(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】X線光学デバイス
(51)【国際特許分類】
G01N 23/205 20180101AFI20220405BHJP
【FI】
G01N23/205
【外国語出願】
(21)【出願番号】P 2017219360
(22)【出願日】2017-11-14
【審査請求日】2020-08-11
(32)【優先日】2017-02-17
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】000250339
【氏名又は名称】株式会社リガク
(74)【代理人】
【識別番号】110000154
【氏名又は名称】特許業務法人はるか国際特許事務所
(72)【発明者】
【氏名】クハルチク ダミアン
【審査官】小澤 瞬
(56)【参考文献】
【文献】米国特許出願公開第2010/0086104(US,A1)
【文献】特開平11-248652(JP,A)
【文献】米国特許出願公開第2003/0086534(US,A1)
【文献】特表2006-519393(JP,A)
【文献】特開平09-215685(JP,A)
【文献】特表2009-540531(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00 - G01N 23/2276
G21K 1/00 - G21K 3/00
G21K 5/00 - G21K 7/00
(57)【特許請求の範囲】
【請求項1】
X線を放出するように構成されるX線源、
前記X線源が発生するX線ビームを被分析試料上に結像するように構成されるX線光学系、及び、
前記X線光学系によって出力される前記X線ビームの少なくとも一部を選択的に阻止するように配置されるビーム阻止ユニットを有するX線光学デバイスであって、
前記ビーム阻止ユニットは、回転シャフト及びビーム阻止素子を有し、
前記回転シャフトは、駆動ユニットにより該回転シャフトの軸の周りで回転可能で、かつ、前記X線光学系によって出力される前記X線ビームの伝播方向に対して横方向にオフセットされるように配置され、
前記ビーム阻止素子は、前記回転シャフト上で中心を外して載置されることにより、前記回転シャフトの軸の周りで中心を外して回転する場合に、前記の出力されるX線ビームの対応部分を阻止する様々なビーム重なり位置に移動可能であり、
前記駆動ユニットによって回転する前記回転シャフトの回転角又は角度位置を測定するように構成されるセンサユニット、及び
前記センサユニット、前記駆動ユニット、及び外部入力装置と通信する制御ユニットをさらに備え、
前記制御ユニットは、
前記センサユニットによって測定された前記回転シャフトの角度位置に基づいて前記ビーム阻止素子の実際のビーム重なり位置を決定し、
前記
外部入力装置から受信された設定ビーム重なり位置と前記実際の重なり位置とを比較し、かつ、
前記の比較に基づいて、前記設定ビーム重なり位置に対応する角度位置へ前記回転シャフトを駆動させるように前記駆動ユニットを制御するモータ信号を発生させるように構成される、
X線光学デバイス。
【請求項2】
請求項1に記載のX線光学デバイスであって、前記ビーム阻止素子の前記ビーム重なり位置は、前記回転シャフトの回転角度に依存する、X線光学デバイス。
【請求項3】
請求項1又は2に記載のX線光学デバイスであって、前記ビーム阻止素子は、0°乃至180°の対応する回転角度を選択することによって所定の最小重なり位置と所定の最大重なり位置との間の任意の位置へ移動可能である、X線光学デバイス。
【請求項4】
請求項1乃至3のいずれか一項に記載のX線光学デバイスであって、前記ビーム阻止素子は、前記回転シャフトを一の全回転だけ回転させることによって、最小重なり位置から最大重なり位置へ移動し、かつ、前記最大重なり位置から前記最小重なり位置へ戻るように移動可能である、X線光学デバイス。
【請求項5】
請求項1乃至4のいずれか一項に記載のX線光学デバイスであって、前記ビーム阻止素子は、横方向表面が前記X線ビーム用のビーム阻止端部を画定する回転対称性を有する本体を有し、前記横方向表面は、円周方向に沿った前記本体の表面である、X線光学デバイス。
【請求項6】
請求項1乃至5のいずれか一項に記載のX線光学デバイスであって、
前記回転シャフトを回転可能なよう保持するように設計されたベアリングユニット、並びに、
少なくとも1つのベアリングユニット、前記回転シャフト、及び、前記ビーム阻止素子を収容するように設計された外包、
をさらに有するX線光学デバイス。
【請求項7】
請求項1乃至6のいずれか一項に記載のX線光学デバイスであって、前記回転シャフトの周りで気密性封止を実現するように設計された少なくとも1つの封止素子をさらに有するX線光学デバイス。
【請求項8】
請求項1に記載のX線光学デバイスであって、前記駆動ユニットは、トルクを発生させるように構成される電気モータ、及び、前記トルクを前記回転シャフトへ伝えるように構成されるベルトドライブを有する、X線光学デバイス。
【請求項9】
請求項1乃至8のいずれか一項に記載のX線光学デバイスであって、前記X線光学系が所定の焦点長でX線ビームを結像するように設計された少なくとも1つの反射素子を有する、X線光学デバイス。
【請求項10】
請求項1乃至9のいずれか一項に記載のX線光学デバイスであって、前記X線光学系の後方に配置され、かつ、前記X線光学系と前記被分析試料との間で前記X線ビームをさらに微調整するように構成されるコリメータをさらに有する、X線光学デバイス。
【請求項11】
請求項
10に記載のX線光学デバイスの動作方法であって、
前記X線源によってX線を発生させる工程、
前記X線光学系によってX線ビームを
前記被分析試料上で結像する工程、
前記コリメータによって前記
被分析試料に結像されるX線ビームをコリメートする工程、並びに、
前記被分析試料に依存して前記の結像されるX線ビームの発散角及び/又は強度を調節する工程であって、前記回転シャフトを所定の回転角度だけ回転させることによって前記ビーム阻止素子を所望のビーム重なり位置へ向けて移動させるとともに、制御ユニット、及び、前記回転シャフトと機械的に結合する駆動ユニットによって自動的に実行される工程を有し、
