IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアの特許一覧 ▶ ユニバーシティー オブ アイオワ リサーチ ファウンデーションの特許一覧

<>
  • 特許-早産のリスクを予測するためのツール 図1
  • 特許-早産のリスクを予測するためのツール 図2A
  • 特許-早産のリスクを予測するためのツール 図2B
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-31
(45)【発行日】2022-04-08
(54)【発明の名称】早産のリスクを予測するためのツール
(51)【国際特許分類】
   G01N 33/50 20060101AFI20220401BHJP
   G01N 33/68 20060101ALI20220401BHJP
   G01N 33/53 20060101ALI20220401BHJP
   G01N 33/74 20060101ALI20220401BHJP
   G01N 33/92 20060101ALI20220401BHJP
【FI】
G01N33/50 J
G01N33/68
G01N33/53 D
G01N33/53 P
G01N33/74
G01N33/92 A
G01N33/92 C
【請求項の数】 6
(21)【出願番号】P 2018540707
(86)(22)【出願日】2017-02-04
(65)【公表番号】
(43)【公表日】2019-05-09
(86)【国際出願番号】 US2017016618
(87)【国際公開番号】W WO2017136799
(87)【国際公開日】2017-08-10
【審査請求日】2020-02-04
(31)【優先権主張番号】62/291,719
(32)【優先日】2016-02-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】591052398
【氏名又は名称】ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア
【氏名又は名称原語表記】THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
(73)【特許権者】
【識別番号】511293663
【氏名又は名称】ユニバーシティー オブ アイオワ リサーチ ファウンデーション
(74)【代理人】
【識別番号】100114775
【弁理士】
【氏名又は名称】高岡 亮一
(74)【代理人】
【識別番号】100121511
【弁理士】
【氏名又は名称】小田 直
(74)【代理人】
【識別番号】100202751
【弁理士】
【氏名又は名称】岩堀 明代
(74)【代理人】
【識別番号】100191086
【弁理士】
【氏名又は名称】高橋 香元
(72)【発明者】
【氏名】ジェリフ,ローラ
(72)【発明者】
【氏名】ライクマン,ケリー
(72)【発明者】
【氏名】マリー,ジェフリー
【審査官】小澤 理
(56)【参考文献】
【文献】国際公開第2014/144129(WO,A2)
【文献】特表平07-500911(JP,A)
【文献】特開2004-144767(JP,A)
【文献】特開2009-106279(JP,A)
【文献】特開平07-325082(JP,A)
【文献】米国特許出願公開第2010/0029006(US,A1)
【文献】JELLIFFE-PAWLOWSKI, L. L. et al.,Second Trimester Serum Predictors of Preterm Birth in a Population-Based Sample of Low-Risk Pregnancies,Prenatal Diagnosis,2010年,Vol.30,p.727-733
【文献】JELLIFFE-PAWLOWSKI, L. L. et al.,Second Trimester Serum Predictors of Preterm Birth in a Population-Based Sample of Low-Risk Pregnancies,Prenatal Diagnosis,2010年,Vol.30,p.727-733
【文献】JELLIFFE-PAWLOWSKI, L. L. et al.,Association of Early Preterm Birth with Abnormal Levels of Routinely Collected First and Second Trimester Biomarkers,American Journal of Obsterics and Gynecology,2013年,Vol.208, No.6,p.492.e1-492.e11
【文献】ALLEMAN, B. W. et al.,A Proposed Method to Predict Preterm Birth Using Clinical Data, Standard Maternal Serum Screening, and Cholesterol,American Journal of Obsterics and Gynecology,2013年,Vol.208, No.6,p.472.e1-472.e11
【文献】WALLENSTEIN, M. B.,Inflammatory Biomarkers and Spontaneous Preterm Birth among Obese Women,Journal of Maternal-Fetal and Neonatal Medicine,2016年,Vol.29, No.20,p.3317-3322,Published online: 2015.12.23
(58)【調査した分野】(Int.Cl.,DB名)
G01N 33/50
G01N 33/68
G01N 33/53
G01N 33/74
G01N 33/92
JSTPlus/JMEDPlus/JST7580(JDreamIII)
Scopus
(57)【特許請求の範囲】
【請求項1】
被験者において早産のリスクを評価する方法であって、
貧血状態、支援状態、肥満度指数、CD40L、CRP、糖尿病状態、ENA78、EOTAXIN、GP130、HDL、HGF、高血圧状態、ICAM1、IFNA、IFNB、IL-10、IL-13、IL-15、IL-1A、IL-1RA、IL-4、IL-5、IL-6、IL-7、IL-8、IL1R1、IL4R、IP-10、LDL、LIF、MCP3、MCSF、MIG、MIP1A、MIP1B、NGF、出産数、PDGFBB、プロゲステロン、RANTES、トリグリセリド対HDLの比、sFASL、TNFR1、TRAIL、トリグリセリド、VEGF、VEGFR1、VEGFR2、およびVEGFR3からなるパネルから選択される2種以上のリスク指標についてリスク指標値を取得するステップ;
取得されたリスク指標値を、選択されたリスク指標パネルに基づく予測モデルに入力するステップ;および
前記予測モデルを使用して、前記被験者についての早産リスク評価を計算するステップ;
を含み、
前記方法は、AFP、コレステロール、hCG、INH、およびPAPP-Aから選択される少なくとも1つのリスク指標についてリスク指標値を取得することをさらに含み、
前記予測モデルは、式:
PTB確率スコア=-8.1283+(1.4469*log AFP MoM)+(-0.3991*log hCG MoM)+(-0.7104*log LDL MoM)+(4.8981*logプロゲステロン)+(-1.1834*log IL-1A)+(0.6207*log IL-1RA)+(-1.1990*log GP130)+(-1.6212*log IL-7)+(1.0055*log IL-10)+(1.9563*log IL-15)+(0.1631*log INFA)+(-0.4121*log INFB)+(-0.0767*log MIP1B)+(-1.6237*log MCP3)+(0.4761*log ENA78)+(0.2408*log IL-8)+(0.8217*log MIG)+(1.5658*log IP-10)+(0.8339*log TNFR1)+(-5.0613*log CD40L)+(9.0228*log TRAIL)+(-0.5493*log sFASL)+(1.0309*log PDGFBB)+(-17.9255*log VEGF)+(1.0385*log VEGFR2)+(3.7481*支援指標値)+(0.5289*BMI指標値)+(-12.5091*高血圧指標値)+(1.8859*糖尿病指標値)+(1.8505*log TNFR1*logプロゲステロン)+(1.3174*log CD40L*logプロゲステロン)+(-5.1778*log VEGF*logプロゲステロン)+(-0.7364*log TRAIL*支援指標値)+(-1.4070*IL-8*高血圧指標値)+(5.2669*log VEGF*高血圧指標値)
