(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】イオンビーム変動を補償する質量分析計およびその操作方法
(51)【国際特許分類】
H01J 49/26 20060101AFI20220405BHJP
H01J 49/06 20060101ALI20220405BHJP
H01J 49/10 20060101ALI20220405BHJP
H01J 49/14 20060101ALI20220405BHJP
G01N 27/62 20210101ALI20220405BHJP
【FI】
H01J49/26
H01J49/06 700
H01J49/10 500
H01J49/14 700
G01N27/62 D
【外国語出願】
(21)【出願番号】P 2019230497
(22)【出願日】2019-12-20
【審査請求日】2020-01-21
(32)【優先日】2018-12-21
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】508306565
【氏名又は名称】サーモ フィッシャー サイエンティフィック (ブレーメン) ゲーエムベーハー
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100095898
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【氏名又は名称】山本 泰史
(72)【発明者】
【氏名】ヨハネス シュヴィッターズ
【審査官】藤本 加代子
(56)【参考文献】
【文献】特開平02-086036(JP,A)
【文献】米国特許出願公開第2012/0305758(US,A1)
【文献】特表2002-518810(JP,A)
【文献】特開2001-057174(JP,A)
【文献】特表2012-515999(JP,A)
【文献】特開2007-278934(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 49/02
H01J 49/06
H01J 49/10
H01J 49/14
H01J 49/26
H01J 49/28
H01J 49/30
H01J 49/32
G01N 27/62
(57)【特許請求の範囲】
【請求項1】
異なる範囲の質量対電荷比を有するイオンを2つ以上の期間でイオンビームから選択するための質量分析器ユニットと、
前記質量分析器ユニットの下流に配置され、前記期間のそれぞれにおいて、質量対電荷比のそれぞれの選択範囲内のイオンを検出し、それぞれの範囲の質量対電荷比を有する検出されたイオンの量を表す第1の検出信号を生成する第1の検出ユニットと、
前記質量分析器ユニットの上流に配置され、時間の関数としてのイオンビームの総強度を表す第2の検出信号を生成するための第2の検出ユニットと、
前記第2の検出信号を使用して前記第1の検出信号を正規化するための処理ユニットと、を備え
、
前記処理ユニットは、第1の期間に対応する正規化された第1の信号を、第2の異なる期間に対応する正規化された第1の信号で除算して、正規化強度比を得るようにさらに構成されている、質量分析計。
【請求項2】
前記処理ユニットは、正規化された第1の検出信号の比を生成するようにさらに構成されている、請求項1に記載の質量分析計。
【請求項3】
前記処理ユニットは、それぞれの第1の検出信号を対応する期間の前記第2の検出信号で除算することにより前記第1の検出信号を正規化するように構成されている、請求項1又は2に記載の質量分析計。
【請求項4】
前記第1の検出ユニットは、単一の検出器を備える、請求項1~3のいずれかに記載の質量分析計。
【請求項5】
前記質量分析器ユニットは、連続した期間においてイオンを連続的に選択するように構成されている、請求項1~4のいずれかに記載の質量分析計。
【請求項6】
前記第2の検出ユニットは、前記質量分析器ユニットの上流に配置された検出素子を備えている、請求項1~5のいずれかに記載の質量分析計。
【請求項7】
前記検出素子は、スキマー、入口スリット、開口部、又はイオンレンズを備える、請求項6に記載の質量分析計。
【請求項8】
前記第2の検出ユニットは、前記イオンビームからのイオンによって前記検出素子で生成された電流から前記第2の検出信号を導出する検出回路を備える、請求項6又は7に記載の質量分析計。
【請求項9】
前記イオンビームを生成するためのイオン源をさらに備える、請求項1~8のいずれかに記載の質量分析計。
【請求項10】
前記イオン源はプラズマ源を含む、請求項9に記載の質量分析計。
【請求項11】
プラズマガスイオンを除去するためのイオン光学素子をさらに備え、前記イオン光学素子は、前記検出素子の上流に配置されている、請求項6~8のいずれかに記載の質量分析計。
【請求項12】
プラズマガスイオンを除去するためのプレ質量フィルタユニットをさらに備え、前記プレ質量フィルタユニットは、前記検出素子の上流に配置されている、請求項6~8のいずれかに記載の質量分析計。
【請求項13】
前記イオン源は熱イオン化源又は電子衝撃源を含む、請求項9に記載の質量分析計。
【請求項14】
質量分析計を操作する方法であって、
イオン源からイオンビームを受容するステップと、
受容したイオンビームから、2つ以上の期間において異なる範囲の質量対電荷比を有するイオンを選択するステップと、
前記期間のそれぞれにおいて、質量対電荷比のそれぞれの選択範囲内のイオンを検出し、それぞれの範囲の質量対電荷比を有する検出されたイオンの量を表す第1の検出信号を生成するステップと、
前記期間のそれぞれにおいて、第2の検出信号を生成するためにイオンビームの総強度を検出するステップと、
前記第2の検出信号を使用して前記第1の検出信号を正規化するステップと、
第1の期間に対応する正規化された第1の信号を、第2の異なる期間に対応する正規化された第1の信号で除算して、正規化強度比を得るステップと、を含む方法。
