102は、存在感知パネル102の2cm以内にある指またはスタイラスのような対象を検出し得る。存在感知パネル102は、対象が検出された存在感知入力デバイスの位置(たとえば(x,y)座標)を決定し得る。別の例示的な範囲では、存在感知パネル102は、存在感知パネル102から6インチ以下の対象を検出し得る。他の範囲も可能である。存在感知パネル102は、容量技術、誘導技術、および/または、光学認識技術を用いてユーザの指またはスタイラスなどを検出し得る。
【0030】
図1に示される例において、存在感知パネル102は、カメラ104の上のセンターコンソール101に位置決めされ得、センターコンソール101は、存在感知パネル102がカメラ104のレンズまたは視野を物理的に不明瞭であっても、カメラ104が存在感知パネル102の直上の画像をキャプチャするようにカメラ104に対して透過的であり得る。たとえば、カメラ104は、赤外線を受け取ることにより画像をキャプチャする赤外線カメラであり得、存在感知パネル102は、カメラ104がルーフ158と存在感知パネル102との間に由来する赤外線を受け取ることができるように、赤外線に透過的であり得る。他の例において、カメラ104は、存在感知パネル102の直下に位置決めされなくてもよく、カメラ104はビークル内のどこか他のところに位置決めされてもよい。たとえば、
図1に示されるように、ハンドル154はユーザ対向カメラ111を含み得る。ある場合には、付加的なユーザ対向カメラは、ダッシュボード156、ルーフ158、コンソール101もしくはパネル102、および/または、ディスプレイ112上といった、ビークルの他の要素またはコンポーネント上に位置決めされ得る。
【0031】
いくつかの例において、存在感知パネル102は、入力デバイスおよび出力デバイスの両方として機能し得る。そのような例において、存在感知パネル102は、統合された存在感知入力デバイスおよびディスプレイデバイスを含み得、ユーザまたはビークル乗員に視覚情報を出力することができる、液晶ディスプレイ(LCD)、ドットマトリックスディスプレイ、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、e-インク、または、同様のモノクロームもしくはカラーディスプレイのうちのいずれか1つ以上であり得る。存在感知パネル102が入力デバイス機能および出力デバイス機能の両方を含んでいる他の例において、存在感知パネル102は、入力を受け取るための存在感知入力デバイスと、出力を提供するためのディスプレイデバイスという2つの別個のコンポーネントによって実現され得る。存在感知パネル102が入力デバイス機能および出力デバイス機能の両方を含んでいる例において、存在感知パネル102はそれでも、カメラ104の上のセンターコンソール101に位置決めされ得、センターコンソール101は、存在感知パネル102の下に位置決めされる場合であっても、カメラ104が存在感知パネル102の直上の画像をキャプチャするようにカメラ104に対して透過的であり得る。
【0032】
カメラ104および/またはカメラ111は、カメラまたは電荷結合素子のような任意の適切なタイプの画像取得デバイスまたは画像キャプチャデバイスのうちのの1つ以上であり得る。いくつかの例において、カメラ104は、高い視野および浅い焦点深度を有する1つ以上の赤外線カメラであってもよく、特定の視野を有する、ビークル内において概して上方を向くよう方位付けされるバックライト赤外線カメラであってもよい。他の例において、カメラ104は、1つ以上の他の赤外線カメラ、サーモグラフィックカメラ、熱画像カメラ、光感応カメラ、レンジセンサ、トモグラフィデバイス、レーダデバイス、赤緑青(RGB)カメラ、または、超音波カメラを含み得る1つ以上の他のタイプのカメラまたは画像センサであり得るか、または、当該1つ以上の他のタイプのカメラまたは画像センサを含み得る。いくつかの例において、カメラ104は、コンピュータビジョン技術の用途に適切な任意の画像キャプチャデバイスであり得る。使用されるセンサまたはカメラのタイプに依存して、結果得られる画像は、2次元画像、3次元ボリュームまたは画像シーケンスを含み得る。ピクセル値は典型的に1つ以上のスペクトルバンドにおける光強度に対応するが、音波もしくは電磁波の深さ、吸収もしくは反射率、または、核磁気共鳴のようなさまざまな物理的測定値にも関係付けられ得る。
【0033】
カメラ104は、運転者のようなビークルの乗員がたとえば視野内でジェスチャをする際に当該乗員が腕、手首、手、スタイラスおよび/または指を動かすと、乗員の動作をキャプチャするように構成され得る。カメラ104は、ユーザ150の顔の画像をキャプチャするように構成され得る。
【0034】
上述したように、ビークルコンピューティングシステム100はユーザインターフェイス(UI)モジュール108およびアプリケーションモジュール110を含み得る。UIモジュール108およびアプリケーションモジュール110は、ビークルコンピューティングシステム100または1つ以上の他のリモートコンピューティングデバイスに存在するとともにビークルコンピューティングシステム100または1つ以上の他のリモートコンピューティングデバイスによって実行されるソフトウェア、ハードウェア、ファームウェア、または、ハードウェア、ソフトウェアおよびファームウェアの混合を使用して、本願明細書において記載される動作を行ない得る。したがって、UIモジュール108およびアプリケーションモジュール110は、ハードウェア、ソフトウェア、ならびに/または、ハードウェアおよびソフトウェアの組み合わせとして、実現され得る。ビークルコンピューティングシステム100は、存在するハードウェア上で実行されるバーチャルマシンとして、または、当該バーチャルマシン内で、UIモジュール108、アプリケーションモジュール110、または、1つ以上の他のモジュールを実行し得る。UIモジュール108およびアプリケーションモジュール110はさまざまな態様で実現され得る。たとえば、UIモジュール108およびアプリケーションモジュール110は、ダウンロード可能なアプリケーションもしくは「アプリ」、または、プリインストールされたアプリケーションもしくは「アプリ」として実現され得る。別の例では、UIモジュール108およびアプリケーションモジュール110は、ビークルコンピューティングシステム100のオペレーティングシステムの部分として実現され得る。
【0035】
アプリケーションモジュール110は、ビークルコンピューティングシステム100上で任意のさまざまな動作を行なう機能を含み得る。たとえば、アプリケーションモジュール110は、いくつか例示すると、ナビゲーションアプリケーション、天候アプリケーション、電話ダイヤラーアプリケーション、情報抽出アプリケーション、マルチメディアアプリケーション、ビークル情報アプリケーション、Eメールアプリケーション、テキストメッセージングアプリケーション、インスタントメッセージングアプリケーション、ソーシャルネットワーキングアプリケーション、天候アプリケーション、株式市場アプリケーション、緊急警戒アプリケーション、スポーツアプリケーションを含み得る。一般に、ビークルコンピューティングシステム100は、アプリケーションモジュール110を通じてまたは別の態様でに関わらず、動作を行なうように構成され得る。当該動作は、温度制御システム(たとえば、暖房およびエアコンディショニング)、オーディオまたはインフォテインメントシステム、シート、ウィンドウ、サンシェードまたはウインドシールドワイパー、クルーズ制御、キャビン内ディスプレイシステム、ハンドル制御、ヘッドレスト、アームレスト、サイドミラーまたはバックミラー、衝突センサに関係する動作を含む。そのような動作は、1つ以上のアプリケーションモジュール110によって制御され得、または、ビークル内の他のシステムによって制御され得る。いくつかの例において、そのような動作はビークルの非セーフティ機能に限定され得る。他の例において、そのような動作は、セーフティに関連する(たとえば、方向指示器を作動させること、ミラーを調節すること、シートベルトを調節することまたはシートベルトを締める/外すこと、クルーズ制御機能を調節すること、加速すること、ブレーキをかけること)と考えられ得るビークルの1つ以上の特徴を包含し得る。
【0036】
アプリケーションモジュール110のうちの1つ以上は、ビークルコンピューティングシステム100の制御ユニット106内で動作可能であると示されているが、ビークルコンピューティングシステム100に通信可能に結合されるリモートコンピューティングデバイス(たとえばモバイルコンピューティングデバイス170)によって動作可能であってもよい。そのような例において、リモートコンピューティングデバイスにおいて実行されるアプリケーションモジュールは、任意の好適な形態のデータ通信(たとえば有線または無線のネットワーク、ニアフィールド通信またはブルートゥース(登録商標)のような短距離無線通信など)を使用して、リモートコンピューティングデバイスにコンテンツおよび意図する情報の送信を行わせる。いくつかの例において、リモートコンピューティングデバイスは、ビークルコンピューティングシステム100に含まれるコンピューティングデバイスとは別個のコンピューティングデバイスであり得る。たとえば、リモートコンピューティングデバイスは、ネットワークによってビークルコンピューティングシステム100に動作可能に結合され得る。リモートコンピューティングデバイスの例は、サーバ、スマートフォン、タブレットコンピューティングデバイス、スマートウォッチおよびデスクトップコンピュータを含むがこれらに限定されない。いくつかの例において、リモートコンピューティングデバイスは、ビークルコンピューティングシステム100の統合されたコンポーネントであってもよく、統合されたコンポーネントでなくてもよい。
図1に示されるように、1つのそのような例示的なリモートデバイスは、ディスプレイデバイス172および1つ以上の画像キャプチャデバイス173を含み得るとともに1つ以上のアプリケーション174を実行し得るモバイルコンピューティングデバイス170である。モバイルコンピューティングデバイス170の例は、携帯電話、タブレットコンピュータ、携帯情報端末(PDA)、ラップトップコンピュータ、ポータブルゲーミングデバイス、ポータブルメディアプレイヤー、eブックリーダ、ウェアラブルデバイス(たとえばウォッチ、手首にマウントされるコンピューティングデバイス、ヘッドマウント型コンピューティングデバイス)、または、他のタイプのモバイルコンピューティングデバイスを含み得るがこれらに限定されない。モバイルコンピューティングデバイス170は、1つ以上のプロセッサであり得るか、または、1つ以上のプロセッサを含み得る。
図1はさらに、ユーザ150によって着用されるとともにモバイルコンピューティングデバイス170および/またはシステム100に(たとえば1つ以上の無線接続を介して)通信可能に結合され得るモバイルウェアラブルデバイス107(たとえばスマートウォッチ)を示す。IHUシステム100は、無線通信プロトコル(たとえばブルートゥース、WIFI(登録商標)、ブルートゥースローエナジー(BLE: BLUETOOTH(登録商標) Low Energy))を使用して、ウェアラブルデバイス107および/またはモバイルコンピューティングデバイス170と通信し得る。モバイルコンピューティングデバイス170および/またはウェアラブルデバイス107は、IHUシステム100とペアリングされると、当該デバイスは、IHUシステム100に関して信頼されたデバイスと認識され得、IHUシステム100によって一意識別子が割り当てられる。この信頼されたデバイスおよびその対応する一意識別子は、IHUシステム100によって、ビークルのユーザ150とユーザ150についての任意のプロファイルおよび/またはアカウント情報と関連付けられる。
【0037】
ビークルコンピューティングシステム100のUIモジュール108は、存在感知パネル102から存在感知パネル102において検出されるユーザ入力の1つ以上の指示を受け取り得る。一般に、存在感知パネル102が存在感知パネル102の特定の位置におけるユーザ入力を検出する毎に、UIモジュール108は、存在感知パネル102からユーザ入力の指示またはユーザ入力に関する情報を受け取り得る。UIモジュール108は、存在感知パネル102から受け取った情報を、1つ以上のタッチイベントまたはジェスチャイベントのシーケンスのような1つ以上のイベントのセットへとアセンブルし得る。シーケンスにおける各ジェスチャイベントは、存在感知パネル102での入力の存在および/または動きを特徴付けるパラメータ(たとえば、時、場所、由来する方向)を表わすデータまたはコンポーネントを含み得る。シーケンスにおける各ジェスチャイベントは、存在感知パネル102の位置に対応する位置コンポーネント、存在感知パネル102がその位置においていつユーザ入力を検出したかに関係する時間コンポーネント、および/または、ジェスチャイベントがその位置におけるリフトアップまたはプッシュダウンに対応するか否かに関係するアクションコンポーネントを含み得る。
【0038】
UIモジュール108は、ジェスチャイベントのシーケンスに基づいてユーザ入力の1つ以上の特性を決定し得、かつ、ジェスチャイベントのシーケンスにおける各ジェスチャイベント内のこれらの1つ以上の特徴に関する情報を含む。たとえば、UIモジュール108は、ユーザ入力の開始位置と、ユーザ入力の終了位置、ユーザ入力の部分の密度と、ユーザ入力の部分のスピードと、ユーザ入力の部分の方向と、ユーザ入力の部分の曲率とを決定し得る。UIモジュール108は、存在感知パネル102からアプリケーションモジュール110のような他のモジュールにユーザ入力の指示を送信し得る。UIモジュール108は、ユーザによって提供される1つ以上のシングルタッチジェスチャまたはマルチタッチジェスチャを決定し得る。UIモジュール108はさらに、存在感知パネル102によって検出される入力に基づいて決定を行うよう、ビークルコンピューティングシステム100のさまざまなコンポーネント間の仲介者として機能し得、ディスプレイ112によって提示される出力を生成し得る。たとえば、UIモジュール108は、1つ以上のアプリケーションモジュール110からデータを受け取り得、グラフィカルユーザインターフェイスのようなコンテンツの出力を表示のためにディスプレイ112に行わせ得る。
【0039】
ビークルコンピューティングシステム100のUIモジュール108はさらに、カメラ104によって検出されるユーザ入力の1つ以上の指示をカメラ104から受け取り得る。一般に、カメラ104がユーザジェスチャまたは動きを検出する毎に、UIモジュール108は、ユーザ入力の指示またはユーザ入力に関する情報をカメラ104から受け取り得る。UIモジュール108は、カメラ104から受け取った情報を、動きまたはジェスチャイベントのシーケンスのような1つ以上のイベントのセットへとアセンブルし得る。シーケンスにおける各ジェスチャイベントは、視野内でカメラ104によってキャプチャされる存在、ジェスチャおよび/または動きを特徴付けるパラメータ(たとえば、時、3次元空間における場所、由来する方向、3次元空間における方向、手もしくは腕の方位、または、姿勢)を表わすデータまたはコンポーネントを含み得る。シーケンスにおける各ジェスチャイベントは、視野内の3次元位置に対応する位置コンポーネント、3次元空間内においてカメラ104がユーザ入力をいつ検出したのかに関係する時間コンポーネント、どのようなタイプのジェスチャがなされたのかに関係するアクションコンポーネント、および/または、カメラ104によってキャプチャされる1つ以上の画像を含み得る。
【0040】
さらに、いくつかの例において、ビークル内での存在感知パネル102およびカメラ104の構成および/または配置は、ビークルコンピューティングシステム100とインタラクションするために、運転者(または他のビークル乗員)にとって人間工学的かつ快適な態様を提供し得る。存在感知パネル102およびカメラ104は、異なるタイプの入力を検出し得るが、この開示の1つ以上の局面に従った存在感知パネル102およびカメラ104の位置決めは、存在感知パネル102によって検出される入力が、カメラ104によって検出される入力の自然な拡張であるとビークル乗員によって知覚され得るような位置決めであり得る。同様に、カメラ104によって検出される入力は、存在感知パネル102によって検出される入力の自然な拡張であるとビークル乗員によって知覚され得る。言いかえれば、そのようなシステムは、ビークル乗員が使用するために特に自然または容易なユーザインターフェイスを提供し得る。いくつか場合において、ビークルの乗員は、ビークルコンピューティングシステム100とインタラクションすることが相対的に直観的であると発見し得る。
【0041】
以下にさらに記載されるように、さまざまな例に従うと、モバイルコンピューティングデバイス(たとえばモバイルコンピューティングデバイス170、ウェアラブルデバイス107)は、
図1に示されるビークルのビークルコンピューティングシステム100との接続を確立し得る。接続を確立した後、モバイルコンピューティングデバイスは、ビークルのユーザ150の顔の少なくとも1つの画像に関連付けられる第1の特徴データをビークルコンピューティングシステム100から受け取り得る。ビークルのユーザ150の顔の少なくとも1つの画像は、ビークルの少なくとも部分に接続される画像キャプチャデバイス(たとえばカメラ104/111)によってキャプチャされる。以下に
