(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-30
(45)【発行日】2022-04-07
(54)【発明の名称】高温燃料電池システムのための再循環を利用する方法及び配置
(51)【国際特許分類】
H01M 8/04223 20160101AFI20220331BHJP
H01M 8/04302 20160101ALI20220331BHJP
H01M 8/04303 20160101ALI20220331BHJP
H01M 8/04089 20160101ALI20220331BHJP
H01M 8/04 20160101ALI20220331BHJP
H01M 8/12 20160101ALN20220331BHJP
【FI】
H01M8/04223
H01M8/04302
H01M8/04303
H01M8/04089
H01M8/04 J
H01M8/12 101
H01M8/12 102A
H01M8/12 102B
【外国語出願】
(21)【出願番号】P 2020097036
(22)【出願日】2020-06-03
(62)【分割の表示】P 2018111657の分割
【原出願日】2013-02-05
【審査請求日】2020-07-02
(32)【優先日】2012-02-10
(33)【優先権主張国・地域又は機関】FI
(73)【特許権者】
【識別番号】513042506
【氏名又は名称】コンヴィオン オサケユキチュア
【氏名又は名称原語表記】CONVION OY
【住所又は居所原語表記】Tekniikantie 12,FI-02150 Espoo, Finland
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】ルオコマキ,ヤーッコ
【審査官】笹岡 友陽
(56)【参考文献】
【文献】米国特許出願公開第2005/0196652(US,A1)
【文献】米国特許出願公開第2008/0292922(US,A1)
【文献】特表2005-535068(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/04223
H01M 8/04302
H01M 8/04303
H01M 8/04089
H01M 8/04
H01M 8/12
(57)【特許請求の範囲】
【請求項1】
反応物質のアノード側再循環フローを実施し、且つ、再循環フロー体積に関してリサイクル率70%以上を達成する、高温燃料電池システムのための再循環を利用する方法であって、当該方法は、
前記再循環フロー体積に、酸素含有量を包含するフィードインフローを供給するステップであって、前記フィードインフローは全フロー体積の30%以下である、ステップと、
熱交換及び反応物質再循環を実施し、前記燃料電池システムの内部から熱を前記燃料電池の外部に移送することにより、または前記燃料電池システム内部での熱を用いることにより、350℃を超える入口温度を提供して、前記再循環フローに実質的に抑制された温度条件を提供するステップと、
始動もしくはシャットダウン状態の間、燃料電池システムにおいて前記再循環フローの水素量を生成するため、前記再循環フローにおいて燃料および酸素を含むフィードインフローの触媒部分酸化を実施するステップと、
前記アノード側再循環フローから全フロー体積の30%以下を排出するステップであって、前記部分酸化のラムダ値は0.55を超え、部分酸化触媒の入口温度は350℃を超え、且つ、前記部分酸化触媒の出口温度は800℃を超えない、ステップと、
前記再循環にフィードインフローを供給するステップであって、前記フィードインフローは、大きな発熱条件(exoterm, conditions)を維持するため、前記部分酸化モードにおいて前記フィードインフローの高い酸素含有量を示す0.55乃至0.90のラムダ値を含む、ステップと、
を含む、方法。
【請求項2】
前記触媒部分酸化からの熱を含むガス化合物を生成するため、アノードリサイクルブロワを使用して、前記再循環フロー体積に関してリサイクル率80%乃至94%を達成するステップ、
を含む、請求項1に記載の方法。
【請求項3】
高い水素量として、前記再循環フロー体積に関して水素の含有量パーセント3.5%乃至15%を生成するように、前記再循環フロー内で前記触媒部分酸化を実施するステップ、
を含む、請求項1に記載の方法。
【請求項4】
混合されたフィードインフローと再循環フローとにより前記