【請求項15】
正規化された第1の検出信号の比率を生成するステップと、
正規化された検出信号の比率を出力するステップと、をさらに含む、請求項14に記載の方法。
【請求項16】
前記第1の検出信号を正規化する前記ステップは、それぞれの第1の検出信号を対応する期間の前記第2の検出信号で除算するステップを含む、請求項14又は15に記載の方法。
【請求項17】
連続した期間においてイオンを連続的に選択するステップをさらに含む、請求項14~
16のいずれかに記載の方法。
【請求項18】
2つ以上の期間において異なる範囲の質量対電荷比を有するイオンを選択するステップの前に、プラズマガスイオンを除去するステップをさらに含む、請求項14~
17のいずれかに記載の方法。
【請求項19】
プロセッサに請求項14~
18のいずれかに記載の方法を実行させる命令を含むコンピュータプログラム製品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、質量分析計及び質量分析計を操作する方法に関する。より具体的には、本発明は、イオンビームのイオンの質量対電荷比が連続的に検出される質量分析計に関する。
【背景技術】
【0002】
高精度の元素及び同位体存在量の測定は、環境科学、地質科学、核科学、及び法医学における用途に重要である。高精度の同位体及び元素存在量の測定が重要な指標となる用途はいくつかある。例えば、
・試料の元素及び/又は同位体組成の精密かつ正確な知識は、法医学に関する重要なトレーサーである。試料の元素及び同位体組成は、ある特定の場所に固有である。
・ある特定の元素の相対存在量は、例えば、地球の歴史における試料材料の年代及び生成、又はさらには宇宙の形成における元素合成プロセス中の太陽系の進化を示す、地質学的又は核プロセスへの洞察を与える。
・大気中の希ガスの分布は、海洋及び大気の地球温度のトレーサーである。海水及び大気中の異なる希ガス種の希釈は温度に依存するため、海水に溶解した希ガスの存在量の精密かつ正確な知識は、気候の変化に関連する最近の地球温度の変化をさかのぼる重要なトレーサーである。
・元素及び同位体組成の精密かつ正確な知識は、核プロセスならびに環境及び産業プロセスにおける汚染を監視するための重要な指標である。
【0003】
質量分析は、周期表全体のすべての元素に対する元素及び同位体存在量の測定に適用される重要な分析技術である。元素種及び同位体種を検出する前に、試料をイオン化する必要がある。試料がガスである場合、試料は質量分析計のイオン源に直接導入でき、通常は電子衝撃イオン化源によってイオン化される。これらの機器の例は、例えばThermo Scientific(商標)DFS(商標)質量分析計、又はThermo Scientific(商標)253 Ultra(商標)質量分析計である。固体試料は、低圧グロー放電プラズマイオン源によって直接侵食及びイオン化され得る。詳細については、Thermo Scientific(商標)Element GD(商標)質量分析計(www.thermofisher.com)を参照されたい。
【0004】
最も一般的な固体試料は、いくつかの試料調製ステップで溶解及び分離され、液体酸性溶液となる。この酸性溶液は、噴霧システムを介して、誘導結合プラズマ(ICP)イオン源の大気プラズマに注入され得る。大気と真空とのインターフェースを介して、イオンは質量分析器に入り、質量スペクトル分析及び定量化が行われる。この技術を利用する分光計の例には、Thermo Scientific(商標)Element 2(商標)質量分析計及びThermo Scientific(商標)NEPTUNE Plus(商標)質量分析計が含まれる。
【0005】
高精度の同位体比測定には、すべての対象種が並行して同時に検出されるマルチコレクター手法が有利である。同時マルチコレクター手法の重要な利点は、イオン生成プロセスの変動によって引き起こされるいずれの信号の変動、又は試料供給によって引き起こされるいずれの変動も、すべての検出器で並行して発生することである。これらの変動はすべての検出器に同時に現れるため、同時に検出される異なる種の相対存在比の計算には影響しない。
【0006】
イオン源の変動は、次のようないくつかの理由で発生し得る。
・電子衝撃イオン化源の場合:イオン化電子ビームの強度を制御するフィラメント電流調節の不安定性による変動。これらの変動は、電子フィラメントレギュレータの制限に起因し得るか、又は高ガス圧でのフィラメントからの電子放出の変動に起因し得る。
・誘導結合プラズマ(ICP)イオン化又はグロー放電イオン化(GD)の場合のプラズマフリッカー
・フィラメントの小さな温度変動又はフィラメント表面の不規則な試料の移動による熱イオン化源の効率の変動
・ICP(誘導結合プラズマ)イオン化の場合の液体試料の噴霧プロセス中の液滴生成
・液体クロマトグラフィー(LC)又はガスクロマトグラフィー(GC)用デバイス等のクロマトグラフィーデバイスに結合する場合の過渡信号
・試料のレーザーアブレーション及びICP源へのオンライン結合による過渡信号
【0007】
同位体及び元素の存在量を正確に測定するには、適切な較正が必要である。通常、これは好適な標準及び基準材料、ならびに精巧な較正スキームによって達成される。
【0008】
