IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気硝子株式会社の特許一覧

<>
  • 特許-蓄電デバイス用部材及び蓄電デバイス 図1
  • 特許-蓄電デバイス用部材及び蓄電デバイス 図2
  • 特許-蓄電デバイス用部材及び蓄電デバイス 図3
  • 特許-蓄電デバイス用部材及び蓄電デバイス 図4
  • 特許-蓄電デバイス用部材及び蓄電デバイス 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】蓄電デバイス用部材及び蓄電デバイス
(51)【国際特許分類】
   H01M 10/0562 20100101AFI20220405BHJP
   H01M 10/054 20100101ALI20220405BHJP
   H01M 4/38 20060101ALI20220405BHJP
   H01M 10/39 20060101ALI20220405BHJP
   H01B 1/06 20060101ALN20220405BHJP
【FI】
H01M10/0562
H01M10/054
H01M4/38 Z
H01M10/39 A
H01B1/06 A
【請求項の数】 5
(21)【出願番号】P 2017092311
(22)【出願日】2017-05-08
(65)【公開番号】P2018190601
(43)【公開日】2018-11-29
【審査請求日】2019-11-19
(73)【特許権者】
【識別番号】000232243
【氏名又は名称】日本電気硝子株式会社
(74)【代理人】
【識別番号】110001232
【氏名又は名称】特許業務法人 宮▲崎▼・目次特許事務所
(72)【発明者】
【氏名】山内 英郎
【審査官】小森 利永子
(56)【参考文献】
【文献】特開2010-015782(JP,A)
【文献】韓国公開特許第10-2011-0045666(KR,A)
【文献】特開2015-115283(JP,A)
【文献】特開2014-216249(JP,A)
【文献】国際公開第2015/152105(WO,A1)
【文献】特開2006-244976(JP,A)
【文献】特開2006-216508(JP,A)
【文献】特開2015-022983(JP,A)
【文献】特開2016-100077(JP,A)
【文献】特開2016-042453(JP,A)
【文献】特表2016-502241(JP,A)
【文献】特開昭57-030272(JP,A)
【文献】国際公開第2016/156447(WO,A1)
【文献】国際公開第2017/026228(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/39
H01M 10/054-10/0562
H01M 4/38
H01B 1/06
(57)【特許請求の範囲】
【請求項1】
ナトリウムイオン伝導性酸化物からなる固体電解質と、
ナトリウムを吸蔵・放出可能な金属または合金からなり、前記固体電解質の上に設けられる負極層と、
を備え、
前記負極層が、前記固体電解質の上に形成された金属膜または合金膜からなり、
前記負極層の厚みが0.05~3μmである、蓄電デバイス用部材。
【請求項2】
前記金属または前記合金が、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含む、請求項1に記載の蓄電デバイス用部材。
【請求項3】
前記固体電解質が、β-アルミナ、β”-アルミナまたはNASICON型結晶である、請求項1または2に記載の蓄電デバイス用部材。
【請求項4】
請求項1~3のいずれか一項に記載の蓄電デバイス用部材と、
正極層と、
を備える蓄電デバイス。
【請求項5】
ナトリウムイオン伝導性酸化物からなる固体電解質と、
ナトリウムを吸蔵・放出可能な金属または合金からなる負極層と、
正極層と、
を備え、
前記負極層が、金属膜または合金膜から形成されており、