触媒部分酸化を実施するステップであって、それにより前記燃料電池システムのアノード側におけるガスは、前記燃料電池システムの加熱、冷却もしくは運転中、燃料電池システムのコーキング領域の熱力学的に外側である、ステップ、
を含む、請求項1に記載の方法。
【請求項5】
高温燃料電池システムのための再循環を利用する装置であって、前記燃料電池システムにおける各燃料電池セルは:
アノード側と、
カソード側と、
前記アノード側と前記カソード側との間の電解質と、
を含み、且つ、当該装置は、
反応物質のアノード側再循環フローを実施するための手段と、
前記再循環フロー体積に関してリサイクル率70%以上を達成するための手段と、
前記再循環に、フィードインフローを供給するための手段であって、前記フィードインフローは前記フィードインフローの酸素含有量を包含し、且つ、前記フィードインフローは全フロー体積の30%以下である手段と、
前記再循環フロー内に実質的に低い温度条件を提供するため、熱交換及び反応物質再循環を実施するための手段と、
始動もしくはシャットダウン状況の間、前記燃料電池システムにおける前記再循環フローの水素量を生成するため、前記再循環フロー内で触媒部分酸化を実施するための手段と、
前記アノード側再循環フローから全フロー体積の30%以下を排出するための手段と、
を含み、
前記部分酸化のラムダ値は0.55を超え、前記部分酸化触媒に対する入口温度は350℃を超え、且つ、前記触媒の出口温度は800℃を超えず、
前記フィードインフローは、大きな発熱条件(exoterm, conditions)を維持するための部分酸化モードにおいて前記フィードインフローの高い酸素含有量を示す0.55乃至0.90のラムダ値を含む、装置。
【発明の詳細な説明】
【技術分野】
【0001】
世界のエネルギーのほとんどは、オイル、石炭、天然ガスもしくは原子力により産出される。例えば入手可能性と環境への配慮に関する限り、これらの算出方法は全て、それら特有の問題を有する。環境に関する限り、特にオイル及び石炭が燃焼される場合、それらは汚染を引き起こす。原子力に関する問題は、少なくとも使用済み燃料の貯蔵である。
【0002】
特に環境問題のため、より環境に配慮した、及び例えば上述のエネルギー原よりも優れた効率を有する新規なエネルギー源が開発された。燃料電池によると燃料のエネルギー(例えばバイオガス)が、環境に優しいプロセスにおける化学反応を介して電気に直接変換される、その燃料電池は将来有望なエネルギー変換デバイスである。
【背景技術】
【0003】
図1に示される燃料電池は、アノード側100及びカソード側102及び前記アノード側とカソード側との間に電解質104を有する。固体酸化物型燃料電池(SOFC)において、酸素106がカソード側102に供給され、前記カソードからの電子を受け取ることにより、前記酸素はマイナス酸素イオンまで還元される。そのマイナス酸素イオンは、電解質材料104を貫通してアノード側100まで行き、そこで前記マイナス酸素イオンは、燃料108と反応して水と、さらに典型的には二酸化炭素(CO2)とを生成する。アノード100とカソード102との間に、燃料電池のための負荷110を有する外部電気回路111がある。
【0004】
図2において、高温燃料電池の一例としてSOFCデバイスが示される。SOFCデバイスは、燃料として例えば天然ガス、バイオガス、メタノールもしくは他の炭化水素含有化合物を利用できる。
図2のSOFCデバイスは、スタック形成103(SOFCスタック)の燃料電池セル1個以上、典型的には複数を有する。各燃料電池セルは、
図1に示されるアノード100及びカソード102構造を有する。使用済み燃料の一部は、フィードバック配置109内で各アノードを介して再循環され得る。
図2のSOFCデバイスはまた、燃料熱交換器105及び改質器107を有する。典型的にはいくつかの熱交換器が、燃料電池プロセスにおいて異なる場所での熱状態を制御するのに使用される。改質器107は、燃料(例えば天然ガス)を燃料電池に適した組成物(例えば水素とメタン、二酸化炭素、一酸化炭素及び不活性ガスを含有する組成物に)に変換するデバイスである。いずれにせよ、各SOFCデバイスに改質器は必須ではない。
【0005】
測定手段115(例えば燃料フローメータ、流速計及び温度計)を使用することにより、SOFCデバイスの操作に必要な測定が実施される。アノード100で使用されたガスの一部は、フィードバック配置109内のアノードを介して再循環され得、ガスの他の部分はアノード100から排出される114。
【0006】
