IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ヘドリック ジェフリー エス エムの特許一覧

特許7053772航空機のオートスロットル又は自動操縦装置用精密オペレーター
<>
  • 特許-航空機のオートスロットル又は自動操縦装置用精密オペレーター 図1
  • 特許-航空機のオートスロットル又は自動操縦装置用精密オペレーター 図2
  • 特許-航空機のオートスロットル又は自動操縦装置用精密オペレーター 図3
  • 特許-航空機のオートスロットル又は自動操縦装置用精密オペレーター 図4
  • 特許-航空機のオートスロットル又は自動操縦装置用精密オペレーター 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】航空機のオートスロットル又は自動操縦装置用精密オペレーター
(51)【国際特許分類】
   B64D 31/06 20060101AFI20220405BHJP
   B64C 13/50 20060101ALI20220405BHJP
   F16H 19/02 20060101ALI20220405BHJP
   F16H 35/10 20060101ALI20220405BHJP
【FI】
B64D31/06
B64C13/50
F16H19/02 P
F16H35/10 H
【請求項の数】 12
【外国語出願】
(21)【出願番号】P 2020198671
(22)【出願日】2020-11-30
(62)【分割の表示】P 2017551069の分割
【原出願日】2016-08-01
(65)【公開番号】P2021046198
(43)【公開日】2021-03-25
【審査請求日】2020-12-24
(31)【優先権主張番号】62/250,819
(32)【優先日】2015-11-04
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/336,200
(32)【優先日】2016-05-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】318013190
【氏名又は名称】ヘドリック ジェフリー エス エム
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(72)【発明者】
【氏名】ヘドリック ジェフリー エス エム
【審査官】姫島 卓弥
(56)【参考文献】
【文献】米国特許第05188316(US,A)
【文献】米国特許出願公開第2012/0018578(US,A1)
【文献】米国特許第08195346(US,B1)
(58)【調査した分野】(Int.Cl.,DB名)
B64D 31/06
B64C 13/50
F16H 19/02
F16H 35/10
(57)【特許請求の範囲】
【請求項1】
回転運動をモータから延びる細長いシャフトに伝えるように構成され、かつ支持体に装着されるモータと、
前記シャフトとスロットルレバーの取付端とに作動的に連結されるアクチュエータアセンブリであって、前記スロットルレバーは手動力の付与のために、取付端とその反対側に制御端とを備え、前記モータから与えられた前記シャフトの回転に応じて前記アクチュエータアセンブリが前記シャフトの表面に沿って長手方向に作動的に移動するように、長手方向に延びる前記シャフトの表面にスラスト力を加えるように配置された複数の軸受を備えるアクチュエータアセンブリと、
前記スロットルレバーにおいて手動で前記アクチュエータアセンブリに加えられる直線力が前記スラスト力を超えたときに、前記モータによって同時に与えられるシャフトの回転に関係なく前記アクチュエータアセンブリが前記シャフトに沿って長手方向に滑ることを可能にするように、滑らかに連続し且つ長手方向に途切れていないシャフトの表面と、
電子コントローラによって監視される少なくとも一部のエンジン作動パラメータに基づいて前記モータが前記シャフトに沿って前記アクチュエータアセンブリを移動させるために、前記モータを制御して前記スロットルレバーを移動させるように構成された前記電子コントローラと、
を有する、航空機のオートスロットルシステム。
【請求項2】
前記モータと前記アクチュエータアセンブリの可動部分との間に作動的に接続され、前記電子コントローラによって監視される位置センサを更に備えている、請求項1のオートスロットルシステム。
【請求項3】
前記電子コントローラが前記スロットルレバーを振動させるように構成され、それによって定められた条件下でユーザへ触覚のフィードバックを提供する、請求項1のオートスロットルシステム。
【請求項4】
実際のエンジン性能が所望のエンジン性能と異なるような状態が存在する場合、オートスロットルは、エンジンの出力の異なる領域に亘ってエンジンの最適な性能を得るために、スロットルレバーを作動的に前進又は後退させる、請求項1のオートスロットルシステム。
【請求項5】
前記電子コントローラは、風速、対地速度、外気温のうちの1つ以上を監視してウィンドシアの状態を判断するように構成されている、請求項4のオートスロットルシステム。
【請求項6】
前記電子コントローラは、前記ウィンドシアの状態が検出されたときに、自動的な推力低下を防ぐために、前記オートスロットルを切り離すように構成されている、請求項5のオートスロットルシステム。
【請求項7】
前記電子コントローラは、複数のエンジンパラメータを監視してエンジンの損失を検出し、ラダー上の気流の減少によるラダー支配の損失量を計算するように構成されている、請求項1のオートスロットルシステム。
【請求項8】
前記電子コントローラは、最大推力×(IAS/(Vmca+3))2(IASは指示風速、Vmcaは失われたエンジンで制御可能な最小風速である)の関係によって、残留エンジンからの推力の必要な減少量を変化させることによってヨーを調整するように構成されている、請求項1のオートスロットルシステム。
【請求項9】
前記モータは、二方向ステッピングモータである、請求項1のオートスロットルシステム。
【請求項10】
前記監視されたエンジンパラメータは、温度、速度、圧力比、トルク、馬力のうちの少なくとも1つからなり、前記電子コントローラが、前記少なくとも1つの監視されたエンジンパラメータが定められた最大値を超えないように前記モータを制御するように構成されている、請求項1のオートスロットルシステム。
【請求項11】
前記電子コントローラは、対気速度及び迎角の少なくとも1つからなる航空機のパラメータを監視するように構成され、前記監視された航空機のパラメータが限界値を超えないように前記モータを制御するように構成されている、請求項1のオートスロットルシステム。
【請求項12】