図3をさらに参照して記載されるように、モバイルコンピューティングデバイスは、第1の特徴データと、モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ビークルのユーザと以前に登録されたユーザとの間のマッチを決定し得る。モバイルコンピューティングデバイスは、マッチに基づいて、ビークルのユーザ150を認証する。モバイルコンピューティングデバイスは、ビークルコンピューティングシステム100にビークルのユーザ150についての認証データを送信する。認証データは、マッチを示す。
【0042】
さまざまな例に従うと、ビークルコンピューティングシステム100は、モバイルコンピューティングデバイス(たとえばモバイルコンピューティングデバイス170、ウェアラブルデバイス107)との接続を確立し得、ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、かつ、ビークルの内部におけるユーザの存在を決定する。ビークルの内部におけるユーザの存在を決定した後、ビークルコンピューティングシステム100は、ビークルの少なくとも部分に接続される画像キャプチャデバイス(たとえばカメラ104/111)を使用して、ユーザの顔の少なくとも1つの画像をキャプチャし得、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを決定し得る。ビークルコンピューティングシステム100は、ユーザについての認証データを受け取り得、認証データは、第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、ユーザと、以前に登録されたユーザとの間のマッチを示す。ビークルコンピューティングシステム100は、ユーザについての認証データに基づいて、インフォテインメントヘッドユニットにユーザをログインするよう、ユーザアカウント情報にアクセスし得る。
【0043】
いくつかの場合において、ビークルコンピューティングシステム100は、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データをモバイルコンピューティングデバイスに送信し得る。第1の特徴データを送信した後、ビークルコンピューティングシステム100は、モバイルコンピューティングデバイスからユーザについての認証データを受け取る。
【0044】
他の代替的な場合において、信頼されたモバイルコンピューティングデバイスは、登録された特徴データをビークルコンピューティングシステム100に送信し得、ビークルコンピューティングシステムは次いで、未知のユーザについての認証特徴データを既知のユーザの受け取られた登録された特徴データと比較することによって、ビークルにおいて未知のユーザの認証を行なうように構成され得る。これらの場合において、ビークルコンピューティングシステム100は、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データをモバイルコンピューティングデバイスから受け取り、第1の特徴データと第2の特徴データとを比較する。次いで、ビークルコンピューティングシステム100は、比較に基づいて、当該ユーザと以前に登録されたユーザとの間のマッチを決定する。認証データはマッチの指示を含む。
【0045】
本開示の全体にわたって、コンピューティングデバイスが、コンピューティングデバイスおよびコンピューティングデバイスのユーザに関連付けられる情報(たとえば顔画像情報など)を分析する許可をコンピューティングデバイスのユーザから受け取る場合のみ、コンピューティングデバイスおよび/またはコンピューティングシステムが当該情報を分析する例が記載される。たとえば、以下に議論される状況では、コンピューティングデバイスまたはコンピューティングシステムが、ユーザに関連付けられる情報を収集または使用し得る前に、コンピューティングデバイスおよび/もしくはコンピューティングシステムのプログラムもしくは機能がユーザ情報(たとえばユーザの現在の位置、現在のスピードなどに関する情報)を収集および使用できるか否かをコントロールする入力を提供する機会、または、デバイスおよび/もしくはシステムがユーザに関連し得るコンテンツを受け取り得るか否かもしくはどのように受け取り得るかを指示する機会が、ユーザに提供され得る。さらに、あるデータは、コンピューティングデバイスおよび/またはコンピューティングシステムによって格納または使用される前に、個人が識別可能な情報が除去されるように1つ以上の態様で処理され得る。たとえば、個人が識別可能な情報がユーザに関して決定され得ないように、ユーザのアイデンティティが処理され得るか、または、ユーザの特定の位置が決定され得ないように位置情報が得られるユーザの地理的な位置が一般化され得る(たとえば都市レベル、郵便番号レベルまたは州レベル)。したがって、ユーザは、コンピューティングデバイスおよびコンピューティングシステムによってユーザに関して情報がどのように収集および使用されるかに対してコントロールを有し得る。
【0046】
図2は、本開示の1つ以上の局面に従った、ビークルの内部のさらなる詳細を示す概念図である。
図2において、
図1からのハンドル154の部分が示されており、ユーザ150の指がコンソール101のパネル102とインタラクションしている。本開示の技術によれば、カメラ104は、ユーザ150の顔画像を取得し、これらの画像に関連付けられる情報をモバイルコンピューティングデバイス170に提供している。モバイルコンピューティングデバイス170は、受け取った顔特徴データと、モバイルコンピューティングデバイス170によって格納された承認された既知のユーザの格納された顔特徴データとの比較に基づいて、ユーザ150を認証しており、これにより、ユーザ150の格納された顔の特徴データとのマッチを識別する。モバイルコンピューティングデバイス170は、ユーザ150についての認証データをシステム100に送信する。システム100は、モバイルコンピューティングデバイス170に特徴データを送信し得る。当該特徴データは、実際の画像情報を含むか、または、さまざまな例において、画像キャプチャデバイス173によってキャプチャされるユーザ150の画像のさまざまな特徴についての特徴データ(たとえば特徴ベクトルデータ)を含む。
【0047】
いくつかの例において、この認証データは、ユーザ150および/またはモバイルコンピューティングデバイス170に関連付けられる一意識別子を含み得る。システム100は、この受け取られた認証データを使用して、(たとえばIHUシステム100へユーザ150をログインさせるために)システム100に格納されるユーザ150についてのユーザプロファイル、ユーザプレファレンス、ログインクレデンシャルおよび/またはアカウントデータにアクセスし得る。次いで、システム100は、ユーザ150に固有であるアクセスされた情報(たとえばプレファレンス)に基づいて、ユーザ150のためにパーソナライズまたはカスタマイズされたデータをシステム100のディスプレイ112に表示する。このパーソナライズされた情報は、ユーザインターフェイス要素208および204を含み得る。カーソル206は、ユーザインターフェイス要素204のうちの1つにオーバーラップし得る。カーソル206がユーザインターフェイス要素204の1つ以上の上に存在する場合、存在感知パネル102は、存在感知パネル102における1つ以上のタップまたは入力を検出し得、システム100は、この入力に基づいて、当該入力が、カーソル206がオーバーラップするユーザインターフェイス要素204の選択に対応すると決定し得る。
【0048】
いくつかの例において、ディスプレイ112は、入力デバイスおよび出力デバイスの両方として動作する存在感知パネルであり得る。そのような例において、ディスプレイ112は、ディスプレイ112がユーザインターフェイス要素204を提示するディスプレイ112上の位置において、または、当該位置の近傍において、1つ以上の入力を検出し得る。システム100は、入力に基づいて、入力に対応する選択されたユーザインターフェイス要素204を識別し得る。ユーザインターフェイス要素204を選択する入力に応答して、システム100は、ディスプレイ112において情報を表示することまたはグラフィカルユーザインターフェイスをアップデートすることを含み得る動作を行ない得る。存在感知パネル102がディスプレイとしても機能するいくつかの例において、コンピューティングデバイス200は付加的または代替的に、存在感知パネル102に情報を表示し得るか、または、存在感知パネル102に表示されるグラフィカルユーザインターフェイスをアップデートし得る。
【0049】
IHUシステム100のディスプレイ112は、システム100に通信可能に結合されるモバイルコンピューティングデバイス170によって認証される任意の特定のユーザのためのパーソナライズまたはカスタマイズされた情報を表示するように構成され得る。したがって、ユーザ150を含むさまざまな異なる承認されたユーザがビークルを使用する場合、ディスプレイ112は、モバイルコンピューティングデバイス170によって認証される各ユーザについてのユーザプロファイルまたはアカウントのセットアップに依存して、各ユーザのための異なるカスタマイズされた情報を表示するように構成され得る。いくつか場合において、システム100は、ビークルおよび/またはIHUシステム100の動作に関連付けられるビークルのさまざまな他の設定(たとえば温度設定、無線設定、ビークル環境設定など)をカスタマイズし得る。
【0050】
図3は、本開示の1つ以上の局面に従った、顔登録動作を行なう例示的なコンピューティングデバイス310を示す概念図である。コンピューティングデバイス310は、承認されたユーザの登録された画像データを保存するように構成される、
図1に示されるモバイルコンピューティングデバイス170の一例であり得る。本願明細書において使用されるように、「画像データ」という用語は、たとえばユーザの顔のキャプチャされた画像から計算されるかまたは別の態様で決定されるデータ(たとえば特徴データ)を指す。
【0051】
コンピューティングデバイス310は、スマートフォン、タブレットコンピュータ、ラップトップコンピュータ、コンピュータウォッチ、コンピュータアイウエア、コンピュータグローブまたは任意の他のタイプのポータブルコンピューティングデバイスのようなモバイルデバイスであってもよい。コンピューティングデバイス310の付加的な例は、他のモバイルデバイスおよび非モバイルデバイスを含んでおり、その例としては、デスクトップコンピュータ、テレビジョン、携帯情報端末(PDA)、ポータブルゲーミングシステムおよび非ポータブルゲーミングシステム、デジタルメディアプレイヤーもしくはマイクロコンソール、eブックリーダ、モバイルテレビジョンプラットフォーム、自動車ナビゲーションおよびエンターテインメントシステム、または、任意の他のタイプのウェアラブル、非ウェアラブル、モバイルまたは非モバイルのコンピューティングデバイスがある。
【0052】
図3に示されるように、コンピューティングデバイス310は、存在感知ディスプレイ(PSD: presence-sensitive display)312と、1つ以上の画像キャプチャデバイス314と、顔認識モジュール(FRM: facial recognition module)322と、登録された情報328とを含む。登録された情報328はデータストアを含み得る。FRM322は、コンピューティングデバイス310において存在しおよび/または実行されるソフトウェア、ハードウェア、ファームウェア、または、ハードウェア、ソフトウェアおよびファームウェアの混合を使用して記述される動作を行ない得る。コンピューティングデバイス310は、複数のプロセッサまたは複数のデバイスによりFRM322を実行し得る。コンピューティングデバイス310は、存在するハードウェア上で実行されるバーチャルマシンとしてFRM322を実行し得る。FRM322は、オペレーティングシステムまたはコンピューティングプラットフォームの1つ以上のサービスとして実行され得る。FRM322は、コンピューティングプラットフォームのアプリケーション層において1つ以上の実行可能プログラムとして実行され得る。
【0053】
コンピューティングデバイス310のPSD312は、コンピューティングデバイス310のためのそれぞれの入力デバイスおよび/または出力デバイスとして機能し得る。PSD312はさまざまな技術を使用して実現され得る。たとえば、PSD312は、抵抗型タッチスクリーン、表面音響波タッチスクリーン、容量型タッチスクリーン、投射型容量タッチスクリーン、感圧スクリーン、音響パルス認識タッチスクリーン、または、別の存在感知ディスプレイ技術といった存在感知入力スクリーンを使用して入力デバイスとして機能し得る。PSD312は、コンピューティングデバイス310のユーザからの入力を検出し得る。たとえば、PSD312は、PSD312のしきい値距離上で、または、当該しきい値距離内で行なわれる1つ以上のジェスチャ(たとえば、ユーザが指もしくはスタイラスでPSD312にタッチする、または、PSD312の表面のしきい値距離内で指もしくはスタイラスを動かす)を検出し得る。
【0054】
PSD312はさらに、任意の1つ以上のディスプレイデバイスを使用する出力(たとえば表示)デバイスとして機能し得、当該ディスプレイデバイスの例としては、コンピューティングデバイス310のユーザに視覚情報を出力することができる、液晶ディスプレイ(LCD)、ドットマトリックスディスプレイ、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、e-インク、または、同様のモノクロームもしくはカラーディスプレイがある。PSD312は、コンピューティングデバイス310によって提供される機能に関連付けられ得る情報をユーザインターフェイス(たとえばグラフィカルユーザインターフェイス)として(たとえばユーザに)出力し得る。たとえば、PSD312は、コンピューティングデバイス310において実行されるかまたはコンピューティングデバイス310からアクセス可能であるコンピューティングプラットフォーム、オペレーティングシステム、アプリケーションおよび/またはサービスのアプリケーションモジュールまたは他の機能に関係するさまざまなユーザインターフェイスを表示し得る。
【0055】
画像キャプチャデバイス314は、画像キャプチャデバイス173(
図1)の一例であり得、デジタルカメラ、スチールカメラおよび動画カメラなどのような1つ以上のカメラを含み得る。画像キャプチャデバイス314は、静止画または動画をキャプチャおよび格納することが可能な任意の他のデバイスを含み得る。いくつかの例において、画像キャプチャデバイス314は、電子画像センサを介して画像をデジタルで記録することが可能であり得る。画像キャプチャデバイス314は、可視光(たとえば約380ナノメートルから約740ナノメートルの間の波長を有する、人間に可視である光)または近赤外線(NIR: near infrared)光(たとえば約750ナノメートルと約3400ナノメートルとの間の波長を有する光のような、可視光スペクトルに隣接している光)を検出することに応答して、画像を示すデータを生成するように構成され得る。いくつかの例において、コンピューティングデバイス310は、2次元画像を示すデータを生成するように構成される画像キャプチャデバイス314を含む。別の例において、コンピューティングデバイス310は、3次元画像を示すデータを生成するように構成される複数の画像キャプチャデバイス314を含む。これにより、複数の画像キャプチャデバイス314は、2次元画像、3次元画像またはその両方を示すデータを生成し得る。
【0056】
この開示の技術に従うと、FRM322は、コンピューティングデバイス310のユーザを認証するために顔認識を行ない得る。一般に、FRM322は、登録プロセス(たとえばコンピューティングデバイス310の初期設定中に一度)を行ない得、未知のユーザが実際は既知のユーザであるか否かを決定するために認証プロセスを周期的に実行し得る。登録プロセス中において、画像キャプチャデバイス314は、既知のユーザ338(たとえば、関連付けられるユーザアカウントにログインしたユーザ)の1つ以上の特徴データ330A~330H(集合的に「特徴データ330」またはより一般的に「画像データ330」と称される)を決定し得、PSD312は、既知のユーザ338の1つ以上の画像333を含むグラフィカルユーザインターフェイス(GUI)を出力し得る。既知のユーザ338は、登録されたユーザとも称され得る。いくつかの例において、特徴データ330の各々は、ユーザ338の特定のポーズに関連付けられる(たとえば、ユーザ338の「ポーズA」についての特徴データ330A、ユーザ338の「ポーズB」についての特徴データ330B)。既知のユーザ338は、キャプチャ画像デバイス314によってデータがキャプチャされると、GUI内で画像333を見ることが可能であり得る。既知のユーザ338は、自身の頭および/またはコンピューティングデバイス310を調節して、画像キャプチャデバイス314がさまざまな異なるポーズの既知のユーザ338の顔の画像333をキャプチャすることを可能にする。画像キャプチャデバイス314は、画像333に関連付けられるデータをFRM322に出力し得る。一例として、ユーザ338は、画像キャプチャデバイス314に対向し得、ボタン(たとえば物理的なボタンまたはPSD312によって表示されるグラフィカルボタン)を押し得、これにより、キャプチャ画像デバイス314が画像333をキャプチャし得る。別の例として、画像キャプチャデバイス314は、ユーザが画像キャプチャデバイス314に対向することに応答して、画像333を自動的にキャプチャし得る。