固体酸化物型燃料電池(SOFC)デバイスは、酸化燃料から直接電気を生成する電気化学変換デバイスである。SOFCデバイスの利点は、高効率、長期安定性、低エミッション、及びコストを包含する。主要な欠点は、長い始動及びシャットダウン時間、並びに機械的及び化学的両方の適合性問題をもたらす高い作動温度である。
【0007】
天然ガス(例えばメタン)及び高級炭素化合物を含有するガスは典型的にはSOFCにおける燃料として使用される。但し、そのガス類は、コーキング、即ち有害な炭素化合物の形成(例えばコークス、フライダスト、タール、カーボネート及びカーバイド化合物)を防ぐため、燃料電池に供給する前に前処理されなければいけない。炭素のこれら様々な形態は、この文脈では有害な炭素化合物という総称で呼び得る。
【0008】
炭化水素は、有害な炭素化合物の形成における熱的もしくは接触分解を経由する。産生した化合物は、燃料電池デバイスの表面に接着し、ニッケル粒子のような触媒上で吸着する。コーキングで産生した有害な炭素化合物は、燃料電池デバイスの活性表面のいくらかを被覆し、よって燃料電池プロセスの反応性を甚だしく劣化させる。その有害な炭素化合物は、燃料通路を完全にブロックさえするかもしれない。
【0009】
従って有害な炭素化合物の形成を防ぐことは、燃料電池にとって高耐用性を確実にするのに重要である。有害な炭素化合物の形成の防止はまた、化学反応を促進するため燃料電池内で使用される物質(ニッケル、白金、等)である触媒を保護する。ガス前処理は、燃料電池デバイスに供給される水を必要とする。酸素イオンと燃料(即ちアノード100側のガス)を組み合わせる際、生成した水はまた、ガスの前処理で使用可能である。
【0010】
固体酸化物型燃料電池(SOFC)のアノード電極は、典型的には、もし雰囲気が還元性(reducing)でなければ、酸化ニッケルを形成しやすい、かなりな量のニッケルを含有する。酸化ニッケル形成が難しい(severe)場合、電極の形態は不可逆に変化し、電気化学的活性の顕著な損失をもしくはセルの破壊さえも引き起こす。よって、燃料電池のアノード電極が酸化するのを防ぐため、始動もしくはシャットダウンの際、SOFCシステムは還元剤を含有するパージガス(即ち安全ガス)(例えば窒素のような不活性なもので希釈した水素)を必要とする。実用的なシステムにおいてパージガスの量は最小化されなければならない。なぜならば大量の、例えば水素含有加圧ガスは高価であるし、空間を必要とする成分として問題があるからである。パージガスは必ずしも元素状態(elemental)ではなく、混合ガス(compound gases)であってもよい。
【0011】
燃料電池システム内のCPOx(接触部分酸化)は、従来、一酸化炭素CO及び水素H2を生成する。大量のCO生成は有害である場合、燃料電池システム始動もしくはシャットダウン操作のための要件は十分な蒸気及び水素産生を包含する。高度な空気(higher air)(即ち、より完璧な酸化のための酸素量)は、始動状況の際、もしくはシャットダウン状況の際のゆっくり過ぎる冷却プロセスの際に温度を過剰に上昇させる、多すぎる発熱を生成する。
【0012】
CPOx(接触部分酸化)は、従来、一酸化炭素CO及び水素H2を生成する。このガス混合物は様々な化学産業用途に使用され、CPOxの操作温度は700℃以上である。従来のプロダクトガスは、システム加熱/動作温度内のコークス生成に起因して燃料電池には不適当である。始動もしくはシャットダウンガスのための要件は、十分な蒸気及び水素産生を包含する一方で、大量のCO生成は有害である。高度な空気(即ち、より完璧な酸化のための酸素量)の使用は、通常のSOFC操作条件、熱管理、熱応力及び材料選択に関しては、温度を過剰に上昇させる、多すぎる発熱を生成する。
【0013】
次に、この技術分野に関連するいくつかの先行技術文献を手短かに論じる。特許文献US2011159386Alには、燃料電池システムを始動するプロセスが開示される。該システムは、カソード側とアノード側とを有する燃料電池、改質器及び補助バーナーを有する。燃料電池空気は補助バーナーにより予熱され、燃料電池のカソード側に供給される。残余ガスは、燃料電池のアノード側から改質器へ、及び改質器からアノード側へ循環される。いずれにせよ、アノード側再循環から酸素を除去するため、アノード側への空気の供給は停止される。
【0014】