前記システムは、作動されるとき、少なくとも一部が、航空機の総重量に基づいて前記電子コントローラによって計算された乱流侵入速度を達成するようにエンジンパワーを自動的に調整する乱流侵入モードを提供するように構成されている、請求項1のオートスロットルシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2015年11月4日に出願された「航空機のオートスロットル又は自動操縦装置用精密オペレーター」と題する米国仮特許出願第62/250,819号、及び2016年5月13日に出願された「航空機のオートスロットル又は自動操縦装置用精密オペレーター」と題する米国仮特許出願第62/336,200号の優先権を主張し、これらの両方は、その全体が参照により本明細書に組み込まれる。
【0002】
(技術分野)
開示した実施形態は、航空機の自動操縦システムに関する。特に、開示した実施形態は、航空機自動操縦システムの精密オペレーターに、そしてもっとはっきり言えば、航空機スロットル制御装置及び又は航空機操縦翼面の自動機械的調整の選択的制御を、航空機パイロット、さもなければ、他のオペレーターの命令で必要と思われるときに、自動オペレーターの迅速な手動オーバーライドを適応させながら、行なうことができる装置に関する。
【背景技術】
【0003】
航空機操縦室は、益々精巧になってきた、そしてパイロットの仕事量を著しく減じ、システムの信頼性及び効率、並びに乗客の安全性を高めた技術及び自動操縦装置に大部分依存する。加えて、例えば、状況及び操作状態の認識を大きく改善するのに寄与するGPS及びグラフ表示器によって与えられる進歩した航空能力に加えて、自動操縦システムの進歩は、航空機の操縦と、このような能力を備えたそれらの航空機の円滑かつ効率的な操作との両方を保持する上で、パイロットへの素晴らしい補助を証明した。
【0004】
自動操縦システムは、能力範囲の最低側で、翼の簡単な水平化から、もっと進んだシステムでは、選択された進路を保持しかつ追跡する航空機方向及びコース制御、高度の保持及び調整制御並びに、航空機速度の所望な変更を保持しかつ行なう航空機スロットルの調整にわたる機能を提供する。
【0005】
航空機スロットルの自動制御は、特に、過去には、このような能力を、大型商業定期航空路線乗客ジェット、改良型地方及び汎用航空ジェット、及び高級タービンプロペラ飛行機のような最も大型の又は少なくとも、最も技術的に複雑で進歩した航空機だけに限定した特別の問題を提示する。この様なオートスロットルは、航空機の真に手を触れない自動操縦を実現する能力を提供し、かくして、航空機の操作効率を増大させ、例えば燃料消費のコストを減じ、パイロットの仕事量を非常に減少させ、それによって、飛行の安全性を著しく増大させる。しかし、航空機にオートスロットル能力を与えることは、現在使用中の技術では、この機能性を殆どの場合、オートスロットルを含みこれを機能的に利用するように設計されかつ構成されなければならない、最も大型の及び又は最も技術的に進んだ航空機のみに制限する物理的、空間的及び機械的な収容設備を必要とする。
【0006】
殆どの航空機では、エンジンが航空機を所望速度で推進させる所定量のパワー又は推力を発生させるように選択的に調整できるスロットルは、航空機操縦室又はフライトデッキ内のスロットル象限儀の一定円弧の間で回転できるように枢着されたレバーの1つ又はそれ以上の握り可能なハンドルのパイロット操縦手動オーバーライド移動によって調整される。それらのレバーは、典型的には、スロットルレバーの位置が回動に調節されるとき長手方向に移動される制御ケーブルによってエンジン又はエンジンコントローラーに連結される。
【0007】
殆どどんな航空機でも、レバーの回動位置を変え又は調整するために、パイロットによって手動であろうと、オートスロットルシステムの作動モータによろうと、スロットルレバーに不十分でない力を加えなければならない。したがって、システムのモータは、(スロットルレバーに加えられる十分なトルク及び操作力を提供するために)寸法と重量の両方がかなり大きくなければならず、(何万回の作動及び操作を通じて継続した信頼性を保証するために)構造がかなりしっかりしていなければならない。その結果、それらのモータ及び関連した要素を操縦室のスロットル象限儀のそばに収容するのに十分な、そしてそれらのシステム及びそれらの構成部品と関連した追加の重量を受け入れることのできる隙間及び空間をもつように特に設計かつ構成された航空機は、このようなオートスロットルをそれらの操縦装置に組み込むことができる。その上、オートスロットルシステムの関連した作動構成部品を収容するように既に、特に設計かつ構成されていなかった既存の航空機を改装してそれにオートスロットル能力を加える能力は実際にはない。
【0008】
加えて、非常時又はパイロットがスロットルの即座の物理的制御を適当と思う状況におけるように、パイロットがスロットルの即座の物理的制御を引き受けることを突然要求する場合に、操縦又はオートパイロットシステムをまず手動で作動させない必要なしに、パイロットが、作動したオートスロットルシステムを急速かつ容易にオーバーライドすることができ、さもなければ、作動したオートスロットルシステムからスロットルの手動制御を引き受けることができることが、パイロットによる継続制御の下に航空機の安全操作を保証するために、重要である。
【発明の概要】
【0009】
開示した実施形態は、自動操縦装置/オートスロットルの能力を加えるための又は提供するための特別の収容部が航空機に設計されておらず又は航空機に設けられていない航空機でも、コンパクトで、軽量であり、信頼でき、かつ航空機に容易に設置でき、かつ自動操縦装置・オートスロットルシステムの制御下のとき、スロットルの手動制御を迅速に引き受けたいパイロットによって安全かつ容易に自動制御をオーバーライドすることができる自動操縦/オートスロットルオペレーター装置に向けられている。開示した実施形態は、航空機の操縦翼面の移動を制御する航空機の自動操縦システムの一部として又はそれと関連して、同じ有利な機能性を持って、適用することができ、操縦翼面の可変位置が、例えば、航空機の縦揺れ、横揺れ、偏揺れを制御するように調整可能である、かかるオペレーター装置を提供する。
【0010】