前記制御ユニットは、
前記センサユニットによって測定された前記回転シャフトの角度位置に基づいて前記ビーム阻止素子の実際のビーム重なり位置を決定し、
前記
外部入力装置から受信された設定ビーム重なり位置と前記実際の重なり位置とを比較し、かつ、
前記の比較に基づいて、前記設定ビーム重なり位置に対応する角度位置へ前記回転シャフトを駆動させるように前記駆動ユニットを制御するモータ信号を発生させるように構成される、
方法。
【請求項12】
結晶試料又は粉末試料を分析するX線分析システ
ムであって、
X線を放出するように構成されるX線源、
前記X線源が発生するX線ビームを被分析試料上に結像するように構成されるX線光学系、及び、
前記X線光学系によって出力される前記X線ビームの少なくとも一部を選択的に阻止するように配置されるビーム阻止ユニットを有するX線光学デバイスであって、
前記ビーム阻止ユニットは、回転シャフト及びビーム阻止素子を有し、
前記回転シャフトは、駆動ユニットにより該回転シャフトの軸の周りで回転可能で、かつ、前記X線光学系によって出力される前記X線ビームの伝播方向に対して横方向にオフセットされるように配置され、
前記ビーム阻止素子は、前記回転シャフト上で中心を外して載置されることにより、前記回転シャフトの軸の周りで中心を外して回転する場合に、前記の出力されるX線ビームの対応部分を阻止する様々なビーム重なり位置に移動可能であり、
前記駆動ユニットによって回転する前記回転シャフトの回転角又は角度位置を測定するように構成されるセンサユニット、及び
前記センサユニット、前記駆動ユニット、及び外部入力装置と通信する制御ユニットをさらに備え、
前記制御ユニットは、
前記センサユニットによって測定された前記回転シャフトの角度位置に基づいて前記ビーム阻止素子の実際のビーム重なり位置を決定し、
前記
外部入力装置から受信された設定ビーム重なり位置と前記実際の重なり位置とを比較し、かつ、
前記の比較に基づいて、前記設定ビーム重なり位置に対応する角度位置へ前記回転シャフトを駆動させるように前記駆動ユニットを制御するモータ信号を発生させるように構成され、
被分析試料を保持して前記X線光学デバイスによって出力される前記X線ビームに対して前記被分析試料の向きを合わせるように構成される試料台、及び、
前記
被分析試料によって散乱されるX線を検出するように構成されるX線検出器、
を有するX線分析システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は概してX線分析の分野に関する。より詳細には本発明はX線光学デバイスに関する。
【背景技術】
【0002】
X線分析法-たとえばX線回折(すなわちXRD)は、試料の非破壊分析を可能にするため非常に普及してきた。たとえばX線回折は、タンパク質又は他の高分子の結晶試料の構造特性を調査する基本的実験手法の一つとなってきた。一般的に結晶状態で高分子試料を調製するのは大変である。通常、試料は非常に小さく、かつ、断面積が小さくて高強度の集束X線ビームを小さな試料に導くことの可能なX線回折計が必要となる。
【0003】
かかるX線回折計は特許文献1及び特許文献2に記載されている。係るX線回折計は、X線を放出するX線源、前記X線源が発生するX線ビームを被分析試料上に結像するように構成されるX線光学系、上に前記被分析試料が設けられる試料台、及び、散乱されたX線を検出するように設計されるX線検出器を有する。X線光学系として、特定のビーム特性を有するX線ビームを試料上に結像するように配置及び設計される1つ以上の多層ミラー(ゲーベル又はモンテル光学系)を有する反射光学系が用いられている。X線光学系の設計-たとえばミラーの表面曲率-は、固定され、かつ、後で具体的な実験上の要求に合わせることができないため、どのような実験上の要求が満たされなければならないのかが、光学系の製造段階で判断されなければならない。
【0004】
X線回折では、最も意味のあるビーム特性(すなわちパラメータ)は、集束ビームの収束角と発散角、及び、焦点でのビーム強度とビームサイズである。X線回折計の分解能は、ビームの収束角と発散角に依存し、かつ、収束角と発散角の増大に伴って減少する。他方、信号対雑音比はビーム強度の増大と共に改善され、かつ、ビーム強度は収束角と発散角の増大に伴って増大する。従って被分析試料の特性(つまりその試料が小さな単位胞を有するのか大きな単位胞を有するのか)に依存して、様々な収束角と発散角つまりは様々なX線光学系が必要となる。
【0005】
焦点で結像されるビームの収束角と発散角を調節するため、特許文献1(米国特許出願公開第2009/0129552A1号公報)は、X線光学系によって反射されるX線ビームのある部分を排除すなわち遮断するために調節可能なアパーチャを利用することを示唆している。調節可能なアパーチャは、光学系の遠端部(つまりX線源から離れた端部)又は該遠端部に近接して配置され、かつ、2つの傾斜した板で構成される。前記2つの傾斜した板の少なくとも1つは直線的に移動可能である。
【0006】
意図しないX線ビームを排除する調節可能なアパーチャは特許文献2(米国特許出願公開第2010/0086104A1号公報)からも知られている。一の実施形態によると、アパーチャは2つのL字形状アパーチャブレードによって画定される。少なくとも1つのL字形状アパーチャブレードは、高精度マイクロメータねじ又は微細ねじボルトによって移動可能である。ねじの回転方向に依存して、ブレードは直線的に前後に移動可能であり、その移動に従ってアパーチャ開口部のサイズは狭くなったり広くなったりする。他の実施形態によると、アパーチャ開口部のサイズが固定されたアパーチャが示唆されている。この実施形態では、アパーチャは全体として、X線ビームの伝播に対して垂直な面内で移動可能である。X線ビームに対してアパーチャを適切に移動させることによって、意図しないX線の一部は排除され得る。そのため、所望の収束角と発散角を有するビームのみがアパーチャ開口部を通過することができる。繰り返しになるが、X線ビームに対してアパーチャを直線的に移動させることは、マイクロメータ又は微細ねじによって実装される。