特許文献US2006093879Alには、アノード排出再循環ループを有する燃料電池システムを始動する手順が開示される。燃料電池システムは、その主負荷から切り離され、そのカソード側とアノード側との双方に空気を有する。アノード側フローの再循環からのガスの大部分は排出され、もっぱら燃料の小さな限られた流れがアノード側再循環内に供給される。再循環ループ内に酸素が実質的に無くなるまで、燃料内の水素及び酸素と、空気混合物とがアノード側内で再循環するにつれ、それらは接触反応し;次いで、アノード側フロー内への燃料流速が通常の操作レベルまで増加し、その後セルを横断して主負荷を接続する。US2006093879Alにそのように開示される実施形態は、燃料電池システムの改質段階のためであり、この文献における主要な点はまた、アノード側から酸素を除去することである。水素及び水蒸気は、それらの生成の代わりにアノード側に供給されなければいけない。
【0015】
特許出願US2002102443Alには、アノード排出再循環ループを有する燃料電池システムをシャットダウンする手順が開示される。アノード側フロー排出の一部は、操作中再循環ループ内のアノード側を貫通して再循環される。外部回路から主負荷を切り離し、その後、アノード側フロー内への燃料を含有する新鮮な水素のフローを停止し、及びアノード再循環ループ内のそのようなガスを再循環させることによりアノード側再循環内の水素を、触媒と接触させて、水素が実質的に全て除去されるまで接触反応させることにより、燃料電池システムはシャットダウンされる。よって文献US2002102443Alは、文献US2006093879Alに開示されるものと類似するが逆の方法を開示する。
【0016】
さらに、公報EP1571726Al並びに公報EP1998398A2は、本発明の先行技術を開示する。
【発明の概要】
【発明が解決しようとする課題】
【0017】
発明の簡単な説明:
燃料電池システムの始動及びシャットダウン状況においてパージガス及び外部水接続の必要が最小化されるか、もしくは完全に無視される場合、本発明の目的は燃料電池システムを完成することである。この目的は、高温燃料電池システムのための再循環を利用する装置(arrangement)により達成される。燃料電池システム中の各燃料電池セルは、アノード側、カソード側及び前記アノード側とカソード側との間に電解質を有し、及び前記燃料電池システムは反応物質のアノード側再循環フローを実施するための手段を有する。前記装置は、
再循環フローに関してリサイクル率70%以上を達成するための手段、
前記再循環に実質的に高酸素含有量を有するフィードインフローを供給するための手段であって、前記フィードインフローは全フローの30%以下である手段、
前記再循環フロー内に実質的に低温条件を与えるため、熱交換を実施する手段、
燃料電池システムの始動もしくはシャットダウン状況の際、前記再循環フローに関して実質的に高い水素量を生成するための前記再循環フロー内で接触部分酸化を実施する手段、及び
前記アノード側再循環から全フローの30%以下を排出する手段
を有し、前記接触部分酸化を実施する手段に対して入口温度350℃乃至500℃を与える一方で、前記手段の出口温度は800℃を超えないように前記熱交換を実施する及びリサイクル率を達成するための手段は配置される。
【0018】
本発明の主眼はまた、反応物質のアノード(100)側再循環フローが実施される、高温燃料電池システムのための再循環を利用する方法である。当該方法において、
再循環フローに関してリサイクル率70%以上が達成され、
前記再循環に、実質的に高酸素含有量を有するフィードインフローが供給され、及び前記フィードインフローは全フローの30%以下であり、
前記再循環フロー内に実質的に低温条件を与えるため、熱交換が実施され、
燃料電池システムの始動もしくはシャットダウン状況の際、前記再循環フローに関して実質的に高い水素量を生成するための前記再循環フロー内で接触部分酸化が実施され、及び
前記アノード側再循環から全フローの30%以下が排出され、前記熱交換は、前記接触部分酸化に対して入口温度350℃乃至500℃を与える一方で、出口温度は800℃を超えない。
【課題を解決するための手段】
【0019】
本発明は、必要とされる酸化レベルのために十分な酸素もしくは空気含有量を有する再循環フローに関して実質的に高いリサイクル率を達成すること、及び再循環フロー内に実質的に低温条件を与えるため、熱交換を実施することに基づく。再循環フローに関して水素及び上記の少なくとも一方の実質的に高い量を生成するため、及び燃料電池システム始動もしくはシャットダウン状況の際、蒸気対炭素(S/C)及び酸素対炭素(O/C)関係条件の少なくとも一方を制御するため、接触部分酸化が実施される。