前記負極層の厚みが0.05~3μmである、蓄電デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、全固体ナトリウムイオン二次電池等の蓄電デバイスに用いることができる蓄電デバイス用部材及び蓄電デバイスに関する。
【背景技術】
【0002】
ナトリウムイオン二次電池用の負極活物質として、ハードカーボンが提案されている(特許文献1)。しかしながら、ハードカーボンは、容量が200mAh/gと低いことに加え、充放電電圧が0V(vs.Na/Na)に近いため、負極上で金属Naデンドライトが析出し短絡しやすく危険性が高いという問題を有している。
【0003】
そこで、ナトリウムイオン二次電池用の負極活物質として、SnO等の酸化物からなる材料が検討されている(特許文献2)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2009-266821号公報
【文献】特開2015-28922号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、SnO等の酸化物からなる材料を負極活物質として用いると、初回充電時に対極からNaイオンと電子を吸蔵する際、酸化物から金属に還元するコンバージョン反応に電子が消費されるため、初回充放電効率が悪いという問題を有している。
【0006】
一方、SnやBi等の金属は、Naと合金化することによりNaを吸蔵することができるので、高い容量が得られることが期待される。しかしながら、Naイオンの吸蔵・放出に伴う体積変化が大きいため、負極活物質が集電体から剥離したり、負極活物質自体に亀裂が生じ微粉化し、電解液中に分散されるため、良好な充放電サイクル特性が得られないという問題がある。
【0007】
本発明の目的は、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスにすることができる蓄電デバイス用部材及び蓄電デバイスを提供することにある。
【課題を解決するための手段】
【0008】
本発明の蓄電デバイス用部材は、ナトリウムイオン伝導性酸化物からなる固体電解質と、ナトリウムを吸蔵・放出可能な金属または合金からなり、固体電解質の上に設けられる負極層とを備えることを特徴としている。
【0009】
金属または合金は、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含むことが好ましい。
【0010】
負極層は、固体電解質の上に形成された金属膜または合金膜からなることが好ましい。
【0011】
固体電解質は、β-アルミナ、β”-アルミナまたはNASICON型結晶であることが好ましい。
【0012】
本発明の蓄電デバイスは、上記本発明の蓄電デバイス用部材と、正極層とを備えることを特徴としている。
【0013】
また、本発明の蓄電デバイスは、ナトリウムイオン伝導性酸化物からなる固体電解質と、ナトリウムを吸蔵・放出可能な金属または合金からなる負極層と、正極層とを備える蓄電デバイスであってもよい。この場合、負極層は、金属膜または合金膜から形成されていることが好ましい。
【発明の効果】
【0014】
本発明によれば、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスにすることができる。
【図面の簡単な説明】
【0015】
図1】本発明の一実施形態の蓄電デバイス用部材を示す模式的断面図である。
図2】本発明の一実施形態の蓄電デバイスを示す模式的断面図である。
図3】実施例1の評価用電池の初回充放電曲線を示す図である。
図4】実施例3の評価用電池の初回充放電曲線を示す図である。
図5】実施例5の評価用電池の初回充放電曲線を示す図である。
【発明を実施するための形態】
【0016】
以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
【0017】