【0057】
FRM322は、画像キャプチャデバイス314から受け取られるデータを分析し、計算された特徴データ330の各々を1つ以上のポーズバケット332AA~332EE(集合的にポーズバケット332)に割り当てる。特徴データ330は、画像333の特徴または特性を含む。各ポーズバケット332は、ユーザの顔のピッチ角(チルト角とも称される)およびヨー角(パン角とも称される)の範囲に関連付けられる。本願明細書において使用されるように、ピッチ角は、水平軸に対するユーザの顔の角度を指し、ヨー角は、水平軸に垂直な垂直軸に対するユーザの顔の角度を指す。たとえば、ポーズバケット332の各々は、それぞれのヨーおよびピッチ範囲に関連付けられ得る。
図3の例において、ポーズバケット332の各々のサイズは等しい(たとえば10°)。たとえば、ポーズバケット332の各々は、10°の範囲のピッチ角および10°の範囲のヨー角に関連付けられる。しかしながら、いくつかの例において、ポーズバケット332のサイズは異なり得る。たとえば、あるポーズバケットは、8°の範囲のピッチ角(および/またはその範囲のヨー角)に関連付けられ得、別のポーズバケットは、10°の範囲のピッチ角(および/またはその範囲のヨー角)に関連付けられ得る。
【0058】
例示目的のために、ポーズバケット332はテーブル331の部分として
図3に示される。
図3の例に示されるように、テーブル331に示されるヨー角およびピッチ角は、各それぞれのポーズバケット332の中心を表わす。たとえば、ポーズバケット332AAの中心はヨーにおいて-20°であり、ピッチにおいて20°である。言いかえれば、ポーズバケット332AAは、ヨーにおいて-15°~-25°を表し得、ピッチにおいて15°~25°を表し得る。同様に、
図3の例において、ポーズバケット332ANの中心は、ヨーにおいて20°でありピッチにおいて20°であるため、ポーズバケット332ANは、ヨーにおいて15°から25°を表し、ピッチにおいて15°から25°を表す。テーブル331は、25個のポーズバケット332を含んでいるが、いくつかの例において、テーブル331は、異なる数のポーズバケット332を含んでもよい。理解を支援するために、ポーズバケット332はテーブル331の部分として示されているが、ポーズバケット332はテーブルに格納されなくてもよい。ポーズバケット332は、任意のデータ構造で格納されてもよく、任意の態様でオーガナイズされてもよい。
【0059】
FRM322は、画像333についてのデータに含まれる既知のユーザ338の顔の特徴またはランドマークに基づいて、ポーズバケット332のどれが特徴データに関連付けられるかを決定し得る。たとえば、FRM322は、ユーザの目、鼻および口のようなユーザの顔の画像333のランドマークを検出し得、当該ランドマークに基づいてユーザの顔のヨー角およびピッチ角を決定し得る。たとえば、FRM322は、特徴データ330Aにおけるユーザの顔のヨー角およびピッチ角と、ポーズバケット332CCに関連付けられるヨー角およびピッチ角の範囲とに基づいて、特定のポーズ(たとえば「ポーズA」)に関連付けられる特徴データ330Aがポーズバケット332CCに含まれると決定し得る。たとえば、FRM322は、特徴データ330Aにおけるユーザの顔のヨー角が0°であり、既知のユーザの顔のピッチ角が0°であるということを決定し得る。FRM322は、ポーズバケット332CCが-5°から5°までの範囲のヨー角と-5°から5°までの範囲のピッチ角とに関連付けられると決定し得る(たとえば、ポーズバケット332CCは、0°のヨーおよび0°のピッチにて、中心に位置する)。そのような例において、FRM322は、特徴データ330Aにおけるユーザの顔のヨー角およびピッチ角が、ポーズバケット332CCに関連付けられるヨー角およびピッチ角の範囲内にあると決定することに応答して、ポーズバケット332CCが特徴データ330Aを含むと決定し得る。
【0060】
別の例として、FRM322は、特徴データ330Bにおけるユーザの顔のヨー角が0°(たとえば、左方向および右方向において中心に位置する)であり、かつ、ユーザの顔のピッチ角が23°(たとえば、既知のユーザが見上げている)であることを決定し得る。FRM322は、ポーズバケット332ACが、-5°から5°までの範囲のヨー角と15°から25°までの範囲のピッチ角とに関連付けられることを決定し得る(たとえば、ポーズバケット332CCは0°のヨーおよび20°のピッチにて中心に位置する)。そのような例において、FRM322は、特徴データ330Bにおけるユーザの顔のヨー角およびピッチ角が、ポーズバケット332ACに関連付けられるヨー角およびピッチ角の範囲内にあると決定することに応答して、ポーズバケット332ACが特徴データ330Bを含むと決定し得る。
【0061】
FRM322は、特徴データ330を決定し、しきい値数のポーズバケット332が特徴データ330のうちの1つを含むか否かを決定し得る。たとえば、FRM322は、既知のユーザの顔の特徴データ330を含んでいるポーズバケット332の数を決定し得る。
図3の例では、FRM322は、特徴データ330が、25個の可能なポーズバケット332のうち19個のポーズバケット(たとえば、332AB,332AC,332BA,332BB,332BC,332BD,332BE,332CA,332CB,332CC,332CD,332CE,332DB,332DC,332DD,332DE,332EB,332ECおよび332ED)内に含まれると決定する。いくつかの例において、FRM322は、特徴データ330を含むポーズバケットの数がしきい値数(たとえば15個のポーズバケット、17個のポーズバケット、19個のポーズバケットであるかなど、または、ポーズバケット332の65%、ポーズバケット332の75%、ポーズバケット332の85%であるかなど)を満たすか否か(たとえば、しきい値数以上であるか否か)を決定する。たとえば、FRM322は、特徴データ330がポーズバケット332の少なくとも75%以内に含まれていると決定することに応答して、特徴データ330を含むポーズバケット332の数がポーズバケットのしきい値数を満たすと決定し得る。特徴データ330を含むポーズバケット332の数がポーズバケットのしきい値数を満たすと決定することは、特徴データ330が、より正確にユーザを認証するのに十分な異なるポーズの既知のユーザの顔を表わすということを示し得る。
【0062】
特徴データ330を含むポーズバケットの数は、ポーズバケットのしきい値数を満たさないと決定することに応答して、画像キャプチャデバイス314は、登録プロセスのために1つ以上の画像333をキャプチャし得る。たとえば、FRM322は、既知のユーザ338の顔の異なる角度の画像333をキャプチャするために、既知のユーザ338の頭を移動するように既知のユーザ338に指示するグラフィカルユーザインターフェイスを出力し得る。
【0063】
特徴データ330を含むポーズバケットの数がポーズバケットのしきい値数を満たすと決定することに応答して、FRM322は、既知のユーザ338についてのユーザアカウントに特徴データ330を関連付け得る。いくつかの例において、特徴データ330は、各それぞれの画像について画像テンプレート(エンベッディング(embedding)とも称される)を含み得る。一例として、画像テンプレートは一般的に、ユーザの顔の1つ以上の特徴(たとえばバイオメトリック特徴)の統計モデルに対応し得る。たとえば、FRM322は、複数の要素値(たとえば50個の値、100個の値、500個の値など)を有するベクトルを含む画像テンプレートを生成し得る。いくつかの例において、ベクトルの各要素値は、ユーザの顔の特徴(たとえば両目の間の距離、鼻形状など)に対応する。代替的または付加的には、ベクトルの要素値はたとえば、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。たとえば、FRM322は、学習された顔認識モデルを複数の特徴データ330に適用し得、各それぞれの特徴データ330についての画像テンプレート(たとえばエンベッディング)をベクトルとして出力し得る。いくつかの例において、FRM322は、画像テンプレート識別子にデータを割り当て、かつ、既知のユーザ338についてのユーザアカウントのためのユーザアカウント識別子にそれぞれの画像テンプレート識別子を関連付けることにより、ユーザアカウントに特徴データ330を関連付ける。
【0064】
FRM322は、ユーザ338の画像333に関連付けられる特徴データ330を含むデータストアを含む登録された情報328のデータ画像を特徴とし得る。いくつかの例において、FRM322は、登録された情報328に特徴データ330を格納する前に、特徴データ330を暗号化する。いくつかの例において、登録された情報328は、情報がネットワークを通じて任意の他のデバイスに送信されない(たとえば、
図1のビークルのシステム100に送信されない)ように、コンピューティングデバイス310上にローカルに格納され得る。さらに、コンピューティングデバイス310は、登録された情報に格納される特徴データ330の1つ以上の部分を削除する機会をユーザに提供し得る。
【0065】
FRM322は、既知のユーザ338の登録プロセスを完了した後、未知のユーザ(たとえば
図1のビークルのユーザ150)について認証プロセスを行ない得る。言いかえれば、FRM322は、ビークルにおけるカメラ(たとえばカメラ104および/または111)のうちの1つによってキャプチャされる画像333から決定されるとともに
図1のモバイルコンピューティングデバイス170の一例であり得るコンピューティングデバイス310にIHUシステム100によって送信されるユーザ150の特徴データに基づいて、
図1のビークルの未知のユーザ150を認証する要求を受け取り得る。システム100は、たとえば画像キャプチャデバイス173によってキャプチャされるユーザ150の画像のさまざまな特徴についての特徴ベクトルデータを含む特徴データ330をコンピューティングデバイス310に送信し得る。
【0066】
認証画像に関連付けられる特徴データを受け取るかまたは決定することに応答して、FRM322は、未知のユーザ150が既知のユーザ338であるか否かを決定し得る。いくつかの例において、FRM322は、未知のユーザ150の顔の認証画像を示す特徴データと、既知のユーザ338の顔の画像333を示す特徴データ330との比較に基づいて、未知のユーザ150が既知のユーザ338であるか否かを決定する。たとえば、FRM322は、ポーズ独立(pose-independent)技術(ポーズ不変(pose invariant)技術とも称される)またはポーズ依存(pose-dependent)技術を使用して、未知のユーザ150の顔の認証画像を示す特徴データと、既知のユーザ338の顔の画像333から計算または決定される特徴データ330とを比較し得る。
【0067】
いくつかの例において、ポーズ依存技術では、FRM322は、ユーザ150の認証画像における未知のユーザの顔のポーズに最も近いポーズの既知のユーザ338の顔に関連付けられる認証特徴データおよび特徴データ330に基づいて、未知のユーザ150が既知のユーザ338であるか否かを決定する。一例では、FRM322は、未知のユーザ150の認証特徴データに関連付けられるポーズバケット332のポーズバケットを決定する。たとえば、FRM322は、未知のユーザの顔の特徴またはランドマークに基づいて、特徴データ330に関連付けられるポーズバケットを決定するのと同様の態様で、未知のユーザ150の特徴データに関連付けられるポーズバケットを決定し得る。たとえば、FRM322は、ユーザ150の認証特徴データにおける顔のヨー角およびピッチ角を決定し得る。認証特徴データにおける顔のヨー角およびピッチ角を決定することに応答して、FRM322は、認証特徴データにおいてポーズバケット332のどれが顔のヨー角およびピッチ角を含むか決定し得る。たとえば、FRM322は、特徴データにおける顔のヨー角およびピッチ角はそれぞれ20°および0°であると決定し得る。FRM322は、ポーズバケット332CDが15°から25°までの範囲のヨー角と、-5°から5°までの範囲のピッチ角とに関連付けられると決定し得る。そのような場合において、FRM322は、認証特徴データにおける顔のヨー角およびピッチ角がポーズバケット332CDに関連付けられるヨー角およびピッチ角の範囲に含まれると決定することに応答して、未知のユーザ150の認証特徴データがポーズバケット332CDに関連付けられると決定し得る。
【0068】
FRM322は、未知のユーザ150の顔の特徴データに関連付けられるポーズバケット内に含まれる既知のユーザ338の顔の特徴データ330から特徴データを決定し得る。言いかえれば、FRM322は、ユーザ150の認証特徴データのポーズに最も近いポーズを特徴データ330のどれが有しているかを決定し得る。一例では、FRM322は、ユーザ150の特徴データがポーズバケット332CDに関連付けられると決定し、ポーズバケット332CD内に含まれる特徴データ330の特徴データ(たとえばポーズGについての特徴データ330G)を選択する。FRM322は、選択された特徴データ330Gについての類似性スコアを決定することにより、ユーザ150が既知のユーザ338であるか否かを決定し得る。類似性スコアは、特徴データ330Gと認証特徴データとの間の類似性を示す。
【0069】
選択された特徴データ330G(たとえば未知のユーザ150の1つ以上の画像に関連付けられるポーズバケット332CDに含まれる特徴データ)についての類似性スコアを決定することに応答して、いくつかの例において、FRM322は、特徴データ330Gについての類似性スコアがしきい値類似性スコアを満たすか否か(たとえば、しきい値類似性スコア以上であるか否か)を決定する。FRM322は、特徴データ330Gについての類似性スコアがしきい値類似性スコアを満たすと決定することに応答して、未知のユーザ150が既知のユーザ338であると決定し得、特徴データ330Gについての類似性スコアがしきい値類似性スコアを満たさないと決定することに応答して、未知のユーザ150が既知のユーザではないと決定し得る。
【0070】
いくつかの例において、FRM322は、ポーズにかかわらず、未知のユーザ150が既知のユーザ338であるか否かを決定する。言いかえれば、いくつかの例において、FRM322は、未知のユーザ150が既知のユーザ338であるか否かを決定するようポーズ不変技術を利用する。たとえば、FRM322は、特徴データ330の各特徴データについてのそれぞれの類似性スコアを決定し得る。それぞれの類似性スコアは、特徴データ330の対応する特徴データと未知のユーザ150の認証特徴データとの間の類似性を示す。
【0071】
1つのシナリオでは、FRM322は、未知のユーザ150が既知のユーザ338であるか否かを決定するために、特徴データ330についてのそれぞれの類似性スコアに基づいて特徴データ330の特徴データを選択する。FRM322は、特徴データ330のうち、認証特徴データに最も近いマッチを示す類似性スコアを有する特徴データを選択する。最も近いマッチを示すスコアは、最も低い類似性スコアまたは最も高い類似性スコアであり得る。
【0072】
いくつかのシナリオでは、FRM322は、未知のユーザ150が既知のユーザ338であるか否かを決定するために、それぞれの類似性スコアに基づいて、特徴データ330のうちの2つ以上の特徴データを選択する。1つのシナリオでは、FRM322は、2つ以上の特徴データ330についての複合類似性スコアを決定する。たとえば、FRM322は、特徴データ330のうちの2以上についてのそれぞれの類似性スコアの平均に基づいて、複合類似性スコアを決定し得、未知のユーザ150が既知のユーザ338であるか否かを決定するために複合類似性スコアをしきい値類似性スコアと比較し得る。
【0073】
別の例として、FRM322は、2つ以上の特徴データについての各それぞれの類似性スコアをしきい値類似性スコアと比較し得る。そのような例において、選択された特徴データのしきい値数(たとえば100%、80%、60%など)がしきい値類似性スコアを満たす類似性スコアを有すると決定することに応答して、FRM322は、未知のユーザ150が既知のユーザ338であると決定し得る。たとえば、選択された特徴データのセットが、特徴データ330のうち最も高い類似性スコアを有する3つの特徴データを含んでいる場合、いくつかの例において、FRM322は、これら3つの選択された特徴データのうちの2つについての類似性スコアがしきい値類似性スコアを満たすと決定することに応答して、未知のユーザ150が既知のユーザ338であると決定する。
【0074】
未知のユーザ150が既知のユーザ338であると決定することに応答して、コンピューティングデバイス310は、ビークルのIHUシステム100に認証データを送信し得る。たとえば、コンピューティングデバイス310は、既知のユーザ338として未知のユーザ150を認証することの成功を示すデータを送信し得、これによりユーザ150の認証を示す。いくつかの場合において、コンピューティングデバイス310は、ユーザ338(たとえば認証されたユーザ150)についてカスタマイズまたはパーソナライズされるユーザプロファイルおよび/またはアカウント情報をシステム100に送信し得る。いくつかの場合には、コンピューティングデバイス310はさらに、ユーザ338および/またはコンピューティングデバイス310の一意識別子をビークルのシステム100に送信し得る。