【0020】
本発明の利益は、外部パージガスを必要とせずに、燃料電池システムの始動とシャットダウンが実施可能であることであり、そのことは顕著なコストと空間節約と設置利益をもたらす。
【図面の簡単な説明】
【0021】
【
図3】
図3は、様々なリサイクル率によるCPOx出口及び入口及び出口S/C(蒸気対炭素比率)値における温度の値を表す。
【
図4】
図4は、本発明による好ましい実施形態を表す。
【発明を実施するための形態】
【0022】
発明の詳細な説明:
固体酸化物型燃料電池(SOFC)は多様な(multiple)ジオメトリを有し得る。平坦なジオメトリ(
図1)は、電解質104が電極(アノード100及びカソード102)間にサンドイッチされている、燃料電池のほとんどのタイプで利用される典型的なサンドイッチ型ジオメトリである。SOFCはまた、例えば空気もしくは燃料のいずれかがチューブの内側を通り抜け、他方のガスはチューブの外側に沿って通る、管状ジオメトリからなっていてもよい。これはまた、燃料として使用されるガスがチューブの内側を通り抜け、空気はチューブの外側に沿って通るように配置されてもよい。SOFCの他のジオメトリは、波状構造が平面セルの従来のフラットな構成に取って代わる、変更した(modified)平面セル(MPCもしくはMPSOFC)を包含する。このような意匠は、平面セル(低抵抗)と管状セルの両方の利点を有するので有望である。
【0023】
SOFCで使用されるセラミックスは非常な高温に達し、その結果スタックが600乃至1,000℃の温度で加熱されるまでは、該セラミックスはイオン活性にはならない。酸素106(
図1)の酸素イオンへの還元は、カソード102において生じる。これらのイオンは、それから固体酸化物電解質104を貫通してアノード100まで移送され、アノード100においてこれらイオンは燃料108として使用されるガスを電気化学的に酸化できる。この反応において、水及び二酸化炭素副産物が、2個の電子と共に放出される。これらの電子はそれから、これら電子が利用され得る外部回路111を貫通して流れる。次いで、これらの電子が再びカソード材料102に入り込むので、そのサイクルを繰り返す。
【0024】
大きな固体酸化物型燃料電池システムにおいて典型的な燃料は、天然ガス(主としてメタン)、様々なバイオガス(主として窒素及び/又は二酸化炭素希釈メタン)、及びアルコールをはじめとするその他の高級炭化水素含有燃料である。メタン及び高級炭化水素は、燃料電池セルスタック103に入り込む前に改質器107(
図2)において、もしくは(部分的に)スタック103内部でのいずれかで、改質される必要がある。改質反応は、水の一定量を必要とし、起こり得る炭素形成(即ち高級炭化水素により引き起こされるコーキング)を防ぐため、追加の水もまた必要とされる。アノードガス排出フローを循環させることにより、この水は内部的に提供され得る。なぜなら水は燃料電池反応の過剰量で生成する、及び/又は前記水は補助水供給(例えば直接の清水供給もしくは排出復水の循環)により提供可能であるからである。アノード再循環装置により、未使用燃料の一部及びアノードガス内の希釈剤もまたプロセスにフィードバックされる一方で、補助水供給装置においてプロセスへの唯一の添加剤は水である。固体酸化物型燃料電池のアノード電極は典型的には、その形態がセルの性能にとって決定的になる、多孔質のニッケルマトリックスセラミック-金属構造からなるので、ニッケルの酸化は燃料電池の性能を不可逆的に変更し得る。これが、燃料電池システムのアノード電極を酸化から防ぐため、SOFCシステムが、パージガス(即ち還元剤を含有する安全ガス、例えば窒素のような不活性もので希釈した水素)を必要とする理由である。実用的な燃料電池システムにおいて、過度のパージガス貯蔵を維持することは不経済であり、即ちパージガスの量は最小化されるべきである。パージガスの使用のために必要とされる加圧装置はまた、燃料電池システムの物理的サイズについて顕著な効果を有する。
【0025】