【先行技術文献】
【特許文献】
【0007】
【文献】米国特許出願公開第2009/0129552A1号公報
【文献】米国特許出願公開第2010/0086104A1号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上述のアパーチャ設計はいくつかの課題を有する。第一に、マイクロメータのねじ又は微細ねじは高価であり、かつ、外部の影響に対して非常に敏感である。さらにマイクロメータを備えるアパーチャは、反射光学系が通常収容される気密性の筐体内に実装することは困難である。さらにマイクロメータねじによるアパーチャブレードは制御が困難である。運動パラメータ-たとえば開始位置、停止、回転方向-は厳密に定義されなければならないからである。従って、結像焦点で所望の収束角と発散角を有するビームを得るため、あるビームを遮断することが可能で、かつ、少なくとも既知の調節可能なアパーチャに関する上述の欠点を克服する、従来技術とは異なるX線ビーム調節方法が必要となる。
【課題を解決するための手段】
【0009】
上述の問題及び他の問題を解決するため、本発明はX線光学デバイスを供する。当該X線光学デバイスは、X線を放出するように構成されるX線源、前記X線源が発生するX線ビームを被分析試料上に結像するように構成されるX線光学系、ビームコリメーションデバイス、及び、前記X線光学系によって出力される前記X線ビームの少なくとも一部を選択的に阻止するように配置されるビーム阻止ユニットを有する。前記ビーム阻止ユニットは、回転シャフト及びビーム阻止素子を有する。前記回転シャフトは、該回転シャフトの軸の周りで回転可能で、かつ、前記X線光学系によって出力される前記X線ビームに対して横方向にオフセットされるように配置される。前記ビーム阻止素子は前記回転シャフト上で中心を外して載置される。それにより、前記ビーム阻止素子が、前記回転シャフトの軸の周りで中心を外して回転する場合に、前記の出力されるX線ビームの対応部分を阻止する様々なビーム重なり位置に移動可能となる。
【0010】
前記ビーム阻止ユニットによって阻止された前記ビームは、前記の中心を外して回転するビーム阻止素子と重なる前記出力X線ビームに対応する。残りの阻止されない(重ならない)ビームは、前記ビーム阻止ユニットを通過して前記被分析試料へ伝播し得る。前記の阻止されないビームと阻止されたビームとの比は、前記ビーム阻止素子を様々なビーム重なり位置へ回転させることによって連続的に変化し得る。従って所望のビーム特性(つまり所望の発散角、ビーム強度、ビームサイズ、又はビーム断面積)を有する阻止されないビームは、前記の中心を外して回転するビーム阻止素子の角度位置を単純に変化させることによって容易に調節することができる。
【0011】
前記ビーム阻止素子及び前記回転シャフトは、同一の回転シャフト軸の周りを回転するので、前記ビーム阻止素子が到達する前記ビーム重なり位置は、前記回転シャフトの回転角度に依存し得る。よって特定の回転角だけ前記回転シャフトを回転させることによって、前記ビーム阻止素子の特定のビーム重なり位置に到達し得る。従って所望の収束角及び発散角を有するビームは、前記回転シャフトを該回転シャフトの軸の周りで単純に回転させることによって取り出すことができる。
【0012】
前記回転シャフトを該回転シャフトの軸の周りで回転させることによって、前記の中心を外して回転するビーム阻止素子は、所定の最小ビーム重なり位置と所定の最大ビーム重なり位置との間で移動可能である。前記最小ビーム重なり位置は、前記ビーム阻止素子と前記出力X線ビームとの重なりが最小となる位置であってよい。前記最大ビーム重なり位置は、前記ビーム阻止素子と前記出力X線ビームとの重なりが最大となる位置であってよい。従って、前記ビーム阻止素子と重ならずに前記ビーム阻止ユニットを通過し得る前記X線ビームは、前記最大重なり位置で最小となり、かつ、前記最小重なり位置で最大となる。
【0013】
前記の中心を外して回転するビーム阻止素子によって得ることのできる前記最大重なりは、前記ビーム阻止素子の幾何学的寸法-具体的には前記ビーム阻止素子の横方向の寸法-に依存し得る。一の変化型によると、前記ビーム阻止素子の寸法は、前記ビーム阻止素子の寸法が前記最大重なり位置で前記出力X線ビームと完全に重なるように設定されてよい。代替変化型によると、前記ビーム阻止素子の寸法は、前記出力X線ビームと部分的にしか重ならないように設定されてよい。前記出力X線ビームの50~100%の範囲のビーム重なりは、前記最大重なり位置として考えられ得る。
【0014】
前記の中心を外して回転するビーム阻止素子によって得ることのできる前記最小重なりは、前記ビーム阻止素子及び前記回転シャフト上の前記ビーム阻止素子の中心を外したベアリングの幾何学的寸法に依存し得る。一の変化型によると、前記最小重なり位置はまた、前記ビーム阻止素子と前記出力X線ビームとが重ならない限界をも含んでよい。前記出力X線ビームの0~40%の範囲のビーム重なりは、前記最小重なり位置として考えられ得る。
【0015】
前記最小重なり位置と前記最大重なり位置の各々は、前記の回転するビーム阻止素子と対応する前記回転シャフトとの特定の角度位置に関連付けられてよい。前記最小重なり位置から開始して、前記最大重なり位置が前記回転シャフトの180°(1/2)回転することによって到達できるように、前記ビーム阻止素子は、前記回転シャフト上で設計され、かつ、中心を外して載置されてよい。しかも前記ビーム阻止素子は、前記回転シャフトを該回転シャフトの軸の周りで、0°~180°の間で選ばれる対応回転角度だけ単純に回転させることによって、前記最大重なり位置と前記最小重なり位置との間の任意の位置に到達し得る。
【0016】