図1は、本発明の一実施形態の蓄電デバイス用部材を示す模式的断面図である。図1に示すように、本実施形態の蓄電デバイス用部材1は、固体電解質2と、固体電解質2の上に設けられている負極層3とを備えている。固体電解質2は、ナトリウムイオン伝導性酸化物からなる。負極層3は、ナトリウムを吸蔵・放出可能な金属または合金からなる。既述の通り、液系電解質を使用した電池において金属または合金からなる負極活物質を使用した場合、充放電時に負極活物質が集電体から剥離したり、負極活物質自体に亀裂が生じ微粉化し、電解液中に分散されるという問題が生じ得る。一方、本実施形態の蓄電デバイス用部材1では、固体電解質2の上に負極層3を設けることにより、上記のような問題が生じにくくなる。
【0018】
ナトリウムを吸蔵・放出可能な金属または合金としては、例えば、ナトリウムと合金化することによりナトリウムを吸蔵する金属または合金が挙げられる。このような金属または合金として、Sn、Bi、Sb、及びPbからなる群より選ばれる少なくとも1種の元素を含む金属または合金が挙げられる。負極層3が合金からなる場合、ナトリウムと合金化しない金属が含まれていてもよい。ナトリウムと合金化しない金属としては、Zn、Cu、Ni、Co、Si、Al、Mg、Mo等が挙げられる。ナトリウムと合金化しない金属を含むことにより、ナトリウムを吸蔵・放出する際の活物質の膨張及び収縮を抑制し、充放電サイクル特性を向上させることができる。特に、Zn、CuまたはAlを含む合金であれば、加工しやすいため好ましい。ナトリウムと合金化しない金属の含有量は、0~80モル%の範囲であることが好ましく、10~70モル%の範囲であることがより好ましく、35~55モル%の範囲であることがさらに好ましい。ナトリウムと合金化しない金属の含有量が多すぎると、充放電容量が低くなりすぎる場合がある。
【0019】
本実施形態において、負極層3を固体電解質2に密着させる観点から、負極層3は金属膜または合金膜からなることが好ましい。負極層3と固体電解質2との密着性が高くなることにより、充放電サイクル特性をより高めることができる。また、負極層3が金属膜または合金膜からなることにより、負極層3の高密度化を図ることが可能となる。それにより、負極層3の厚みを小さくできるだけでなく、膜の面内方向における導電ネットワークも広がるため、負極層3の電子抵抗を低くすることができる。結果的にレート特性に優れる。金属膜または合金膜を形成する方法としては、蒸着またはスパッタリング等の物理的気相法や、熱CVD、MOCVD、プラズマCVD等の化学的気相法が挙げられる。また、金属膜または合金膜のその他の形成方法として、メッキ、ゾルゲル法、スピンコートによる液相成膜法が挙げられる。
【0020】
金属または合金が粒子状である場合、金属粒子または合金粒子を含むペーストを固体電解質2の表面に塗布して、負極層3を形成してもよい。この場合、必要に応じて、熱処理を施し、膜状に形成してもよい。また、金属粒子または合金粒子を、エアロゾルデポジション法、静電粉体塗装法等で固体電解質2の表面に付着させて負極層3を形成してもよい。この場合、付着した金属粒子または合金粒子に圧力を加え、高密度化させることで、導電性またはイオン伝導性を向上させることが好ましい。また、付着した金属粒子または合金粒子を融点付近に加熱することで、高密度化させて導電性またはイオン伝導性を向上させてもよい。
【0021】
負極層3には、固体電解質粉末、カーボン等の導電助剤、バインダー等が含有されていてもよい。固体電解質粉末を含有させることにより、活物質と固体電解質粉末の接触界面が増加し、充放電に伴うナトリウムイオンの吸蔵・放出が行いやすくなり、その結果レート特性を向上させることができる。固体電解質粉末としては、後述する固体電解質2と同様の材料の粉末を用いることができる。固体電解質粉末の平均粒子径は0.01~15μm、0.05~10μm、特に0.1~5μmであることが好ましい。固体電解質粉末の平均粒子径が大きすぎると、ナトリウムイオン伝導に要する距離が長くなりイオン伝導性が低下する傾向がある。また、活物質粉末と固体電解質粉末との間のイオン伝導パスが減少する傾向がある。結果として、放電容量が低下しやすくなる。一方、固体電解質粉末の平均粒子径が小さすぎると、ナトリウムイオンの溶出や炭酸ガスとの反応による劣化が起こってイオン伝導性が低下しやすくなる。また、空隙が形成されやすくなるため電極密度も低下しやすくなる。結果として、放電容量が低下する傾向がある。