開示した実施形態は、現在広く使用中のものに比して多数の顕著な利点を示す航空機自動操縦/オートスロットルオペレーターを提供する。第1に、発明の装置は、特に、現在の自動操縦・オートスロットル作動装置及び構成部品と比較して、比較的軽量である。第2に、発明の装置は、現在の自動操縦/オートスロットル操作装置と比較して、著しく簡単化され、物理的な操作信頼性の顕著な増大をもたらすことができる。第3に、発明の装置は、現在の自動操縦/オートスロットル操作装置よりも著しくよりコンパクトであり、したがって、広く変化するサイズの広範囲の航空機に設置可能である。第4に、発明の装置は、スロットルハンドル枢着部から離れた位置から作動される直線オペレーターの使用に基づかれ、かくして、比較的コンパクトなスロットル象限儀を有し、又はそうではなく、スロットルハンドルの枢着点に又はその近くに装着される在来の自動操縦装置/オートスロットル及びその過酷な使用に耐えるモータ及びクラッチを収容するように特別に設計されていない航空機において、初期建造時にも、付加物又は既存の構造の改装としても、直線オペレーターの設置を可能にする。第5に、発明の装置に利用されるアクは、別体の又は一体のクラッチ又はクラッチ構成部品を要求せず、その代わり、固有のオーバーライド能力を提供し、作動するモータとモータのスロットルハンドルとの取付部との間に一連のギアをも必要としない、それによって、複雑さ、重量及び物理的な空間要求を大きく減じ、そして作動信頼性を増す。
【0011】
1つの側面では、開示した実施形態は、モータを含み、モータが、回転運動をモータから延びるシャフトに伝えるように構成され、かつ支持体に装着される、自動操縦システムを提供する。アクチュエータアセンブリがシャフトに及びスロットルレバーの取付端に作動的に連結され、スロットルレバーは、手の力の付与のための制御端を、取付端と反対側に有する。位置センサが、モータとアクチュエータアセンブリの移動する部分の間に作動的に連結される。システムは、モータがアクチュエータアセンブリを、スロットルレバーのレバー位置への移動を引き起こすために、少なくとも一部が、位置センサから受けた位置情報に基づいてアクチュエータ位置に移動させるようにモータを制御するように構成された電子コントローラを更に含む。アクチュエータアセンブリは、軸受けアセンブリを含み、該軸受けアセンブリは、シャフトの回転運動をシャフトに沿う軸受けアセンブリの直線運動に変換するための、シャフトの表面に接触するように構成された複数の軸受けを有する。アクチュエータアセンブリは、シャトルアームを更に含み、シャトルアームは、第1端に、軸受けアセンブリに取り付けるように構成された取付面を有し、シャトルアームの第2の端に、レバーの取付端に作動的に連結された少なくとも1つのリンクアームを有する。
【0012】
開示した実施形態は、次ぎの特徴の1つ又はそれ以上を含むのがよい。アクチュエータアセンブリは、スロットルレバーの制御端の手動移動が軸受けアセンブリに対してシャフトの遠位端にスラスト力を付与するように構成され、スラスト力が閾値を超えるとき、軸受けアセンブリは、モータによってシャフトに同時に伝達される回転に関係なくシャフトに沿って滑るように構成される。
【0013】
軸受けアセンブリは、その貫通穴にシャフトを受け入れるように構成され、そして少なくとも1組の軸受けを含み、軸受けの各々は、シャフトが軸受けアセンブリの中を移動するとき、シャフトの表面の螺旋パターンを追跡するようにシャフトの長手方向軸線に対して所定角度で、シャフトの表面に接触するように軸受けアセンブリで支持される。
【0014】
シャトルアームの第2端での少なくとも1つのリンクアームは、スロットルレバーの取付端に回転自在に連結され、少なくとも1つのリンクアームは、軸受けアセンブリがシャフトに沿って移動するとき、シャフトの遠位端の自由な移動を可能にするためにシャフトと平行に配置される。
【0015】
システムは、2つのエンジンを有する航空機に設置され、各エンジンのスロットルレバーは、別々に制御される。エンジンの喪失の場合、残っているエンジンのパワー設定は、失速速度以上にとどまるように制御され、そしてエンジンパワー閾値を超えないように更に制御される。エンジンパワー閾値は、少なくとも一部が、航空機の好ましくない回転を防止する航空機のラダーの作用で補償することができる最大パワー不均衡に基づかれる。 上記の及び又は他の側面及び利点は、添付図面に関してなされる、開示した実施形態の以下の詳細な説明からもっと明らかになるであろう、そしてもっと容易に認識されることになる。
【図面の簡単な説明】
【0016】
図1】開示した発明の実施形態にしたがって構成された航空機のオートスロットルオペレーターの立面斜視図である。
図2図1に示すオートスロットルオペレーターの実施形態の側面図である。
図3】ハウジングカバーを取り除いた航空機オートスロットルオペレーターの第2の実施形態の斜視図である。
図4図3に示すオートスロットルの実施形態の軸受けアセンブリ及びシャフトの拡大図である。
図5図3に示すオートスロットルオペレーターの実施形態の側面図である。
【0017】
[詳細な説明]
図1及び2は、航空機の精密オートスロットルオペレーターの実施形態の2つの図を示す。一般的な参照番号10によって図面の図に特定されたオートスロットルオペレーターシステム又は装置は、使用のために、航空機の在来のスロットルハンドル又はレバー12に取り付けられている。構成及び構造が在来のものであるスロットルレバー12は、シャフト又は他のピボット若しくは支点14を中心に回転運動可能に装着され、レバー12は、航空機のスロットル象限儀(図示せず)でしかるべき所に固着される。スロットルレバー12の遠位端16は、関連した航空機エンジンのパワー出力、それによる対気速度又は航空機の速度を手動制御するパイロットによってレバー12を、その円弧の移動範囲にわたって前進及び後退させるように、握り易く、操作し易く、構成される。スロットルレバー12の反対側の近位端18は、取付ピン又はシャフト若しくは点20でケーブル22の一端に連結し、ケーブル自体は、一般的に、その遠い方の端が、レバー12と関連したエンジン又はエンジンコントローラーに連結する。かくして、操縦操作、すなわち、ピボット点14を中心とするレバー遠位端16の反時計回り(図において)の前進又は時計回りの後退は、取付点20の反対向きの運動を引き起こし、かくして、ケーブル22の直線移動を行なわせ、関連したエンジンのパワー出力の変化を行なわせる。その代わりに、ケーブル22の運動伝達機能が、他の要素又はシステムによってなされる航空機の手段は当該技術で知られているが、航空機エンジンによって発生されるパワー又は推力の変化は、少なくとも、一般的には、対応するスロットルレバーの近位延長部の感知した移動にしたがって制御される。
【0018】
図1及び2に示す実施形態のオートスロットルオペレーターは、アクチュエータアセンブリ24、モータ26、及び位置センサ28によって形成される。特別な手段では、アクチュエータアセンブリ24は、軸受けアセンブリ30(また、ここでは、シャトル本体30と称する)、細長いシャフト32及び直線フォーク34で形成された装置を含む。
【0019】