前記回転シャフトを180°回転させて最大重なり位置に到達した後、前記ビーム阻止素子は、さらに180°回転(さらに1/2回転)することによって前記最大重なり位置から前記最小重なり位置へさらに移動してよい。よって前記ビーム阻止素子を全回転(360°回転)させることによって、前記ビーム阻止素子は、前記最小重なり位置と前記最大重なり位置との間で振動(前進と後退)してよい。さらに前記回転シャフト及びビーム阻止素子の回転は、一の全回転に限定されなくてよい。前記回転シャフト及びビーム阻止素子は、いずれの方向にも制限なく複数回回転してよい。そのため前記ビーム阻止素子は、360°の振動周期で前記最小重なり位置と前記最大重なり位置との間で振動する。従って前記最小重なり位置と前記最大重なり位置との間の任意の位置は、一の方向に前記回転シャフトを単純に回転させ続けることによって反復的に到達し得る。
【0017】
前進と後退が可能であるが、前記回転シャフトの回転方向を変更する必要はない。なぜなら現在の重なり位置から開始して、前記最小重なり位置と前記最大重なり位置との間の任意の他の重なり位置(前記最小重なり位置と前記最大重なり位置を含む)は、前記回転シャフトのさらなる全回転の範囲内で得られるからである。従って様々な重なり位置を調節するために前記ビーム阻止素子を前進及び後退させる必要はない。よって前記ビーム阻止素子の位置の制御はさらに単純化され得る。
【0018】
前記ビーム阻止素子は、横方向表面が前記出力X線ビーム用のビーム阻止端部を画定する回転対称性を有する本体を有してよい。前記ビーム阻止素子は、前記回転対称性を有する本体が前記回転シャフトの回転軸に対して実質的に平行だが前記回転軸からオフセットされるように前記回転シャフト上に載置されてよい。このオフセットにより、前記ビーム阻止端部が前記所定の最小ビーム重なり位置と前記所定の最大ビーム重なり位置との間で振動し得るように、前記本体は、前記シャフト軸について中心を外した回転を実行できる。
【0019】
前記回転対称性を有する本体の横方向表面は、前記回転対称性を有する本体の円周方向に沿った本体表面であってよい。さらに前記ビーム阻止端部は、前記横方向表面の外形によって画定されてよい。外形とは、前記出力X線ビームの伝播方向に対して実質的に垂直な断面に前記回転対称性を有する本体を投影して得られる一次元横方向本体を意味すると考えてよい。前記中心を外した回転によって、前記本体は前記出力X線ビームとの重なりを増減させて良く、その結果前記本体の外形はさらに、前記面に属するビーム断面積に対して出入りするように移動することができる。よって前記本体は、前記出力X線ビーム用の移動可能な端部を備える可変スリット又はアパーチャとして機能し得る。
【0020】
ビーム阻止端部を画定する横方向表面の外形はさらに、前記出力X線ビームの断面形状に整合してよい。断面形状とは、前記ビーム伝播方向に対して実質的に垂直な前記ビーム断面の形状を意味すると考えてよい。たとえば、前記出力X線ビームの断面形状が長方形である場合、前記ビーム阻止素子は、前記出力ビームの長方形の一辺と位置合わせされた直線の横方向表面の外形を有する円柱であってよい。あるいはその代わりに前記出力X線ビームの断面形状がひし形である場合、前記ビーム阻止素子の本体は、ひし形断面積の二辺と位置合わせされたL字形状の外形を有する両円錐であってよい。
【0021】
上述の幾何学的形状とは独立に、前記ビーム阻止素子(ビーム阻止素子本体)はX線を実効的に吸収する材料で作られてよい。一の変化型によると、前記ビーム阻止素子は青銅で作られてよい。
【0022】
前記ビーム阻止素子は前記回転シャフト上で固定して載置されてよい。よって前記回転シャフトは、ベアリングユニットによって回転可能なように保持されてよい。前記ベアリングユニットは、前記X線光学系の後方に配置されてよい。たとえば前記ベアリングユニットは、前記X線光学系の遠端部(つまり前記X線源から離れた端部)(の周辺)に配置されてよい。さらに前記ベアリングユニットは、前記回転シャフトが前記ビームから外れた位置になるように載置されてよい。つまり前記回転シャフトは前記出力X線ビームとは重ならなくてよい。
【0023】
当該X線光学デバイスはさらに、少なくとも1つのベアリングユニット、前記回転シャフト、及び、前記ビーム阻止素子を収容するように設計された外包を有してよい。さらに前記外包は、前記X線光学系をさらに収容するように設計されてよい。前記外包は、保護気体で排気及び/又は充填可能な気密性外包として設計されてよい。
【0024】
当該X線光学デバイスはまた、前記回転シャフトの周りで気密性封止を実現するように配置された少なくとも1つの封止素子を有してよい。たとえばOリングが封止素子として用いられてよい。
【0025】
所望のビーム重なり位置を得るため、前記回転シャフトは手動又は自動で回転してよい。自動シャフト回転を実装するため、当該X線光学デバイスはさらに、前記回転シャフトと動作するように接続され、かつ、所定の回転角度だけ前記シャフトを回転させるように構成される駆動ユニットをさらに有してよい。さらに当該X線光学デバイスはまた、シャフト回転中に前記シャフトの現在の角度位置及び/又は角度変位を測定するように構成されるセンサユニットをも有してよい。各角度位置は前記ビーム阻止素子の特定の重なり位置に割り当てられ得るので、現在の重なり位置は、前記シャフトの対応する回転角度を設定することによって容易に調節可能である。
【0026】
前記駆動ユニットは、トルクを発生させるように構成される電気モータ、及び、トルクを前記シャフトへ伝えるように構成される伝送ユニットを有してよい。伝送ユニットとして、ベルトドライブが用いられてよい。しかしモータのトルクを前記シャフトへ伝えるのに他の伝送も考えられ得る。
【0027】
当該X線光学デバイスはさらに、制御ユニットを有してよい。前記制御ユニットは、前記センサユニット、前記駆動ユニット、及び外部入力装置と通信してよい。前記制御ユニットは、前記センサユニットによって測定された前記回転シャフトの角度位置に基づいて前記ビーム阻止素子の実際のビーム重なり位置を決定し、前記入力装置から受信された設定ビーム重なり位置と前記実際の重なり位置とを比較し、かつ、前記の比較に基づいて、前記設定ビーム重なり位置に対応する角度位置へ前記回転シャフトを駆動させるように前記駆動ユニットのモータを制御するモータ信号を発生させるようにプログラムされてよい。この目的のため、前記制御ユニットは、上述の制御工程を実装するソフトウエアルーチンを処理する少なくとも1つのプロセッサを有してよい。