【0075】
いくつかの場合において、コンピューティングデバイス310はさらに1つ以上のモデル329を格納し得る。たとえば、いくつかの場合において、コンピューティングデバイス310は、上述したように、個人を識別する助けとなる顔のランドマークを抽出するためにディープラーニングモデルを利用し得る。これらのモデルは、パーソナルデバイスの専用のニューラルエンジンまたはプロセッサ上で実行するように調整され得る。上述したように、いくつかの例において、画像テンプレートは一般に、ユーザの顔の1つ以上の特徴(たとえばバイオメトリック特徴)の統計モデルに対応し得る。たとえば、FRM322は、複数の要素値(たとえば50個の値、100個の値、500個の値など)を有するベクトルを含む画像テンプレートを生成し得る。いくつかの例において、ベクトルの各要素値は、ユーザの顔の特徴(たとえば両目の間の距離、鼻形状など)に対応する。代替的または付加的には、ベクトルの要素値はたとえば、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。たとえば、FRM322は、学習された顔認識モデルを画像333に適用し得、それぞれの特徴データ330についての画像テンプレート(たとえばエンベッディング)をベクトルとして出力し得る。代替的または付加的には、ベクトルの要素値は、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。一例として、登録モジュールは、学習された顔認識モデルを画像333に適用し得、それぞれの特徴データ330について画像テンプレート(たとえばベクトル)を出力し得る。そのような画像テンプレートはベクトルとして表わされてもよく、学習された顔認識モデルによって生成されてもよい。ベクトルは、ユーザの顔のそれぞれの特徴(たとえば両目の間の距離、鼻形状など)に各々が対応する複数の要素値を含み得る。
【0076】
コンピューティングデバイス310が、既知のユーザ338の特徴データ330を登録するとともに未知のユーザ150を認証するものとして記載されているが、いくつかの例において、1つ以上のリモートコンピューティングデバイスが、本願明細書において記載される機能のすべてまたは当該機能のサブセットを行ない得る。ある代替的な例において、コンピューティングデバイス310は、登録された特徴データをビークルコンピューティングシステム(たとえばビークルコンピューティングシステム100)に送信し得、次いで、ビークルコンピューティングシステムは、未知のユーザの認証特徴データと、既知のユーザの受け取られた登録された特徴データとを比較することによって、ビークルにおいて未知のユーザの認証を行なうように構成され得る。
【0077】
いくつかの例において、コンピューティングデバイス(たとえばコンピューティングデバイス310または別のコンピューティングデバイス)は、コンピューティングデバイスがデータを利用する許可をコンピューティングデバイスのユーザから受け取る場合のみ、コンピューティングデバイス310のユーザに関連付けられるユーザデータを利用し得る。たとえば、コンピューティングデバイスまたはコンピューティングシステムが、ユーザに関連付けられる情報を収集または使用し得る前に、コンピューティングデバイスおよび/またはコンピューティングシステムのプログラムまたは機能がユーザ情報を収集および使用し得るか否かをコントロールするために入力を提供する機会がユーザに提供され得る。さらに、ある情報は、コンピューティングデバイスおよび/またはコンピューティングシステムによって格納または使用される前に、個人が識別可能な情報が除去されるように1つ以上の態様で処理され得る。たとえば、個人が識別可能な情報がユーザに関して決定され得ないように、ユーザのアイデンティティが処理され得る。たとえば、コンピューティングデバイスは、画像自体を格納することなく、当該画像についての特徴データおよび/または画像テンプレートを格納し得、任意の他のユーザ情報に関連付けられないユーザ識別子に特徴データおよび/または画像テンプレートを関連付け得る。したがって、ユーザは、コンピューティングデバイスおよびコンピューティングシステムによってユーザに関して情報がどのように収集および使用されるかに対してコントロールを有し得る。
【0078】
これにより、この開示の技術は、コンピューティングデバイス310が、いくつかの異なるポーズバケット内に含まれる既知のユーザ338の特徴データをキャプチャすることを可能にし得る。いくつかの異なるポーズバケットにおける特徴データをキャプチャおよび登録することによって、コンピューティングデバイス310は、既知のユーザ338の特徴データを含むポーズバケットの数を増加し得、これにより、コンピューティングデバイス310は、未知のユーザ(たとえばユーザ150)についての認証特徴データのポーズバケットにかかわらず、より正確に未知のユーザの特徴データを認証し得ることが可能になり得る。たとえば、登録された特徴データを含むポーズバケットの数を増加することは、未知のユーザの認証特徴データに関連付けられるポーズバケットが、既知のユーザ338の登録された特徴データのグループのうちの1つ以上の登録された特徴データを含むポーズバケットと同様である確率を増加し得、これにより、未知のユーザが実際は既知の承認されたユーザである場合に誤って当該未知のユーザを拒絶する確率が低減され得る。したがって、ユーザエクスペリエンスが潜在的に向上される。さらに誤った拒絶の確率を低減することは、コンピューティングデバイスが増加アクセスモード(increased access mode)に入るために使用される認証の試み(たとえば顔認識、指紋認識、PINまたはパスコードなど)の数を低減し得、これにより、プロセッサによって利用される処理サイクルの量が低減され得、バッテリ寿命が向上され得る。ある場合において、記載された技術は、未知のユーザが既知の承認されたユーザでない場合に当該未知のユーザを誤って認証する確率を低減し得、これにより、コンピューティングデバイス310のセキュリティが増加され得る。
【0079】
図4は、本開示の1つ以上の局面に従った、例示的なコンピューティングシステム410を示すブロック図である。いくつかの場合において、コンピューティングシステム410は、
図3のコンピューティングデバイス310、
図1のモバイルコンピューティングデバイス170、および/または、
図1のビークルコンピューティングシステム100のより詳細な例であり得る。
図4は、コンピューティングシステム410の1つの特定の例のみを示しており、他の場合において、コンピューティングシステム410の他の多くの例が使用されてもよく、例示的なコンピューティングシステム410に含まれるコンポーネントのサブセットを含んでもよく、または、
図4に示されない付加的なコンポーネントを含んでもよい。本願明細書において使用されるように、「画像データ」という用語は、たとえばユーザの顔のキャプチャされた画像から計算されるかまたは別の態様で決定されるデータ(たとえば特徴データ)を指す。
【0080】
図4の例において示されるように、コンピューティングシステム410は、PSD412と、1つ以上の画像キャプチャデバイス414と、1つ以上のプロセッサ430と、1つ以上の入力コンポーネント442と、1つ以上の出力コンポーネント444と、1つ以上の通信ユニット446と、1つ以上の記憶デバイス448とを含む。コンピューティングシステム410の記憶デバイス448はFRM422および登録された情報428を含む。
【0081】
通信チャンネル449は、コンポーネント間通信のためにコンポーネント412,414,430,442,444,446および/または448の各々を(物理的に、通信可能に、および/または動作可能に)相互接続し得る。いくつかの例では、通信チャンネル449は、システムバス、ネットワーク接続、1つ以上のプロセス間通信データ構造、または、データ(情報とも称される)を通信するための任意の他のコンポーネントを含み得る。
【0082】
画像キャプチャデバイス414は、デジタルカメラ、スチールカメラ、動画カメラといった1つ以上のカメラを含み得る。画像キャプチャデバイス414は、静止画または動画をキャプチャおよび格納することが可能な任意の他のデバイスを含み得る。いくつかの例において、画像キャプチャデバイス414は、電子画像センサを介して画像をデジタルで記録することが可能であり得る。画像キャプチャデバイス414は、可視光を検出するように構成される1つ以上のデバイス(たとえば可視光カメラ)、近赤外線光を検出するように構成される1つ以上のデバイス(たとえば近赤外線カメラ)、または、その組み合わせを含み得る。いくつかの例において、画像キャプチャデバイス414は2次元画像を示す画像データ、3次元画像を示すデータまたはその組み合わせを生成し得る。これにより、複数の画像キャプチャデバイス414が可視光、近赤外線またはその組み合わせをキャプチャし得、2次元画像、3次元画像またはその両方を示す画像データを生成し得る。
【0083】
コンピューティングシステム410の1つ以上の通信ユニット446は、データを送信および/または受信することにより外部デバイスと通信し得る。たとえば、コンピューティングシステム410は、通信ユニット446のうちの1つ以上を使用して、セルラー無線ネットワークのような無線ネットワーク上で無線信号を送信および/または受信し得る。いくつかの例において、通信ユニット446は、グローバルポジショニングシステム(GPS)ネットワークのような衛星ネットワーク上で衛星信号を送信および/または受信し得る。通信ユニット446の例は、(たとえばイーサネット(登録商標)カードのような)ネットワークインターフェイスカード、光学トランシーバ、無線周波数トランシーバ、GPSレシーバ、または、情報を送信および/もしくは受信し得る任意の他のタイプのデバイスを含む。通信ユニット446の他の例は、モバイルデバイスにおいて見つかる短波無線(たとえばNFC、ブルートゥース(BLEを含む))、GPS、3G、4G、5GおよびWIFI無線と、ユニバーサルシリアルバス(USB)コントローラなどとを含み得る。
【0084】
コンピューティングシステム410の1つ以上の入力コンポーネント442は入力を受信し得る。入力の例は、たとえば、触覚入力、音声入力、運動入力、および光入力である。コンピューティングシステム410の入力コンポーネント442は、一例において、マウス、キーボード、音声応答システム、ビデオカメラ、ボタン、コントロールパッド、マイクロフォン、または、人間もしくはマシンからの入力を検出するための任意の他のタイプのデバイスを含む。いくつかの例において、入力コンポーネント442は、存在感知スクリーン、タッチ感知スクリーンなどを含み得る存在感知入力コンポーネントであり得る。
【0085】
コンピューティングシステム410の1つ以上の出力コンポーネント444は出力を生成し得る。出力の例は、触覚出力、音声出力、およびビデオ出力である。いくつかの例において、コンピューティングシステム410の出力コンポーネント444は、存在感知スクリーン、サウンドカード、ビデオグラフィックスアダプタカード、スピーカ、陰極線管(CRT)モニタ、液晶ディスプレイ(LCD)、または、人間もしくはマシンへの出力を生成するための任意の他のタイプのデバイスを含む。出力コンポーネントは、陰極線管(CRT)モニタ、液晶ディスプレイ(LCD)、発光ダイオード(LED)といったディスプレイコンポーネント、または、触覚出力、音声出力、および/もしくは視覚出力を生成するための任意の他のタイプのデバイスを含み得る。
【0086】
いくつかの例において、コンピューティングシステム410のPSD412は、入力コンポーネント442および/または出力コンポーネント444の機能を含み得る。
図4の例では、PSD412は、存在感知スクリーンまたはタッチ感知スクリーンのような存在感知入力コンポーネント464を含み得る。いくつかの例において、存在感知入力コンポーネント464は、存在感知入力コンポーネントにおいておよび/または存在感知入力コンポーネントの近傍において、対象を検出し得る。1つの例示的な範囲として、存在感知入力コンポーネント464は、存在感知入力コンポーネント464の2インチ以内にある指またはスタイラスのような対象を検出し得る。存在感知入力コンポーネント464は、対象が検出された存在感知入力コンポーネントの位置(たとえば(x,y)座標)を決定し得る。別の例示的な範囲では、存在感知入力コンポーネント464は、存在感知入力コンポーネント464から2インチ以下で対象を検出し得、他の範囲も可能である。存在感知入力コンポーネント464は、容量認識技術、誘導認識技術または光学認識技術を用いて、ユーザの指によって選択された存在感知入力コンポーネント464の位置を決定し得る。
【0087】
いくつかの例では、PSD412はさらに、出力コンポーネント444に関して記載されたような触覚刺激、音声刺激、またはビデオ刺激を使用して、ユーザに出力を提供し得る。たとえば、PSD412は、グラフィカルユーザインターフェイスを表示すディスプレイコンポーネント462を含み得る。ディスプレイコンポーネント462は、出力コンポーネント444に関して記載したような視覚出力を提供する任意のタイプの出力コンポーネントであり得る。コンピューティングシステム410の統合されたコンポーネントとして示されているが、PSD412は、いくつかの例では、入力および出力を送信および/または受信するためにコンピューティングシステム410の他のコンポーネントとデータまたは情報パスを共有する外部コンポーネントであり得る。たとえば、PSD412は、コンピューティングシステム410の外部パッケージング内に位置し物理的に接続されるコンピューティングシステム410の内蔵のコンポーネントであり得る(たとえば携帯電話上のスクリーン)。別の例では、PSD412は、コンピューティングシステム410のパッケージングの外に位置し物理的に分離されているコンピューティングシステム410の外部コンポーネントであり得る(たとえば、タブレットコンピュータと有線および/または無線データパスを共有するモニタ、プロジェクタなど)。いくつかの例において、コンピューティングシステム410のパッケージングの外部に位置するとともに物理的にパッケージングから分離された場合のPSD412は、入力を受け取るための存在感知入力コンポーネント464と、出力を提供するためのディスプレイコンポーネント462という2つの別個のコンポーネントによって実現され得る。
【0088】
コンピューティングシステム410内の1つ以上の記憶コンポーネント448は、コンピューティングシステム410の動作の間の処理のための情報を格納し得る(たとえば、コンピューティングシステム410は、コンピューティングシステム410における実行の間にFRM422によってアクセスされるデータを格納し得る)。いくつかの例において、記憶コンポーネント448は一時メモリであり、これは、記憶コンポーネント448の主目的が長期間の格納ではないことを意味する。コンピューティングシステム410上の記憶コンポーネント448は、揮発性メモリとして、情報の短期間の格納のために構成され得、したがって、電源オフにされると、格納されたコンテンツを保持しない。揮発性メモリの例は、ランダムアクセスメモリ(RAM)と、ダイナミックランダムアクセスメモリ(DRAM)と、スタティックランダムアクセスメモリ(SRAM)と、当該技術において公知の揮発性メモリの他の形態とを含む。
【0089】
記憶コンポーネント448はさらに、いくつかの例において、1つ以上のコンピュータ読取可能記憶媒体を含む。いくつかの例における記憶コンポーネント448は、1つ以上の一時的でないコンピュータ読取可能記憶媒体を含んでいる。記憶コンポーネント448は揮発性メモリによって典型的に格納されるより大きな量の情報を格納するように構成され得る。記憶コンポーネント448はさらに、不揮発性メモリスペースとして情報の長期間の格納のために構成され得、電源オン/オフサイクルの後でも情報を保持し得る。不揮発性メモリの例は、磁気ハードディスク、光学ディスク、フラッシュメモリ、または、電気的プログラム可能メモリ(EPROM: electrically programmable memory)または電気的消去可能プログラム可能メモリ(EEPROM: electrically erasable and programmable)の形態を含む。記憶コンポーネント448は、FRM422に関連付けられるプログラム命令および/または情報(たとえばデータ)を格納し得る。記憶コンポーネント448は、FRM422に関連付けられるデータまたは他の情報と、登録された情報428とを格納するように構成されるメモリを含み得る。
【0090】
1つ以上のプロセッサ430は、機能を実現し、および/または、コンピューティングシステム410に関連付けられる命令を実行し得る。プロセッサ430の例は、アプリケーションプロセッサ、ディスプレイコントローラ、補助プロセッサ、1つ以上のセンサハブ、および、プロセッサ、処理ユニットまたは処理デバイスとして機能するように構成される任意の他のハードウェアを含む。FRM422は、コンピューティングシステム410のさまざまなアクション、動作または機能を行なうプロセッサ430によって動作可能であり得る。
【0091】