特に高精度の同位体比測定のために、マルチコレクター検出器アレイに接続されたセクターフィールド質量分析計を含む特別な種類の質量分析計が開発された(Thermo Scientific(商標)NEPTUNE Plus(商標)質量分析計等)。セクターフィールド質量分析器は、イオン光学素子の焦点検出面に沿って異なる質量を空間的に分離する。この検出面に沿って、アレイ検出器がすべてのイオンビームのイオンビーム強度を並行して捕捉する。精度及び正確性に関して、この配置の最も有利な特徴は、試料送達の変動又はイオン源で発生した変動によるイオンビーム強度のすべての変動がすべての検出種で同時に発生するため、相対的な検出種の存在量の測定が無効化されてしまうことである。これにより、ある特定の質量範囲(スキャンモード等)及び/又はすべての対象種(例えば、離散ピークを飛び越えるピーク)で適用されるスキャンモードもしくはピークジャンプモードと呼ばれる手法、又はそれらのモードの組み合わせで対象種を測定できる連続質量分析計と比較して、マルチコレクター機器の精度が大幅に改善される。したがって、測定された存在量は、異なる時点で検出されるため、測定種の個々の変動によってバイアスされる。
【0009】
複数の並列検出ユニットを備えた質量分析計の例は、参照により本明細書に組み込まれるUS2018/0308674に開示されている。US2018/0308674の質量分析計は、複数の異なるイオン種を並行して、及び/又は同時に検出するための複数のイオン検出器を備える。既知の質量分析計の検出器配列は、例えば、9つの検出が実質的に同時に行われることを可能にする、並列の9つのイオン検出器からなり得る。既知の検出器配置の各検出器は、ファラデーカップを含むことができる。
【先行技術文献】
【特許文献】
【0010】
【文献】US2018/0308674
【文献】US2004/0217272
【文献】US9,324,547
【非特許文献】
【0011】
【文献】「Gas-Dynamic Fluctuations and Noises in the Interface of an Atmospheric Pressure Ionization Ion Source」(A.N.Bazhenov et al.,Journal of Analytical Chemistry,2011,Vol.66,No.14)
【発明の概要】
【発明が解決しようとする課題】
【0012】
マルチ検出器質量分析計は、ある特定の用途に非常に効果的であるが、そのようなデバイスの相対質量範囲は実用上の理由で約20%、すなわち質量40amu(原子質量単位)~48amuに制限される。この同時相対質量範囲は、一度に1つの元素の同位体存在量を並行して測定するのに十分である。しかしながら、より広い質量範囲をカバーする元素比を測定するには不十分である。例えば、希ガスであるアルゴン及びキセノンの相対存在量は、36Ar~134Xeの質量範囲を同時にカバーする必要があり、これは、この用途の相対質量範囲が370%超(134/36=3.72)であることに対応する。
【0013】
要約すると、先行技術は、複数の並列検出器の配置が必然的に限られた質量対電荷範囲を有するという問題に直面している一方、単一の検出器を連続して使用することにより大きな質量対電荷範囲を有する配置は、イオンビームの変動による不正確さに見舞われている。
【課題を解決するための手段】
【0014】
従来技術のこの問題を解決するために、本発明は、
-異なる範囲の質量対電荷比を有するイオンを2つ以上の期間でイオンビームから選択するための質量分析器ユニットと、
-当該期間のそれぞれにおいて、質量対電荷比のそれぞれの選択範囲内のイオンを検出し、質量対電荷比のそれぞれの範囲を有する検出されたイオンの量を表す第1の検出信号を生成する第1の検出ユニットと、
-時間の関数としてのイオンビームの総強度を表す第2の検出信号を生成するための第2の検出ユニットと、
-第2の検出信号を使用して第1の検出信号を正規化するための処理ユニットと、を備える質量分析計を提供する。
【0015】
第2の検出ユニットを提供することにより、時間の関数としてイオンビームの強度を決定し、この強度を表す第2の検出信号を生成することが可能である。第2の検出信号は、第1の検出信号と同時に、すなわち、質量分析器ユニットによって異なる質量対電荷比のイオンが選択され、第1の検出ユニットによって検出される期間中に生成され得る。
【0016】
イオンビーム強度を表すこの第2の検出信号を使用することにより、第1の検出ユニットによって生成された検出信号を正規化することができる。すなわち、第1の検出ユニットによって順次生成される検出信号は、イオン電流のいかなる変動も効果的に補償することができる。その結果、正規化された検出信号が得られ、これはイオンビームのいかなる変動とも無関係である。したがって、本発明により、イオンビームの変動による不正確さの不利益なしに、連続検出の有利な広い質量対電荷比を使用することができる。
【0017】
質量分析計で追加の検出ユニットを使用すること自体は知られているが、非常に異なる目的のためであることに留意されたい。例えば、US2004/0217272は、質量分析計で分析されるイオン集団を制御するための方法を開示している。追加の検出器を使用して、質量分析計にイオンを注入する前のサンプリング間隔の間にイオンの蓄積率が決定される。追加の検出器の検出及び質量分析計での信号取得は逐次的であり、同時ではない。したがって、この既知の方法は、質量分析計の不連続な使用に関するものであるが、本発明の質量分析計は連続的使用に好適であり、逐次的サンプリング間隔を必要としない。さらに、従来技術の追加の検出器の信号は、質量分析器の出力を表す検出信号を正規化するために使用されない。
【0018】
US9,324,547は、イオンのバッチが質量分析器に蓄積される質量分析計を開示している。バッチあたりのイオン数は、質量分析器の外部にある独立した検出器を使用して得られるイオン電流の測定に基づいて制御される。この既知の質量分析計は、不連続な様式でも使用される。
【0019】
対照的に、本発明の質量分析計は、連続的様式で動作することができ、イオンビームを実質的に途切れることなく分析することを可能にし、同時に質量分離されたイオン種を検出することができる。すなわち、本発明の質量分析計は、イオン蓄積速度を推定するのではなく、イオンビームの変動を補償するように設計されている。本発明の質量分析計は、検出前にイオンのバッチを蓄積することなく動作することができる。