本発明による方法において、例えばアノードリサイクルブロワを使用することにより、燃料電池システムにおける高いリサイクル率(RR)(例えば90%)を提供するための新規なやり方での接触部分酸化(CPOx)が利用される。これは、ガス化合物が前記接触部分酸化からの熱を含むようになることを可能にする。依って、高酸素含有量(即ち高ラムダ)を有する燃料フィード入口組成物が実行可能であり(ラムダ1が完全な化学量論燃焼である場合、ラムダ0.6乃至0.75)、これは先行技術実施形態における1600乃至1800℃より上のCPOx出口温度を意味する。但し、本発明による方法において、高ラムダを有する高RRは、全ての始動条件のために十分な品質のガスを提供するために利用されるが、出口温度は800℃を超えないようにする。本発明による接触部分酸化(CPOx)において、放出熱は高アノードリサイクル率(RR)で処理され、これは全フローの再循環された一部(容量)である。例えばRR=90%の場合、ガスの90%はアノード側循環で冷却され、CPOx入口に再循環される。これはまた、例えば熱交換器内の炭素形成を阻害するCPOxの上流での、加熱された成分内の蒸気の存在を確実にする。CPOx入口温度は例えば約450℃である。CPOxは触媒内もしくは改質器内で実施される。
【0026】
図3において、CPOx出口における温度値301及び様々なリサイクル率による入口302及び出口304S/C(蒸気対炭素比率)値が示される。アノード側再循環なしに必要とされる入口ガスミックスにより、出口温度は約1900℃に上昇するということが見て取れる。但し、本発明による一実施形態において、CPOx出口における標的温度値は、アノード側再循環の材料選択に起因して700℃未満である。
【0027】
次に、スタック上の水素消費対CPOxにおいて製造される水素が考察される。スタックが水素を消費するならば、これは、フィードインガスのラムダを減らすことで処理可能である:即ち、より少ない酸素がCPOxに供給され、より多くの水素が形成される。換言すると、スタック上の水素消費に依存して、空気フィード、即ち酸素フィードは、スタック内の水素欠乏を防ぐように調節され得る。これはまた、より少ない蒸気が形成されることを意味するけれども、蒸気を生成する酸素との反応において水素量が消費される場合、これはスタックにおける水素酸化によってバランスされるのであり、アノード側再循環からのより多くの蒸気としてこれは現れる。よってスタック上の水素消費は、調節可能なパラメータである。制御は蒸気対炭素要件を考慮すべきである:即ち、CPOxは、消費を相殺するのに必要以上に入口酸素フィードを減らすべきではない。なぜなら空気フィードをあまりに減らしすぎると、燃料電池システムのS/Cを減らし始め、それはコーキングを引き起こす。
【0028】
図4において、燃料電池システムが、反応物質のアノード側再循環フローを実施するための手段109を有する、本発明による好ましい装置が示される。前記手段109は、再循環を配置するのに必要とされるパイプ及び他のシステムパーツを有する。その他のシステムパーツ109は、例えばコネクタ及びバルブである。装置は、再循環に、実質的に高酸素含有量を有するフィードインフローを供給するための手段122(a,b)を有する。前記フィードインフローは全フロー体積の30%以下である。好ましくはフィードインフローは、再循環フローの約10%であり、これは全フローの90%部分を表す。この好ましい装置において、手段122は、空気及び燃料のフィードイン操作に必要とされるパイプ及びその他のシステムパーツにより配置される手段122aと122bとからなる。その他のシステムパーツ122(a,b)は、例えばコネクタ、バルブ及び/又は制御されたフィードイン操作を実施するための制御可能なバルブであってよい。手段122aは、燃料として使用されるガスをフィードインし、手段122bは、空気をフィードインする燃料のパイプを接続し、ガスと空気とをミキサーに再循環することにより、又は燃料のパイプを接続することと、ガスと空気とを再循環することなしに、前記空気は、ミキサー(図示せず)により燃料フローに対し、及び再循環ガスに対し混合される。空気と燃料との接続されたフィードインフローは、再循環に対する前記フィードインガスフローを形成する。記載されたフィードイン装置は代表的な一例であり、また他のフィードイン装置も、実質的に高酸素含有量を有する前記フィードインガスフロー(前記フィードインフローは全フロー体積の30%以下である)を形成するための本発明による実施形態において利用可能である。従って、好ましい装置は、アノード側再循環から全フローの30%以下を排出する手段114を有する。前記手段114は、パイプ114及び/又は他のシステムパーツ、例えばコネクタ及び/又はバルブにより配置される。
【0029】