ある例において、コンピューティングシステム410がビークルコンピューティングシステム100の例を含む場合、記憶デバイス448は、(たとえば、
図1および/もしくは
図5に示され、ならびに/または、
図1および/もしくは
図5におけるシステム100を参照して記載されるように)ビークルコンピューティングシステム100の対応する機能を実現するプロセッサ430によって実行可能である情報および/またはモジュールを含み得る。他の例において、コンピューティングシステム410が
図3のコンピューティングデバイス310の例を含む
図4に示すように、コンピューティングシステム410のプロセッサ430は、FRM422に起因し本願明細書において記載される動作をプロセッサ430に行なわせる、記憶コンポーネント448によって格納される命令を抽出および実行し得る。プロセッサ430によって実行される際の命令は、コンピューティングシステム410に記憶コンポーネント448内に情報を格納させ得る。
【0092】
FRM422は、
図3のコンピューティングデバイス310のFRM322のすべての機能を含み得、コンピューティングシステム410のユーザを認証するために顔認識を行なうためのFRM322と同様の動作を行ない得る。FRM422は、登録モジュール424および認証モジュール426を含み得る。
【0093】
いくつかの例において、登録モジュール424は、コンピューティングシステム410の既知のユーザの画像データを既知のユーザについてのユーザアカウントに関連付けるために、登録プロセスを行ない得る。いくつかの例において、たとえば、新しいアカウントをセットアップする場合、登録モジュール424は、所与のユーザアカウントについて1回、登録プロセスを行ない得る。
【0094】
登録フェーズ中、画像キャプチャデバイス414は、コンピューティングシステム410の既知のユーザ(たとえば、関連付けられるユーザアカウントにログインしたユーザ)の(
図1の)1つ以上の画像データ330をキャプチャし、画像の各々を示す画像データを生成する。FRM422の登録モジュール424は、画像キャプチャデバイス414から画像データを受け取り得、(
図1の)1つ以上のポーズバケット332に画像データ330の各々を割り当てるよう画像データを分析し得る。
【0095】
登録モジュール424は、画像データに含まれる既知のユーザの顔の特徴またはランドマークに基づいて、ポーズバケット332のどれが画像データに関連付けられるかを決定し得る。たとえば、登録モジュール424は、ユーザの目、鼻および口のような未知のユーザの顔の画像データのランドマークを検出し得、ランドマークに基づいて顔のヨー角およびピッチ角を決定し得る。たとえば、登録モジュール424は、画像データ330Aを受け取り得、画像データ330Aにおけるランドマークに基づいて、画像データ330Aにおけるユーザの顔のヨー角が約0°であるとともに画像データ330Aにおけるユーザの顔のピッチ角が約0°であると決定し得る。登録モジュール424は、ポーズバケット332CCが-5°から5°までの範囲のヨー角と-5°から5°までの範囲のピッチ角とを含むと決定し得る(たとえば、ポーズバケット332CCは、0°のヨーおよび0°のピッチにて、中心に位置する)。そのような例において、登録モジュール424は、画像データ330Aにおけるユーザの顔のヨーおよびピッチ角がポーズバケット332CCについてのピッチ角およびヨー角の範囲内にあると決定し得るため、登録モジュール424は、画像データ330Aがポーズバケット332CC内に含まれると決定する。いくつかの例において、登録モジュール424は、画像データ330Aにおけるユーザの顔のロールの量を決定し得る。たとえば、登録モジュール424は、画像データ330Aにおけるユーザの顔のヨー角、ピッチ角およびロールに基づいて、ポーズバケット332のどれが画像データ330Aを含むか決定し得る。
【0096】
いくつかの例において、登録モジュール424は、画像データ330Aが複数のポーズバケット332に含まれるか否かを決定する。たとえば、登録モジュール424は、画像データ330Aのヨー角およびピッチ角が所与のポーズバケット332の中心の予め規定された距離(たとえば10°の半径)内にある場合、所与のポーズバケット内に画像データ330Aを含み得る。たとえば、登録モジュール424は、画像データ330Aにおけるユーザの顔のヨー角およびピッチ角がそれぞれ0°および0°であると決定し得る。1つの場合では、予め規定された距離は10°であり得、ポーズバケット332BCは0°のヨーおよび10°のピッチにて中心に位置し得るため、登録モジュール424は、ポーズバケット332BCの中心の予め規定された距離内に画像データ330Aのヨー角およびピッチ角が位置すると決定し得る。そのような場合では、登録モジュール424は、ポーズバケット332BCに画像データ330Aを含み得る。同様に、登録モジュール424は、画像データ330Aについてのヨー角およびピッチ角がポーズバケット332CB、332CDおよび332DCの中心の予め規定された距離内にあると決定し得、ポーズバケット332CCおよび332BCに加えてポーズバケット332CB、332CDおよび332DCに画像データ330Aを含み得る。
【0097】
いくつかの例において、登録モジュール424は画像データ330Aを受け取った後に画像データ330Bを受け取る。登録モジュール424は、ポーズバケット332のうちのいずれにおいても画像データ330Bを含むか否かを決定し得る。登録モジュール424は、画像データ330Bにおけるランドマークに基づいて、画像データ330Bにおけるユーザの顔のヨー角が約0°であるとともに画像データ330Bにおけるユーザの顔のピッチ角が約19°であると決定し得る。登録モジュール424は、ポーズバケット332ACが-5°から5°までの範囲のヨー角と15°から25°までの範囲のピッチ角とに関連付けられると決定し得る(たとえば、ポーズバケット332ACは、0°のヨーおよび20°のピッチにて、中心に位置する)。そのような例において、登録モジュール424は、画像データ330Bにおけるユーザの顔のヨー角およびピッチ角がポーズバケット332ACについてのピッチ角およびヨー角の範囲内にあると決定し得る。登録モジュール424は、ポーズバケット332ACが画像データ330のうちの1つを含むか否かを決定し得、ポーズバケット332ACがまだ画像データを含んでいないと決定することに応答して、ポーズバケット332ACに画像データ330Bを含み得る。
【0098】
登録モジュール424は、任意の他のポーズバケット332に画像データ330Bを含むか否かを決定し得る。たとえば、登録モジュール424は、画像データ330Bについてのヨー角およびピッチ角が他のポーズバケット332の中心の予め規定された距離内にあるか否かを決定し得る。たとえば、登録モジュール424は、予め規定された距離が10°であるとともにポーズバケット332BCが0°のヨーおよび10°のピッチで中心に位置すると決定し得るため、登録モジュール424は、画像データ330Bのヨー角およびピッチ角(たとえば0°のヨー、19°のピッチ)は、ポーズバケット332BCの中心の予め規定された距離内に位置すると決定し得る。登録モジュール424は、画像データ330Bについてのヨー角およびピッチ角がポーズバケット332BCの中心の予め規定されたしきい値の内にあると決定することに応答して、ポーズバケット332BCに画像データ330Bを含むか否かを決定し得る。
【0099】
いくつかの例において、登録モジュール424は、ポーズバケット332BCが既に画像データ330Aを含んでいると決定し、ポーズバケット332BCにおいて画像データ330Aを画像データ330Bに置換するか否かを決定する。一例において、登録モジュール424は、ポーズバケット332BCの中心と、画像データ330A,330Bについてのそれぞれのヨー角およびピッチ角との間の距離に基づいて、ポーズバケット332BCにおいて画像データ330Aを画像データ330Bに置換するか否かを決定し得る。たとえば、登録モジュール424は、画像データ330Aについてのヨー角およびピッチ角が0°、0°であり、画像データ330Bについてのヨー角およびピッチ角が0°、19°であり、ポーズバケット332BCの中心についてのヨー角およびピッチ角が0°、10°であると決定し得る。そのような例において、登録モジュール424は、画像データ330Bが画像データ330Aよりポーズバケット332BCの中心に近いとを決定し得、ポーズバケット332BC内において画像データ330Aを画像データ330Bに置換し得る。
【0100】
いくつかの例において、登録モジュール424は、画像データ330A,330Bを受け取る順序に基づいて、ポーズバケット332BC内に画像データ330Aまたは画像データ330Bを含むか否かを決定し得る。たとえば、登録モジュール424は、ポーズバケット332BC内に最も古い画像データ(たとえば最初に受け取られた画像データ)を含み得る。そのような例において、登録モジュール424は、画像データ330Aは最初に受け取られたので、画像データ330Aがポーズバケット332BC内に含まれると決定し得る。別の例において、登録モジュール424は、ポーズバケット332BC内に最も最近の画像データを含み得る。これらの例において、登録モジュール424は、画像データ330Bがポーズバケット332BC内に含まれると決定し得る。
【0101】
登録モジュール424は、画像キャプチャデバイス414からの画像データ330を示すデータを受け取り得、しきい値数のポーズバケット332が画像データ330のうちの1つを含むか否かを決定し得る。たとえば、登録モジュール424は、既知のユーザの顔の画像データ330を含むポーズバケット332の数を決定し得る。ポーズバケット332の数を決定することに応答して、登録モジュール424は、画像データ330を含むポーズバケットの数がポーズバケットのしきい値数を満たすか否か(たとえば、しきい値数以上であるか否か)を決定し得る。たとえば、登録モジュール424は、画像データ330がポーズバケット332の少なくとも75%内に含まれていると決定することに応答して、画像データ330を含むポーズバケットの数がポーズバケットのしきい値数を満たすと決定する。画像データ330を含むポーズバケットの数がポーズバケットのしきい値数を満たさないと決定することに応答して、登録モジュール424は、登録プロセスのために1つ以上の付加的な画像データ330を画像キャプチャデバイス414にキャプチャさせ得る。
【0102】
いくつかの例において、登録モジュール424は、画像データ330を含むポーズバケットの数がポーズバケットのしきい値数を満たすと決定することに応答して、画像データ330を示すデータを既知のユーザについてのユーザアカウントに関連付け得る。いくつかの例において、画像データ330は、画像自体を含み得るか、または、各それぞれの画像(たとえば計算された顔特徴データ)についての画像テンプレートを含み得る。画像テンプレートは、複数の要素値(たとえば50個の値、100個の値、500個の値など)を有するベクトルを含み得る。いくつかの例において、ベクトルの各要素値は、ユーザの顔の特徴(たとえば両目の間の距離、鼻形状など)に対応する。代替的または付加的には、ベクトルの要素値は、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。一例として、登録モジュール424は、学習された顔認識モデルを複数の画像データ330に適用し得、各それぞれの画像データ330についての画像テンプレート(たとえばベクトル)を出力し得る。いくつかの例において、登録モジュール424は、各画像テンプレートに画像テンプレート識別子を割り当て、かつ、既知のユーザについてのユーザアカウントのためのユーザアカウント識別子にそれぞれの画像テンプレート識別子を関連付けることにより、ユーザアカウントに画像データ330を示すデータを関連付ける。
【0103】
登録モジュール424は、登録された情報428に画像データ330を示すデータ(たとえば画像自体または画像テンプレート)を格納し得る。いくつかの例において、登録モジュール424は、画像データ330を示すデータを格納する前に、画像データ330を示すデータを暗号化する。画像データ330は、データがネットワークを通じて任意の他のデバイスに送信されないように、コンピューティングシステム410上にローカルに格納され得る。さらに、コンピューティングシステム410は、画像データ330を示すデータを削除する機会をユーザに提供し得る。
【0104】
いくつかのシナリオにおいて、認証モジュール426は、(
図1の)未知のユーザ150の顔の認証画像を示すデータを受け取ることに応答して、認証モジュール426を使用して認証プロセスを行なう。未知のユーザの顔の画像を示すデータは、画像自体を含み得るか、または、未知のユーザの顔の特徴を表わす画像テンプレートを含み得る。
【0105】
認証画像データを示すデータを受け取ることに応答して、認証モジュール426は、未知のユーザ150が既知のユーザ338であるか否かを決定し得る。認証モジュール426は、ユーザ150の認証画像データおよび1つ以上の登録画像データ330に基づいて、未知のユーザ150が既知のユーザ338であるか否かを決定し得る。いくつかの場合において、認証モジュール426は、ポーズ独立技術(ポーズ不変技術とも称される)またはポーズ依存技術を使用して、未知のユーザ150が既知のユーザ338であるか否かを決定する。
【0106】
いくつかのポーズ依存例において、認証モジュール426は、認証画像データと、画像データ330のうち認証画像における未知のユーザ150の顔のポーズに最も近いポーズの既知のユーザの顔を含む特定の画像データとに基づいて、未知のユーザ150が既知のユーザ338であるか否かを決定する。一例において、認証画像データにおける顔のポーズに最も近いポーズの既知のユーザ338の顔を含む特定の画像データ330は、認証画像データに関連付けられるポーズバケット332と同じポーズバケットに含まれる画像データ330の特定の画像であり得る。
【0107】
認証モジュール426は、未知のユーザ150の認証画像データに関連付けられるポーズバケット332のポーズバケットを決定し得る。たとえば、認証モジュール426は、未知のユーザの顔の特徴またはランドマークに基づいて、この画像データに関連付けられるポーズバケットを決定し得る。たとえば、認証モジュール426は、認証画像データにおける顔のヨー角およびピッチ角を決定し得る。認証画像データにおける顔のヨー角およびピッチ角を決定することに応答して、認証モジュール426は、認証画像データにおいてポーズバケット332のどれが顔のヨー角およびピッチ角を含むか決定し得、ポーズバケット(たとえばポーズバケット332CD)が認証画像データに関連付けられるポーズバケットであると決定し得る。いくつかの場合において、認証モジュール426は、認証画像データにおける未知のユーザ150の顔のロールを決定し得る。認証モジュール426は、認証画像データにおける顔のヨー角、ピッチ角、およびロールに基づいて、ポーズバケット332のどれが認証画像データに関連付けられるか決定し得る。
【0108】
認証モジュール426は、認証画像データ(たとえばポーズバケット332CD)に関連付けられるポーズバケット内に画像データ330のどれが含まれるかを決定し得る。ポーズバケット332CDが認証画像データに関連付けられる例において、認証モジュール426は、登録された情報428をクエリ送信し、画像データ330Gがポーズバケット332CD内に含まれると決定し得る。画像データ330Gが認証画像データに関連付けられるポーズバケット内に含まれると決定することに応答して、認証モジュール426は、選択された画像データ330Gについての類似性スコアを決定することにより、ユーザ150が既知のユーザ338であるか否かを決定し得る。いくつかの例において、画像データ330Gについての類似性スコアは、画像データ330Gと認証画像データとの間の類似性を示す。
【0109】
認証モジュール426は、画像データ330Gを示すデータおよび認証画像データを示すデータに基づいて、画像データ330Gについての類似性スコアを決定し得る。いくつかの例において、画像データ330Gを示すデータは、画像データ330Gについての画像テンプレートを含む。そのような画像テンプレートはベクトルとして表わされ得、学習された顔認識モデルによって生成され得る。ベクトルは、ユーザの顔のそれぞれの特徴(たとえば両目の間の距離、鼻形状など)に各々対応する複数の要素値を含み得る。同様に、認証画像データは、同様の態様で生成されるベクトルを含み得る。いくつかの例において、認証モジュール426は、画像データ330Gを表わすベクトルと、認証画像データを表わすベクトルとの間の角度を計算することによって、類似性スコアを決定する。別の例として、認証モジュール426は、画像データ330Gを表わすベクトルと認証画像データを表わすベクトルとの間のコサイン類似性を決定することによって、画像データ330Gについての類似性スコアを決定し得る。
【0110】