軸受けアセンブリ30とシャフト32の組み合わせは、回転運動を直線移動に変換するように機能する。図に示す実施形態では、この機能性は、ローリックス リニア アクチュエータとして、ポリマウス、ミネソタの製造業、ゼロ-マックス社によって特定された市販のアセンブリを使用して実行される。3個一組で6個の転がり要素軸受け36がブロック38に形成された貫通穴40を中心とする所定角度で、ベースブロック38で支持されており、シャフト32は、それにそってブロック38の長手方向に移動可能に延びる、(ブロック38及びシャフト32のもっと詳細図は図4で知ることができ、これは第2の実施形態と関連して以下に述べる)。軸受け36の各々は、シャフトが回転されるとき、軸受け36がシャフトに沿って螺旋パターンを追跡し、それによってブロック38をシャフトに沿って長手方向に移動させるように、ある角度でシャフト32の表面に接触する。他の方法にすれば、シャフト32が、モータ26の選択的操作によって回転されるとき、軸受け36は、想像上のねじ山を追跡し、ブロック38を、シャフト32上をそれに沿って長手方向に移動させる。ベースブロック38は、2つの半部として構成され、これら半部は、ばね42と関連したねじ44の組み合わせによって結合され、ねじ44は、軸受け36がシャフト32に加えるスラスト力、これに対応して、スラスト力に打ち勝って、軸受け36をシャフトの表面に沿って長手方向に滑らせるために、ブロック38に手で加えられなければならない直線力の量を選択的に設定するように調整される。かくして、ねじ44の所定の調整によって設定され又は与えられたスラスト力が限度を超えるとき、ブロック38は、例えばモータ26によってシャフト32に同時に伝達される回転に関係なく、シャフト32上をそれに沿って滑る。
【0020】
図1及び2を続けて参照すると、モータ26の作動回転シャフトは、ブロック38から離れたシャフト32の端に結合される。モータ26は、例えば、概略的に示すコントローラ48から、約1.8度離隔した200の連続相対位置を通してパルス又は他の電気信号の入力に応答してステップする精密なステッピングモータである。モータ26は、コントローラ48からの操作信号に基づいて、双方向に、すなわち選択的に、時計方向及び又は半時計方向の両方/いずれかに、増分的に(すなわち徐々に)回転するように作動する。必要ならば、又は望むならば、特別な実行及び又は航空機に適すると思われるシャフト32の回転速度を得る必要があれば又は望むならば、モータシャフトとシャフト32の間に、1つ又はそれ以上のギアが任意に設けられる。モータ26は、シャフト32及び又はモータシャフトの妨害のない通過を可能にする開口47を有するモータブラケット46に装着される。ブラケット46は、それ自体、モータがシャフト32を作動的に回転させるときモータ26を移動しないように固定する、航空機の操縦室内の固定構造物に固着可能である。
【0021】
コントローラ48は、例示として、モータ26の操作に、また発明のオートスロットルシステムの関連した要素及び機能性に専用のプロセッサー及び記憶装置を有する電子制御器を含む。その機能性は、自動操縦システムの、又はフライト管理システムの、若しくは航空機の他のアビオニックス及び又は自動化システムの、制御システム又は要素の一部に又は一部として組み込まれる。
【0022】
直線フォーク34は、シャトルブロック38をシャトルレバー取付点20に連結し、単一要素(第2実施形態に関して以下に説明するように)として実行されるフォーク34は、図示した実施形態では、ブロック38が固着されるシェル又はトレー50と、一端がスロットルレバーの取付点20に回転可能に連結される一対の向かい合ったリンクアーム52と、トレー50をアーム52に接合するウエブ54とを含む。モータ26との連結と反対側であるシャフト32の自由端部56は、シャトルブロック38がシャフト32に沿って作動的に移動され又は「シャトルする」とき、シャフトの端56を収容するように、ウエブ54に構成された穴、通路、及び空所などの中をそれらに対して自由に移動できる。
【0023】
シャフト32の長さに沿うシャトルブロック又は本体38の現在の相対移動又は位置は、例示として、位置的に固定したモータ26と移動可能なシャトル本体38との間の距離又は間隔の変化を監視することによって決定される。この機能性を提供するために、図示した実施形態では、位置センサ28は、カリフォルニア州、チャトスワース社セレスコ トランスデューサ プロダクツによって製造されたMLP小型リニア電位差計のようなリニア電位差計58によって実行される。このリニア電位差計は、モータブラケット46(モータが固着される)とトレー50(シャトル本体が装着される)との間に位置センサとして連結される。電位差計センサ58は、コントローラ48に電気的に接続され、それによってコントローラは、シャフト32上のそしてそれに沿うシャトル本体38の直線位置(かくして、それに対応し、スロットルレバーの近位端での取付点20の)変化を監視する。スロットル位置は、システムが航空機に設置されるとき、電位差計センサ58を使用して正確にマップされそして記録される。直線アクチュエータがステッピングモータで制御されるので、個々のステップのスロットル位置のマップは、スロットルレバーの支障により、命令されない移動又は移動の滑りを検出するための手段として決定されかつ使用される。特別な実施形態では、このような決定は、ついには、オートスロットルを作動しないシステムにすることがある。
【0024】
図3-5は航空機のオートスロットルオペレーターの第2の実施形態を示す。この実施形態では、シャトルブロック38は、上述したように、二又フォーク34ではなく、単一要素として実行されるシャトルアーム34によってスロットルレバー取付点20に連結される(コントローラ48は、これらの図には示されていない)。シャトルアーム34’は、その一端に、ブロック38が固着されるシェル又はトレー50’を有する。トレー50’は、軸受けアセンブリ30の取付面が垂直平面に向けられるように向けられ、これに対して、第1の実施形態では、取付面は、水平平面に向けられる。モータ26は、航空機の内部構造に取り付けることができるブラケット41の枢着ジョイントで適所に保持される。ブロック38及びシャフト32の詳細図は図4で知ることができる。図3では、ブロック38を収容するハウジング39のカバーは、ブロック38を図で知ることができるように示されていない。図5は、カバーが適所に置かれたハウジング39を示す。シャトルアーム34’の遠位端には、リンクアーム52’があり、該リンクアームは、スロットルレバーの取付点20に回転可能に連結される。モータ26との連結部と反対側であるシャフト32の遠位、すなわち自由端部56は、リンクアーム52’と平行であり、したがって、シャトルブロック38がシャフト32に沿って作動的に移動され又はシャフトに沿って「シャトルする」とき、自由に移動することができる。
【0025】