【0022】
バインダーとしては、不活性雰囲気で低温分解するポリプロピレンカーボネート(PPC)が好ましい。また、イオン伝導性に優れるカルボキシメチルセルロース(CMC)が好ましい。
【0023】
負極層3の厚みは、0.05~50μmの範囲であることが好ましく、0.3~3μmの範囲であることがさらに好ましい。負極層3の厚みが薄すぎると、負極の絶対容量(mAh)が低下するため好ましくない。負極層3の厚みが厚すぎると、抵抗が大きくなるため容量(mAh/g)が低下する傾向にある。
【0024】
また、固体電解質2における負極3の担持量は、0.01~5(mg/cm)の範囲であることが好ましく、0.4~0.9(mg/cm)の範囲であることがさらに好ましい。負極層3の担持量が少なすぎると、負極の絶対容量(mAh)が低下するため好ましくない。負極層3の担持量が多すぎると、抵抗が増加するため容量(mAh/g)が低下する傾向にある。
【0025】
本実施形態において、固体電解質2は、ナトリウムイオン伝導性酸化物から形成されている。ナトリウムイオン伝導性酸化物としては、Al、Y、Zr、Si及びPから選ばれる少なくとも1種、Na、並びにOを含有する化合物が挙げられ、その具体例としては、β-アルミナ、β”-アルミナ、及びNASICON型結晶が挙げられる。これらは、ナトリウムイオン伝導性に優れているため好ましく用いられる。
【0026】
β-アルミナやβ”-アルミナを含有する酸化物材料としては、モル%で、Al 65~98%、NaO 2~20%、MgO+LiO 0.3~15%を含有するものが挙げられる。組成をこのように限定した理由を以下に説明する。なお、以下の説明において、特に断りのない限り、「%」は「モル%」を意味する。また「○+○+・・・」は該当する各成分の合量を意味する。
【0027】
Alは、β-アルミナ及びβ”-アルミナを構成する主成分である。Alの含有量は65~98%、特に70~95%であることが好ましい。Alが少なすぎると、イオン伝導性が低下しやすくなる。一方、Alが多すぎると、イオン伝導性を有さないα-アルミナが残存し、イオン伝導性が低下しやすくなる。
【0028】
NaOは、固体電解質にナトリウムイオン伝導性を付与する成分である。NaOの含有量は2~20%、3~18%、特に4~16%であることが好ましい。NaOが少なすぎると、上記効果が得られにくくなる。一方、NaOが多すぎると、余剰のナトリウムがNaAlO等のイオン伝導性に寄与しない化合物を形成するため、イオン伝導性が低下しやすくなる。
【0029】
MgO及びLiOはβ-アルミナ及びβ”-アルミナの構造を安定化させる成分(安定化剤)である。MgO+LiOの含有量は0.3~15%、0.5~10%、特に0.8~8%であることが好ましい。MgO+LiOが少なすぎると、固体電解質中にα-アルミナが残存してイオン伝導性が低下しやすくなる。一方、MgO+LiOが多すぎると、安定化剤として機能しなかったMgOまたはLiOが固体電解質中に残存して、イオン伝導性が低下しやすくなる。
【0030】
固体電解質は、上記成分以外にも、ZrOやYを含有することが好ましい。ZrO及びYは、原料を焼成して固体電解質を作製する際のβ-アルミナ及び/またはβ”-アルミナの異常粒成長を抑制し、β-アルミナ及び/またはβ”-アルミナの各粒子の密着性を向上させる効果がある。ZrOの含有量は0~15%、1~13%、特に2~10%であることが好ましい。また、Yの含有量は0~5%、0.01~4%、特に0.02~3%であることが好ましい。ZrOまたはYが多すぎると、β-アルミナ及び/またはβ”-アルミナの生成量が低下して、イオン伝導性が低下しやすくなる。
【0031】