いくつかの例において、認証モジュール426は、画像データ330Gについての類似性スコアがしきい値類似性スコアを満たすか否かを決定する。一例として、認証モジュール426は、画像データ330Gを表わすベクトルと、認証画像データを表わすベクトルとの間の角度を決定することによって、画像データ330Gについての類似性スコアを決定し、かつ、類似性スコアがしきい値類似性スコア未満であると決定することに応答して、画像データ330Gについての類似性スコアがしきい値類似性スコアを満たすと決定する。別の例として、認証モジュール426は、画像データ330Gを表わすベクトルと、認証画像データを表わすベクトルとの間のコサイン類似性を決定することによって、画像データ330Gについての類似性スコアを決定し、かつ、類似性スコアがしきい値類似性スコアより大きいと決定することに応答して、画像データ330Gについての類似性スコアがしきい値類似性スコアを満たすと決定する。
【0111】
認証モジュール426は、画像データ330Gについての類似性スコアがしきい値類似性スコアを満たすと決定することに応答して、未知のユーザ150が既知のユーザ338であると決定し得る。同様に、認証モジュール426は、画像データ330Gについての類似性スコアがしきい値類似性スコアを満たさないと決定することに応答して、未知のユーザ150が既知のユーザ338ではないと決定し得る。
【0112】
いくつかのポーズ独立例において、認証モジュール426は、未知のユーザ150が既知のユーザ338であるか否かを決定するために、画像データ330の各々についてのそれぞれの類似性スコアを決定する。それぞれの類似性スコアは、画像データ330の対応する画像データと認証画像データとの間の類似性を示す。上で論じたように、認証モジュール426は、それぞれの画像データ330を示すデータおよび認証画像データを示すデータに基づいて、画像データ330の各々についてのそれぞれの類似性スコアを決定し得る。いくつかの例において、画像データ330を示すデータは、それぞれの画像テンプレートを含む。そのような画像テンプレートは、ベクトルとして表わされてもよく、学習された顔認識モデルによって生成されてもよい。ベクトルは、ユーザの顔のそれぞれの特徴に各々対応する複数の要素値を含み得る。そのような例において、認証画像データを示すデータは、未知のユーザ150の顔のそれぞれの特徴に各々対応する複数の要素値を含むベクトルを含み得る。いくつかのシナリオでは、認証モジュール426は、それぞれのベクトルと認証画像データを表わすベクトルとの間の角度を計算することによって、画像データ330の各々についてのそれぞれの類似性スコアを決定する。別の例として、認証モジュール426は、画像データ330の各々についてのそれぞれのベクトルと、認証画像データを表わすベクトルとの間のコサイン類似性を決定することによって、画像データ330の各々についてのそれぞれの類似性スコアを決定し得る。
【0113】
1つのポーズ独立例において、認証モジュール426は、未知のユーザ150が既知のユーザ338であるか否かを決定するために、画像データ330についてのそれぞれの類似性スコアに基づいて、画像データ330の画像データを選択する。認証モジュール426は、認証画像データに最も近いマッチを示す類似性スコアを有する画像データ330の単一の画像データを選択する。いくつかの例において、認証モジュール426は、画像データ330のうちのそれぞれの画像データを表わす各ベクトルと、認証画像データを表わすベクトルとの間の角度に基づいて、画像データ330についてのそれぞれの類似性スコアを決定し、最も近いマッチを示すスコアが最も低い類似性スコアであると決定する(たとえば2つのベクトル間の角度が小さいほど、ベクトルが互いにより近くなる)。別の例において、認証モジュール426は、画像データ330のうちのそれぞれの画像データを表わす各ベクトルと、認証画像データを表わすベクトルとの間のコサイン類似性に基づいて、画像データ330についてのそれぞれの類似性スコアを決定し、最も近いマッチを示すスコアが最も高い類似性スコアであると決定する(たとえば、2つのベクトル間のコサイン値が大きいほど、当該ベクトル同士がより類似する)。
【0114】
いくつかのシナリオでは、認証モジュール426は、未知のユーザ150が既知のユーザ338であるか否かを決定するために、それぞれの類似性スコアに基づいて画像データ330のうち2つ以上の画像データを選択する。1つのシナリオでは、認証モジュール426は、2つ以上の画像データ330についての複合類似性スコアを決定する。いくつかの場合において、認証モジュール426は、2つ以上の画像データ330についての最も高い類似性スコアまたは2つ以上の画像データ330についての最も低い類似性スコアに基づいて、複合類似性スコアを決定し得る。1つの場合において、認証モジュール426は、画像データ330のうちの2つ以上についてのそれぞれの類似性スコアの平均に基づいて、複合類似性スコアを決定し得、未知のユーザ150が既知のユーザ338であるか否かを決定するために複合類似性スコアをしきい値類似性スコアと比較し得る。
【0115】
別の例として、認証モジュール426は、2つ以上の画像データについての各それぞれの類似性スコアをしきい値類似性スコアと比較し得る。そのような例において、選択された画像データのしきい値数(たとえば100%、80%、60%など)がしきい値類似性スコアを満たす類似性スコアを有すると決定することに応答して、認証モジュール426は、未知のユーザ150が既知のユーザ338であると決定し得る。たとえば、認証モジュール426は、選択された画像データのセットが、画像データ330のうち最も高い類似性スコアを有する3つの画像データを含んでいると決定し得、かつ、これら3つの選択された画像データのうちの2つについての類似性スコアがしきい値類似性スコアを満たすと決定することに応答して、未知のユーザ150が既知のユーザ338であると決定し得る。
【0116】
いくつかの場合において、記憶デバイス448はさらに1つ以上のモデル429を格納し得る。たとえば、いくつかの場合において、コンピューティングデバイス310は、上述したように、個人を識別する助けとなる顔のランドマークを抽出するためにディープラーニングモデルを利用し得る。これらのモデルは、パーソナルデバイスの専用のニューラルエンジンまたはプロセッサ上で実行するように調整され得る。上述したように、いくつかの例において、画像テンプレートは一般に、ユーザの顔の1つ以上の特徴(たとえばバイオメトリック特徴)の統計モデルに対応し得る。たとえば、FRM322は、複数の要素値(たとえば50個の値、100個の値、500個の値など)を有するベクトルを含む画像テンプレートを生成し得る。いくつかの例において、ベクトルの各要素値は、ユーザの顔の特徴(たとえば両目の間の距離、鼻形状など)に対応する。代替的または付加的には、ベクトルの要素値はたとえば、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。たとえば、FRM322は、学習された顔認識モデルを複数の画像データ330に適用し得、各それぞれの画像データ330についての画像テンプレート(たとえばエンベッディング)をベクトルとして出力し得る。代替的または付加的には、ベクトルの要素値は、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。一例として、登録モジュール424は、学習された顔認識モデルを複数の特徴データ330に適用し得、各それぞれの画像データ330についての画像テンプレート(たとえばベクトル)を出力し得る。そのような画像テンプレートは、ベクトルとして表わされてもよく、学習された顔認識モデルによって生成されてもよい。ベクトルは、ユーザの顔のそれぞれの特徴(たとえば両目の間の距離、鼻形状など)に各々対応する複数の要素値を含み得る。
【0117】
いくつかの場合において、既知のユーザに関連付けられるバイオメトリック特徴情報または識別子は、画像データ330についてのさまざまな異なるポーズについての画像データおよび/または特徴情報を含み得る登録された情報428に格納されるそのユーザについてのさまざまな登録された画像データおよび/または特徴を含み得る。登録された情報428に格納されるこのバイオメトリック情報は、いくつかの場合において、ユーザの一意識別子および/またはユーザに固有のユーザプロファイルもしくはアカウントについての情報をさらに含み得る。マシンモデルは、ローカルに(たとえばコンピューティングデバイス410のモデル429に)格納され得るか、または、デバイス410からリモートに(たとえば1つ以上のリモートサーバに)格納され得る。
【0118】
未知のユーザ150が既知のユーザ338であると決定することに応答して、コンピューティングデバイス310は、ビークルのIHUシステム100に認証データを送信し得る。たとえば、コンピューティングデバイス310は、既知のユーザ338としての未知のユーザ150の認証の成功を示すデータを送信し得、これによりユーザ150の認証を示す。いくつかの場合において、コンピューティングデバイス310は、ユーザ338(たとえば認証されたユーザ150)についてカスタマイズまたはパーソナライズされるユーザプロファイルおよび/またはアカウント情報をシステム100に送信し得る。ある場合には、コンピューティングデバイス310はさらに、ユーザ338および/またはコンピューティングデバイス310の一意識別子をビークルのシステム100に送信し得る。
【0119】
図5は、本開示の1つ以上の局面に従った、例示的な運転者乗込および認証プロセスを示す図であり、
図6は、本開示の1つ以上の局面に従った例示的な顔登録プロセスを示す図である。運転者のようなユーザ150を登録または乗り込ませることは、IHUシステム100上のアカウント作成の時といった、ユーザのパーソナルデバイス(たとえば
図1のモバイルコンピューティングデバイス170、
図3のコンピューティングデバイス310)上で行われ得る。このプロセスは、たとえば
図3を参照して上で説明されたように、デバイス上の前方対向カメラを使用して、ユーザの顔のバイオメトリック特徴をキャプチャする登録アプリケーションをパーソナルデバイス上で実行することを伴う。これらの対応する顔の特徴は、パーソナルデバイス(たとえば登録された情報328)上に特徴データとして格納される。パーソナルデバイスは、IHU(たとえば
図1のIHUシステム100)と信頼されたデバイスとして登録/ペアリングされる。パーソナルデバイス(たとえばコンピューティングデバイス310の画像キャプチャデバイス314の1つ以上)のカメラは、近赤外線(NIR)フレームおよび/または赤緑青(RGB)フレームをキャプチャするカメラといったさまざまな異なるタイプのカメラのいずれかであり得る。パーソナルデバイスがIHUとペアリングされると、パーソナルデバイスはIHUに対して信頼されたデバイスと認識され、IHUによって一意識別子を割り当てられる。この信頼されたデバイスおよびその対応する一意識別子は、IHUによってビークルのユーザ(たとえばユーザ150)ならびにそのユーザについての任意のプロファイルおよび/またはアカウント情報に関連付けられる。
【0120】
さまざまな例において、登録プロセスは次の局面を含み得る。モバイルコンピューティングデバイス170および/またはコンピューティングデバイス310のようなさまざまなパーソナルコンピューティングデバイスまたはシステムは、カメラのような前方対向画像キャプチャデバイス173または314を備え得る。これらのカメラは、NIRおよび/またはRGBフレーム551を顔識別の目的のために使用または提供し得る。これらのフレーム551は
図3に示される画像333の一例であり得る。NIRスペクトルは、いくつかの場合において、異なる光の条件に対してより良好な適応性を提供する。いくつかの例において、パーソナルデバイスは、上述したように、個人を識別する助けとなる顔のランドマークを抽出するためにディープラーニングモデルを利用し得る。これらのモデルは、パーソナルデバイスの専用のニューラルエンジンまたはプロセッサ上で実行するように調整され得る。上述したように、いくつかの例において、画像テンプレートは一般に、ユーザの顔の1つ以上の特徴(たとえばバイオメトリック特徴)553の統計モデルに対応し得る。特徴553は特徴データ330の一例であり得る。いくつかの場合において、コンピューティングデバイス310は、学習された画像および/またはNIRカメラおよび/またはRGBカメラにより得られる画像についての特徴データに基づくモデル情報をモデル329内に含み得る。いくつかの場合において、コンピューティングデバイス310がモデル329における情報(たとえば特徴データ)を1つの色空間(RGB空間)から別の色空間(NIR空間)に抜き出し(distill)得る。結果として、
図1のビークル内で使用されるカメラは必ずしも、コンピューティングデバイス310において使用される画像キャプチャデバイス(たとえばカメラ)314と同じタイプである必要がない。たとえば、ビークルはNIRカメラを含み得るが、画像キャプチャデバイス314はRGBカメラを含み得る。さまざまな例において、
図1のビークル内で使用されるカメラは、コンピューティングデバイス310に含まれる画像キャプチャデバイス314と同じタイプであり得る。
【0121】
たとえば、FRM322は、複数の要素値(たとえば50個の値、100個の値、500個の値など)を有するベクトルを含む画像テンプレートを生成し得る。いくつかの例において、ベクトルの各要素値は、ユーザの顔の特徴(たとえば両目の間の距離、鼻形状など)に対応する。代替的または付加的には、ベクトルの要素値はたとえば、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。たとえば、FRM322は、学習された顔認識モデルをフレーム551に適用し得、特徴553におけるそれぞれの顔特徴についての画像テンプレート(たとえばエンベッディング)をベクトルとして出力し得る。代替的または付加的には、ベクトルの要素値は、顔のアイデンティティを示す出力を生成するように学習された非線形マシンラーニングモデルによって生成され得る。
【0122】
一例として、登録モジュール424は、学習された顔認識モデルをフレーム551に適用し得、特徴553における顔のそれぞれの特徴について画像テンプレート(たとえばベクトル)を出力し得る。そのような画像テンプレートはベクトルとして表わされてもよく、学習された顔認識モデルによって生成されてもよい。ベクトルは、ユーザの顔のそれぞれの特徴(たとえば両目の間の距離、鼻形状など)に各々が対応する複数の要素値を含み得る。いくつかの場合において、既知のユーザに関連付けられるバイオメトリック特徴情報または識別子555は、信頼されたデバイス上において(たとえば登録された情報328に)格納される、そのユーザについてのさまざまな登録された特徴を含み得、格納された情報は、さまざまな異なるポーズについて特徴情報を含み得る。登録された情報328に格納されるこのバイオメトリック情報は、ユーザの一意識別子および/またはユーザに固有のユーザプロファイルもしくはアカウントについての情報をさらに含み得る。マシンモデルは、ローカルに(たとえばモバイルコンピューティングデバイス170、コンピューティングデバイス310、コンピューティングデバイス410、IHUシステム上に)格納され得るか、または、これらのデバイスからリモートに(たとえば1つ以上のリモートサーバ上に)格納され得る。
【0123】
図5に示される例に対する1つ以上の代替例において、信頼されたモバイルコンピューティングデバイスは、登録された特徴データをビークルコンピューティングシステム(たとえばビークルコンピューティングシステム100)に送信し得、次いで、ビークルコンピューティングシステムは、未知のユーザの認証特徴データと、既知のユーザの受け取られた登録された特徴データとを比較することによって、ビークルにおいて未知のユーザの認証を行なうように構成され得る。これらの場合では、ビークルコンピューティングシステム100は、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる特徴データ(たとえば特徴データまたは識別子555)をモバイルコンピューティングデバイスから受け取る。次いで、ビークルコンピューティングシステム100は、この受け取られた特徴データを、ビークル内部のユーザの顔のキャプチャされた画像に関連付けられる特徴データ(たとえば特徴559)に関連付けるように構成され得る。次いで、ビークルコンピューティングシステム100は、比較に基づいて、当該ビークルのユーザと以前に登録されたユーザとの間のマッチを決定し得る。ビークルコンピューティングシステム100によって処理される認証データはマッチの指示を含む。
【0124】
図3を参照して以前に記載されたように、かつ、さらに
図5に示されるように、登録プロセス中において、コンピューティングデバイス(たとえばモバイルコンピューティングデバイス170、コンピューティングデバイス310)は、同じユーザ(たとえば既知のユーザ338)の異なる顔ポーズに対して顔画像データ(たとえば特徴データ)のギャラリを作成し得る。顔ポーズの推定は、顔のパン値およびチルト値により構成される。顔の特徴が登録されるポーズは、パーソナルデバイスにパターンとして現われ得る。これらのパターンは、
図6に示されるように、ユーザの頭を移動させるようにユーザをガイドして、顔の異なるポーズをキャプチャする。
【0125】
図6は、パーソナルデバイス上のアプリケーション内部でどのようにこれが遂行され得るかについての画面表示を示す。既知のユーザ338は、PSD312において出力されるユーザ338の1つ以上の画像を見るために画像キャプチャデバイス314の1つ以上を利用し得る。これらの画像の表現が、ユーザ338が見ることができるグラフィカルフレーム600内のPSD312において表示され得る。コンピューティングデバイス310は、