(例えば、自動操縦システムの制御のもとに)自動操作モードで航空機のスロットルを選択的に制御する、発明のオートスロットルオペレーター10の基本的な操作方法を今説明する。コントローラ48からの電気信号に応答して、ステッピングモータ26は、これに連結されたシャフト32を(エンジン推力をそれぞれ増大させ又は減少させる)、所望方向に選択的に回転させるように操作される。シャフト32が回転するとき、シャトル本体38は、軸受け36が、回転するシャフト32の表面に沿って螺旋路を追跡するので、シャフトにそって及びシャフトに対して直線的に移動される。シャットル本体38のこの直線移動は、リンクフォーク34を介して取付点20でスロットルレバー12に伝達され、あたかもスロットルレバー12が遠位端16を握るパイロットによって支点14を中心に手動で移動されたように、スロットルレバー12をその支点14を中心に回動させる。その結果、スロットルレバー12の近位端18での取付点20の移動は、同様に、エンジンコントロールケーブル22の直線移動を引き起し、かくして、エンジンは、そのスロットルレバーと関連した航空機エンジンのパワー出力又は推力を変化させる。かくして、シャトル本体38がシャフト32に沿ってモータ26に向かって移動されるとき、スロットルレバー12は反時計回りに回転され(図において)、エンジン出力を減じ、シャトル本体38がモータ26から離れる方向にシャフト32に沿って移動されるとき、再び、あたかも、スロットルレバー12が遠位端16でスロットルレバーを握るパイロットによって手動で調節されたように、スロットルレバー12は、時計回りに回転されてエンジンパワーを増大させる。
【0026】
モータ26に対するシャトル本体38の直線位置の、それに対応してスロットルレバー12の回転位置の変化は、シャトル本体の現在位置であるように、電位差計位置センサ58の出力を監視することによってコントローラ48によって決定される。しかしながら、それは、例えば所定の対気速度を得る及び又は保持するためにエンジン出力パワーを変えるオートスロットルの機能であるから、エンジンパワーを増大又は減少させるモータ26のコントローラ操作、シャトルブロック38とモータ26の絶対位置又は相対間隔に全く依存しないが、むしろエンジンパワーの増減(かくしてモータ26の操作)が所望な対気速度を提供する必要があるかどうかに依存し、したがって、位置センサの出力の監視は、とりわけ、オートスロットルシステムの適切な操作を確認する際に使用するためコントローラ48にフィードバックを提供する。
【0027】
在来の商業的なオートスロットル装置と比較して、本発明のオートスロットルシステム10の重要かつ極めて有利な特徴は、クラッチ及びそれらと関連した装置及び連結の使用なしに、オーバーライド能力を備えることである。システムが作動される時及びシステムがそのままである間でも、スロットルの手動操縦制御のため容易にオーバーライドさせるべき発明のシステム10の能力は、システム10及びその構成の重要かつ固有の特徴である。スロットルレバー12をその遠位端16で物理的に握ってスロットルを前進させ又は後退させるのに十分な力を付与することによって、シャトル本体38を(レバー12の近位端18との連結によって)シャフト32に沿って長手方向に滑らせ又は摺動させ、かくしてコントローラ48が、モータ及びシャフト32の回転を行なわせるために操作的に作動されたままであったとしても、スロットルの手動操縦制御を提供する。勿論、スロットルレバー12の手動操作が開始されるとき、オートスロットルコントローラー48は、通常、モータ26の連続操作から自動的に作動されないが、例えば、オートスロットル機能性を容易にかつ直ちにオーバーライドするシステム又は構成部品の故障の場合に、スロットルの手動制御を容易に引き受ける能力は、航空機のフェイルセーフ操作を補償する上で特に顕著な改良をもたらす。
【0028】
前に記載したように、オートスロットル装置のパイロットによって行なわれる手動オーバーライドは、パイロットが、最小でも、軸受け36がシャフト32の表面に付与するスラスト力を超える力でスロットルレバー12を前進又は後退することを必要とする。そのスラスト力はシャトル本体38の調整ねじ44の選択的な回転によって調整できるから、発明の装置の特定の実行では、スラスト力は、パイロットによる手動オーバーライドが、特定の適用に及び航空機の連続安全操作を保証するために適当と思われるパイロットによる付与力の合理的な大きさを使用して容易に利用できることを保証するように予め設定される。シャフト32の回転に応答してシャフトに沿うシャトル本体38の直線移動を保証するのに十分な大きさに軸受けのスラスト力を設定することは、スロットルの信頼できる自動かオートスロットル制御とスロットルレバーに加えられる合理的なパイロットによる付与力を使用する手動オーバーライド制御との両方を提供するであろう。
【0029】
例えば、発明のオートスロットルアセンブリに使用されるステッピングモータは、例えば、エンジンスロットル制御ケーブル22に(すなわちスロットルレバー12の近位端18に)加える約12ポンドのトルクを、又スロットルレバー12の遠位端16に約4乃至6ポンドの力を生じさせるようにシャフト32を回転させる相当高いトルクを作動的に発生する。これは、システム10の代表的な意図した実行では、航空機のパイロットが、モータ26が作動されそしてシャフト32を作動的に回転させるとしても、及び又は、アセンブリ全体の動きが止められるとしても、スロットルレバーの遠位端16に加えられる少なくとも同じ4乃至6ポンドの力で、単に、押したり引き戻したりすることによってオートスロットルを容易にオーバーライドすることができることを意味する。この力は、作動したオートスロットルなしに、スロットレバーを手動で調整するのに要求される力よりも相当大きくない比較的小さい量である、例えば、約4乃至6ポンド又は4乃至6ポンドを超える力をスロットルレバーに手で加えることによって、シャトル本体38は、シャフトがモータ26によって回転されていようとなかろうとシャフト32上をシャフトに沿って長手方向に滑り、それによって、パイロットは、スロットルの自由かつ無条件の完全手動制御を直ちに得るであろう。かくして、オートスロットル装置は、いつでも、パイロットに、航空機のスロットルの手動制御を容易に引き受ける能力を保証する本質的に安全なシステムをもたらす。航空機の自動操縦システムの要素と組み合わせ又は形成する時、オートスロットル装置10は、オートスロットルコントローラー及び自動操縦-指示操作によって付与される力を迅速且つ容易にオーバーライドする本質的に安全な能力を提供する。
【0030】
発明のオートスロットル装置は、また航空機が、例えば、その現在の作動状態又は操作にはあまりにも高い対気速度で又はあまりにも低い対気速度で作動していると決定される場合にパイロットに警告を出すように実行することができる。周知のように、システム10に包含されると一般的に考えられるモータ26のようなステッピングモータは、(例えば)3つのコイルを有し、該コイルは、普通の使用では、モータがシャフトを一歩一歩回転させるように選択的に作動される。この実施形態にしたがってコントローラ48が対気速度が所定範囲の値の限度に近づいていることを、少なくとも航空機の対気速度を監視することによって決定するとき、すなわち「ステックシェーカー」機能性の性質で、触覚に基づくフードバックをスロットルレバーに付与することができる。