NASICON型結晶としては、一般式NasA1tA2uOv(A1はAl、Y、Yb、Nd、Nb、Ti、Hf及びZrから選択される少なくとも1種、A2はSi及びPから選択される少なくとも1種、s=1.4~5.2、t=1~2.9、u=2.8~4.1、v=9~14)で表される結晶を含有するものが挙げられる。なお上記結晶の好ましい形態としては、A1はY、Nb、Ti及びZrから選択される少なくとも1種、s=2.5~3.5、t=1~2.5、u=2.8~4、v=9.5~12である。このようにすることでイオン伝導性に優れた結晶を得ることができる。特に、単斜晶系または三方晶系のNASICON型結晶であればイオン伝導性に優れるため好ましい。
【0032】
上記一般式NasA1tA2uOvで表される結晶の具体例としては、NaZrSiPO12、Na3.2Zr1.3Si2.20.810.5、NaZr1.6Ti0.4SiPO12、NaHfSiPO12、Na3.4Zr0.9Hf1.4Al0.6Si1.21.812、NaZr1.7Nb0.24SiPO12、Na3.6Ti0.20.8Si2.8、NaZr1.880.12SiPO12、Na3.12Zr1.880.12SiPO12、Na3.6Zr0.13Yb1.67Si0.112.912等が挙げられる。
【0033】
固体電解質2の厚みは、10~2000μmの範囲であることが好ましく、50~200μmの範囲であることがさらに好ましい。固体電解質2の厚みが薄すぎると、機械的強度が低下して破損しやすくなるため、内部短絡が起こりやすくなる。固体電解質2の厚みが厚すぎると、充放電に伴うイオン伝導距離が長くなるため内部抵抗が高くなり、放電容量及び作動電圧が低下しやすくなる。また、蓄電デバイスの単位体積当たりのエネルギー密度も低下する傾向にある。
【0034】
固体電解質2は、原料粉末を混合し、混合した原料粉末を成形した後、焼成することにより製造することができる。例えば、原料粉末をスラリー化してグリーンシートを作製した後、グリーンシートを焼成することにより製造することができる。また、ゾルゲル法により製造してもよい。
【0035】
本実施形態では、負極層3が、ナトリウムを吸蔵・放出可能な金属または合金から形成されているので、高い充放電容量を有する。また、負極層3が固体電解質2の上に設けられているので、良好な充放電サイクル特性を示す。負極層3が、金属膜または合金膜として固体電解質2の上に形成され、固体電解質2に担持されることにより、さらに良好な充放電サイクル特性を示す。
【0036】
本実施形態において、負極層3は負極集電体としても機能させることができるので、従来の蓄電デバイスに必要であった負極集電体を設ける必要がなくなる場合がある。
【0037】
図2は、本発明の一実施形態の蓄電デバイスを示す模式的断面図である。図2に示すように、本実施形態の蓄電デバイス11は、ナトリウムイオン伝導性酸化物からなる固体電解質12と、ナトリウムを吸蔵・放出可能な金属または合金からなる負極層13と、正極層14とを備えている。本実施形態の蓄電デバイス11は、全固体ナトリウムイオン二次電池として用いることができるものである。本実施形態においては、固体電解質12及び負極層13として、図1に示す蓄電デバイス用部材1を用いている。従って、負極層13は金属膜または合金膜として固体電解質2の上に形成され、固体電解質12に担持されていることが好ましい。しかしながら、本発明の蓄電デバイスはこれに限定されるものではない。
【0038】
本実施形態における固体電解質12及び負極層13としては、図1に示す実施形態の固体電解質2及び負極層3と同様のものを用いることができる。
【0039】
本実施形態における正極層14は、ナトリウムを吸蔵・放出可能な正極活物質を含み、正極層として機能するものであれば特に限定されない。例えば、ガラス粉末等の活物質前駆体粉末を焼成して形成してもよい。活物質前駆体粉末を焼成することにより、活物質結晶が析出し、この活物質結晶が正極活物質として作用する。
【0040】
正極活物質として作用する活物質結晶としては、Na、M(MはCr、Fe、Mn、Co、V及びNiからから選ばれる少なくとも1種の遷移金属元素)、P及びOを含むナトリウム遷移金属リン酸塩結晶が挙げられる。具体例としては、NaFeP、NaFePO、Na(PO、NaNiP、Na3.64Ni2.18(P、NaNi(PO(P)等が挙げられる。当該ナトリウム遷移金属リン酸塩結晶は、高容量で化学的安定性に優れるため好ましい。なかでも空間群P1またはP-1に属する三斜晶系結晶、特に一般式NaxMyPOz(1.2≦x≦2.8、0.95≦y≦1.6、6.5≦z≦8)で表される結晶がサイクル特性に優れるため好ましい。その他に正極活物質として作用する活物質結晶としては、NaCrO、Na0.7MnO、NaFe0.2Mn0.4Ni0.4等の層状ナトリウム遷移金属酸化物結晶が挙げられる。