【0020】
さらに、A.N.Bazhenov et al.,Journal of Analytical Chemistry,2011,Vol.66,No.14による「Gas-Dynamic Fluctuations and Noises in the Interface of an Atmospheric Pressure Ionization Ion Source」という記事は、スキマーへの全イオン電流の変動を決定するために、質量分析計でスキマー電流を測定するためのオシロスコープの使用を開示していることに留意されたい。測定されたスキマー電流は、イオン電流ノイズの周波数スペクトルを決定するために使用され、これはガスダイナミックノイズの周波数スペクトルと比較され得る。この記事は、イオン電流の変動を任意の他の目的に使用することを示唆していない。さらに、本発明は、周波数スペクトルを使用せず、時間領域信号を使用する。
【0021】
本発明の質量分析計の一実施形態において、処理ユニットは、正規化された第1の検出信号の比を生成するようにさらに構成される。処理ユニットは、正規化された第1の検出信号及び正規化された第1の検出信号の比のうちの少なくとも1つを出力するようにさらに構成されてもよい。すなわち、処理ユニットが、検出されたイオンの量を表す第1の検出信号を正規化した後、正規化された検出信号の比率が決定され得、出力され得る。そのような比率は、イオンビームの任意の変動を補償したイオンの相対量を表す。
【0022】
本発明の質量分析計の実施形態において、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算することにより第1の検出信号を正規化するように構成される。すなわち、(異なる時点での)第1の検出信号及び(実質的に対応する時点での)第2の検出信号の比を決定することにより、イオンビームの任意の変動の影響が効果的に除去される。除算する代わりに、他の操作、例えば対応する期間の第1の検出信号から第2の検出信号を減算することを使用してもよい。負の減算結果を防止するために、減算の前に、例えば0.1等の固定係数で、又は第2及び/又は第1の検出信号の振幅に依存し得る可変係数で第2の検出信号値を乗算することにより、第2の検出信号を減少させてもよい。
【0023】
一実施形態において、質量分析計は、単一の第1の検出ユニットを備え、単一の第1の検出ユニットは、単一の検出器(第1の検出ユニットに関連するため第1の検出器と呼ばれ得る)を備える。本発明による質量分析計は逐次的検出に基づいているため、単一の検出器で十分となり得る。しかしながら、いくつかの用途では、例えば異なる感度等の異なる特性を有する検出器を利用するために、単一の検出ユニットにおいて2つ以上の、例えば2つ、3つ、4つ又はさらにそれ以上の検出器が使用されてもよい。これらの複数の検出器は、逐次的及び/又は周期的に使用されてもよい。
【0024】
一実施形態において、質量分析器ユニットは、連続した期間でイオンを連続的に選択するように構成される。すなわち、本発明の質量分析計におけるイオン選択は、イオンがバッチで処理されるいくつかの先行技術の質量分析計におけるイオン選択とは対照的に、連続的となり得る。上記の特許文献US2004/0217272及びUS9,324,547は、バッチで、すなわち不連続的にイオンを処理する例を提供している。
【0025】
第2の検出ユニットは、単一の検出素子又は複数の検出素子を備えてもよく、それぞれの検出素子は、イオンビームを通過させるための開口を備えていてもよい。第2の検出ユニットは、イオンビームからのイオン、例えばこれに限定されないがイオンビームからの散乱イオンによって1つ以上の検出素子で生成される電流から第2の検出信号を導出する検出回路を備えてもよい。第2の検出ユニットの少なくとも1つの検出素子は、質量分析器によってイオンの範囲が選択される前に全イオンビームのイオンを検出するために、質量分析器の上流に配置されてもよい。
【0026】
いくつかの実施形態において検出プレートを備えてもよい検出素子は、サンプラーコーン、スキマーコーン、入口スリット、開口部、イオンレンズ又は同様の物体によって構成されてもよい。検出素子は、いくつかの実施形態において、ファラデーカップを備えてもよい。
【0027】
本発明による質量分析計は、イオンビームを生成するためのイオン源をさらに備えてもよい。いくつかの種類のイオン源が使用され得る。例えば、プラズマ源、熱イオン化源、又は電子衝撃源である。プラズマ源を備える実施形態では、デバイスは、プラズマガスイオンを除去するために、質量分析器の上流に配置されたイオン光学素子及び/又はプレ質量フィルタユニットをさらに備えてもよい。そのようなプレ質量フィルタユニットは、四重極を備えてもよく、及び/又は他のイオンを通過させながら狭い範囲の干渉イオンを実質的にブロックするノッチフィルタとして配置されてもよい。衝突及び/又は反応セルを追加的又は代替的に使用して、プラズマガスイオンを除去してもよい。
【0028】
質量分析計が、上記のようにプラズマガスイオンをフィルタリングするための衝突/反応セル及び/又はプレ質量フィルタユニット等の追加のフィルタユニットを備える場合、第2の検出ユニットの検出器要素は、プレ質量フィルタユニットと質量分析器ユニットとの間、すなわち、プレ質量フィルタユニットの下流及び質量分析器ユニットの上流に配置され得る。これには、第2の検出信号がプラズマガスイオンの影響を実質的に受けないという利点がある。しかしながら、他の実施形態において、第2の検出ユニットの検出器要素は、プラズマイオンフィルタユニットの上流に配置されてもよい。
【0029】
イオンビームは、ガスクロマトグラフィー(GC)フロー、液体クロマトグラフィー(LC)フロー、レーザーアブレーションセルのガスストリーム、又はガス容器からのガスの出力であり得る。
【0030】