図6に示されるように、PSD312を介してユーザ338に命令を出力し得る。
【0126】
たとえば、コンピューティングデバイス310は、フレーム600内にユーザ338の顔を位置決めするために、画像キャプチャデバイス314に対してユーザ338の顔を移動し、その後、フレーム600に示されるすべてのドットがある色(たとえば緑)になるまで、または、充填されていないドットから完全に充填されたドットに切り替わるまで、ユーザ338の頭を穏やかに回転するようユーザ338に指示を出力し得る。
図6に示されるように、フレーム600に含まれる9つのドットは現在充填されておらず、ドットのすべてが緑になるまで、または、充填されていない状態から充填された状態もしくはある色(たとえば黒)に切り替わるまで、ユーザ338がユーザ338の頭を回転させるべきであることを示す。ひとたびユーザ338がそうし終えると、画像キャプチャデバイス314は、登録された情報(たとえばデータストア)328においてその所与のポーズについての画像をキャプチャおよび格納する。コンピューティングデバイス310は、さまざまな異なるポーズについての特徴データ330をキャプチャする際に、以前に
図3を参照して記載したように、異なるピッチ角およびヨー角に基づいて、さまざまな異なるポーズをとるようにユーザ338に指示し得る。
図6を参照して、コンピューティングデバイス310は、ユーザ338のこれらの異なるポーズの各々について上記のプロセスを繰り返し得る。次いで、さまざまな異なる顔のポーズについての対応する特徴/ランドマークの顔特徴データは、登録された情報328における登録されたギャラリに格納され得る。いくつかの場合には、登録された情報328は、パーソナルデバイス310のセキュアな領域(enclave)を含み得る。
【0127】
モバイルコンピューティングデバイス170の一例であるコンピューティングデバイス310は、
図1に示されるビークルのIHUシステム100に登録され得、登録の際、ビークルに対して信頼されたコンパニオンデバイスになり得る。IHUシステム100は、IHUシステム100上のユーザのアカウントに関連付けられ得る一意識別子をコンピューティングデバイス310および/または既知のユーザ338に割り当て得る。たとえば、ビークルのユーザ150は、ユーザ150についてのパーソナルプロファイルを含むユーザのアカウントをIHUシステム100上に有し得る。ユーザ150についてのパーソナルプロファイルは、
図1~
図2を参照して以前に記載されたように、IHUシステム100のディスプレイ112に示され得るとともにユーザ150のためにカスタマイズまたはパーソナライズされる情報に関連付けられる。IHUシステム100によってコンピューティングデバイス310および/または既知のユーザ338に割り当てられる一意識別子は、ユーザ150がデバイス310の既知のユーザ338として認証されると、ユーザ150のユーザアカウントまたはプロファイルに関連付けられる。
【0128】
いくつかの場合には、ユーザ150はさらにウェアラブルデバイス107(たとえばスマートウォッチ)を有し得る。これらの場合において、モバイルコンピューティングデバイス170は、いくつかの例では、ウェアラブルデバイス107上での格納のために、登録された情報328に含まれる情報を提供するよう、ウェアラブルデバイス107と通信する。これらの例において、ウェアラブルデバイス107は、登録された情報328に含まれる情報を格納するように構成され得る。結果として、ウェアラブルデバイス107がひとたびこの情報を格納すると、ウェアラブルデバイス107は以前に
図3を参照して記載された認証機能を行ない得る。たとえば、ウェアラブルデバイス107は、
図3に示されるコンピューティングデバイス310の一例であり得る。これらの場合では、ビークルのユーザ150は必ずしも、ビークル内またはIHUシステム100に近接して別個のモバイルコンピューティングデバイス170を有さなくてもよい。その代わりに、IHUシステム100は、認証するユーザ150のためにウェアラブルデバイス107と直接的に通信し得る。以前に示したように、IHUシステム100は、無線通信プロトコル(たとえばブルートゥース、WIFI、BLE)を使用して、ウェアラブルデバイス107および/またはモバイルコンピューティングデバイス170と通信し得る。
【0129】
図5を再び参照して、
図1に示されるビークルのユーザ150を認証するとき、車内運転者対向カメラ104/111(たとえばNIRカメラまたはRGBカメラ)からの画像フレーム557が、運転席に着座し得るユーザ150の顔のバイオメトリック特徴559を計算するために使用される。その後、これらの特徴559は、IHUシステム100からコンピューティングデバイス310(たとえばモバイルコンピューティングデバイス170、ウェアラブルデバイス107)に送信される(563)。当該送信は、さらに以下に記載されるようなたとえばなりすましされていない(non-spoofed)特徴のためのセキュアなチャンネルを介して行われ得る。コンピューティングデバイス310は、システム100に対して信頼され、以前に登録されたデバイスであり得る。
【0130】
上述したように、コンピューティングデバイス310上のソフトウェアは、現在の運転者150の顔の特徴と登録された既知のユーザ338の顔の特徴とにマッチが存在するか否かを決定する。マッチが存在する場合、コンピューティングデバイス310は、IHUシステム100に当該マッチを示すデータを送信し、IHUシステム100は、登録されたユーザの認証を表わすものとしてマッチを示すこのデータを受け取り(565)、登録されたユーザ(たとえばビークルのユーザ150)のログインに進む。
【0131】
顔特徴推定に関して、登録モデルに類似するモデルがIHUシステム100によって使用され得る。上述したように、コンピューティングデバイス310は、画像キャプチャデバイス314によって撮られる既知のユーザ338の画像についての特徴ベクトルデータを識別するために、1つ以上のモデル329(たとえば登録モデル)を利用し得る。IHUシステム100は、ビークルにおいてカメラ104および/または111によって撮られたユーザ150の画像についての特徴ベクトルデータを識別するために同様のモデルを利用し得る。IHUシステム100は、たとえばカメラ104,111によって取得されるNIR画像に基づいて、ユーザ150の顔の特徴を決定するためにこれらのモデルを利用し得る。いくつかの場合において、これらの特徴は、ユーザ150を認証するために、信頼されたデバイス(たとえばコンピューティングデバイス310、モバイルコンピューティングデバイス170)にIHUシステム100によって暗号化および送信され得る。IHUシステムおよび信頼されたデバイスは、これらのエンティティ同士間で交換される特徴データの機密性を維持するために、さまざまな異なる暗号化/復号化技術を使用して通信し得る。いくつかの例において、IHUシステム100は、以前に登録された信頼されたデバイスとセキュアな通信チャネルを確立し得る。このチャンネルは、たとえばブルートゥース/BLEまたは他の無線インターフェイスを介して確立され得る。
【0132】
信頼されたデバイス(たとえばコンピューティングデバイス310)に対する認証に関して、信頼されたデバイスは、IHUシステム100から入力される特徴データ(たとえば特徴ベクトルデータ)を受け取る際に、以前に(たとえば
図3を参照して)記載されたように、保存された特徴ベクトルのギャラリに対してそのようなデータを比較し得、マッチが決定される。マッチが存在する場合、このマッチの指示、および/または、ユーザについての認証データ(たとえば、登録されたトークン)がセキュアなチャンネルを介してIHUシステム100に送信され、これは、IHUシステム100にユーザ150をログインするトリガーとして使用されるか、または、別の態様で当該トリガーとして機能し得る。
【0133】
いくつかの場合、盗まれたパーソナルデバイス(たとえばコンピューティングデバイス310)を有する侵入者が、たとえば所有者(たとえばユーザ150)の3次元マスクまたは所有者の顔の他の画像(たとえば紙画像)を使用してIHUシステム100をアンロックすることを試み得ることがあり得る。IHUシステムおよび/またはコンピューティングデバイス310によって使用されるディープラーニングモデルは、そのようななりすましの試みをなりすまし検出561の部分として特定または別の態様で検出することが可能であり得、認証手順を中止し得る。たとえば、これらのモデルは、さまざまな異なる対象およびさまざまな異なるタイプの対象(たとえば人間の対象、紙の対象、プラスチックの対象)により学習され得る。結果として、モデルは、これらの異なるタイプの対象の画像に関連付けられる特徴を含むさまざまな異なる特徴データ(たとえば特徴ベクトル)を含み得、当該モデルは、たとえば所有者の3次元マスクまたは紙画像の特徴を、そのようななりすましの試みに関連付けられる如何なる認証手順も中止することを試みるよう、識別するために使用され得る。
【0134】
さらに、さまざまな例において、IHUシステム100は、ユーザ150の存在を決定するために、および/または、カメラ104/111を使用してユーザ150の顔画像をキャプチャする適切または最適な時間を決定するために、ディープラーニングモデルおよび/または他の信号からの入力を利用し得る。たとえば、IHUシステム100は、ユーザ150の視線を決定するために、対応する特徴ベクトル情報を格納するさまざまな画像情報で学習されているラーニングモデルを利用し得る。IHUシステム100は、ユーザ150の視線がカメラに向かっている場合、または、ユーザ150のポーズがユーザ150を認証する際に使用される増加した数の顔特徴情報をキャプチャするのに最適な場合、ユーザ150の顔画像をキャプチャするよう決定し得る。さらに、システム100は、ビークルによって提供される付加的な信号を利用し得る。たとえば、ユーザ150のシートベルトが締められていることを示す信号、ユーザ150の手がハンドル154上にあることを示す信号、または、パークからドライブへのビークルのギアの変更を示す信号をビークルがシステム100に提供する場合、システム100は、カメラ104/111を使用してユーザ150の顔画像をキャプチャするために適切または最適な時間を決定するために、(カメラから集められた視線情報から独立してまたは関連して)これらの信号を使用し得る。
【0135】
上述したように、多くの場合において、IHUシステム100(たとえばカメラ104/111)によって使用されるカメラおよび/またはコンピューティングデバイス310(たとえば画像キャプチャデバイス314)によって使用されるカメラは、環境の光およびサングラスのような着用されたアイテムへの向上した適応性を提供し得るNIRカメラを含み得る。しかしながら、これらのシステムおよびデバイスは、任意数の他の異なるタイプのカメラ(たとえばRGBカメラ、NIRカメラなど)を使用し得る。
【0136】
本開示の技術は、異なるカメラ(たとえばIHUシステム100のカメラおよびコンピューティングデバイス310のカメラ)によってキャプチャされるフレームから計算されるバイオメトリック特徴を使用して、ユーザ(たとえばユーザ150)の信頼性のある認証の困難さに取り組む。そのような比較および認証は、不変であり得、または、さまざまな異なる光条件に適応可能であり得る。上述したように、IHUシステム100およびコンピューティングデバイス310のカメラは、同じタイプであってもよく、付加的なフレキシビリティを提供する異なるタイプであってもよい。システム100および/またはコンピューティングデバイス310において使用されるモデルは、異なるカメラを使用してキャプチャされる同じ個人の顔についてのマッチ可能な特徴を生成し得るアプローチを使用して学習され得る。開示された技術はさらに、堅牢なプロセスと、コンピューティングデバイス310において異なるユーザポーズについて格納される登録特徴データとにより、IHUシステム100の車内カメラからの異なる距離/ポーズにて顔を確実に処理する。
【0137】
これらの局面は、ユーザ150によるユーザ介在なしで潜在的に達成され得、ユーザ150のために、シームレスな「乗り込んで運転」というエクスペリエンスを提供する。IHUシステム100によって使用されるモデルおよび/またはバイオメトリック特徴を計算するコンピューティングデバイス310により、上記ワークフローは、異なるパーソナルデバイス(たとえばさまざまな異なるオペレーティングシステムを実行するパーソナルデバイス)と協働することが可能になる。さらに、ユーザのパーソナルデバイス(たとえば、信頼されたデバイス310)上に任意のユーザの顔の特徴が残る場合、ユーザの個人的なバイオメトリックアイデンティティおよび情報は、さまざまな異なる個人によって潜在的に使用されるシェアビークルに含まれ得るIHUシステム上ではなく、ユーザのパーソナルデバイス上にのみ存在する。
【0138】
いくつかの例において、開示された技術はさらに、ユーザがレンタル/シェア/リースされた車にログインし得、ユーザがビークルを使用するのを終えた後に如何なる個人的情報も消さなければならないことについて心配することなく同じパーソナライズされたエクスペリエンスを有し得るユースケースを可能にする。これらの例において、個人情報はそのようなビークルのIHUシステム100に格納されないが、その代りに、ユーザのパーソナルデバイス(たとえばデバイス310)上にのみ格納される。
【0139】
他のいくつかの例において、開示された技術の別の使用は、登録された運転者(たとえばユーザ150)のアイデンティティを確認し、登録された運転者のパーソナルデバイスを盗んだか、または、別の態様で携帯している登録されていない個人が、IHUシステム100を使用して、任意のライド要求を受け入れることを可能にすることを防止するライドシェア用途のためのものであり得る。ある他の例において、開示された技術は、承認されていない個人がビークルを動作させるのを防止するために、ユーザ150がビークルを動作することが可能になる前に、ビークルのユーザ150のアイデンティティを確認、または、別の態様でビークルのユーザ150を認証し得る。
【0140】
図7は、本開示の1つ以上の局面に従った、例示的なコンピューティングシステムによって行なわれる例示的なプロセスを示すフローチャートである。たとえば、
図7に示されるプロセスは、モバイルコンピューティングデバイス170(
図1)、ウェアラブルデバイス107(
図1)、コンピューティングデバイス310(
図3)、および/または、コンピューティングシステム410(
図4)によって行なわれ得る。例示目的のためにのみ、
図7のプロセスは、コンピューティングデバイス310によって行なわれる動作を参照して記載される。
【0141】
コンピューティングデバイス310は、ビークルのビークルコンピューティングシステム(たとえばIHUシステム100)との接続を確立し得る(702)。たとえば、コンピューティングデバイス310は、この接続を確立するために1つ以上の通信ユニット(たとえば通信ユニット446)を利用し得る。接続を確立した後、コンピューティングデバイス310は、ビークルコンピューティングシステムから、ビークルのユーザ(たとえばユーザ150)の顔の少なくとも1つの画像に関連付けられる第1の特徴データを受け取り得る(704)。ビークルのユーザの顔の少なくとも1つの画像は、ビークルの少なくとも部分に接続される画像キャプチャデバイス(たとえばカメラ104,111)によってキャプチャされ得る。
【0142】
その後、コンピューティングデバイス310は、第1の特徴データと、以前に登録されたユーザ(たとえばユーザ338)の顔の少なくとも1つの画像に関連付けられる第2の特徴データ(たとえば登録された情報328に格納される画像330に関連付けられる特徴データ)との間の比較に基づいて、ビークルのユーザと以前に登録されたユーザとの間のマッチを決定し得る(706)。コンピューティングデバイス310は、マッチに基づいて、ビークルのユーザを認証し得(708)、ビークルのユーザについての認証データをビークルコンピューティングシステムに送信し得(710)、認証データは、マッチを示す。
【0143】
図8は、本開示の1つ以上の局面に従った、例示的なビークルコンピューティングシステムによって行なわれる例示的なプロセスを示すフローチャートである。たとえば、
図8に示されるプロセスは、
図1のビークルコンピューティングシステム100および/またはコンピューティングシステム410(
図4)によって行なわれ得る。例示目的のためにのみ、
図8のプロセスは、ビークルコンピューティングシステム100によって行なわれる動作を参照して記載される。
【0144】
ビークルコンピューティングシステム100は、モバイルコンピューティングデバイス(たとえば
図1のモバイルコンピューティングデバイス170、
図1のウェアラブルデバイス107、
図3のコンピューティングデバイス310)との接続を確立し得る(802)。ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含む。ビークルコンピューティングシステム100は、ビークルの内部におけるユーザ(たとえばユーザ150)の存在を決定し得る(804)。ビークル内部におけるユーザの存在を決定した後、ビークルコンピューティングシステム100は、ビークルの少なくとも部分に接続される画像キャプチャデバイス(たとえばカメラ104および/または111)を使用して、ユーザの顔の少なくとも1つの画像をキャプチャする(806)。