を含み、前記式において、
支援指標値として、医療支援を使用している被験者は1を割り当てられ、医療支援を使用していない被験者は0を割り当てられ;
BMI指標値として、BMI>30の被験者は1を割り当てられ、BMI<30の被験者は0を割り当てられ;
高血圧指標値として、既存の高血圧を有する被験者は1を割り当てられ、既存の高血圧を有さない被験者は0を割り当てられ;
糖尿病指標値として、既存の糖尿病を有する被験者は1を割り当てられ、既存の糖尿病を有さない被験者は0を割り当てられ;
MoMは中央値の倍数に等しく;
バイオマーカー血清濃度測定値は、胎盤マーカーAFPおよびhCGについて、脂質LDLについて、およびプロゲステロンについて、pg/mlで測定され;
残りのリスク指標は中央蛍光強度として測定される
法。
【請求項2】
被験者において早産のリスクを評価する方法であって、
貧血状態、支援状態、肥満度指数、CD40L、CRP、糖尿病状態、ENA78、EOTAXIN、GP130、HDL、HGF、高血圧状態、ICAM1、IFNA、IFNB、IL-10、IL-13、IL-15、IL-1A、IL-1RA、IL-4、IL-5、IL-6、IL-7、IL-8、IL1R1、IL4R、IP-10、LDL、LIF、MCP3、MCSF、MIG、MIP1A、MIP1B、NGF、出産数、PDGFBB、プロゲステロン、RANTES、トリグリセリド対HDLの比、sFASL、TNFR1、TRAIL、トリグリセリド、VEGF、VEGFR1、VEGFR2、およびVEGFR3からなるパネルから選択される2種以上のリスク指標についてリスク指標値を取得するステップ;
取得されたリスク指標値を、選択されたリスク指標パネルに基づく予測モデルに入力するステップ;および
前記予測モデルを使用して、前記被験者についての早産リスク評価を計算するステップ;
を含み、
選択されたリスク指標パネルは、HDL、トリグリセリド、トリグリセリド:HDL、IL-6、CD40L、TRAIL、IL-13、LIF、MCSF、VEGFR1、VEGFR3、EOTAXIN、MCP-3、およびMIGを含む
法。
【請求項3】
被験者において早産のリスクを評価する方法であって、
貧血状態、支援状態、肥満度指数、CD40L、CRP、糖尿病状態、ENA78、EOTAXIN、GP130、HDL、HGF、高血圧状態、ICAM1、IFNA、IFNB、IL-10、IL-13、IL-15、IL-1A、IL-1RA、IL-4、IL-5、IL-6、IL-7、IL-8、IL1R1、IL4R、IP-10、LDL、LIF、MCP3、MCSF、MIG、MIP1A、MIP1B、NGF、出産数、PDGFBB、プロゲステロン、RANTES、トリグリセリド対HDLの比、sFASL、TNFR1、TRAIL、トリグリセリド、VEGF、VEGFR1、VEGFR2、およびVEGFR3からなるパネルから選択される2種以上のリスク指標についてリスク指標値を取得するステップ;
取得されたリスク指標値を、選択されたリスク指標パネルに基づく予測モデルに入力するステップ;および
前記予測モデルを使用して、前記被験者についての早産リスク評価を計算するステップ;
を含み、
前記方法は、AFP、コレステロール、hCG、INH、およびPAPP-Aから選択される少なくとも1つのリスク指標についてリスク指標値を取得することをさらに含み、
前記予測モデルは、式:
PTB確率スコア=-6.7601+0.9949(log AFP MoM)-0.3583(log hCG MoM)+0.2165(log INH MoM)-0.5084(log TNFR1)+0.7793(logプロゲステロン)-0.7101(logコレステロール)+0.9711(log LDL MoM)-0.2369(log HGF)+0.3425(log IL1R1)-0.2802(log IL4R)+0.0822(log VEGFR2)+0.5048(log EOTAXIN)+0.1232(log MIG)-0.2914(log MIP1A)+0.5077(log ICAM1)+1.3842(高血圧指標値)+0.8358(糖尿病指標値)+0.5719(支援指標値)+0.5426(貧血指標値)
を含み、前記式において、
支援指標値として、医療支援を使用している被験者は1を割り当てられ、医療支援を使用していない被験者は0を割り当てられ;
貧血指標値として、貧血を有する被験者は1を割り当てられ、貧血を有さない被験者は0を割り当てられ;
高血圧指標値として、既存の高血圧を有する被験者は1を割り当てられ、既存の高血圧を有さない被験者は0を割り当てられ;
糖尿病指標値として、既存の糖尿病を有する被験者は1を割り当てられ、既存の糖尿病を有さない被験者は0を割り当てられ;
MoMは中央値の倍数に等しく;
バイオマーカー血清濃度測定値は、胎盤マーカーAFPおよびhCGについて、脂質LDLについて、およびプロゲステロンについて、pg/mlで測定され;
残りのリスク指標は中央蛍光強度として測定される
法。
【請求項4】
試料において早産リスクバイオマーカーを評価するためのキットであって、
TRAIL、IL-4、IL-5、IFNA、LIF、NGF、VEGF、VEGFR1、IP-10、MIP1A、RANTES、およびCRPから成る群から選択される2つ以上のバイオマーカーの定量化のための検出要素を含む、キット。
【請求項5】
試料において早産リスクバイオマーカーを評価するためのキットであって、
プロゲステロン、HDL、トリグリセリド、トリグリセリド:HDL、IL-6、CD40L、TRAIL、IL-13、LIF、MCSF、VEGFR1、VEGFR3、EOTAXIN、MCP-3、およびMIGから成る群から選択される2つ以上のバイオマーカーの定量化のための検出要素を含む、キット。
【請求項6】
試料において早産リスクバイオマーカーを評価するためのキットであって、
LDL、TNFR1、HGF、IL1R1、IL4R、VEGFR2、EOTAXIN、MIG、MIP1A、およびICAM1から成る群から選択される2つ以上のバイオマーカーの定量化のための検出要素を含む、キット。
【発明の詳細な説明】
【技術分野】
【0001】
相互関連出願:本出願は、2016年2月5日に出願された「Methods of Assessing Preterm Birth Risk」というタイトルの米国仮出願第62/291,719号に対する優先権の利益を主張し、その内容が参照により本明細書に組み込まれる。
【0002】
連邦政府による資金提供を受けた研究開発の記載:本発明は、米国立衛生研究所によって与えられた認可番号HL101748、R01 HD057192、およびR01 HD052953の下で政府支援を受けて行われた。米国政府は、本発明において一定の権利を有する。
【背景技術】
【0003】
早産(PTB:preterm birth)は、妊娠期間の37週より前に起こる出生である。PTBは、出産予定日より早い前期破水、早期分娩、および医学的誘発または医学的誘発に起因した帝王切開を含む。PTBおよびその関連合併症は、5歳未満の子供における死因の第1位であり、生存者に生涯にわたる身体障害および健康上の課題を引き起こし得る。
【0004】
相当な努力にもかかわらず、現在まで、早産のリスクを予測するための妊娠中期ツールはほとんどない。PreTRM(商標)検査(Sera Prognostics、米国ユタ州ソルトレイクシティ)は、質量分析ベースのリスク評価を提供する。この検査は、免疫測定法などの、もっと安価な定量化プラットフォームではなく、質量分析法に依拠する。それに応じて、安価で、その上信頼できるPTBリスク評価に対する当技術分野における必要性が残っている。
【0005】
さらに、PTBの根底にある原因は理解されていない。それに応じて、PTBリスクの根底にある生理的プロセスおよび経路を明らかにする検査に対する当技術分野における必要性がある。
【0006】
成績が良くて信頼できる予測モデルを特定することは、リスクのある女性に、より厳密な経過観察、監視、および必要に応じて、治療介入のための機会を提供するであろう。
【発明の概要】
【0007】
本発明の様々な実施形態は、被験者におけるPTBリスクを予測するための方法および物質の組成に関する。本明細書で説明する発明は、被験者におけるPTBリスクを評価する、簡便で、非侵襲的、かつ正確な手段を備えた技術を提供し、かかるリスクを低減するために適切な治療介入を選択する手段をさらに提供する。
【0008】
ある実施形態では、本発明は、PTBのリスクを予測するための診断ツールを提供する。一態様では、診断ツールは、被験者におけるPTBのリスクを評価するための予測モデルを構築するために使用できるバイオマーカーおよび他の因子の新規パネルを含む。