上述のように、質量分析計は、特にイオンビームが受容される質量分析計のインターフェースと質量分析器ユニットとの間に、質量分析器ユニットの上流に配置されたプレ質量フィルタユニットを備えてもよい。そのような追加のフィルタユニットは、イオンビームからある特定の質量対電荷範囲を選択する一方で、他の質量対電荷範囲を排除するのに役立ち得る。プラズマイオン源を有する実施形態では、イオンビームからプラズマガスイオンを排除するためにプレ質量フィルタユニットが使用されてもよい。GCカップリング又は誘導結合プラズマ(ICP)を使用する実施形態では、プレ質量フィルタユニットは、ヘリウムイオン又はアルゴンイオンをそれぞれ除去して、これらのガスに占められる質量スペクトルを回避できる。
【0031】
プレ質量フィルタユニットは、四重極ユニットを備えてもよいが、他のプレ質量フィルタユニット、例えば六重極ユニットもまた想定され得る。そのようなプレ質量フィルタユニットは、イオン源の種類とは無関係に使用されてもよい。第2の検出ユニットは、関連する検出素子の位置に応じて、質量分析計のインターフェースで受容された元のイオンビーム、又はプラズマイオン及び/又は他の望ましくないイオンが除去されたフィルタリング後のイオンビームを表す第2の検出信号を生成し得る。したがって、第2の検出ユニットの検出素子は、プレ質量フィルタユニットの上流又は下流に配置されてもよいが、典型的には質量分析器ユニットの上流に配置される。
【0032】
プレ質量フィルタの代わりに、又はそれに加えて、質量分析計は衝突セルを備えてもよい。そのような衝突セルは、プレ質量フィルタ(存在する場合)と第2の検出ユニットとの間、すなわち、プレ質量フィルタの下流及び第2の検出ユニットの上流に配置されてもよい。
【0033】
プレ質量フィルタ及び/又は衝突セルが使用される場合、測定されるイオンビームの強度は、第2の検出ユニットの検出素子の位置に依存する。プレ質量フィルタ及び/又は衝突セルの上流では、第2の検出ユニットは、元の総イオンビーム強度を測定する。プレ質量フィルタ及び/又は衝突セルの下流では、第2の検出ユニットは、プレ質量フィルタ及び/又は衝突セルの質量ウィンドウに対応する減少した総イオンビーム強度を測定し得る。そのような質量ウィンドウは、質量分析器によって選択された質量対電荷比の範囲の合計よりも広くなり得る。総イオンビーム強度は、質量分析器によって選択される質量対電荷比の少なくともすべての範囲をイオンビームが含む質量分析器の直前のイオンビーム強度に等しくてもよい。
【0034】
本発明はまた、質量分析計を操作する方法であって、
-イオン源からイオンビームを受容することと、
-受容したイオンビームから、2つ以上の期間で、異なる範囲の質量対電荷比を有するイオンを選択することと、
-当該期間のそれぞれにおいて、質量対電荷比のそれぞれの選択範囲内のイオンを検出し、質量対電荷比のそれぞれの範囲を有する検出されたイオンの量を表す第1の検出信号を生成することと、
-当該期間のそれぞれにおいて、第2の検出信号を生成するための前にイオンビームの総強度を検出することと、
-第2の検出信号を使用して第1の検出信号を正規化することと、を含む方法を提供する。
【0035】
第2の検出信号は、イオンビーム強度を表す連続(アナログ又はデジタル)時間信号であってもよい。第2の検出信号は、イオンが第1の検出ユニットによって選択及び検出される期間中にのみ生成され得るが、それらの期間外でも生成され得る。いくつかの実施形態において、第2の検出信号は、ある特定の期間中のイオンビーム強度を表す単一の値によって構成され得るか、又はその値に変換され得る。同様に、いくつかの実施形態において、第1の検出信号は、ある特定の期間中に検出されたイオンの量を表す単一の値で構成されてもよい。第1の検出信号及び第2の検出信号の少なくとも一方が連続信号である場合、期間中のそれぞれの信号の平均値が計算され、正規化に使用され得る。
【0036】
第1の検出信号を正規化することは、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算することを含んでもよい。いくつかの実施形態において、これは、ある期間中の第1の検出信号を表す単一の値を、その特定の期間中の第2の検出信号を表す別の単一の値で除算することを含んでもよい。他の実施形態において、ある期間中の第1の検出信号を表すいくつかの値は、その特定の期間中の第2の検出信号を表す対応する値で除算されてもよく、それらの値はある期間中の異なる時点に対応し得る。さらに他の実施形態において、連続する第1の検出信号は、ある期間中の利用可能なすべての時点(例えば、時間試料)で連続する第2の検出信号によって除算されてもよい。
【0037】
方法は、第1の期間に対応する正規化された第1の信号を、第2の異なる期間に対応する正規化された第1の検出信号で除算して、正規化された強度比、特にイオンの正規化された強度比を取得することをさらに含んでもよい。すなわち、2つ以上の選択された質量対電荷比範囲のイオンの強度比は、対応する期間の正規化された第1の検出信号を除算することにより決定され得る。正規化された(第1の)検出信号を使用することにより、イオンビームの任意の変動の影響が実質的に排除される。
【0038】
したがって、本発明の方法は、正規化された第1の検出信号の比を生成することを含んでもよい。さらに、本発明の方法は、正規化された検出信号の比を出力することを含んでもよい。さらに、方法は、連続する期間にイオンを連続的に選択することを含んでもよい。またさらに、方法は、異なる範囲の質量対電荷比を有するイオンを選択する前に、2つ以上の期間にプラズマガスイオンを除去することを含んでもよい。
【0039】
本発明はさらに、上述の方法を実行するためのコンピュータプログラム製品を提供する。コンピュータプログラム製品は、プロセッサに本発明による方法ステップを実行させる命令が格納される有形のキャリアを備えてもよい。有形のキャリアは、DVDもしくはUSBスティック等のポータブルメモリデバイス、又は、例えば処理ユニットの一部である非ポータブルメモリデバイスを含み得る。