【0031】
かくして、コントローラ48が、航空機の増大する対気速度が所定の安全限界値(例えば、航空機の構造上の最大巡航速度)に近づいていることを決定するならば、或いはその減少する対気速度が所定の最小限界値(航空機の最小コントロール可能な対気速度又は失速速度のような)に近づいていることを決定するならば、モータ26は、スロットルレバーを振動させ又は振るわせ、それによってパイロットに切迫している危険な過速度状態又は不足速度状態を警報するように作動することができる。同様に、エンジントルクを監視することによって、コントローラ48も、エンジンが危険な作動状態、例えば過剰トルクにある又は近づいていることが決定されれば、スロットルハンドル12を通して同様の触覚フィードバックを付与することによってパイロットに警告を出すことができる。
【0032】
この機能性は、例えば、3つのコイルの内の2つだけを作動することによって、又はモータコイルの選択された1つ又はそれ以上に電気信号を急速にサイクルさせることによって、モータの多作動コイルの個々のコイル又は組み合わせに電気信号を選択的に付与することによって実行され、このような触覚警告時に、オートスロットルが、スロットル、それによってエンジンパワーを自動制御するように作動されなければならず又は作動させていなければならない。かくして、このパイロット警告機能性の目的のために、発明のオートスロットルシステム10は、「常時オン」感知及び触覚警報能力を提供する。とにかく、コントローラ48が、スロットルレバー12の位置の手動入力変化が触覚警告に応答して付与されたことを感知するならば、システム10は、シャフト32の適当なモータ駆動回転によって、その結果として、上で説明したようにシャトル本体38の直線移動によって対気速度又は過剰トルク状態を作動的に調整するように構成することができる。
【0033】
したがって、この機能性を実行することによって、システム10は、常に作動されているように、見ることができ、コントローラ48は、限界を超えた状態を修正し又は改善するためにスロットルハンドル12を振らせ又は振動させることによって伝えられる触覚フードバックで及び又はモータ26の作動によってスロットルレバーの自動制御移動の開始で伝えられる警告を正当化し、又は必要とするかもしれない、航空機の関連特性及び作動状態を継続的に監視する。
【0034】
発明のオートスロットル装置の他の有利な特徴は、各々対応するエンジンのパワー出力を制御する例えば2つの(又はそれ以上の)スロットルレバーを有する航空機に実現される。この様な多エンジン航空機では、スロットルレバーの操作による対気速度の手動制御は、2つ(又はそれ以上)のスロットルレバーを同時に前進させることによって(又は後退させることによって)行なわれる。このような多エンジン航空機のスロットルの手動操縦制御で持ち上がる問題は、すなわち各レバーが同じ量だけ前進又は後退されるように、多スロットルレバーが一緒に調整されなければ、エンジンは、異なるレベルのパワー又はトルクを生じさせ、その結果、航空機の推進力は、一方のエンジンが他方のエンジンよりも小さい(又は大きい)推力を生じて、不均衡になる。同様に、航空機の他方のエンジンに関して一方のエンジンの作動特性により、それぞれのスロットルハンドルが対応して位置決め又は調整されるとしても、各エンジンが異なる量の推力又はトルクを発生することになる。
【0035】
発明のオートスロットルシステム10がエンジンの各々について設けられている多エンジン航空機では、2つ(又はそれ以上)のエンジンによって発生される推力又はトルクの不均衡は、コントローラ48によって感知され又は使用されて上記の手順を使用して、パイロットに、スロットルレバーの一方又は両方/全部を触覚的に振らせ又は振動させて不均衡を警告し又は警報することができる。前に記したように、この機能性は、作動的使用では、オートスロットルシステム10スロットルレバーの位置を自動制御し、対応してエンジンの推力又はパワー出力を自動的に変え又は調整することにある。加えて、上記のように、システムは、多エンジンが同期していない又は同じレベルの推力又はトルクを発生していないことの検出により、エンジンの一方又はそれ以上のオートスロットルシステム10が対応するスロットルレバー12を自動的に調整し、それによって多エンジンの関連作動特性を均衡させる。
【0036】
多エンジン航空機における発明のオートスロットル装置の他の有利な適用は、一方のエンジンが故障するとき、さもなければ、意図した又は予期したより小さい推力を発生しているものと決定されるとき例えば2つのエンジンのうちの一方に大き過ぎる推力の適用を警告し又は防止することである。(例示の)2エンジン航空機では、製造業者は、航空機が浮揚するとき、単一のエンジンの最小の制御可能な対気速度として、対気速度、VMCA、すなわち、2つのエンジンのうちの一方だけが作動しているとき、パイロットは、航空機を事実上、横揺れさせ、かつ地上へ急降下させる程度に航空機を偏揺れするのを防止するのに十分なラダー支配を有する最小対気速度を確立しているであろう。かくして、飛行中1つのエンジンの故障又は性能低下は、非対称の推力状態を生じ、この状態は、多エンジン航空機のパイロットが直ちに水平飛行に移り、重要なラダーを適用し、残っているエンジンのパワーを増大させて対気速度をVMCAに、又はそれ以上に保持することを要求する。航空機の対気速度が、1つのエンジンが故障したとき、エンジンパワーが一般的に、フルパワー又は推力の一部に戻されるとき飛行の着陸段階におけるような、VMCA以下である場合、作動中のままでるエンジンへのあまりにも大きいパワーの適用は、推力に危険な非対称及びラダーの適用が安全の回復を可能にしない不利な偏揺れを引き起こす。
【0037】
したがって、発明のオートスロットル装置のこの更なる使用では、コントローラ48は、多エンジン航空機の(少なくとも)現在の対気速度(そして好ましくは加速)をモニターし、単一エンジン操作のために、現在の飛行及び作動状態のもとに、残っているエンジンを信頼すべき又は信頼することができる最大の安全又は許容できる推力を継続的に計算する。他の方法を与えると、コントローラ48は、VMCA以下の現在の対気速度のために、その対気速度が残っているエンジンの許容パワー限度(すなわち、最大の安全及び発生した許される推力)を継続的に計算する。スロットルレバー12の位置にしたがって、その残っているエンジンによって生じさせているパワー又は推力が、エンジンが今の対気速度で生じさせるように許されるべきである計算された最大推力を増してそれに近づいている(又は計算された最大推力に又はそれを超えている)ならば、警報又は警告が(上記したように)エンジンのスロットルレバー12を振動させることによって発明の装置によって発生され、パイロットに切迫した又は現在の過度のスロットル状態を警告する。