【0009】
他の態様では、本発明の方法は、被験者におけるPTBのリスクを判断するための新規の予測アルゴリズムおよび他の統計的分析の適用を包含する。
【0010】
別の態様では、本発明の方法は、PTBのリスクがある被験者を処置する方法を包含する。一実施態様では、PTBのリスクがある被験者に対する適切な処置の選択は、バイオマーカーおよび母体因子プロファイルに基づく。
【0011】
別の態様では、本発明の範囲は、PTBのリスクを軽減するための治療処置を評価するか、または被験者に施された処置の有効性をモニタリングする方法を包含する。
【0012】
別の態様では、本発明の範囲は、安価で容易に実装された免疫測定法キット、ならびに本明細書で説明する方法の成績を支援できるソフトウェア、装置、および他の製品組立体などの、本発明の方法の適用において有用な検定キットを包含する。
【図面の簡単な説明】
【0013】
図1】患者のプールにおいてPTBリスクを正確に評価するためのモデル1PTB予測アルゴリズムの能力を示しているROCプロットを示す。
図2】2人の被験者に対する、パネルAリスク指標に基づくバイオマーカーおよび母体因子プロファイルを示す。プロファイルは、同様のPTBリスクがある2人の被験者が、異なる根底にある原因を示す、多岐のバイオマーカープロファイルをどのように有し得るかを示す。
【発明を実施するための形態】
【0014】
本発明の様々な実施形態は、被験者におけるPTBのリスクを予測するための方法および物質の組成に関する。本発明の方法は、一部、ある指標とPTBリスクとの間の予測関係の新規の導出に基づく。とりわけ、本発明は、多数の根底にある原因にわたるPTBリスクの正確な評価のためのツールを提供し、指標の新規の組合せを使用した一般母集団におけるPTBリスクを評価するための包括的で統合された手段を提供する。
【0015】
本発明の一般的な方法は、次のとおりである:
a)複数のリスク指標が被験者において評価される;
b)リスク指標評価が、被験者におけるPTBのリスクを予測する予測モデルに入力される;および
c)上昇したPTBリスクが評価される場合、PTB治療介入を被験者に施す。
【0016】
「リスク指標」は、本明細書では、被験者におけるPTBリスクを予測する因子である。リスク指標は、様々なバイオマーカーを含み得、バイオマーカーの有無は、増加または減少したPTBリスクを示す。リスク因子は、既往歴、健康状態などの、母体特性も含み得る。
【0017】
「被験者」は、本明細書では、任意の種の妊娠雌性を指す。本明細書で開示する発明は、一般に、ヒトの女性におけるPTBの予測および処置に関し、本明細書で提供する説明は、便宜のため、ヒトの被験者に言及する。しかし、本発明の範囲は他の種、例えば、獣医学の対象および試験動物、の妊娠動物にまで及ぶことが理解されよう。
【0018】
本明細書では、PTBは、正常な分娩の妊娠期間前の早産である、早産(premature birth)としても知られている、早産を指す。例えば、ヒトの被験者において、早産は、37週未満で起こった出生を指し、出産予定日より早い前期破水、早期分娩、および医学的誘発または医学的誘発に起因した帝王切開を含む。
【0019】
バイオマーカー
リスク指標に関して、いくつかの症例では、リスク指標は、脂質、タンパク質、および核酸を含む、被験者内に存在する生物由来物質である、バイオマーカーを含む。選択されたバイオマーカーは、様々なカテゴリから引き出され得、カテゴリは異なる代謝プロセスおよび経路と関連付けられている。一実施態様では、リスク指標は、次のカテゴリ:胎盤機能;脂質状態;ホルモン状態;および免疫活性、から引き出される。
【0020】
胎盤機能に関して、これは、被験者における胎盤機能の程度または質を判断する任意の指標によって評価され得る。胎盤機能の1つの指標は、αフェトプロテイン(AFP)である。被験者内のAFPレベルは、血清、羊水、または他の試料の分析によって決定され得る。正常値を上回って上昇したAFPレベルは、低下した胎盤機能と関連付けられる。胎盤機能の別の指標は、ヒト絨毛性ゴナドトロピン(hCG)である。hCGは、妊娠の初期段階中に、黄体を維持するのに役立つ。低hCGは、早産のリスクに関係する。HCGは、血液、尿、または他の試料中で測定され得る。
【0021】
脂質状態に関して、様々なバイオマーカーが使用され得る。脂質状態バイオマーカーは、総コレステロール;低密度リポタンパク質(LDL);高密度リポタンパク質(HDL);トリグリセリド;およびトリグリセリド対HDLの比率を含む。
【0022】
ホルモン状態に関して、被験者におけるホルモンレベルに関連した様々なバイオマーカーが使用され得る。例えば、プロゲステロン状態がホルモン状態の指標として使用され得る。低プロゲステロンは、PTBの上昇したリスクと関連付けられる。
【0023】
免疫活性に関連して、いくつかの指標が使用され得る。本発明の実施において利用される様々な免疫バイオマーカーは、インターロイキン、インターフェロン、ケモカインリガンド、TNF-αスーパーファミリーメンバー、および増殖因子を含む。
【0024】
一実施態様では、免疫活性は、あるインターロイキンバイオマーカーの測定によって評価され、これらのインターロイキンは、様々な免疫または炎症経路に関係付けられている。例えば、インターロイキンバイオマーカーは、インターロイキン1α(IL-1α)ファミリーメンバー;インターロイキン1受容体1(IL1R1);インターロイキン1受容体アンタゴニスト(IL-1RA);糖タンパク質130(gp130、IL6ST、IL6-βまたはCD130としても知られている);インターロイキン4受容体(IL4R);インターロイキン6(IL-6);インターロイキン7(IL-7);インターロイキン10(IL-10)、ヒトサイトカイン合成阻害因子(CSIF)としても知られている;インターロイキン13(IL-13);およびインターロイキン15(IL-15);および白血病抑制因子(LIF)を含む。
【0025】
一実施態様では、免疫活性は、あるインターフェロンの測定によって評価される。インターフェロンバイオマーカーは、バイオマーカーインターフェロンA(INFA)および/またはインターフェロンB(INFB)を含み得る。
【0026】
一実施態様では、免疫活性は、あるケモカインリガンドバイオマーカーの測定によって評価される。一般に、ケモカインリガンドの発現増加は、被験者における免疫または炎症経路活性の増加を示す。本発明のケモカインリガンドバイオマーカーは、マクロファージ炎症性タンパク質-1β(MIP-1β)、CCL4としても知られている;単球走化性タンパク質3(MCP3)、ケモカインリガンド7(CCL7)としても知られている;上皮好中球活性化ペプチド(ENA-78)、ケモカインリガンド5(CXCL5)としても知られている;インターロイキン8(IL8)、ケモカイン(C-X-Cモチーフ)リガンド8としても知られている;γインターフェロンによって誘発されたモノカイン(MIG)、ケモカイン(C-X-Cモチーフ)リガンド9(CXCL9)としても知られている;インターフェロンγ誘発タンパク質10(IP-10)、C-X-Cモチーフケモカイン10(CXCL10)としても知られている;マクロファージコロニー刺激因子(MCSF);マクロファージ炎症性タンパク質1-α(MIPIA)、ケモカイン(C-Cモチーフ)リガンド3(CCL3)としても知られている;エオタキシンファミリーメンバー(EOTAXIN):およびランテス(RANTES)、ケモカイン(C-Cモチーフ)リガンド5(CCL5)としても知られている;を含む。
【0027】
一実施態様では、免疫状態は、ある腫瘍壊死因子α(TNFα)関連バイオマーカーの測定によって評価される。一般に、TNFα受容体スーパーファミリーメンバーのメンバーの発現増加は、被験者における免疫または炎症経路活性の増加を示す。本発明のTNFαスーパーファミリーメンバーバイオマーカーは、腫瘍壊死因子受容体1(TNFR1)、腫瘍壊死因子受容体スーパーファミリーメンバー1A(TNFRSF1A)およびCD120aとしても知られている;CD40リガンド(CD40L)、CD154としても知られている;TNF関連アポトーシス誘導リガンド(TRAIL);ならびにFasリガンド(FasLまたはCD95L)を含む。
【0028】
一実施態様では、免疫状態は、ある増殖因子およびそれらの受容体を含むバイオマーカーを測定することによって評価される。本発明の増殖因子バイオマーカーは、血小板由来増殖因子サブユニットBホモ二量体(PDGF-BB);神経成長因子(NGF);血管内皮増殖因子(VEGF);血管内皮増殖因子受容体1(VEGFR1);血管内皮増殖因子受容体2(VEGFR2)、キナーゼ挿入ドメイン受容体(KDR)としても知られている;および血管内皮増殖因子受容体3(VEGFR3)、関連チロシンキナーゼ4としても知られている;および肝細胞増殖因子(HGF)を含む。