【図面の簡単な説明】
【0040】
【
図1】本発明による質量分析計の第1の例示的実施形態を概略的に示す。
【
図2】本発明による質量分析計の第2の例示的実施形態を概略的に示す。
【
図3A】従来技術により順次決定される検出器信号の例を概略的に示す。
【
図3B】従来技術により順次決定される検出器信号の例を概略的に示す。
【
図4A】本発明により順次決定される検出器信号の例を概略的に示す。
【
図4B】本発明により順次決定される検出器信号の例を概略的に示す。
【
図4C】本発明により順次決定される検出器信号の例を概略的に示す。
【
図5】本発明による質量分析計を操作するための方法の例示的実施形態を概略的に示す。
【発明を実施するための形態】
【0041】
本発明は、複数の並列検出器を使用しても十分に広い質量対電荷範囲が提供されない用途においてより広い質量範囲をカバーするために、既存の質量分析計、特に高精度の同位体及び元素存在量測定用の質量分析計を改善することを目的とする。本発明は、マルチコレクター検出及び/又は測定の利点、特に2つ以上のイオン種の質量対電荷比を決定する際の強度変動の除去を維持しながら、シングルコレクター検出及び/又は測定を行うことを可能にする。
【0042】
図1に概略的に示される例示的な質量分析計10は、イオン源11、質量分析器12、第1の検出ユニット13、検出素子14を備える第2の検出ユニット15、及び処理ユニット16を備えるように示される。
図1の実施形態において、検出素子14は、イオン源11と質量分析計10の他の部分との間のインターフェース17を構成し、例えばサンプラーコーンによって構成されてもよい。他の実施形態において、このインターフェース17は、スキマーコーン、又は入口開口部もしくはスリット等の別の部分によって、あるいは例えばリング形状又はディスク形状であってもよい専用の検出素子によって構成されてもよい。
【0043】
イオン源11は、従来のイオン源、例えばICP(誘導結合プラズマ)源、グロー放電源、電子イオン化源、二次イオンイオン化源、熱イオン化源又は任意の他の好適なイオン源であってもよい。質量分析計は、イオン源なしで供給されてもよく、イオン源は、例えば質量分析計とのその後の組み立てのために別個に供給されてもよいことに留意されたい。
図1では、イオン源11は、質量分析計10の一部として示されている。
【0044】
質量分析器12は、イオンの連続質量フィルタリングを可能にする四重極質量分析器又はセクターフィールド質量分析器(例えば、磁気セクター及び/又は電気セクター質量分析器)等の従来の質量分析器であってもよい。第1の検出ユニット13は、ファラデーカップ等の単一のイオン検出器を含む従来の検出ユニットであってもよい。いくつかの実施形態において、第1の検出ユニット13は、異なる質量対電荷比に対して最適化され得る2つ以上の検出器(例えば、ファラデーカップ及び二次電子増倍管-SEM)を備えてもよい。第1の検出ユニット13は、検出されたイオンの量を表す第1の検出信号を生成するように構成される。これらのイオンは質量分析器12によってフィルタリングされているため、検出されたイオンは質量分析器によって選択された比又は範囲に対応する質量対電荷比又は質量対電荷比の範囲を有する。第1の検出信号1は、処理ユニット16に出力される。
【0045】
図1に示されるように、イオン源11によって生成された元のイオンビーム20は、検出素子14を通過して、イオンビームをフィルタリングする質量分析器12に到達することができる。結果として、限られた範囲の質量対電荷値を有するイオンからなるフィルタリングされたイオンビーム22は、質量分析器12を出て、第1の検出ユニット13に到達し、そこでイオンが検出される。イオンがイオン源11から第1の検出ユニット13に移動する方向Dは、第1の検出ユニット13を質量分析器12の下流に配置させ、逆に質量分析器12を検出ユニット13の上流に配置させる。
【0046】
検出素子14は、イオンビーム20を通過させるための少なくとも1つの貫通開口を有する好適な物体によって構成されてもよい。検出素子14は、サンプラーコーン、スキマーコーン、イオン光学素子、又はこの目的のために特別に設計された物体、例えばリング状物体又はイオンビーム20と並行に配置されたプレートのセットを備えてもよい。検出素子14は、第2の検出ユニット15の検出回路に電気的に接続されている。検出素子14は、電流が検出素子14から第2の検出ユニット15へ(又はその逆に)流れることを可能にするために導電性であってもよい。この電流は、イオンビーム20からのイオンの一部が検出素子14に衝突することにより生じる。一実施形態において、イオンビームの周辺部分のイオンが検出素子14に衝突する。例えば、検出素子14がスキマーコーンによって構成される場合、ビーム20のイオンの10%~20%が検出素子14に衝突し、したがって第2の検出ユニット15に供給される電流に寄与し得る。実際の割合は、イオンビームの幅及び焦点、ならびに検出素子の開口の直径及び/又は位置に依存する。
【0047】
第2の検出ユニット15は、イオンビームからのイオンの一部によって検出素子14に生成される電流から第2の検出信号を導出するための検出回路を備えてもよい。イオンビームの強度を表すこの第2の検出信号2は、処理ユニット16にも出力される。
【0048】
処理ユニット16は、1つ以上のマイクロプロセッサ、メモリ、及び好適なI/O(入力/出力)回路を備えてもよい。メモリは、マイクロプロセッサに本発明による方法を実行させる命令を含んでもよい。より詳細には、(少なくとも1つの)マイクロプロセッサは、第2の検出信号2を使用することにより第1の検出信号1を正規化することができ、正規化された第1の検出信号3を出力することができる。処理ユニット16のマイクロプロセッサは、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算することにより、第1の検出信号を正規化することができる。正規化プロセスについては、