【0038】
スロットルレバー12の位置が警告に応答してパイロットによって手動で調整されなければ、発明のオートスロットル装置10のモータ12は、適切な状態のもとに、パイロットの入力なしに、そしてオートスロットルシステム10が航空機のスロットルを作動的に制御していたか否かに関係なく、システム10の制御によりスロットルレバーの位置を調整するように(かくしてスロットを後退させるように)操作され、それによって、作動しているエンジンの過度のスロットル状態を回避し又は終わらせる。
【0039】
この機能性はまた、エンジンに許容できる推力限度に近づくと、(スロットルレバー12を振動させることによって)触覚フィードバックを提供することによって、残っているエンジンの過度のスロットル状態を回避するのに適切なその量だけ、他のエンジンの故障に応答してパイロットが推力を手動で前進するのを助けるように適用することができ、パイロットは、スロットルレバーが振動し始めるまで、スロットルレバーを手動で前進させ始めることができ、航空機の対気速度が増大し始めると、再び、オートスロットルシステム10が、スロットルレバーの振動を再び開始するまでスロットルレバーを手動で前進させ続けることができる。コントローラ48は、対気速度が増大するとき、増大する最大の許容エンジン推力を継続的に計算して決定するから、パイロットは、オートスロットルシステム10によってスロットルレバーに付与される振動又はその不足にしたがって、スロットルレバー12を手動で調整し続けることができる。この方法で、パイロットは、スロットルを手動で調整する上で継続的に案内されるから、エンジンは、常に、現在の対気速度及び他の関係する飛行及びコントローラ48が監視できる環境要因に基づいて最大の安全推力を発生するように作動している。
【0040】
発明のオートスロットルシステムのこの及び他の実行及び適用のために、システムは、それ自体、パイロット作用の必要の緊急性の相関関係としてスロットルレバーの触覚振動の大きさを調整し又は変更し若しくは測定することができる。そのため、例えば、対気速度又は推力などの限界値にまず近づくと、システムは、大きさの比較的小さい振動をスロットルレバーに付与し、限界値に近づき続け、限界値に達し、そして限界値を超えるとき、スロットルレバーに大きさの増す振動をスロットルレバーに付与する。
【0041】
したがって、この機能性を実行することによって、システム10は、コントローラ48が航空機の関連特性及び作動状態を継続的に監視している状態で、常に作動していると見ることができる。及び例えば、このような監視によって、発明の自動操縦システムは、以下に述べるように、同じレベルの推力又はトルクを追加の有利な操作モードを提供するように付加的に構成される。
【0042】
例えば、システム10は、速度保持モードを提供するように構成されてもよい。この速度保持モードでは、システム10は、エンジン推力を調整して選択された対気速度を達成しかつ保持する。
【0043】
システム10はまた、トルク制御モードを提供するように構成されてもよく、トルク制御モードでは、システム10は、エンジン推力を調整して選択されたエンジントルクを達成しかつ保持するように構成される。
【0044】
システム10はまた、温度限界制御モードを提供するように構成されてもよい。このモードでは、エンジン推力は、選択されたエンジンタービンイリグチ温度を達成しかつ保持するように構成されてもよい。
【0045】
システム10はまた、エンジン保護モードを提供するように構成され、このモードでは、システム10は、エンジン推力を調整してエンジントルク、速度及び温度をあらゆる操作モードで予め定めた目標を超えないようにする。特定の実施形態では、オートスロットルは、エンジンを、トルク、シャフト馬力、エンジン及びプロペラ速度、エンジン温度、エンジン圧力比の内の1つ又はそれ以上についての限度を超えないように保護するように構成されてもよい。
【0046】
システム10は、また、速度保護モードを提供するように構成されてもよい。このモードでは、いつでも、自動操縦システムは、航空機をエンジン推力の調整によって過剰速度又は不足速度から保護する。
【0047】
システム10はまた、スロットルの手動操作中、もしも、スロットルがパイロットによってあまりにも急速に移動され、その結果、エンジンパワーサージをもたらすならば、自動操縦機構が、スロットルハンドルを振動させることによってパイロットに警告を出す、モードを提供するように構成されてもよい。
【0048】
システム10はまた、パイロットによって作動されるとき、パワーを自動的に調整して、航空機の総重量及び空力特性に基づいて計算された乱流進入速度を達成する乱流進入モードを提供するように構成されてもよい。
【0049】
システム10はまた、アプローチ速度及び離陸速度を計算してオートスロットルの速度制御モードに入れるモードを提供するように構成されてもよい。着陸進入速度は、典型的には、総重量及び失速限界の関数として計算され、そして例えば、風速及びフラップ形態のような要因をも含む。システム10はまた、例えば、航空機の迎え角センサから迎え角(AOA)を使用することによって最適な揚力対抗力(L/D)を保持する対気速度を計算死活しかつ制御する。
【0050】
システム10はまた、例えば、自動対気速度制御及び迎え角制御のようなスロットルモードを提供するように構成されてもよい。自動モードでは、オートスロットルは、温度が限界になるまで初期離陸及び上昇中トルク限界に制御することによって最適な速度で飛行機を操縦する。温度が限界になる時点では、オートスロットルは、エンジンを最大許容温度に制御する。特定の実施形態では、オートスロットルは、最小対気速度、最大迎え角、通常の乱流状態下での最大対気速度のうちの1つ又はそれ以上のために限界外状態から航空機を保護するように構成されてもよい。
【0051】
システム10はまた、それがFADEC(ファデック、または、フェデック)とは、デジタルコンピュータを用いて、航空機用エンジンの全ての制御を行う制御装置である)のような保護機構を有しないエンジンに設置されるとき、自動操縦は、例えば、温度、速度圧力比、トルク、馬力などの様な重要なエンジンパラメータを監視し、これらのパラメータが最大値を超えないように作用するように構成されてもよい。
【0052】
システム10はまた、2エンジン航空機においてエンジン喪失の場合に、自動操縦が、残っているエンジンのパワー設定を、失速速度以上にとどまるように、そして同時に、失速又はスピンをもたらすかもしれない好ましくない回転の危険な操縦状態を回避する航空機ラダー支配によって補償することができるそのエンジンによって発生されるパワーを超えないように管理する。
【0053】