【0029】
追加のバイオマーカーは、妊娠関連血漿タンパク質A(PAPP-A);インヒビン(INH);細胞間接着分子1(ICAM-1);およびC反応性タンパク質(CRP)を含む。
【0030】
本発明の範囲は、本明細書で開示するバイオマーカーの同等物にまで及ぶことが理解されよう。バイオマーカー同等物は、その濃度が開示するバイオマーカーのそれと高度に相関している測定可能な種であり、そのため、その値が選択されたバイオマーカーの濃度に対する代理として機能できる。バイオマーカー同等物は、選択されたバイオマーカーの活性化因子、選択されたバイオマーカーの種誘発ダウンストリーム(species induced downstream)、および選択されたバイオマーカーの分解生成物、抱合体、または代謝物を含む。
【0031】
母体因子
本発明の方法は、母体因子のPTBリスク指標としての使用をさらに含み得る。母体因子は、本明細書では、母体被験者の任意の特質を含み得る。例えば、母体因子は、年齢、人種または民族性、収入状態などの、被験者の様々な人口統計学的特性を包含し得る。1つの母体因子は、「支援状態」であり、政府の医療支援プログラム(例えば、メディケア)の利用を意味する。母体因子は、被験者と関連付けられた健康状態因子をさらに包含し得る。一実施形態では、体重または肥満度指数は、PTBリスクの指標として、例えば、被験者が30を超える肥満度指数を有するかどうか、使用され得る。同様に、高血圧、糖尿病、貧血、または他の条件の有無および/または重症度が、PTBリスク指標因子として使用され得る。母体因子は、妊娠段階、例えば、妊娠期間などの、妊娠因子をさらに包含し得る。別の母体因子は、出産数、女性が以前に成育可能な妊娠期間まで妊娠していた回数である。
【0032】
モデル生成
一態様では、本発明は、個々の被験者におけるPTBのリスクをその被験者のリスク指標に基づいて評価するための予測モデルを生成する方法を提供する。本モデルは、一般的なプロセスによって次のように生成される:第1に、リスク指標のパネルが選択される。次に、妊娠中にPTBを経験した女性の第1のプール、および妊娠中にPTBを経験しなかった女性の第2のプールに対するリスク指標値が次いで分析されて、リスク指標値とPTBを経験する確率との間の数学的関係を導出する。
【0033】
モデルは、ある母集団内の複数の女性からのリスク指標値(例えば、母体データおよびバイオマーカー測定値)を含む履歴データセットから導出され得、女性の1つのサブセットはPTBを経験し、別のサブセットは経験しなかった。
【0034】
複数の因子を指定された結果の確率と相関させるための様々な数学的アプローチが存在する。本発明の予測モデルは、例えば:ロジスティック回帰分析、線形判別分析、部分最小二乗判別分析、多重線形回帰分析、多変量非線形回帰、逆方向段階的回帰、閾値に基づく方法、ツリーベース法、ピアソンの相関係数、サポートベクターマシン、一般化加法モデル、教師ありおよび教師なし学習モデル、クラスター分析、ならびに当技術分野で周知の他の統計モデル生成法などの、統計的方法を使用して生成され得る。履歴データのサブセットが、当技術分野で周知のように、モデルを生成、訓練、または有効にするために利用され得る。
【0035】
モデル入力は、リスク指標パネルを含む。リスク指標パネルは、早産リスクを予測するリスク指標のセットである。一実施形態では、リスク指標パネルは、本明細書で開示するリスク指標の任意の2つ以上を含む。一実施形態では、パネルは、次のカテゴリの各々から1つ以上のリスクを含む:胎盤機能、脂質状態、ホルモン状態、および免疫活性。様々な実施形態では、定義されたパネルから引き出された指標の「サブセット」に対する言及は、例えば、定義されたパネルから引き出された2、3、4、5、6、7、8、9、10、またはそれ以上の指標に対して行われる。
【0036】
一実施形態では、パネルはパネルAであり、AFP、hCG、LDL、プロゲステロン、IL-1A、IL-1RA、GP130、IL-7、IL-10、Il-15、IFNA、IFNB、MIP1B、MCP3、ENA78、IL-8、MIG、IP-10、CD40L、TNFR1、TRAIL、sFASL、PDGFBB、NGF、VEGF、VEGFR2、支援状態、肥満度指数、高血圧状態、および糖尿病状態を含む。一実施形態では、パネルは、パネルAのリスク指標のサブセットを含む。
【0037】
一実施形態では、パネルはパネルBであり、出産数、糖尿病状態、高血圧状態、PAPP-A、AFP、TRAIL、IL-4、IL-5、IFNA、LIF、NGF、VEGF、VEGFR1、IP-10、MIP1A、RANTES、およびCRPを含む。一実施形態では、パネルは、パネルBのリスク指標のサブセットを含む。
【0038】
一実施形態では、パネルはパネルCであり、第1の三半期のリスク指標PAPP-A、hCG、AFP、HDL、トリグリセリド、トリグリセリド:HDL、IL-6、CD40L、TRAIL、IL-13、LIF、MCSF、VEGFR1、VEGFR3、EOTAXIN、MCP-3、およびMIGを含む。一実施形態では、パネルは、パネルCのリスク指標のサブセットを含む。
【0039】
一実施形態では、パネルはパネルDであり、高血圧状態、糖尿病状態、貧血状態、支援状態、プロゲステロン、AFP、hCG、INH、コレステロール、LDL、TNFR1、HGF、IL1R1、IL4R、VEGFR2、EOTAXIN、MIG、MIP1A、およびICAM1のリスク指標を含む。一実施形態では、パネルは、パネルDのリスク指標のサブセットを含む。
【0040】
一実施形態では、本発明は、パネルA、パネルB、パネルCおよびパネルDから成る群から選択されたパネルのリスク指標を使用して、被験者におけるPTBリスクを評価するための予測モデルを生成する方法を含む。一実施形態では、本発明は、パネルA、パネルB、パネルCおよびパネルDから組み合わされた全ての指標を包含する群のサブセットを含む任意の2つ以上の指標を含むパネルを使用して、被験者におけるPTBリスクを評価するための予測モデルを生成する方法を含む。
【0041】
モデル入力は、様々な形、例えば、連続変数、例えば、被験者の血清における特定のバイオマーカーの濃度、で表現され得る。入力は、中央蛍光強度値を含み得る。モデル入力は、正規化変数を含み得る。例えば、被験者のバイオマーカーレベルは、関連母集団の中央値の倍数として表現され得る。モデル入力は、カテゴリ、離散、および重層化(stratified)値も含み得る。例えば、既存の糖尿病の有無は、離散のyesまたはno値を含む。いくつかの実施形態では、離散変数は、数値、例えば、no=0およびyes=1、を割り当てられ得る。別の例では、バイオマーカーレベルは、基準値(例えば、平均母集団値またはPTBのリスクが上昇していない被験者において観察された値)との比較により、増加したか、または増加していないと見なされ得る。同様に、バイオマーカー値は層(例えば、低、正常、または高)に割り当てることができる。
【0042】
生成されたモデルは、1つ以上の式を含み、その中に、個々の被験者のリスク指標値が入力されて、その被験者のPTBのリスクを予測する出力を生成し得る。モデル出力は、確率スコア、オッズスコア、リスクカテゴリ値(例えば、「低リスク」、「中程度のリスク」および「高リスク」など)を含み得、かかるカテゴリは、PTBの統計的確率に基づいている。予測モデルの出力は、スコアであり得、それは、PTBリスクカテゴリを定義する1つ以上の統計的カットオフ値と比較できる。
【0043】
いくつかの実施形態では、生成されたモデルは、リスク指標のサブセットを入力パネルから選択し、選択された保持カットオフに基づいて、十分な予測値を有していなかったものを除外する。
【0044】
PTBリスク評価および治療介入
本明細書で提供する予測ツールは、様々な方法で使用され得る。第1の態様では、本発明は、次のステップ:
選択されたパネル内の各リスク指標に対する被験者のリスク指標値を取得すること;
取得したリスク指標値を、リスク指標の選択されたパネルに基づいて、予測モデルに入力すること;および
予測モデルを使用して被験者に対するPTBリスク評価を計算すること
を含む、被験者に対するPTBリスクを評価する方法を含む。
【0045】
一態様では、本方法は、被験者がPTBのリスクが増加していると分かった場合、治療介入を被験者に施すステップをさらに含む。一実施形態では、治療介入の選択は、被験者の指標プロファイルによって導かれる。
【0046】