供給手段122(a,b)は、フィードインフローの前記実質的に高い酸素含有量を示す、0.55乃至0.90の範囲のラムダ値を有するフィードインフローを再循環に供給するために配置される。必要ならば、酸素含有量を示すラムダ値はラムダセンサもしくは他のセンサを使用することにより測定される。装置は、再循環フローに対してリサイクル率70%以上を達成するための手段120を有する。接触部分酸化を実施するための手段107により実施された酸化からの熱を含むガス化合物を可能にするため、手段120は好ましくは再循環フローに関してリサイクル率RR80%乃至94%、例えばRR=90%を達成するためのアノードリサイクルブロワ120を有する。
図4の好ましい実施形態において、手段107は、触媒107として表されるが、触媒以外に好ましくは、手段107は改質器107としても実現され得る。燃料電池システムの始動もしくはシャットダウン状況の際、再循環フローに関して実質的に高い水素及び蒸気の量を生成するため、前記再循環フロー内で接触部分酸化は実施される。好ましくは手段107は、前記実質的に高い水素量として再循環フローに関して水素3,5%乃至15%の含有量パーセントを生成するように、配置される。接触部分酸化を実施するための手段107はまた、混合されたフィードインフロー及び再循環フローによる接触部分酸化を実施するように配置され得る。それにより燃料電池システムのアノード側におけるガスは、燃料電池システム加熱もしくは冷却もしくは運転の正常な温度範囲におけるコーキング領域の熱力学的に外側である。
【0030】
図4の好ましい実施形態は、触媒の前の自動点火を防ぐため、再循環フロー内に実質的に低い温度条件を提供するため、熱交換を実施するための手段105(a,b,c,d)を有する。熱交換を実施するための手段105は、再循環フロー内で接触部分酸化を実施するための手段107に、好ましくは入口温度350℃乃至500℃、例えば450℃、を与えるように配置される。この記載された好ましい装置において、手段105は4個の熱交換器105a,105b,105c,105dを有する。熱交換器105aは、例えば燃料フィードインガスフローに対して混合する前に、例えば450℃に電気的加熱を使用することにより、フィードイン空気を加熱する。熱交換器105bは、フィードイン空気フローに対して混合する前に、例えば450℃に燃料フィードインガスフロー及び再循環ガスフローを加熱し、次いで混合された空気と燃料とのガスフローは、接触部分酸化を実施するための手段107へ流れる。熱交換器105cは、スタック103のアノード側100へと流れているある程度のガスを冷却する。始動状況において、即ち燃料電池システムの加熱相において、スタック103は再循環ガスを冷却する。少なくともスタックモジュールが、再循環ガスから空気への熱交換を増進するラジエータを有する場合、スタックのカソード側102に供給される空気はまた、再循環ガスを冷却する。熱交換器105dは、再循環ガスの冷却121(例えば空冷)を実施する。即ちこのプロセス相において、熱は燃料電池システムから外へ移送され得るか、もしくは熱は燃料電池システム内部で熱一体化に利用される。記載された熱交換装置は、代表的な一例であり、その他の変形例が本発明による実施形態において利用可能である。
【0031】
本発明による実施形態は、燃料電池システムの始動もしくはシャットダウン状況の異なる種類(例えばサービスニーズのための短時間シャットダウン及び始動等)に利用可能である。本発明はまた、例えば短時間ESD(エマージェンシーシャットダウン)状況の後で利用可能であり、その後燃料電池システムは電気生成状態に戻るよう直ちに始動されるか、あるいは無負荷の状態で温度を高く維持するためホットアイドルの状態で使用可能である。
【0032】
本発明は、添付の図面及び明細書を参照して開示されたが、本発明は決してこれらに限定されるものではない。なぜなら本発明は請求項の範囲内の変形例に従属するからである。
【0033】
請求項1
燃料電池システム中の各燃料電池セルは、アノード側(100)、カソード側(102)及び前記アノード側とカソード側との間に電解質(104)を有し、及び前記燃料電池システムは反応物質のアノード(100)側再循環フローを実施するための手段(109)を有する、高温燃料電池システムのための再循環を利用する配置であって、
当該配置は、
前記再循環フロー体積に関してリサイクル率70%以上を達成するための手段(120)、
前記再循環に、実質的に高酸素含有量を有するフィードインフローを供給するための手段(122)であって、前記フィードインフローは全フロー体積の30%以下である手段(122)、
前記再循環フロー内に実質的に低温条件を与えるため、熱交換を実施する手段(105)、