図4A~
図4Cを参照して後に詳しく説明する。
【0049】
図2に示される例示的な質量分析計10は、イオン源11、質量分析器12、第1の検出ユニット13、検出素子14、第2の検出ユニット15及び処理ユニット16も備えるように示される。加えて、
図2の質量分析計は、プレフィルタ(プレ質量フィルタ又は質量プレフィルタとも呼ばれる)18を備える。
図2の実施形態において、インターフェース17は、検出素子14とは別個の要素を備える。
図2のインターフェース17は、典型的には、開口部を備え、例えばサンプリングコーン又はスキマーコーンによって構成されてもよく、その場合、検出素子14は、イオン光学素子、入口スリット、又は好ましくは金属製の専用検出素子、例えば検出リングもしくは検出管によって構成されてもよい。元のイオンビーム20は、プレフィルタ18を通過してプレフィルタリングされたイオンビーム21になり、プレフィルタリングされたイオンビーム21は、質量分析器12を通過して、限られた範囲の質量対電荷値を有するイオンからなるフィルタリングされたイオンビーム22になる。このフィルタリングされたイオンビーム22は、第1の検出ユニット13により検出される。
【0050】
質量プレフィルタ18は、四重極フィルタ、ウィーンフィルタ、衝突反応セル、イオン光学素子、又は任意の他の好適なフィルタを含み得る。特に、ICP-MS(誘導結合プラズマ質量分析)の場合のようにプラズマイオン源が使用される場合、プレフィルタ18は、アルゴンイオン等のマトリックス(例えばプラズマガス)イオンをイオンビームから除去する役割を果たし得る。有利には、これによって、第2の検出器により検出され、総イオンビーム強度の尺度として使用されるイオンビームが、例えばプラズマガスからではなく、大部分又は実質的に試料からのイオンを含むことが可能になる。
【0051】
図2の質量分析計10の他のユニットは、
図1の質量分析計のものと同様であってもよい。
【0052】
本発明を、
図3A~
図3B及び
図4A~
図4Cを参照してさらに説明する。上記のように、各検出器が特定のイオンの種類又は限られたイオンの種類の範囲を検出するように配置された複数の並列検出器を使用して、実質的に同時に複数の異なるイオンの種類を検出することが有利となり得る。このいわゆるマルチコレクター手法では、イオンビーム強度の任意の変動はすべての検出器で実質的に同時に現れるため、相対イオン数を計算する際に無効化される。しかしながら、物理的な制限により、マルチコレクター手法では、限られた(約20%)範囲の質量対電荷比しか使用できない。これは、例えば約370%の質量対電荷比が必要なアルゴン及びキセノンの相対存在量の決定には、明らかに不十分である。
【0053】
図3Aは、時間tの関数として、単一の検出器によって検出された個々のイオン種(又は制限された質量対電荷範囲)の検出強度Iを概略的に示す。検出は、後続の期間T1、T2等で行われる。期間T1、T3及びT5では、第1のイオン種の(第1の)強度I1が検出され、期間T2、T4及びT6では、第2のイオン種の(第2の)強度I2が検出される。イオンビームの変動により、検出される強度は一定ではない。
【0054】
図3A~
図3Bは従来技術に従って処理されたイオン強度を示しているが、
図4A~
図4Cは本発明に従って処理されたイオン強度を示している。
【0055】
計算されたイオン比を、
図3Bに概略的に示す。これらの比は、例えば、第1の期間T1中の第1の強度I1の平均値を第2の期間T2中の第2の強度I2の平均値で除算することにより計算され得、その結果、
図4Bにおいて時間t=(T1+T2)/2で示される結合された期間T1+T2のイオン比が得られる。期間中の強度の平均値の代わりに、中央値、又はそれぞれの期間の中間の強度値を使用することができる。同様に、結合された期間T3+T4、T5+T6等のイオン比を決定することができる。さらに、結合された期間T2+T3、T4+T5等の中間イオン比も同様の様式で決定され得る。
図3Bの例に見られるように、これらの計算された比は経時的に変化するため、比の信頼性が低下する。
【0056】
本発明は、総イオンビームの強度を検出し、この検出された総強度を使用して個々のイオン強度及びイオン比を決定することにより、この問題に対する解決策を提供する。これは、
図4A~
図4Cに概略的に示される。
【0057】
図4Aでは、
図3Aと同様に、期間T1、T2等における第1のイオン強度I1及び第2のイオン強度I2が示されている。
図3Aのように、強度I1、I2等は時間の関数であり、したがってI1(t)、I2(t)等と記述することができることに留意されたい。本発明によれば、
図4Aもまた総イオン強度ITを示し、これは、第2の検出信号(
図1及び
図2の2)で表すことができる。総イオン強度ITも時間の関数であるため、IT(t)と記述することができる。
【0058】
図4Aの例では、質量分析器(
図1及び
図2の12)に入る前のイオンビーム(
図1及び
図2の20)の強度に対応する総イオン強度ITは、経時的に一定ではなく、変動する。その結果、第1の検出信号(
図1及び
図2の1)によって表され得る第1及び第2の検出イオン強度I1及びI2は、経時的に変化する。しかしながら、本発明によれば、検出されたイオン強度の変動は補償される。これは、総イオンビーム強度を表す第2の検出信号を使用して、検出されたイオン強度を表す第1の検出信号を正規化することにより達成され得る。特に、第1の検出信号の正規化は、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算することにより行うことができる。