【0041】
活物質前駆体粉末としては、(i)Cr、Fe、Mn、Co、Ni、Ti及びNbからなる群より選ばれた少なくとも1種の遷移金属元素、(ii)P、Si及びBから選択される少なくとも1種の元素、並びに(iii)Oを含むものが挙げられる。
【0042】
正極活物質前駆体粉末としては、酸化物換算のモル%で、NaO 8~55%、CrO+FeO+MnO+CoO+NiO 10~70%、P+SiO+B 15~70%を含有するものが挙げられる。各成分をこのように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。
【0043】
NaOは、充放電の際に正極活物質と負極活物質との間を移動するナトリウムイオンの供給源となる。NaOの含有量は8~55%、15~45%、特に25~35%であることが好ましい。NaOが少なすぎると、吸蔵及び放出に寄与するナトリウムイオンが少なくなるため、放電容量が低下する傾向にある。一方、NaOが多すぎると、NaPO等の充放電に寄与しない異種結晶が析出しやすくなるため、放電容量が低下する傾向にある。
【0044】
CrO、FeO、MnO、CoO、NiOは、充放電の際に各遷移元素の価数が変化してレドックス反応を起こすことにより、ナトリウムイオンの吸蔵及び放出の駆動力として作用する成分である。なかでも、NiO及びMnOは酸化還元電位を高める効果が大きい。また、FeOは充放電において特に構造を安定化させやすく、サイクル特性を向上させやすい。CrO+FeO+MnO+CoO+NiOの含有量は10~70%、15~60%、20~55%、23~50%、25~40%、特に26~36%であることが好ましい。CrO+FeO+MnO+CoO+NiOが少なすぎると、充放電に伴うレドックス反応が起こりにくくなり、吸蔵及び放出されるナトリウムイオンが少なくなるため放電容量が低下する傾向にある。一方、CrO+FeO+MnO+CoO+NiOが多すぎると、異種結晶が析出して放電容量が低下する傾向にある。
【0045】
、SiO及びBは3次元網目構造を形成するため、正極活物質の構造を安定化させる効果を有する。特に、P、SiOがイオン伝導性に優れるために好ましく、Pが最も好ましい。P+SiO+Bの含有量は15~70%であり、20~60%、特に25~45%であることが好ましい。P+SiO+Bが少なすぎると、繰り返し充放電した際に放電容量が低下しやすくなる傾向にある。一方、P+SiO+Bが多すぎると、P等の充放電に寄与しない異種結晶が析出する傾向にある。なお、P、SiO及びBの各成分の含有量は各々0~70%、15~70%、20~60%、特に25~45%であることが好ましい。
【0046】
また、正極活物質としての効果を損なわない範囲で、上記成分に加えて種々の成分を含有させることでガラス化を容易にすることができる。このような成分としては、酸化物表記でMgO、CaO、SrO、BaO、ZnO、CuO、Al、GeO、Nb、ZrO、V、Sbが挙げられ、特に網目形成酸化物として働くAlや活物質成分となるVが好ましい。上記成分の含有量は、合量で0~30%、0.1~20%、特に0.5~10%であることが好ましい。
【0047】
正極活物質前駆体粉末は、焼成により、正極活物質結晶とともに非晶質相が形成されるものであることが好ましい。非晶質相が形成されることにより、正極層14内及び正極層14と固体電解質12との界面におけるナトリウムイオン伝導性を向上させることができる。
【0048】