第1のステップは、リスク指標値の取得、すなわち、パネル内の各リスク指標に対する医療データおよびバイオマーカー測定値を取得することである。このステップは、1つ以上の別個の操作において一人以上の開業医によって実行できる。母体因子に関して、因子は、被験者に問診すること、医療記録を見直すこと、または、被験者の検査を行うこと、例えば、体重および身長を取得して肥満度指数を計算するか、もしくは血圧を測定して高血圧状態を判断すること、によって導出できる。欠測値は、当技術分野で周知の統計手法を使用して吸収され得る。
【0047】
バイオマーカー評価のために、選択されたパネルの様々なバイオマーカーが、被験者から得られた適切な生体試料中で定量化され得る。試料は、血液、血漿、血清、尿、唾液、間質液、組織診、および被験者から取り出されたか、または他の方法で引き出された他の試料タイプを含む。好都合なことに、本発明のバイオマーカーは、血清中で評価できる。妊婦管理診察中に、例えば、妊娠期間の15~20週中に実施された妊婦管理の診察で、定期的に引き出された血液試料が、試料源として役立ち得る。
【0048】
試料中のバイオマーカーの定量化は、当技術分野で周知の任意の手段によって実行され得る。様々な実施形態では、バイオマーカーは、免疫測定法によって定量化される。例示的な免疫測定法は、酵素連結された免疫吸着剤アッセイ(ELISA)を含む。ELISAアッセイは、例えば、サンドイッチ測定法および競合アッセイを含む。当技術分野で周知の他の技術は、EMIT法、放射免疫測定法、酵素免疫測定法、蛍光免疫測定法、ウエスタンブロット法、免疫沈降法および粒子免疫測定法を含む。
【0049】
質量分析法は、試料中のバイオマーカーの有無および/または濃度を分析するために利用され得る。例えば、MALDIまたはSELDI質量分析法が、当技術分野で周知のように、採用できる。他の分析手法は、選択的反応モニタリング、逆相液体クロマトグラフィー、サイズ透過(ゲル濾過)、イオン交換、アフィニティー、HPLCおよび当技術分野で周知の他の液体クロマトグラフィーまたは液体クロマトグラフィー-質量分析法ベースの技術を含む。定量的ローサイトメトリーも使用され得る。
【0050】
一実施態様では、選択されたパネルのバイオマーカーの一部、大部分、または全部が、単一の統合された測定法(assay)で評価される。
【0051】
パネルの各リスク指標に対して獲得された値は次いで、予測モデルに入力される。モデルの予測計算(および前節に記載したモデル生成ステップ)は、任意の適切なデジタルコンピュータによって実行され得る。適切なデジタルコンピュータは、Unix、Windows(商標)またはLinux(商標)ベースのオペレーティングシステムなどの、任意の標準または専用オペレーティングシステムを使用する、携帯機器、ラップトップおよびデスクトップコンピュータ、クラウドコンピューティングシステムなど、を含み得る。コンピュータは、ソフトウェア、すなわち、メモリドライブまたはディスクなどの持続性有形的コンピュータ可読媒体上にコード化された命令を含み、かかる命令は、モデル生成または予測スコアリングの計算を指示する。
【0052】
医療関係者によって取得されたリスク指標値は、コンピュータに直接入力され得るか、または、例えば、インターネットを経由して、遠隔に入力され得る。装置で行われたバイオマーカー測定は、コンピュータによってアクセスされるか、またはコンピュータにアップロードされ得る。医療履歴指標が医療記録データベースから取得されるか、またはアップロードされ得る。
【0053】
全ての必要な値が入力されると、予測モデルは次いで、被験者のPTBリスクを示す予測スコアを計算する。このスコアは、コンピュータから取得され得るか、コンピュータから送信され得るか、コンピュータによって表示され得るか、またはコンピュータによって他の方法で出力され得る。例えば、スコアは、印刷され得るか、またはメッセージの形で医療関係者の装置に送信され得る。
【0054】
一実施形態では、本方法は、例えば、パネルA、パネルB、パネルC、およびパネルDから成る群から選択された、定義されたパネルからの指標の全部またはサブセットを含む指標のパネルを分析する予測モデルを利用した、被験者におけるPTBリスクの評価を含む。例えば、パネルは、パネルA、パネルB、パネルC、およびパネルDから成る群から選択された、単一の定義されたパネル内のマーカーの全部を含み得る。代替として、パネルは、定義されたパネルパネルA、パネルB、パネルC、およびパネルDから成る群から選択された、定義されたパネルのリスク指標のサブセット、例えば、選択されたパネル内の指標の>50%、>60%、>70%、>80%、>85%、>90%、または>95%、を含み得る。パネルA、パネルB、パネルC、およびパネルDから成る群の2、3、または4つのパネルから1つ以上のマーカーが選択される、ハイブリッドパネルが利用され得ることも理解されよう。予測モデル内で分析されたマーカーのパネルは、本明細書で定義したパネル内で解明されていない追加のマーカーも含み得ることも理解されよう。
【0055】
一実施形態では、本方法は、次の各々:胎盤機能状態、脂質状態、ホルモン状態、および免疫状態、からの1つ以上のマーカーを含む、指標パネルを分析する予測モデルを利用した、被験者におけるPTBリスクの評価を含む。一実施形態では、パネルは、収入状態、身体状態、高血圧状態、および糖尿病状態をさらに含む。例えば、パネルは、1つの子宮頸部機能指標、1つ以上のホルモン状態指標、1つ以上の脂質状態指標、および2、3、4、5、6、またはそれ以上の免疫状態の指標を含み得る。一実施形態では、4、5、またはそれ以上の免疫状態の指標は、インターロイキン、インターフェロン、ケモカインリガンド、TNFαスーパーファミリーメンバー、および増殖因子の各々から少なくとも1つの指標を含む。
【0056】
本明細書で提供するのは、被験者に対してPTBリスク予測を生成するために使用できる例示的なモデルである。モデル1は、例1で説明する通りに生成された、パネルAのリスク指標を使用して、妊娠中の被験者における早産のリスクを予測できるロバストモデルである。モデル1は、出産予定日より早い前期破水および早期分娩の両方を経験している被験者におけるPTBのリスクを正確に予測する。例えば、モデル1のROC分析は、様々なデータセットにわたり81%の曲線下面積スコアを達成した(図2)。
【0057】
パネルAの各変数、および変数間の重要な相互作用に対するモデル1係数が表1に提示されている。一実施形態では、本発明の方法は、モデル1を使用した、被験者におけるPTBリスクの評価を含む。一実施形態では、係数の1つ以上は、少なくとも5%、10%、または15%、またはそれ以上だけ、上方または下方に調整される。
【0058】
表1.モデル1回帰係数
モデル1は、中央値の倍数として表現されたAFP、hCG、およびLDL測定値を利用する。離散母体指標は、次のように数値を割り当てられる:医療支援を使用している被験者=1、医療支援を使用していない被験者=0;BMI>30の被験者=1、BMI<30の被験者=0;既存の高血圧=1、既存の高血圧なし=0;および既存の糖尿病=1、既存の糖尿病なし=0。他の全ての変数は、胎盤マーカー、脂質、およびプロゲステロンに対するpg/mlとしてのバイオマーカー血清濃度測定値、ならびにサイトカイン、ケモカインおよび受容体に対する中央蛍光強度(MFI)値として表現される。
【0059】
モデル1は、予測スコアを、全てのバイオマーカー入力が濃度の対数である式1に基づく確率の形で出力する:
【0060】
PTB確率スコア=-8.1283+(1.4469*log AFP MoM)+(-0.3991*log hCG MoM)+(-0.7104*log LDL MoM)+(4.8981*logプロゲステロン)+(-1.1834*log Il-1A)+(0.6207*log IL-1RA)+(-1.1990*log GP130)+(-1.6212*log IL-7)+(1.0055*log IL-10)+(1.9563*log IL-15)+(0.1631*log INFA)+(-0.4121*log INFB)+(-0.0767*log MIP1B)+(-1.6237*log MCP3)+(0.4761*log ENA78)+(0.2408*log IL-8)+(0.8217*log MIG)+(1.5658*log IP-10)+(0.8339*log TNFR1)+(-5.0613*log CD40L)+(9.0228*log TRAIL)+(-0.5493*log sFASL)+(1.0309*log PDGFBB)+(-17.9255*log VEGF)+(1.0385*log VEGFR2)+(3.7481*支援)+(0.5289*BMI)+(-12.5091*高血圧)+(1.8859*糖尿病)+(1.8505*log TNFR1*logプロゲステロン)+((1.3174*log CD40L*logプロゲステロン)+(-5.1778*log VEGF*logプロゲステロン)+(-0.7364*log TRAIL*支援)+(-1.4070*log IL-8*高血圧)+(5.2669*log VEGF*高血圧)であり、予測スコアは、PTBの確率を表す(例えば、0~’1の間の値または0%~100%の間の値)。