【0028】
当該X線光学デバイスの前記X線光学系は、所定の焦点距離で前記X線ビームを所定の焦点位置に集束させるような形状をとる少なくとも1つの反射素子を有してよい。前記少なくとも1つの反射素子は、(横方向又は深さ方向の)格子面間隔を有する多層ミラーとして設計されてよい。一の変化型によると、1つの反射ミラーしか有していないゴーベル光学系が実現されてよい。代替変化型によると、互いに垂直になるように並べて載置された2つの反射ミラーを有するモンテル光学系が実現されてよい。
【0029】
前記X線光学系はさらに、該X線光学系の後方に配置され、かつ、前記X線光学系と前記被分析試料との間で前記X線ビームをさらに微調整するように構成されるコリメータを有してよい。前記コリメータは、1つ以上のピンホールを備えるパイプ若しくはキャピラリーパイプ又はビーム微調整用の他のコリメータ素子を有してよい。一の変化型によると、前記ビーム阻止ユニットは、前記X線光学系の後方であるが前記コリメータの前方に配置されてよい。代替変化型によると、前記ビーム阻止ユニットは、前記X線光学系と前記コリメータに配置されてよい。
【0030】
当該X線光学デバイスの前記X線源は、強電場によって加速された高速の電子を金属ターゲットに衝突させることによってX線を発生させるように構成される従来のX線発生装置であってよい。前記金属ターゲットは、回転するターゲットとして実装されてよいし、あるいは、固定されたターゲットとして実装されてもよい。さらに金属ターゲットとしては、クロム(Cr)、コバルト(Co)、銅(Cu)、モリブデン(Mo)、銀(Ag)又は鉄(Fe)ターゲットが用いられてよい。
【0031】
本発明の他の態様によると、上述のX線光学デバイスの動作方法が供される。当該方法は、前記X線源によってX線ビームを発生させる工程、前記X線光学系によって前記X線ビームを被分析試料上で結像する工程、前記コリメータによって前記試料に結像されるX線ビームをコリメートする工程、並びに、前記被分析試料に依存して前記の結像されるX線ビームの発散角及び/又は強度を調節する工程を有する。前記X線ビームの発散角及び/又は強度を調節する工程は、前記ビーム阻止ユニットの前記回転シャフトを所定の回転角度だけ回転させることによって前記ビーム阻止素子を所望のビーム重なり位置へ向けて移動させる工程を有する。
【0032】
前記X線ビームの発散角及び/又は強度を調節する工程は、上述の制御ユニット、及び、前記回転シャフトと機械的に結合する前記駆動ユニットによって自動的に実行されてよい。
【0033】
さらに他の態様によると、X線分析システムが供される。当該X線分析システムは、上述のX線光学デバイス、被分析試料を保持して前記X線光学デバイスによって出力される前記X線ビームに対して前記被分析試料の向きを合わせるように構成される試料台、及び、前記試料によって散乱されるX線を検出するように構成されるX線検出器を有する。
【0034】
当該X線分析システムは、結晶試料又は粉末試料を分析するように設計されたX線回折計であってよい。結晶試料とは、単結晶又は多結晶の状態で調製された資料を意味すると考えてよい。
【0035】
前記試料台は、前記試料を任意の位置に設置して前記試料の向きを出力ビームに合わせるように設計されてよい。特に前記試料台は、2つの異なる方向に前記試料を回転させるように設計されてよい。
【0036】
前記X線検出器は、前記の散乱されたX線ビームを検出するように構成されてよい。X線検出としては、市販されている一次元又は二次元のX線検出器が用いられてよい。前記X線検出器は、前記試料から回折されるX線ビームの強度を位置、時間、及びエネルギーの関数として測定するように構成される。
【図面の簡単な説明】
【0037】
本願明細書に記載される本開示のさらなる詳細、態様、及び利点は以下の図面から明らかとなる。
【
図1】本発明によるX線分析システムの概略図である。
【
図2】本発明の実施形態によるX線光学デバイスの一部の三次元像である。
【
図3a】
図2に表されたX線光学デバイスの断面像である。
【
図3b】
図2に表されたX線光学デバイスの断面像である。
【
図4】本発明の実施形態によるX線光学デバイスの一部の三次元像である。
【
図5】
図4のX線光学デバイスのブロック図である。
【発明を実施するための形態】
【0038】
以降の説明では、限定ではなく説明の目的で、本願で与えられたX線分析システム及びX線光学デバイスを完全に理解するため、具体的な詳細について述べる。開示されたX線分析システム及びX線光学デバイスが保護範囲内でありながら以降で述べられる具体的詳細から異なり得ることは当業者には自明である。
【0039】
以降では
図1を参照する。
図1は、請求項に係る発明によるX線分析システム100の概略図を表している。X線分析システム100は、結晶試料300上でX線回折分析を実行するように設計されたX線回折計である。X線分析システム100は、X線光学デバイス110、試料台120、及びX線検出器130を有する。続いてX線光学デバイス110は、X線源1100、X線光学系1200、及び、X線ビーム阻止ユニット1300を有する。X線光学デバイス110はまた、結像されたビームを微調整するコリメータ(
図1には示されていない)をも有してよい。
【0040】
X線光学デバイス110のX線源1100は、X線放射線220を発生させるように構成される。この目的のため、強電場によって加速された高速電子を静的又は回転する金属ターゲットに衝突させることによってX線220を発生させるように構成される従来のX線発生装置が用いられてよい。金属ターゲットとしては、クロム(Cr)、コバルト(Co)、銅(Cu)、モリブデン(Mo)、銀(Ag)又は鉄(Fe)ターゲットが用いられてよい。好適実施形態によると、銅又はモリブデンターゲットが用いられる。
【0041】