活物質前駆体粉末の平均粒子径は0.01~15μm、0.05~12μm、特に0.1~10μmであることが好ましい。活物質前駆体粉末の平均粒子径が小さすぎると、活物質前駆体粉末同士の凝集力が強くなり、ペースト化した際に分散性に劣る傾向がある。その結果、電池の内部抵抗が高くなり作動電圧が低下しやすくなる。また、電極密度が低下して電池の単位体積あたりの容量が低下する傾向がある。一方、活物質前駆体粉末の平均粒子径が大きすぎると、ナトリウムイオンが拡散しにくくなるとともに、内部抵抗が大きくなる傾向がある。また、電極の表面平滑性に劣る傾向がある。
【0049】
なお、本発明において、平均粒子径はD50(体積基準の平均粒子径)を意味し、レーザー回折散乱法により測定された値を指すものとする。
【0050】
正極層14の厚みは、3~300μmの範囲であることが好ましく、10~150μmの範囲であることがさらに好ましい。正極層14の厚みが薄すぎると、蓄電デバイス11自体の容量が小さくなるためエネルギー密度が低下する傾向にある。正極層14の厚みが厚すぎると、電子伝導に対する抵抗が大きくなるため放電容量及び作動電圧が低下する傾向にある。
【0051】
正極層14には、必要に応じて、固体電解質粉末が含まれていてもよい。固体電解質粉末としては、負極層13に含有させる固体電解質粉末と同様のものを用いることができる。固体電解質粉末を含むことにより、正極層14内及び正極層14と固体電解質12との界面におけるナトリウムイオン伝導性を向上させることができる。
【0052】
活物質前駆体粉末と固体電解質粉末の体積比は20:80~95:5、30:70~90:10、特に35:65~88:12であることが好ましい。
【0053】
また、正極層14には、必要に応じて、カーボン粉末等の導電助剤が含まれていてもよい。導電助剤が含まれることにより、正極層14の内部抵抗を低減することができる。導電助剤は、正極層14中に0~20質量%で含有させることが好ましく、1~10質量%の割合で含有させることがより好ましい。
【0054】
正極層14は、活物質前駆体粉末、必要に応じて、上述の割合で固体電解質粉末及び/または導電助剤を含むスラリーを用いて作製することができる。スラリーには、必要に応じて、バインダー、可塑剤、溶剤等が添加される。スラリーを塗布した後、乾燥し、これを焼成することにより、正極層14を作製することができる。また、スラリーをPET(ポリエチレンテレフタレート)等の基材の上に塗布した後乾燥し、グリーンシートを作製し、このグリーンシートを焼成することにより作製してもよい。
【0055】
図2に示す蓄電デバイス11の製造方法は、特に限定されるものではなく、例えば、固体電解質12の一方面の上に正極層14を形成した後、他方面の上に負極層13を形成してもよい。この場合、固体電解質12の一方面の上に、正極層形成用スラリーを塗布した後、乾燥し、焼成して正極層14を形成してもよい。また、固体電解質形成用グリーンシートと正極層形成用グリーンシートを積層し、これらのグリーンシートを焼成して、固体電解質12及び正極層14を同時に形成してもよい。
【0056】
以上のようにして、固体電解質12の一方面の上に正極層14を形成した後、固体電解質12の他方面の上に、図1に示す実施形態と同様にして、負極層13を形成する。
【0057】
また、固体電解質12の一方面の上に負極層13を形成した後、他方面の上に正極層14を形成してもよい。この場合、図1に示す実施形態と同様にして固体電解質12の一方面の上に負極層13を形成した後、固体電解質12の他方面の上に、上記と同様にして、正極層14を形成する。
【0058】
また、固体電解質12、負極層13及び正極層14をそれぞれ別々に作製し、それらを組み合わせて蓄電デバイス11を作製してもよい。
【実施例
【0059】
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0060】
(実施例1~5)
<蓄電デバイス用部材の作製>
固体電解質として、厚み1mmのβ”-アルミナ(組成式:Na1.6Li0.34Al10.6617のLiO安定化β”-アルミナ、Ionotec社製)を12mm角に切断したものを用いた。
【0061】