【0061】
本明細書では、モデル2も提供される。一実施形態では、本発明の方法は、式2で具現化されるように、モデル2を使用した、被験者におけるPTBリスクの評価を含む。
【0062】
式2:PTB確率スコア=-6.7601+0.9949(log AFP MoM)-0.3583(log hCG MoM)+0.2165(log INH MoM)-0.5084(log TNFR1)+0.7793(logプロゲステロン)-0.7101(logコレステロール)+0.9711(log LDL MoM)-0.2369(log HGF)+0.3425(log IL1R1)-0.2802(log IL4R)+0.0822(log VEGFR2)+0.5048(log EOTAXIN)+0.1232(log MIG)-0.2914(log MIP1A)+0.5077(log ICAM1)+1.3842(高血圧値)+0.8358(糖尿病値)+0.5719(支援値)+0.5426(貧血値)
式中、AFP、hCG、INH値は中央値の倍数として表され、被験者が何らかの高血圧である場合、高血圧値=1で、被験者が高血圧ではない場合、高血圧値=0であり;被験者が何らかの糖尿病である場合、糖尿病値=1で、被験者が糖尿病ではない場合、糖尿病値=0であり;被験者が何らかの貧血である場合、貧血値=1で、被験者が貧血ではない場合、貧血値=0であり;また、被験者が何らかの公的保険給付を受けている場合、支援値=1で、被験者が公的保険給付を受けていない場合、支援値=0である。他の全ての変数は、胎盤マーカー、脂質、およびプロゲステロンに対するpg/mlとしてのバイオマーカー血清濃度測定値、ならびにサイトカイン、ケモカインおよび受容体に対する中央蛍光強度(MFI)値として表現される。
【0063】
被験者は次いで、選択されたカットオフ値に基づいて、PTBのリスクが上昇しているか、またはリスクが上昇していなと判断される。PTBに対する一般的な母集団リスクは約10%である。その結果、10%以上の評価されたリスクは、PTBのリスクが上昇していると見なされ得る。例えば、被験者のPTBに対するリスクスコアが50~100%の間のカットオフ値を超えている、例えば、カットオフが>55%、>60%、>70%、>75%、>85%、>90%、>95%、またはそれ以上の場合、被験者は、PTBのリスクが上昇していると見なされ得る。PTBリスクの判断は、コンピュータプログラムによって行われ得、それは、被験者の状態がPTBのリスクが高いことを出力するか、または別の方法でアクセス可能にする。代替として、判断は、スコアを観察している医療関係者によって行われ得る。
【0064】
一実施形態では、本発明の方法は、PTBのリスクが上昇している被験者に対して治療介入を施す追加のステップをもつ、前述した評価プロセスを含む。治療介入は、本明細書では、被験者のPTBリスクを軽減するか、またはPTBの場合に胎児への害を軽減する、被験者において、または被験者によって実行される任意の動作または処置を意味する。一実施形態では、治療介入は、被験者のモニタリングの増加、例えば、定期的な間隔(例えば、毎週)での胎児の健康のモニタリングまたは子宮頸部のモニタリングである。一実施形態では、治療介入は、例えば、休息を増やす、活動制限、食事制限などを含む、ライフスタイルの変化を含む。一実施形態では、治療介入は、締結(子宮頸部を締めるための縫合)の適用または子宮頸部ペッサリーの設置である。他の治療介入は、例えば、抗炎症薬の投与、抗生物質の投与、感染症のスクリーニング、およびプロゲステロンの投与を含む。
【0065】
好都合に、本発明のリスク評価方法は、根底にある原因の範囲から生じるPTBリスクを検出することが可能である。ホルモン、脂質、免疫、および重要な母体因子を含むリスク指標パネルの使用により、検査は、リスクの根底にある原因に対して処置を指示する手段を提供する。一態様では、本発明は、PTBのリスクがある女性において推定上の根底にある原因を特定する方法を包含する。一実施形態において、バイオマーカープロファイルが作成される。バイオマーカープロファイルは、被験者のバイオマーカー測定値を、中央値などの、母集団標準と比較して、彼女のバイオマーカー測定値と、正常または中央値、例えば、PTBを経験しなかった女性で以前に観察された値、との間の相違の程度を示す。プロファイルは、母体因子データをさらに含み得る。プロファイルは、グラフ形状で、例えば、チャートまたは図として、提示され得る。
【0066】
2つの例示的なバイオマーカープロファイルが図2に示されている。ここでは、二人の被験者(「患者A」および「患者B」)のPTB評価が、モデル1を使用して将来を見越して実行された。被験者の各々は、PTBの確率が約92%であることが分かった。その結果として、両方の被験者はPTBを経験した。しかし、各患者のバイオマーカーおよび母体プロファイルは非常に異なっており、異なる根底にある因子が各被験者のPTBに対する原因であったことを示唆している。
【0067】
一実施形態では、本発明の範囲は、被験者が、PTBのリスクが高いと判断される場合、治療介入を被験者に施す方法を包含し、治療介入は、被験者のバイオマーカーパネルの分析により、任意選択として、被験者および母体指標パネルの分析と共に、選択される。例示的な処置は、正常よりも低いプロゲステロンを有していて、PTBのリスクが高い被験者にプロゲステロンを投与することである。別の例示的な処置は、例えば、PTBのリスクが高くて、免疫または炎症経路に関連した1つ以上のバイオマーカーのレベルが異常な被験者に、抗炎症性化合物を投与することである。一実施形態では、被験者のプロファイルにおいて異常なレベルの1つ以上のサイトカインバイオマーカーが観察される場合、治療介入は、感染症のモニタリングである。
【0068】
本発明の方法は、介入処置の有効性をモニターするための手段も提供する。例えば、被験者のプールが、本発明の方法によってPTBのリスクが高いと特定され得る。このプール内の女性は、推定処置(putative treatment)を施され得る。処置されたプール内の妊娠成績が次いで、同様の、処置されていないプール内のものと比較でき、推定処置の有効性を定量化する。同様に、本発明の方法は、処置の有効性をモニターするための手段を提供する。一実施形態では、処置を受けている被験者のPTBリスクが、妊娠中を通して様々な時点において評価される。被験者のPTBリスクが処置に応じて減少する場合、その処置は有効であると見なされる。
【0069】
測定キット
本明細書で提供するのは、PTBリスクを予測するリスク指標のセットである。その結果、これらの発見は、単一の試料において複数のPTBリスク指標を同時に測定するための統合測定法の設計を可能にする。本明細書で提供するのは、試料中のPTBバイオマーカープロファイルの迅速で、安価で、簡便な評価を容易にするために使用できる新規の測定キットである。本明細書では、「測定キット(assay kit)」は、一試料中の2つ以上のPTBバイオマーカーを定量化するために使用できる製品の集約された集合を指す。
【0070】
測定キットは、キットによって検出される各バイオマーカーに固有の複数の検出/定量化ツールを含む。本明細書で開示するバイオマーカーの多くは、タンパク質を含み、それは、免疫測定法または同様の技術によって検出され得る。検出/定量化ツールは、各々が試料中の特定のバイオマーカーを選択的に捕捉するように指示された、複数のタイプの捕捉リガンドを含み得る。検出/定量化ツールは、各々が、例えば、標的種の定量化のための酵素、蛍光、または化学発光標識を含む、試料中の特定のバイオマーカーを選択的に標識化するように指示された、複数のタイプの標識リガンドを含み得る。例えば、捕捉および/または標識リガンドは、選択されたバイオマーカーに特異的に結合する、抗体、affibody、アプタマー、または他の部分を含み得る。測定キットは、例えば、酵素、蛍光、または化学発光標識および関連する試薬を含む、標識化された二次抗体をさらに含み得る。
【0071】