試料台120は、試料300を、X線光学系1200から出力されるX線ビーム240に対して所定の向きに保持するように構成される。試料300をX線ビーム240の方位に向けるため、台120は少なくとも2つの独立する方向で回転可能であってよい。
【0042】
X線検出器130は、試料300によって散乱されるX線の強度、空間分布、スペクトル、及び/又は他の特性を測定するように構成される。従来技術から知られているように、従来のシンチレーション検出器又はガス充填検出器が用いられてよい。
【0043】
X線光学系1200は、X線源1100と試料台120との間に配置される。所定の形状の単色X線ビーム240が、X線源1100から発生し、かつ、試料300が設けられ得る特定の領域に結像され得るように、X線光学系1200は配置及び構成される。この目的のため、X線光学系1200は、少なくとも1つの反射素子1210-たとえば(横方向又は深さ方向の)格子面間隔を有する多層ミラー-を有するX線集束光学系として設計されてよい。結像焦点で所定の形状、サイズ、強度、並びに収束及び発散角310を有するX線ビーム240が得られるように、反射素子1210の表面の形状は形成されてよい。
【0044】
X線光学デバイス110のビーム阻止ユニット1300は、X線光学系1200の出射口(つまり遠端部)に設けられる。ビーム阻止ユニット1300は、ビーム阻止素子1320及び回転シャフト1310を有する。回転シャフト1310は、横方向に設けられ、かつ、出力X線ビーム240とは重ならない。
図2に表された実施形態によると、回転シャフト1310及びビーム阻止素子1320は、ビーム240の強度が最低となるビームの側の近くに配置される。回転シャフト1310及びビーム阻止素子1320が反対側-つまりビーム240の強度が最高となるビームの側付近-に配置される代替実施形態もまた考えられ得る。この文脈では、ビーム強度は、反射素子1210全体にわたって均一ではなく、かつ、反射素子1210の近端部1210(つまりX線源1100に最も近接する反射素子の端部)aと遠端部1210b(つまりX線源1100から最も遠い反射素子の端部)でのX線捕獲角が異なるため、近端部1210aから遠端部1210bまで変化し得ることに留意して欲しい。一般的に、近端部1210a(付近)での反射素子の一部から反射されるX線ビーム240aは、遠端部1210b(付近)での反射素子の一部から反射されるX線ビーム240bよりも高い強度を有する。
【0045】
近端ビーム側又は遠端ビーム側での上述の配置とは独立に、ビーム阻止素子1320は、回転シャフト1310上で中心を外して載置される。そのため、回転シャフト1310がその軸の周りで回転することで(
図2参照)、ビーム阻止素子1320は回転シャフト1310の周りで中心を外して回転し、その結果出力X線ビーム240に対してビーム阻止素子1320は回転に依存した運動を行う。つまりビーム阻止素子1320が中心を外して配置される(つまりビーム阻止素子1320の重心軸の中心は回転シャフト1310の軸に対してオフセットされる)ことで、横方向に配置されたビーム阻止素子1320の少なくとも一部は、出力X線ビーム240内に入り込むように回転できる。従って出力X線ビーム240は、ビーム阻止素子1320と少なくとも部分的に重なることができるので、残された可算去っていないビーム240aだけがビーム阻止ユニット1300を通過できる。
【0046】
図1では、ビーム阻止素子1320は、2つの異なるビーム重なり位置-つまり最小重なり位置(実線で表されているビーム阻止素子1320)と最大重なり位置(破線で表されている部分参照)-をとるものとして示されている。本実施形態の場合では、最小重なり位置は非重なり位置に対応する。非重なり位置では、ビーム阻止素子1320は、出力X線ビーム240から離れるように回転し、かつ、出力X線ビーム240とは全く重ならない。この場合、X線光学系1200によって出力されるX線ビーム240は、全体としての阻止ユニット1300を通過することはできる。しかし、ビーム阻止素子1320が出力X線ビームから離れるように回転する場合でさえも、依然としてビーム阻止素子1320と出力X線ビーム240とのわずかな重なりが残るように、ビーム阻止ユニット1300が設計されることも考えられる。そのような場合、わずかなビームが最小重なり位置で阻止される。
【0047】
最大重なり位置は、ビーム阻止素子1320と出力X線ビーム240との間の重なりが最大に到達する位置に対応する。
図1から、ビーム阻止素子1320によって到達可能な最大重なり位置は、主としてビーム阻止素子1320の幾何学的寸法に依存することは明らかとなる。たとえばビーム阻止素子1320が最大重なり位置に到達するときに、全X線ビーム240又はその一部240aがビーム阻止素子1320と重なるように、回転シャフト1310に対して垂直な方向でのビーム阻止素子1320の寸法は設定されてよい。
図1では、限定ではない説明目的で、最大重なり位置でのビーム阻止素子1320は、出力X線ビーム240の一部240bのみを阻止する。残りの阻止されないビーム240aは依然として、阻止ユニットを通過して試料300に到達することができる。従って、残りの阻止されていないビーム240aの収束角すなわち発散角310aは、全ビーム240の収束角すなわち発散角310と比較して減少する。
【0048】
ビーム阻止素子1320の最小重なり位置と最大重なり位置はそれぞれ、回転シャフト1310の特定の角度位置に関連付けられてよい。本実施形態の場合では、最小重なり位置が0°の角度位置に関連付けられ、かつ、最大重なり位置が回転シャフト1310の180°の角度位置に関連付けられ得るように、ビーム阻止素子1320は設計され、かつ、回転シャフト1310上で保持される。換言すると、最小重なり位置から開始して、最大重なり位置は回転シャフト1320を180°回転させた後に得ることができる。さらに、最小重なり位置と最大重なり位置との間での任意の重なり位置は、回転シャフト1310を0°から180°の間の対応する回転角だけ単純に回転させることによって得ることができる。よって回転シャフト1310の適切な回転角を選ぶことによって、所定の最小重なり位置と最大重なり位置との間の任意の所望の重なり位置は調節され得る。従って、収束/発散角310が実験上の要求に合わせて選択的に調節され得るように、ビーム240の所望の部分は選択的に阻止され得る。