【0145】
ビークルコンピューティングシステム100は、ユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを決定し(808)、ユーザについての認証データを受け取る(810)。認証データは、ユーザと以前に登録されたユーザとの間のマッチを示す。その後、ビークルコンピューティングシステム100は、インフォテインメントヘッドユニットへユーザをログインするために、ユーザについての認証データに基づいて、ユーザアカウント情報にアクセスする(812)。
【0146】
以下の例は例示のみの目的で提供される。
例1:モバイルコンピューティングデバイスが、ビークルのビークルコンピューティングシステムとの接続を確立することと、上記接続を確立した後、上記モバイルコンピューティングデバイスが、上記ビークルのユーザの顔の少なくとも1つの画像に関連付けられる第1の特徴データを上記ビークルコンピューティングシステムから受け取ることとを含み、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像は、上記ビークルの少なくとも部分に接続される画像キャプチャデバイスによってキャプチャされ、さらに、上記モバイルコンピューティングデバイスが、上記第1の特徴データと、上記モバイルコンピューティングデバイスの以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、上記ビークルの上記ユーザと上記以前に登録されたユーザとの間のマッチを決定することと、上記モバイルコンピューティングデバイスが、上記マッチに基づいて上記ビークルの上記ユーザを認証することと、上記モバイルコンピューティングデバイスが、上記ビークルの上記ユーザについての認証データを上記ビークルコンピューティングシステムに送信することとを含み、上記認証データは、上記マッチを示す、方法。
【0147】
例2:上記ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、上記モバイルコンピューティングデバイスが、上記ビークルの上記ユーザについての上記認証データを上記ビークルコンピューティングシステムに送信することは、上記インフォテインメントヘッドユニットへ上記ビークルの上記ユーザをログインするよう、ユーザアカウント情報にアクセスすることを上記ビークルコンピューティングシステムに行わせる、例1に記載の方法。
【0148】
例3:上記ビークルの上記ユーザについての上記認証データは、上記モバイルコンピューティングデバイスまたは上記ビークルの上記ユーザのうちの少なくとも1つに関連付けられる一意識別情報を含む、例1~2のいずれか1項に記載の方法。
【0149】
例4:上記接続を確立することは、上記ビークルの上記ビークルコンピューティングシステムと上記モバイルコンピューティングデバイスとをセキュアにペアリングすることを含み、上記モバイルコンピューティングデバイスは、上記ビークルコンピューティングシステム上の上記ビークルの上記ユーザのユーザアカウントに関連付けられる信頼されたデバイスを含む、例1~3のいずれか1項に記載の方法。
【0150】
例5:上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記特徴データを受け取ることは、上記モバイルコンピューティングデバイスが、上記ビークルコンピューティングシステムから、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記特徴データの暗号化されたコピーを受け取ることを含む、例1~4のいずれか1項に記載の方法。
【0151】
例6:上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第2の特徴データは少なくとも1つの特徴ベクトルに関連付けられ、かつ、複数のポーズバケットからの少なくとも1つのポーズバケットに含まれ、
上記複数のポーズバケットからの各ポーズバケットは、上記以前に登録されたユーザの上記顔のピッチ角のそれぞれの範囲と、上記以前に登録されたユーザの上記顔のヨー角のそれぞれの範囲とに関連付けられる、例1~5のいずれか1項に記載の方法。
【0152】
例7:上記モバイルコンピューティングデバイスが、上記複数のポーズバケットのうちの特定のポーズバケットに含まれる特徴データを上記第2の特徴データから選択することをさらに含み、上記特定のポーズバケットは、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第1の特徴データに関連付けられ、上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記第1の特徴データと、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる選択された上記特徴データとに基づく、例6に記載の方法。
【0153】
例8:上記モバイルコンピューティングデバイスが、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第1の特徴データと、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる選択された上記特徴データとの間の類似性を示す類似性スコアを決定することをさらに含み、
上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記類似性スコアがしきい値類似性スコアを満たすと決定することに応答して行われる、例7に記載の方法。
【0154】
例9:上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第2の特徴データは、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる複数の特徴データを含み、上記方法はさらに、上記モバイルコンピューティングデバイスが、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第1の特徴データと、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データの各特徴データとに基づいて、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データの各特徴データについてのそれぞれの類似性スコアを決定することを含み、各類似性スコアは、上記ビークルの上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第1の特徴データと、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データの上記それぞれの特徴データとの間の類似性を示し、上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データについての上記それぞれの類似性スコアに基づく、例1~8のいずれか1項に記載の方法。
【0155】
例10:上記モバイルコンピューティングデバイスが、上記それぞれの類似性スコアに基づいて、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データのうちの最も高くランク付けされた特徴データを決定することをさらに含み、上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データのうちの上記最も高くランク付けされた特徴データに基づく、例9に記載の方法。
【0156】
例11:上記モバイルコンピューティングデバイスが、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記複数の特徴データのうちの2つ以上の特徴データについての上記類似性スコアに基づいて、複合類似性スコアを決定することをさらに含み、上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記複合類似性スコアがしきい値類似性スコアを満たすと決定することに応答する、例9に記載の方法。
【0157】
例12:上記ビークルの上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することは、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる2つ以上の特徴データの各々についての上記それぞれの類似性スコアが、しきい値類似性スコアを満たすと決定することに応答する、例9に記載の方法。
【0158】
例13:上記モバイルコンピューティングデバイスが、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像の上記第2の特徴データを、マシンラーニングモデルを使用して登録フェーズ中に決定することをさらに含む、例1~12のいずれか1項に記載の方法。
【0159】
例14:上記モバイルコンピューティングデバイスはウェアラブルデバイスを含む、例1~13のいずれか1項に記載の方法。
【0160】
例15:ビークルのビークルコンピューティングシステムが、モバイルコンピューティングデバイスとの接続を確立することを含み、上記ビークルコンピューティングシステムは、インフォテインメントヘッドユニットを含み、さらに、上記ビークルコンピューティングシステムが、上記ビークルの内部におけるユーザの存在を決定することと、上記ビークルの内部における上記ユーザの上記存在を決定した後、上記ビークルコンピューティングシステムが、上記ビークルの少なくとも部分に接続される画像キャプチャデバイスを使用して、上記ユーザの顔の少なくとも1つの画像をキャプチャすることと、上記ビークルコンピューティングシステムが、上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる第1の特徴データを決定することと、上記ビークルコンピューティングシステムが、上記ユーザについての認証データを受け取ることとを含み、上記認証データは、上記第1の特徴データと、以前に登録されたユーザの顔の少なくとも1つの画像に関連付けられる第2の特徴データとの間の比較に基づいて、上記ユーザと、上記以前に登録されたユーザとの間のマッチを示し、さらに、上記ビークルコンピューティングシステムが、上記ユーザについての上記認証データに基づいて、上記インフォテインメントヘッドユニットに上記ユーザをログインするよう、ユーザアカウント情報にアクセスすることを含む、方法。
【0161】
例16:上記ビークルコンピューティングシステムが、上記ユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第1の特徴データを上記モバイルコンピューティングデバイスに送信することをさらに含み、上記ユーザについての上記認証データを受け取ることは、上記第1の特徴データを送信した後、上記ビークルコンピューティングシステムが、上記ユーザについての上記認証データを上記モバイルコンピューティングデバイスから受け取ることを含む、例15に記載の方法。
【0162】
例17:上記ビークルコンピューティングシステムが、上記以前に登録されたユーザの上記顔の上記少なくとも1つの画像に関連付けられる上記第2の特徴データを上記モバイルコンピューティングデバイスから受け取ることと、上記ビークルコンピューティングシステムが上記第1の特徴データと上記第2の特徴データとを比較することと、上記ビークルコンピューティングシステムが、上記比較に基づいて、上記ユーザと上記以前に登録されたユーザとの間の上記マッチを決定することとをさらに含み、上記認証データは上記マッチの指示を含む、例15に記載の方法。
【0163】
例18:少なくとも1つのプロセッサと、命令を格納する少なくとも1つのコンピュータ読取可能記憶デバイスとを含み、上記命令は、上記少なくとも1つのプロセッサによって実行されると、例1~17のいずれか1項に記載の方法を上記少なくとも1つのプロセッサに行なわせる、システム。
【0164】
例19:命令を格納するコンピュータ読取可能記憶媒体であって、上記命令は、少なくとも1つのプロセッサによって実行されると、例1~17のいずれか1項に記載の方法を上記少なくとも1つのプロセッサに行なわせる、コンピュータ読取可能記憶媒体。
【0165】
1つ以上の例において、記載される機能は、ハードウェア、ハードウェアおよびソフトウェア、ハードウェアおよびファームウェア、または、その任意の組み合わせにおいて実現されてもよい。ソフトウェアにおいて実現される場合、これらの機能は、1つ以上の命令またはコードとして、コンピュータ読取可能媒体上に格納または送信され得、ハードウェアベースの処理ユニットによって実行され得る。コンピュータ読取可能媒体は、データ記憶媒体のような有形的な媒体に対応するコンピュータ読取可能記憶媒体、または、たとえば通信プロトコルに従ってある場所から別の場所までコンピュータプログラムの転送を促進する任意の媒体を含む通信媒体を含み得る。このように、コンピュータ読取可能媒体は一般に、(1)一時的でない有形的なコンピュータ読取可能記憶媒体か、または、(2)信号もしくは搬送波のような通信媒体に対応し得る。データ記憶媒体は、この開示に記載される技術の実現のために、命令、コードおよび/またはデータ構造を抽出するよう、1つ以上のコンピュータまたは1つ以上のプロセッサによってアクセスされ得る任意の利用可能な媒体であり得る。コンピュータプログラムプロダクトはコンピュータ読取可能媒体を含み得る。
【0166】
限定としてではなく例として、そのようなコンピュータ読取可能記憶媒体は、RAM、ROM、EEPROM、CD-ROMもしくは他の光学ディスクストレージ、磁気ディスクストレージ、もしくは、他の磁気ストレージデバイス、フラッシュメモリ、または、命令またはデータ構造の形態で所望のプログラムコードを格納するために使用され得るとともにコンピュータによってアクセスされ得る任意の他の記憶媒体を含み得る。さらに、任意の接続が適切にコンピュータ読取可能媒体と称される。たとえば、命令が、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者線(DSL)、または、赤外線、無線およびマイクロ波のようなワイヤレス技術を使用して、ウェブサイト、サーバまたは他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または、赤外線、無線およびマイクロ波のようなワイヤレス技術は、媒体の定義に含まれる。しかしながら、コンピュータ読取可能記憶媒体およびデータ記憶媒体は、接続、搬送波、信号または他の一時的な媒体を含んでおらず、その代りに、一時的でない有形的な記憶媒体に向けられているということが理解されるべきである。本願明細書において使用されるディスク(disk)およびディスク(disc)は、コンパクトディスク(CD: compact disc)、レーザーディスク(登録商標)(laser disc)、光ディスク(optical disc)、デジタルバーサタイルディスク(DVD: digital versatile disc)、フロッピー(登録商標)ディスク(floppy disk)およびブルーレイ(登録商標)ディスク(Blu-ray(登録商標)disc)を含んでおり、ディスク(disk)は通常磁気的にデータを再生する一方、ディスク(disc)はレーザーによりデータを光学的に再生する。上記のものの組み合わせも、コンピュータ読取可能媒体の範囲内に含まれるべきである。
【0167】
命令は、1つ以上のデジタル信号プロセッサ(DSP: digital signal processor)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC: application specific integrated circuit)、フィールドプログラマブルロジックアレイ(FPGA:field programmable logic array)、または、他の同等な集積論理回路または離散論理回路といった1つ以上のプロセッサによって実行され得る。したがって、本願明細書において使用される「プロセッサ」という用語は、本願明細書において記載される技術の実現例に好適である前述の構造または任意の他の構造のうちのいずれかを指し得る。さらに、いくつかの局面では、本願明細書において記載される機能は、専用ハードウェアおよび/またはソフトウェアモジュール内で提供され得る。さらに、1つ以上の回路または論理素子において当該技術が完全に実現され得る。
【0168】
この開示の技術は、ワイヤレスハンドセット、集積回路(IC)またはICのセット(たとえばチップセット)を含むさまざまなデバイスまたは装置において実現され得る。開示される技術を実行するように構成されるデバイスの機能的な局面を強調するために、さまざまなコンポーネント、モジュールまたはユニットがこの開示において記載されているが、必ずしも異なるハードウェアユニットによる実現を必要とはしない。むしろ、上述したように、さまざまなユニットは、ハードウェアユニットにおいて組み合わせられ得るか、または、好適なソフトウェアおよび/またはファームウェアと共に上述したように1つ以上のプロセッサを含む相互動作するハードウェアユニットの集合によって提供され得る。
【0169】
さまざまな実施形態が記載された。これらの実施形態および他の実施形態は添付の請求の範囲の範囲内である。