発明のシステムのここに説明した実施形態及び少しの又は比較的少しの変形はまたエンジンスロットルコントロール以外の航空機の操縦制御システム及び要素の自動制御に適用することができる。例えば、装置10は、スロットルレバーに連結する代わりに、エルロン、トリムタブ、水平スタビライザー及びラダーのような航空機の操縦面要素に連結されて航空機の自動操縦システムの一部として又はかかる制御の下にこれらの操縦面の位置を自動調整することができる。
【0054】
例示の実施形態をこの明細書及び図で示しかつ説明したけれども、図示し及び又は説明した例示の実施形
態に、その原理及び精神から逸脱することなく変更をしてもよいことは、当業者によって理解されるものと考えられる。
〔実施形態1〕
モータを含み、モータが、回転運動をモータから延びるシャフトに伝えるように構成され、かつ支持体に装着され、
アクチュエータアセンブリがシャフトと及びスロットルレバーの取付端とに作動的に連結され、スロットルレバーは、手動力の付与のために、取付端とその反対側に制御端を有し、位置センサが、モータとアクチュエータアセンブリの移動部分の間に作動的に連結され、
モータが、アクチュエータアセンブリを、少なくとも一部が、位置センサから受けた位置情報に基づいて、決定されたアクチュエータアセンブリ位置に移動させてスロットルレバーの移動を引き起こすように、モータを制御するように構成された電子コントローラを更に含み、
アクチュエータアセンブリは、軸受けアセンブリを含み、該軸受けアセンブリは、シャフトの回転運動をシャフトに沿う軸受けアセンブリの直線運動に変換するための、シャフトの表面に接触するように構成された複数の軸受けを有し、
アクチュエータアセンブリは、シャトルアームを更に含み、シャトルアームは、第1の端に、軸受けアセンブリに取り付けるように構成された取付面を有し、シャトルアームの第2の端に、レバーの取付端に作動的に連結された少なくとも1つのリンクアームを有する、航空機のオートスロットルシステム。
〔実施形態2〕
アクチュエータアセンブリは、スロットルレバーの制御端の手動移動がスラスト力を軸受けアセンブリに対してシャフトの遠位端に付与するように構成され、スラスト力が閾値を超えるとき、軸受けアセンブリは、モータによってシャフトに同時に伝達される回転に関係なくシャフトに沿って滑るように構成される、実施形態1のオートスロットルシステム。
〔実施形態3〕
軸受けアセンブリは、2つの半部として形成され、2つの半部は、スラスト力の閾値を選択的に設定するように調整されるテンション要素の組み合わせによって連結される、実施形態2のオートスロットルシステム。
〔実施形態4〕
軸受けアセンブリは、その貫通穴にシャフトを受け入れるように構成され、そして少なくとも1組の軸受けを含み、軸受けの各々は、シャフトの表面に、シャフトの長手方向軸線に対して決定された角度で接触するように軸受けアセンブリで支持される、実施形態1のオートスロットルシステム。
〔実施形態5〕
シャトルアームは、その第2端に2つのリンクアームを含み、リンクアームは、スロットルレバーの取付端に回転可能に連結され、シャトルアームは、軸受けアセンブリがシャフトに沿って移動するとき、シャフトの遠位端を収容する開口を含む、実施形態1のオートスロットルシステム。
〔実施形態6〕
シャトルアームの第2端の少なくとも1つのリンクアームは、スロットルレバーの取付端に回転可能に連結され、少なくとも1つのリンクアームは、軸受けアセンブリがシャフトに沿って移動するとき、シャフトの遠位端の自由な移動を可能にするためにシャフトと平行に配置される、実施形態1のオートスロットルシステム。
〔実施形態7〕
モータは、ニ方向ステッピングモータである、実施形態1のオートスロットルシステム。
〔実施形態8〕
コントローラは、触覚フィードバックを定められた状態下で使用者に提供するためにスロットルレバーを振らせるように構成されている、実施形態1のオートスロットルシステム。
〔実施形態9〕
定められた状態は、対気速度が対気速度値の定められた範囲の限界に近づいていることをコントローラによる決定を含む、実施形態8のオートスロットルシステム。
〔実施形態10〕
コントローラは、モータの多作動コイルのすべてよりも少ないコイルに電気信号を選択的に付与することによって、又はモータコイルの選択された1つ又はそれ以上に電気信号を急速に循環させることによってスロットルレバーを振らせるように構成される、実施形態8のオートスロットルシステム。
〔実施形態11〕
コントローラは、オートスロットルシステムがスロットルレバーの位置を制御するように作動されたか否かに関係なく定められた状態下でスロットルレバーを振らせるように構成される、実施形態8のオートスロットルシステム。
〔実施形態12〕
コントローラがスロットルレバーの制御端に手動力が加えられていなかったことを決定するとき、コントローラは、定められた状態を打ち消すようにスロットルレバーを移動させるように構成される、実施形態8のオートスロットルシステム。
〔実施形態13〕
システムは、複数のエンジンを有する航空機に設置され、各エンジンのスロットルレバーは、別々に制御され、
定められた状態は、エンジンによって生じさせた推力又はトルクの、互いに対する不均衡からなる、実施形態8のオートスロットルシステム。
〔実施形態14〕
システムは、複数のエンジンを有する航空機に設置され、各エンジンのスロットルレバーは、別々に制御され、
エンジン喪失の場合、残っているエンジンのパワー設定は、失速速度以上にとどまるように制御され、かつエンジンパワー閾値を超えないように制御され、エンジンパワー閾値は、少なくとも一部が、航空機の好ましくない回転を防止する航空機のラダーの作用によって補償することができる最大パワー不均衡に基づかれる、実施形態1のオートスロットルシステム。
〔実施形態15〕
システムは、下記のエンジンパラメータの少なくとも1つを監視するように、かつ監視された少なくとも1つのエンジンパラメータが定められた最大値を超えないように構成され、エンジンパラメータは、温度、速度、圧力比、トルク、及び馬力を含む、実施形態1のオートスロットルシステム。
〔実施形態16〕
システムは、下記のパラメータの少なくとも1つを監視するように、かつ監視された少なくとも1つのパラメータについて限界条件の外側を防止するように構成され、前記パラメータは、最小対気速度、最大迎え角、正常及び乱流状態下での最大対気速度を含む、実施形態1のオートスロットルシステム。
〔実施形態17〕
システムは、作動されるとき、少なくとも一部が、航空機の総重量に基づいて計算された乱流侵入速度を達成するようにエンジンパワーを自動的に調整する乱流侵入モードを提供するように構成される、実施形態1のオートスロットルシステム。
〔実施形態18〕
モータは直流モータである、実施形態1のオートスロットルシステム。
図1
図2
図3
図4
図5