【0049】
ビーム阻止素子は、制限なく複数回回転してよい。一の全回転(つまり360°回転)を実行することによって、ビーム阻止素子1320は、最小重なり位置(又は非重なり位置)から最大重なり位置へ移動し、初期の最小重なり位置へ戻ってよい。ビーム阻止素子1320が360°の回転周期で最小重なり位置と最大重なり位置との間で振動するので、ビーム阻止素子1320がビームへ入り込むのか又はビームから離れるのかにかかわらず回転方向を変更する必要はない。
【0050】
以降では、X線システム100の動作についてさらに説明する。動作時、X線源1100は、反射光学系1200へ向けてX線(たとえばCuターゲットによって発生するX線)を放出する。続いて反射光学系1200は、所定の断面積及び断面形状を有するX線ビーである選ばれた波長のX線を被検査結晶又は粉末試料300へ向けて反射する。X線ビームの形状及び断面積は、X線光学系の設計に依存し、かつ、異なる設計実装で変化してよい。試料300は、試料台120上に載置され、かつ、台120によってX線ビーム240に対して方位を合わせられてよい。試料の向きは、X線ビーム曝露中に試料300を回転させることによって変化し得る。X線ビーム240は試料300によって回折される。様々な試料の方位で回折されたX線ビームの強度及び空間分布は検出器130によって記録され、かつ、その記録に基づいて、X線回折パターンが生成される。得られたX線回折パターンは、結晶試料であれば離間した離散的なスポットを含み、あるいは、粉末試料であればラインを含む。
【0051】
X線回折パターンの分解能(隣接スポット又はラインの識別性)は、X線光学系1200によって出力されるX線ビーム240の発散角に依存する。大きな単位胞を有する試料300では、パターンの分解能を改善するためには小さな発散角を有する出力X線ビーム240が望ましい。小さな発散角を有する出力X線ビーム240は、ビーム阻止素子1320を所望の重なり位置(たとえば
図1参照)へ単純に回転させることによって到達し得る。
図1では、ビーム阻止素子1320が、出力X線ビーム240の弱いビーム240bを阻止するように配置されているので、ビーム強度を制限しすぎることなく試料300で小さな発散角を有するX線ビームを得ることができる。よってビーム阻止素子1320は、出力X線ビーム240を所望の発散角のビームに制限することのできる調節可能なアパーチャとして機能する。
【0052】
さらにビーム阻止素子1320は、試料300に到達する出力X線ビーム240の強度を調節するのに用いられてよい。強く回折する試料300の場合では、検出器130に到達する回折された強度は強すぎて正確に測定できず、そのような場合、ビーム阻止素子1320は、試料300上でのX線ビーム強度を減少させるため、所望の重なり位置へ単純に回転されてよい。
【0053】
図2と共に、X線光学デバイス110の実施形態についてさらに説明する。より具体的には、X線光学デバイス110のX線光学系1200及びビーム阻止ユニット1300の実施形態についてさらに説明する。
【0054】
図2は、X線源1100から離れたX線光学系1200の端部の三次元像を表している。X線光学系1200は、2つの反射ミラー1212,1214及びミラー1212,1214を収容する外包1230aを有する。X線光学系1200はさらに、外包1230aを少なくとも一方向に枢動させる枢動機構1240、並びに、外包1230a及び枢動機構1250(
図2には示されていないが
図4で見ることができる)を収容する外側外包1230cを有してよい。しかも外側筐体1230cには、ピン1260が近端部に供されてよい。外側筐体1230cは、ピン1260を介してX線源1100と機械的に接続可能となる。
【0055】
2つの反射ミラー1212,1214は、単色X線ビーム240を発生させるように設計及び配置される。ミラー1212,1214の遠端部には固定されたアパーチャが供されてよい。固定されたアパーチャは、2つのミラー1212,1214によって反射された単色X千のみを通過させ、かつ、他のX線ビーム-たとえば単一ミラーのみから反射されるビーム(
図2には示されていない)-を阻止するように設計される。発生したX線ビーム240は、用いられているミラー1212,1214の設計の詳細に依存する所定の断面サイズ及び形状を有する。本実施形態では、限定ではない説明目的で、ひし形形状のX線ビーム240を発生及び出力するミラー配置が用いられる。
【0056】
X線光学デバイス110のビーム阻止ユニット1300は、X線光学系1210の遠端部に配置される。ビーム阻止ユニット1300は、回転可能なビーム阻止素子1320、及び、上でビーム阻止素子1320が中心を外して載置される回転シャフト1310を有する。ビーム阻止ユニット1300はさらに、回転シャフト1310及び少なくとも1つの封止素子1350を回転可能なように支持するように構成されるベアリングユニット1340をさらに有する。
【0057】
ビーム阻止ユニット1300は、遠端部でミラー外包1230aに固定された外包1230bによって収容される。代替実施形態によると、ビーム阻止ユニット1300は、ミラー筐体1230によって該ミラー筐体1230の遠端部で直接収容されてよい。
【0058】
ベアリングユニット1340は、外包1230bの上面に配置され、かつ、回転シャフト1310の上部を収容するように構成されるスリーブ1342を有する。スリーブ1342はまた、スリーブ1342の外側スリーブ面で円周方向に設けられる凹部をも有する。凹部1350は、スリーブ1342と外包1230bとの間で気密性封止を実現する封止素子(つまりOリング)を部分的に収容するように構成される。さらにベアリングユニット1340は、外包1230bの下面で回転シャフト1310の下端を収容するように構成されるベアリング用凹部1344を有する。ベアリングユニット1340は、回転シャフト1310が出力ビーム240に対して横方向にオフセットされて設けられるように配置される。つまり回転シャフト1310はX線ビーム240とは重ならない。