燃料電池システムの始動もしくはシャットダウン状況の際、前記再循環フローに関して実質的に高い水素量を生成するための前記再循環フロー内で接触部分酸化を実施する手段(107)、及び
前記アノード側再循環から全フロー体積の30%以下を排出する手段(114)
を有し、
前記手段(107)に対して入口温度350℃乃至500℃を与える一方で、前記手段(107)の出口温度は800℃を超えないように前記手段(105)及び(120)は配置されることを特徴とする、配置。
請求項2
前記配置は、前記手段(107)により実施される酸化反応からの熱を含むガス化合物を可能にするため、前記再循環フロー体積に関してリサイクル率80%乃至94%を達成するための手段(120)としてアノードリサイクルブロワ(120)を有することを特徴とする、請求項1に記載の再循環を利用する配置。
請求項3
前記再循環に対して、フィードインフローを供給するように、前記供給手段(122)は配置されること、前記フィードインフローは、フィードインフローの前記実質的に高い酸素量を示す0.55乃至0.90の範囲のラムダ値を有することを特徴とする、請求項1に記載の再循環を利用する配置。
請求項4
前記実質的に高い水素量として、再循環フロー体積に関して水素について含有量パーセント3.5%乃至15%を生成するように、前記再循環フロー内で接触部分酸化を実施する手段(107)は配置されることを特徴とする、請求項1に記載の再循環を利用する配置。
請求項5
混合されたフィードインフローと再循環フローとにより接触部分酸化を実施するように、前記再循環フロー内で接触部分酸化を実施する手段(107)は配置され、それにより燃料電池システムのアノード側におけるガスは、燃料電池システム加熱もしくは冷却もしくは運転の正常な温度範囲におけるコーキング領域の熱力学的に外側であることを特徴とする、請求項1に記載の再循環を利用する配置。
請求項6
反応物質のアノード(100)側再循環フローが実施される、高温燃料電池システムのための再循環を利用する方法であって、当該方法において、再循環フロー体積に関してリサイクル率70%以上が達成されること、
前記再循環に、実質的に高酸素含有量を有するフィードインフローが供給されること、及び前記フィードインフローは全フロー体積の30%以下であること、
前記再循環フロー内に実質的に低温条件を与えるため、熱交換が実施されること、
燃料電池システムの始動もしくはシャットダウン状況の際、前記再循環フローに関して実質的に高い水素量を生成するための前記再循環フロー内で接触部分酸化を実施すること、及び
前記アノード側再循環から全フロー体積の30%以下を排出することであって、前記熱交換は、前記接触部分酸化に対して入口温度350℃乃至500℃を与える一方で、出口温度は800℃を超えないことを特徴とする、方法。
請求項7
当該方法において、前記接触部分酸化反応からの熱を含むガス化合物を可能にするため、前記再循環フロー体積に関してリサイクル率80%乃至94%は、アノード(100)リサイクルブローにより達成されることを特徴とする、請求項6に記載の方法。
請求項8
当該方法において、前記再循環に対して、フィードインフローの前記実質的に高い酸素量を示す0.55乃至0.90の範囲のラムダ値を有するフィードインフローが供給されることを特徴とする、請求項6に記載の方法。
請求項9
当該方法において、前記実質的に高い水素量として、再循環フロー体積に関して水素の含有量パーセント3.5%乃至15%を生成するように、前記再循環フロー内で接触部分酸化を実施することを特徴とする、請求項6に記載の方法。
請求項10
当該方法において、混合されたフィードインフローと再循環フローとにより接触部分酸化を実施し、それにより燃料電池システムのアノード側におけるガスは、燃料電池システム加熱もしくは冷却もしくは運転の正常な温度範囲におけるコーキング領域の熱力学的に外側であることを特徴とする、請求項6に記載の方法。
【符号の説明】
【0034】
Temperature 温度
Reformer inlet 改質器入口
Reformer outlet 改質器出口
Recycle ratio リサイクル率
100 アノード側
102 カソード側
103 スタック
105a,105b,105c,105d 熱交換器
107 手段;触媒;改質器
109 手段;フィードバック装置;システムパーツ
114 排出する手段
120 手段;アノードリサイクルブロワ
121 冷却
122a,122b 手段;供給手段;システムパーツ