一実施形態では、測定キットは、定量的な多重測定の物理的要素、例えば、当技術分野で周知のような、直接測定、間接測定、サンドイッチ測定、または、競合アッセイ、例えば、ELISAアッセイを含み、測定要素は、複数のPTBリスクバイオマーカーの検出を可能にする。例示的な多重測定プラットフォームは、Yangによる「Microfluidic chips for rapid multiplex ELISA」というタイトルの米国特許第8,075,854号;Hoによる「Quantitative microfluidic biochip and method of use」というタイトルの米国特許公開第US20020127740号、およびGiesterによる「Multiplex enzyme-linked immunosorbent assay for detecting multiple analytes」というタイトルの米国特許公開第20040241776号に記載のものを含む。
【0072】
一実施形態では、測定キットは、捕捉リガンドの1つ以上の個々にアドレス可能なパッチが存在する固体支持体を含み、各パッチの捕捉リガンドは特定のPTBバイオマーカーを対象とする。別の実施形態では、吸収性または吸着する材料の個々にアドレス可能なパッチが存在し、その上に試料の個々の一定分量が固定化され得る。固体支持体は、例えば、チップ、マイクロタイタープレートのウェル、ビーズまたは樹脂を含み得る。キットのチップまたはプレートは、当技術分野で周知のように、自動計測のために構成されたチップを含み得る。
【0073】
一実施形態では、本発明の測定キットは、固体支持体上に存在する捕捉リガンドを含むSELDIプローブであり、それは、選択されたバイオマーカーを試料から捕捉し、それらを、質量分光分析のために脱着処理に応じて放出できる。
【0074】
一実施形態では、本発明の測定キットは、試料中のバイオマーカー種との濃度依存反応に基づいて定量化可能な信号を作成する試薬または酵素を含む。例えば、脂質パネル分析は、コレステロール酸化酵素などの酵素を採用し得る。
【0075】
測定キットは、測定すべきバイオマーカーの標準試料、洗浄液、緩衝液、試薬、印刷された使用説明書、および容器などの要素をさらに含み得る。
【0076】
一実施形態では、本発明の測定キットは、本明細書で開示する2つ以上のPTBリスクバイオマーカーの定量化を対象とする。一実施形態では、本発明の測定キットは、パネルA:AFP、hCG、LDL、プロゲステロン、IL-1A、IL-1RA、GP130、IL-7、IL-10、Il-15、IFNA、IFNB、MIP1B、MCP3、ENA78、IL-8、MIG、IP-10、CD40L、TNFR1、TRAIL、sFASL、PDGFBB、NGF、VEGF、およびVEGFR2、からの2つ以上のバイオマーカーの定量化を対象とする。一実施形態では、本発明の測定キットは、パネルB:PAPP-A、AFP、TRAIL、IL-4、IL-5、IFNA、LIF、NGF、VEGF、VEGFR1、IP-10、MIP1A、RANTES、およびCRP、からの2つ以上のバイオマーカーの定量化を対象とする。一実施形態では、本発明の測定キットは、パネルC:プロゲステロン、PAPP-A、hCG、AFP、HDL、トリグリセリド、トリグリセリド:HDL、IL-6、CD40L、TRAIL、IL-13、LIF、MCSF、VEGFR1、VEGFR3、EOTAXIN、MCP-3、およびMIG、からの2つ以上のバイオマーカーの定量化を対象とする。一実施形態では、本発明の測定キットは、パネルD:AFP、hCG、INH、コレステロール、LDL、TNFR1、HGF、IL1R1、IL4R、VEGFR2、EOTAXIN、MIG、MIP1A、およびICAM1、からの2つ以上のバイオマーカーの定量化を対象とする。
【0077】

例1.モデル1およびパネルAの生成
モデル1を、双方向相互作用を考慮して、多変量逆方向段階的ロジスティック回帰を使用して生成した。胎盤機能に関連した4つのマーカーを将来を見越して検査して、保存された15~20妊娠週の血清試料中の69の脂質、ホルモン、および免疫関連マーカーを、自然PTBの200人(100人が<34週、100人が34~36週)の女性、および200人の妊娠末期対照(term control)における日常的な出生前診断の一部として収集した。
【0078】
重要な情報を失わないために、曲線下面積(AUC)統計値を、p<0.20で入力を設定し、除去後AUC低下が<0.01であった追加の因子を除外して、モデル選択のために使用した。モデル適合度を、ホスマー・レメショウ適合度検定を使用して検査した。再製可能性を評価するために(n=500再現)、復元ブートストラップ(bootstrapping with replacement)を使用した。
【0079】
結果:モデル生成ステップは、パネルAのリスク指標がPTBを予測することを明らかにした。結果として生じるモデル1は、PTBに進んだ女性の>80%を特定することが可能である(AUC=0.8110、図1に示すように、ブートストラップ試料において0.8124)。成績は<34および34~36週のPTBサブセットならびに出産予定日より早い前期破水および早期分娩のサブセットにおいて同様であった。ホスマー・レメショウ検定は、モデル適合度に対して良好なデータを示した(p=0.6190)。アルゴリズム駆動プロファイルは、類似の確率スコアが生じた場合、影響の経路にわたって個人特有のパターンを示した[図2に示すように]。
【0080】
結論:母体特性は、胎盤、脂質、ホルモン、および免疫系機能に関連した血清マーカーと共に、15~20週におけるPTBを信頼できる正確さで予測することが可能である。
【0081】
例2.パネルBの導出
将来を見越して測定された利用可能な第1および第2の三半期血清マーカーを有する単胎妊娠のサブセットを選択した。この調査のため、200の症例を、より厳密な分析および潜在的な検体を引き出すためにランダムに選択した。PTBという結果になった173の妊娠(74のPPROM、99の早期分娩)を選択した。対照は、30以上の肥満度指数(BMI)について症例と対照が頻繁に一致している満期出産から1:1の比率でランダムに選択した。
【0082】
分析された母体指標は、人種/民族性、出産年齢、出産数、既存の糖尿病、妊娠糖尿病、既存の高血圧、妊娠高血圧、報告された喫煙、政府の低所得者向け健康支援への参加、および以前のPTBを含んでいた。
【0083】
検査したバイオマーカーは、第1および第2の三半期の日常的な出生前診断の一部として将来を見越して検査したものおよび検診後に保存された血清について検査したマーカーを含んでいた。将来を見越して測定した第1の三半期検体測定は、10週0日~13週6日の妊娠期間の間に収集した血液試料から得られて、妊娠関連血漿タンパク質A(PAPP-A)およびヒト絨毛性ゴナドトロピン(hCG)を含んでいた。第2の三半期検体は、第2の三半期中の15週0日~20週0日の妊娠期間の間に収集した血液試料から得られて、αフェトプロテイン(AFP)、hCG、非抱合型エストリオール(uE3)、およびインヒビン(INH)を含んでいた。検体レベルは、自動化装置で測定した。結果を、中央値の倍数(MoM)値を調整するために使用した患者情報と共に、状態データベースに直接入力した。全ての検体MoMを、週単位での妊娠期間、母体体重(血液量に対する代理として)、自己報告された人種/民族性、喫煙状態、および既存の糖尿病で調整した。
【0084】
新規のマーカー検査は、第2の三半期スクリーニング(15週0日~20週0日の妊娠期間の間に収集された)で使用された残余血清を使用した。検体を検査のために解凍した。検査した新規のマーカーは、サイトカイン、ケモカイン、可溶性接着分子、ヒト可溶性受容体、アディポネクチン、脂質およびC反応性タンパク質を含んでいた。MFIのpg/mLへの対数変換に内在する誤差を回避するために、分析は、各症例および対照に対して同じプレート上で検査した2つの一定分量の測定に基づいたMFI平均に依存した。全ての測定間係数(CV)は、全てのマーカーにわたって<15%であり、全ての測定内CVは<10%であった。
【0085】
脂質(総コレステロール(TC)、低密度リポタンパク質(LDL)、高密度リポタンパク質(HDL)、およびトリグリセリド(TG))およびCRPを、標準的技法を使用して測定した。TC、LDL、およびHDLを、引出し時の週によるレベルの差に起因して、引出し時における妊娠週に対するMoMに変換した。他の新規のマーカー測定は、かかる変換を必要としなかった。
【0086】