固体電解質の一方面の上に開口部10mm角のマスキングを施し、形成する金属膜または合金膜の組成が表1に示す組成となるターゲット(フルウチ化学社製)を用い、マグネトロンスパッタ装置(JEOL社製、JEC-3000FC)を用いてスパッタリングを行った。これにより、固体電解質の一方面の上に金属膜または合金膜からなる負極層を形成した。なお、スパッタリングは真空中にアルゴン(Ar)ガスを導入し、電流30mAを印加しながら行った。
【0062】
表1に、固体電解質上における負極層の担持量及び厚みを示す。
【0063】
<評価用電池の作製>
上記のようにして作製した蓄電デバイス用部材を用いて、負極特性を評価するための電池を、以下のようにして作製した。露点-70℃以下のアルゴン雰囲気中にて、対極となる金属ナトリウムを、蓄電デバイス用部材の負極層が形成された面と反対側の面に圧着した。得られた積層体をコインセルの下蓋の上に載置した後、上蓋を被せてCR2032型評価用電池を作製した。
【0064】
<充放電試験>
作製した評価用電池について、60℃で開回路電圧から0.001Vまでの定電流充電を行い、初回の充電容量を求めた。次に、放電は0.001Vから、実施例1および2においては2.0Vまで、実施例3~5においては2.5Vまで定電流放電を行い、初回の放電容量を求めた。なお、Cレートは0.1Cで行い、20サイクル目の放電容量から、初回の放電容量に対する20サイクル目の放電容量維持率を算出した。なお、この充放電試験において、充電は負極活物質へのナトリウムイオンの吸蔵であり、放電は負極活物質からのナトリウムイオンを放出である。
【0065】
表1に、初回の充電容量、初回の放電容量、初回の充放電効率、及び20サイクル目の放電容量維持率を示す。図3図4及び図5は、実施例1、実施例3、及び実施例5の評価用電池の初回充放電曲線を示す図である。
【0066】
【表1】
【0067】
表1に示すように、実施例1~5の負極は、充放電容量が高く、かつ充放電サイクル特性に優れていることがわかる。従って、実施例1~5の負極を用いることにより、充放電容量が高く、かつ充放電サイクル特性に優れた蓄電デバイスが得られることがわかる。
【0068】
また、実施例1と実施例2との比較、実施例3と実施例4及び5との比較から、Cu及びZn等のナトリウムと合金化しない金属を含むことにより、充放電サイクル特性が向上することがわかる。
【0069】
(比較例1及び2)
<負極の作製>
負極集電体として厚み20μmの銅箔を用いた。この銅箔の片側表面の上に、開口部10mm角のマスキングを施し、形成する金属膜の組成が表2に示す組成となるターゲット(フルウチ化学社製)を用い、マグネトロンスパッタ装置(JEOL社製、JEC-3000FC)を用いてスパッタリングを行った。これにより、銅箔の片側表面の上に金属膜からなる負極を形成した。なお、スパッタリングは真空中にアルゴン(Ar)ガスを導入し、電流30mAを印加しながら行った。
【0070】
<評価用電池の作製>
上記のようにして作製した負極を用いて、負極特性を評価するための電池を、以下のようにして作製した。負極を、銅箔の面を下に向けてコインセルの下蓋に載置し、その上に70℃で8時間減圧乾燥した直径16mmのポリプロピレン多孔質膜からなるセパレータと、対極である金属ナトリウムとを積層し、電解液を含浸させた後、上蓋を被せて評価用電池を作製した。電解液としては、EC:DEC=1:1の混合溶媒に、1M(モル/リットル)のNaPFを溶解させた溶液を用いた。なお、評価用電池の組み立ては、露点温度-70℃以下の環境で行った。
【0071】
<充放電試験>
作製した評価用電池について、実施例1~5と同様にして充放電試験を行い、初回の充電容量、初回の放電容量、初回の充放電効率、及び20サイクル目の放電容量維持率を測定した。測定結果を表2に示す。
【0072】
【表2】
【0073】
表2に示すように、比較例1及び2では、初回の充放電容量は高いが、良好な充放電サイクル特性が得られないことがわかる。
【符号の説明】
【0074】
1…蓄電デバイス用部材
2…固体電解質
3…負極層
11…蓄電デバイス
12…固体電解質
13…負極層
14…正極層
図1
図2
図3
図4
図5