【0059】
ビーム阻止素子1320は、回転シャフト1310上で中心を外して配置される回転対称性を有する本体1324を有する。さらに回転シャフト1310に沿った軸方向では、本体1324が出力X線ビーム240の高さに載置されている。本体1324は、切頭型の頂点を有する両円錐形状を有する。従って本体1324は、出力ビーム240用のビーム阻止端部を画定するL字形状の横方向外形1326aを有する横方向表面1326を有する。本実施形態では、ビーム阻止端部の形状は、X線ビーム240の断面形状に適合する。X線ビーム240の断面形状は、ひし形形状ビーム240の二辺を表す。
【0060】
図3のビーム阻止ユニット1300の動作について
図3a及び
図3bと共にさらに説明する。
図3aと
図3bはいずれも、
図2に表されたX線光学デバイス110の遠端部の側面図である。同一の構造及び/又は機能的特徴を有するX線光学デバイス110の構成要素には同一の参照番号が与えられる。簡明を期すため、最も重要な構成要素にのみ参照番号が与えられる。
【0061】
図3aは、ビーム阻止素子1320が完全に回転してX線ビーム240から離れた位置を表している。つまりこの位置では、ビーム阻止素子1320はX線ビーム240とは重ならない。この位置は、上述の最小重なり位置に対応し、かつ、回転シャフト1310の0°の角度位置に関連付けられてよい。この位置では、出力X線ビーム240は最大断面積240aを有する。回転シャフト1310を180°回転させることによって、本体1324はX線ビーム240へ入り込むように回転し、それにより本体の横方向の外形1326aがビーム240へ入り込むように連続的に移動する。その結果、ビーム断面積240aは、連続的に縮小し、最大重なり位置に到達する180°回転(
図3b参照)で最小になる。既に上で説明したように、最大重なり位置での重なりの大きさは、ビーム阻止素子1320の設計-特にビーム阻止素子1320の横方向の広がり-に依存する。
図3bでは、小さな断面積240aを有するわずかなX線しか阻止ユニット1300を通過できない一方で、ビーム240の大部分はビーム阻止素子1320によって排除される。最大重なり位置に到達するときにビーム断面積のサイズ240aが最初の断面積のサイズに対して80%から98%減少するように本体の寸法を設定することが考えられ得る。あるいはその代わりに、最大重なり位置に到達するときに完全なビーム阻止が実現されるように本体の寸法を設定することも考えられ得る。
【0062】
本体表面1326でのX線の散乱を減少させるため、本体1324は優れたX線吸収特性を有する材料で作られる。たとえば青銅が本体に用いられてよい。
【0063】
図4と
図5を参照して、他の実施形態によるX線光学デバイス100aについて論じる。X線光学デバイス100aは、
図2、
図3a、及び
図3bと共に上で説明した実施形態のX線源1100、X線光学系1200、及びアパーチャデバイス1300を有する。これらの構成要素は再度説明しない。その代わりに上述の対応する記載を参照する。それに加えてX線光学デバイス100aはさらに、駆動ユニット1400、センサユニット1500、制御ユニット1600、及び入力ユニット1700を有する(
図5も参照)。
【0064】
駆動ユニット1400は、トルクを発生させるように構成された電気モータ1410を有する。さらに駆動ユニット1400は、ベルトドライブである伝送ユニットを有する。ベルトドライブは、モータ1410によって発生したトルクを、回転シャフト1310の上端に載置されたプーリー1430へ伝送するベルト1420を有する。駆動ユニット1400は、筐体1230の上側に配置される。
【0065】
センサユニット1500は、回転シャフト1310の角度位置及び/又はシャフト回転中での回転シャフト1310の角度変位を測定するように構成される。この目的のため、回転シャフト1310の近くに配置された光学センサが用いられてよい。
【0066】
入力ユニット1700(
図6のブロック図にしか示されていない)は、ユーザー入力を受信するように構成される。ユーザー入力は、ビーム重なり位置、回転シャフト1310の回転角、及び/又はビーム特性-ビーム240の発散角310-を示してよい。これらの量は互いに相関するので、制御ユニット1600は、適切なモータ制御信号を発生させる各量を利用してよい。制御ユニット1600(
図5のブロック図にしか示されていない)は、センサユニット1500、駆動ユニット1400、及び入力ユニット1700と通信する。制御ユニット1600は、センサユニット1500によって測定された回転シャフト1310の角度位置に基づいてビーム阻止素子1320(又は横方向端部1326a)の実際の重なり位置を決定し、入力装置1700から受信された設定ビーム重なり位置と実際の重なり位置とを比較し、かつ、前記の比較に基づいて、設定ビーム重なり位置に対応する角度位置へモータ1410を駆動させるようにモータ1410を制御するモータ信号を発生させるようにプログラムされてよい。この目的のため、制御ユニット1600は、上述の制御工程を実装するソフトウエアルーチンを処理する少なくとも1つのプロセッサを有する。
【0067】
上述のビーム阻止法は多くの利点を有する。阻止法は、従来のX線光学系と容易に組み合わせることができる。なぜなら回転シャフト1310及びビーム阻止素子1320は従来のX線光学系と容易に組み合わせることができるからである。さらに阻止法は、機械的に耐久性があり安価である。なぜなら高価な高精度ねじやマイクロメータねじが用いられていないからである。さらに説明した方法は、所望の重なり位置の調節、つまりは所望のビーム発散角及び/又はビーム強度の調節を容易にする。なぜなら所定の最小重なり位置と最大重なり位置との間の任意の位置は、回転シャフトを単純に一方向に回転させることによって容易に選択できるからである。回転シャフトを反転させる必要はない。なぜなら阻止素子は、新たなシャフト回転毎に最小重なり位置と最大重なり位置との間で振動するからである。