結果として生じるモデルの何らかの実証試験を依然として可能にしながら、症例と対照との間の差を検出するための能力を最大限にするために、症例および対照を、90%モデル構築セット(156症例および156対照)と10%モデル実証セット(17症例および17対照)にランダムに分割した。ロジスティック回帰(オッズ比(OR)および関連した95%信頼区間(CI))を、母体の人口統計学的および産科的因子ならびに将来を見越して測定した新規のバイオマーカーに関するモデル構築セットにおいて、早期PTB(<32週)という結果になった妊娠を妊娠末期対照と比較するために使用した。全ての血清測定を対数変換した。他の因子を調整した後、モデルセット内でp<0.05に留まるための基準をもつ最終モデル構築に対して、逆方向段階的回帰を使用した。モデル入力に関して制約を課すのではなく、各段階に対して最も高いp値によって可変性を除去して、全ての因子を初期モデルに含めた。曲線下面積(AUC)統計値およびそれらの95%信頼区間(CI)を使用するモデル構築およびモデル実証セットにおいて成績を評価し、全体的成績ならびに人種/民族性グループ分け、出産年齢、出産数、既存の糖尿病、妊娠糖尿病、既存の高血圧、妊娠高血圧、以前のPTB、および政府の分娩支援による成績を評価した。受信者動作曲線(ROC)導出確率を使用して成績をさらに評価し、実証セットにおける所与の妊娠に対する予測因子の値を特性および血清バイオマーカーに基づくモデル構築サブセットからのROCに対してプロットした。感度および特異性統計値ならびにそれらの95%信頼区間を≧90、≧80、≧70、≧60および≧50の確率に対して計算した。
【0087】
90%ランダムサブセットから導出された早期PTBに対する最終ロジスティックモデルは、パネルBのPTB指標を含んでいた。3つの母体指標(出産数、妊娠糖尿病、既存の高血圧)および14のバイオマーカー(第1の三半期PAPP-A、第2の三半期AFP、腫瘍壊死因子(TNF)関連アポトーシス誘導リガンド(TRAIL)、インターロイキン4(IL-4)、IL-5、インターフェロンα(IFN-α)、白血病抑制因子(LIF)、神経成長因子(NGF)、VEGF、VEGFR1、インターフェロン誘導タンパク質10(IP-10)、マクロファージ炎症性タンパク質1-α(MIPIA)、ランテス(RANTES)、およびC反応性タンパク質(CRP)。特に注目すべきは、既存の高血圧のある女性に対してPTBに対するリスクの10倍以上の増加が観察されたが、モデルにおける他の特性およびマーカー(OR 10.7、95%CI 2.4-48.7)の調整後は観察されず、AFP、IL-4、VEGF、IP-10およびRANTESにおける対数単位の増加に対してPTBに対するリスクが10倍も高かった。実質的に対数単位あたり低下するリスクもTRAIL、IL-5、LIFおよび NGFに対して観察された(OR<0.1)。
【0088】
組み合わせて考えると、出産数、妊娠糖尿病、既存の高血圧ならびに14の第1および第2の三半期マーカーは、対照から症例を79.4%の精度(AUC 0.794、95%CI 0.746-0.843)で選別することができた。成績は、白人、ラテンアメリカ系、またはアジア系の人種/民族性の女性(AUC 0.772~0.812)、18~34または≧34歳の女性(AUC 0.781(95%CI 0.723-0.840)および0.779(95%CI 0.708-0.850))ならびに妊娠糖尿病がある女性および、ない女性(0.777(95%CI 0.722-0.832)および0.879(95%CI 0.777-0.980))において同様である。本モデルは、Medi-Calを通して支援を受けていなかった女性において、受けていた女性に比べて幾分成績が良く、AUCは0.807(95%CI 0.741-0.873))および0.689(95%CI 0.604-0.774)であった。90%サブセットからのモデル導出ROC曲線およびその結果として生じた確率は、モデル構築およびモデル実証サブセットにおいてPTBを高度に予測した。例えば、全ての妊娠は、構築および実証サブセットの両方においてPTBという結果となる90以上のPTB確率であると判断された。この切点(cut point)における感度は、モデル構築セットにおいて13.5%であり(95%CI 8.5-19.8)、実証サブセットにおいて17.7%であった(95%CI 4.0-43.5)。もっと低い切点、例えば、60以上、を使用すると、もっと良い感度(構築セットにおいて56.4%(95%CI 48.3-64.3)および実証セットにおいて41.2%(95%CI 18.5-67.0)となった。
【0089】
例3.パネルCの導出
ここでは、PTBリスク指標のさらなる解明を実行した。
【0090】
被験者:分娩予定日が2009年および2010年で異数性がない346の単胎妊娠(n=173症例(早期自然PTB<32週)およびn=173対照)。
【0091】
バイオマーカー測定:胎盤機能に関連した6つのマーカーを、将来を見越して検査した。75の脂質および免疫関連マーカーを、保存した第2の三半期(15~20週)試料に関して検査した。
【0092】
モデル生成:症例および対照を3:1の割合で訓練セットおよび検査セットに分割した。訓練セット内のマーカーを特定するために線形判別分析(LDA)を使用し、それは症例を対照から選別するのに著しく寄与した。LDA導出モデルの成績を、訓練および検査サブセットの両方で検査した。
【0093】
結果および結論:パネルCの17のマーカーを最終LDAモデルに含めた(考慮した81からの17)。訓練セット内での検出は81.7%(曲線下面積(AUC)0.8174(95%信頼区間(CI)0.7663-0.8686))で、検査セット内では72.68%(AUC 0.7268、95%CI 0.6210-0.8325)であった。訓練セットおよび検査セットにおける決まった擬陽性率でのモデル検出率は、相互に約10%の範囲内に入る傾向があった(例えば、5%FPRで、訓練セット内での検出は36.43%であり、他方、検査セット内での検出は25.00%であった)。LDAモデルは、高血圧または糖尿病がある女性および、ない女性において早期自然PTBを予測した。
【0094】
発見は、胎盤、脂質、および免疫関連マーカーが、相まって、早期自然PTBに対するリスクが増加した妊娠を確実に特定し得、そのため、複数の経路にわたってマーカーに影響する予測モデルは、リスクグループ(例えば、高血圧または糖尿病のあるグループ、およびないグループ)にわたって頑強であり得ることを示す。
【0095】
例4.モデル2およびパネルDの導出
目的:この調査では、目的は、胎盤機能、脂質、ホルモン機能、および免疫系に関連した第2の三半期血清マーカーが早期PTBに対するリスクを評価するために使用できるかどうか評価することであった。
【0096】
調査設計:第1および第2の三半期スクリーニングを行った400の単胎妊娠(100の早期PTB症例(<34完了週妊娠期間)および300の妊娠末期対照(37~42週妊娠期間))を含めた。胎盤機能に関連した4つのマーカーを、将来を見越して検査して、76の脂質、炎症/免疫、およびホルモン関連マーカーを、保存した15~20週試料について検査した。部分最小二乗判別分析(PLS-DA)および関連変数重要度投影プロット(VIP)で、個々のマーカーの群分離に対する寄与を評価した。受信者動作曲線(ROC)および曲線下面積(AUC)統計値を使用して、PLS-DA導出血清専用モデルならびに統合血清および特性モデル成績を評価した。ROC導出確率を使用してリスクのレベルを割り当てた。
【0097】
結果:プロゲステロン、胎盤機能に関連した3つのマーカー(AFP中央値の倍数(MoM)、hCG MoM、INH MoM)、脂質機能に関連した2つのマーカー(コレステロールMoMおよびLDL MoM)、ならびに炎症および免疫機能に関連した9つのマーカー(TNFR1、HGF、IL1R1、IL4R、VEGFR2、EOTAXIN、MIG、MIP1A、ICAM1)を含む、パネルDの15の血清マーカーを、最終PLS-DA導出予測モデルに含めた。結果として生じたモデルがモデル2である。母体高血圧、糖尿病、貧血、および支援状態に関する情報と併用すれば、血清マーカーモデル2は、症例と対照を75.9%の精度で選別することができた(95%信頼区間(CI)0.701-0.817)。早期PTBの女性の60パーセント以上が、モデル投影に基づくROC導出確率(感度=61.0(95%CI 50.7-70.6)、感度=81.0(95%CI 76.5-85.6))に基づいて、早期PTBの少なくとも10に3の可能性があると特定された。
【0098】
結論:母体特性および胎盤、脂質、ホルモン、および免疫系機能に関連した妊娠中期血清マーカーが、早期PTBに対するリスクを正確に評価するために使用できる。
【0099】
本明細書に記載した全ての特許、特許出願、および公開は、あたかも各独立特許出願、または公開が参照によって組み込まれると明確かつ個別に示されたかのように、同じ程度まで、参照により本明細書に組み込まれる。開示する実施形態は、制限ではなく、説明を目的として提示される。本発明はその説明された実施形態を参照して説明されているが、全体として、本発明の精神および範囲から逸脱することなく、本発明の構造および要素に対する変更を行うことができることが当業者によって理解されるであろう。
図1
図2A
図2B