【0059】
この例では、対応する期間は同じ期間であり、期間T1における第1の検出イオン強度I1は、期間T1における総イオン強度ITで除算される。同様に、期間T2における第2の検出イオン強度I2は、期間T2における総イオン強度ITで除算される。前述のように、第1及び第2のイオン強度I1及びI2、ならびに総イオン強度ITは、対応する期間中のそれぞれの強度を平均し、期間の中間(つまり、T1の場合、t=T1/2)の値を決定することにより、又は別の様式で期間中の平均を計算することによって決定され得る。結果を
図4Bに示す。
【0060】
図4Bは、正規化された第1の強度I1/IT及び正規化された第2の強度I2/ITのそれぞれを示す。各期間T1、T2等に対して、それぞれ正規化された強度I1/IT又はI2/ITが決定されている。より具体的には、例えば、第1の期間T1に対して正規化された強度I1(T1)/IT(T1)が決定され、第2の期間T2に対してさらなる正規化された強度I2(T2)/IT(T2)が決定され、第3の期間T3に対してさらなる正規化された強度I1(T3)/IT(T3)が決定される。次いで、隣接する期間の各対に対してこれらの正規化された強度の比を決定し、それらの期間の対のそれぞれに対して正規化された比I1’/I2’が得られるが、I1’=I1/IT及びI2’=I2/ITである。より具体的には、期間の第1の対、T1及びT2に対する正規化された比は、I1’(T1)/I2’(T2)である。同様に、期間の第2の対、T2及びT3に対する正規化された比は、I2’(T2)/I1’(T3)である。したがって、隣接する期間の各組に対して、共通の正規化された比が決定され得る。
【0061】
図4Cでは、この正規化された比I1’/I2’は、境界での隣接する期間の各組に対して表されている。図からわかるように、この比はすべての期間T1、T2等にわたって実質的に一定である。したがって、
図4Aにおいて信号ITで表されるように、比に対する総イオンビーム強度の変動の影響が排除されている。
【0062】
図4A~
図4Cを参照して上述した例では、イオンは連続的に検出されることに留意されたい。すなわち、期間T1、T2、T3・・・等は連続した期間である。連続した期間は、全測定時間を最小化するため有利であるが、必須ではない。いくつかの実施形態において、ある期間中に検出を行うことができない。加えて、
図4A~
図4Cに示されるように、期間は等しい持続時間を有してもよく、又は異なる持続時間を有してもよい。期間の持続時間は、例えば、10nsもしくは1000ms、又はその間の任意の好適な値であってもよい。
【0063】
上記の例では、2つの異なるイオン強度I1及びI2のみが決定される。本発明はまた、3つ以上の異なるイオンの種類又はイオン範囲(すなわち質量対電荷比範囲)にも適用され得ることが理解されるであろう。したがって、本発明は、3、4、5、6又はそれ以上の異なるイオン強度I1、I2、I3等が決定される場合にも適用することができる。
【0064】
本発明による方法の例示的実施形態を、
図5に概略的に示す。方法5は、開始ステップ50とともに開始する。ステップ51では、イオン源からイオンビームが受容される。ステップ52では、異なる範囲の質量対電荷比を有するイオンが、2つ以上の期間で、受容したイオンビームから選択される。ステップ53では、選択された範囲内のイオンが当該期間のそれぞれで検出され、それぞれの質量対電荷比を有する検出されたイオンの量を表す第1の検出信号が生成される。ステップ54において、時間の関数としてイオン源から受容したイオンビームの総強度を表す第2の検出信号が生成され、これは総イオンビーム強度を測定することにより行われてもよい。図から分かるように、ステップ54は、ステップ52及び53と並行して実行されてもよい。
【0065】
ステップ55では、第1の検出信号が、第2の検出信号を使用することにより正規化される。ステップ56では、正規化された第1の検出信号が出力される。方法はステップ57で終了するが、方法5は、それ自体繰り返す連続プロセスとして見ることができる。
【0066】
55において、第1の検出信号を正規化することは、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算することを含み得る。55において、第1の検出信号を正規化することは、第1の期間に対応する正規化された第1の信号を、別のイオン強度に対応する第2の異なる期間に対応する正規化された第1の信号で除算して、正規化強度比を得ることをさらに含んでもよい。したがって、ステップ55は、それぞれの第1の検出信号を対応する期間の第2の検出信号で除算し、第1の期間に対応する正規化された第1の信号を、別のイオン強度に対応する第2の異なる期間に対応する正規化された第1の信号で除算するサブステップを含んでもよい。
【0067】
本発明の方法は、52において、連続する期間にイオンを連続的に選択することをさらに含んでもよい。しかしながら、いくつかの実施形態において、イオンの選択は、連続した期間に行われなくてもよい。
【0068】
本発明は、イオン強度の逐次的検出を使用する。しかしながら、これは、第1の検出ユニットにおいて複数の検出器を使用することを除外しない。したがって、第1の検出ユニット(
図1及び2の13)は、2つ、3つ、又はそれ以上の検出器を含むことができ、例えばそれぞれが特定のイオン又はイオンの範囲を検出するように設計され得る。それらの検出器の少なくとも1つが逐次的に使用され、したがって本発明の利点を得ることができる。いくつかの実施形態において、例えば、2つ以上の検出器が交互に使用されてもよいが、これは依然として検出器の逐次的使用を構成する。
【0069】
本発明は、示された実施形態に限定されず、添付の特許請求の範囲において定義される本発明の範囲から逸脱することなく、多くの修正及び追加が可能であることが当業者に理解される。