IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトの特許一覧

<>
  • 特許-合成糸を溶融紡糸する方法および装置 図1
  • 特許-合成糸を溶融紡糸する方法および装置 図2
  • 特許-合成糸を溶融紡糸する方法および装置 図3
  • 特許-合成糸を溶融紡糸する方法および装置 図4
  • 特許-合成糸を溶融紡糸する方法および装置 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】合成糸を溶融紡糸する方法および装置
(51)【国際特許分類】
   D01D 5/092 20060101AFI20220405BHJP
【FI】
D01D5/092 103
【請求項の数】 13
【外国語出願】
(21)【出願番号】P 2021057874
(22)【出願日】2021-03-30
(62)【分割の表示】P 2018526301の分割
【原出願日】2016-08-01
(65)【公開番号】P2021105241
(43)【公開日】2021-07-26
【審査請求日】2021-04-28
(31)【優先権主張番号】102015010278.8
(32)【優先日】2015-08-08
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】307031976
【氏名又は名称】エーリコン テクスティル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト
【氏名又は名称原語表記】Oerlikon Textile GmbH & Co. KG
【住所又は居所原語表記】Leverkuser Strasse 65, D-42897 Remscheid, Germany
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(72)【発明者】
【氏名】ディーター ヴィーマー
(72)【発明者】
【氏名】イェアク シペル
【審査官】長谷川 大輔
(56)【参考文献】
【文献】特開昭61-055212(JP,A)
【文献】特表2014-534357(JP,A)
【文献】特開昭62-263318(JP,A)
【文献】特公昭47-014050(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
D01D1/00-13/02
(57)【特許請求の範囲】
【請求項1】
0.1~0.7デニールの範囲におけるフィラメント番手を有する50~400の数のマイクロフィラメントから成る、合成糸を溶融紡糸する方法であって、前記マイクロフィラメントを円形紡糸ノズルのノズル孔を通して押し出し、押し出されたばかりの前記マイクロフィラメントを、アクティブな冷却作用を有しない第1の凝固ゾーンと、かつアクティブな冷却作用を有する第2の凝固ゾーンとを通過させ、前記マイクロフィラメントを、前記第2の凝固ゾーンの下流にある1つの収束点において1本の糸にまとめる、方法であって、
前記マイクロフィラメントを、押出し時に、0.12mm~0.50mmの範囲の直径を備えた、前記ノズル孔の各1つの開口横断面から進出させ、前記マイクロフィラメントを前記第1の凝固ゾーンにおいて、50mmの最小長さにわたってアクティブな冷却作用なしに案内し、前記マイクロフィラメントを、前記第2の凝固ゾーンにおいて、半径方向外側から内側に向かって流れる冷却空気によってアクティブに冷却し、かつ前記マイクロフィラメントを、前記糸にまとめた後で、1400m/分~3000m/分の範囲における引出し速度で引き出し、
冷却空気流を、前記マイクロフィラメントをアクティブに冷却するために、前記マイクロフィラメントを取り囲むスクリーンシリンダの通気性の円筒周壁を通して生ぜしめ、前記スクリーンシリンダは、冷却空気で満たされた圧力室の内部に配置されている、
合成糸を溶融紡糸する方法。
【請求項2】
前記マイクロフィラメントを、50バール~150バールの範囲における溶融物の正圧で、前記ノズル孔を通して押し出し、このとき前記ノズル孔の前記開口横断面はそれぞれ、0.4mm~1.5mmの範囲の長さにわたって延びている、請求項1記載の方法。
【請求項3】
前記溶融物を、前記押出しの前に、着色剤または着色マスタバッチによって着色する、請求項2記載の方法。
【請求項4】
前記マイクロフィラメントを、150mm~250mmの範囲の長さにわたって、アクティブに冷却して前記第2の凝固ゾーンを通して案内する、請求項1から3までのいずれか1項記載の方法。
【請求項5】
前記マイクロフィラメントを、前記第2の凝固ゾーンの内部において、35Nm/時間~120Nm/時間の範囲の冷却空気量で冷却する、請求項4記載の方法。
【請求項6】
前記冷却空気を、前記圧力室の通気性の底部を介して前記圧力室の内部に導く、請求項1から5までのいずれか1項記載の方法。
【請求項7】
前記マイクロフィラメントを、前記紡糸ノズルの下で400mm~1500mmの範囲の間隔をおいて、前記糸にまとめる、請求項1からまでのいずれか1項記載の方法。
【請求項8】
請求項1からまでのいずれか1項記載の方法を実施する装置であって、
加熱された紡糸ビーム(2)の下側における円形紡糸ノズル(3)であって、マイクロフィラメントを押し出すための、50~400の数のノズル孔(7)を備えたノズルプレート(6)を有する円形紡糸ノズル(3)と、
前記紡糸ビーム(2)の下側に接続する冷却装置(8)であって、前記円形紡糸ノズル(3)の下に第1の凝固ゾーン(9)および第2の凝固ゾーン(10)を形成していて、前記第2の凝固ゾーン(10)に冷却空気ブロー手段(11)が対応配置されている、冷却装置(8)と、
前記円形紡糸ノズル(3)の下かつ前記冷却装置(8)の下において中心に配置された、前記マイクロフィラメントを1本の糸にまとめる集合糸ガイド(26)と、
少なくとも1つの駆動される引出しゴデット(27)と、
を備えた装置であって、
前記ノズル孔(7)は、0.12mm~0.50mmの範囲の直径(d)を備えた、同一の開口横断面(38)を有しており、前記第1の凝固ゾーン(9)は、50mmの最小長さ(E1)を有しており、かつ前記冷却空気ブロー手段(11)は、冷却空気が半径方向外側から内側に向かって前記マイクロフィラメントに作用するように、円筒形に形成されており、
前記第2の凝固ゾーン(10)は、前記冷却空気ブロー手段(11)の通気性の円筒壁(13)の内部において延びていて、前記冷却空気ブロー手段(11)は、前記通気性の円筒壁(13)を備えたスクリーンシリンダ(12)が内部に配置されている圧力室(14)を有しており、前記第1の凝固ゾーン(9)は、前記冷却装置(8)の内部において、部分的に円錐形に形成された周壁リング(22)によって形成されていて、該周壁リング(22)は、自由端部が前記円形紡糸ノズル(3)に向けられていて、かつ前記スクリーンシリンダ(12)における前記円筒周壁の周壁端部を覆っていることを特徴とする
装置。
【請求項9】
前記ノズル孔(7)は、0.4mm~1.5mmの範囲の同一の長さ(L)を有している、請求項記載の装置。
【請求項10】
記冷却空気ブロー手段(11)は、前記マイクロフィラメントを案内するために、150mm~250mmの範囲の冷却長さ(E)を有している、請求項または記載の装置。
【請求項11】
前記スクリーンシリンダ(12)の前記円筒壁(13)は、円筒周壁にわたって均一に分配された、前記円筒周壁の全面積の5%~最大12%の範囲の開放面積を有している、請求項8から10までのいずれか1項記載の装置。
【請求項12】
前記冷却装置(8)は、冷却源に接続された空気分配室(15)を有していて、該空気分配室(15)は、前記圧力室(14)に対して同軸的に配置されていて、かつ通気性の底部(17)を介して前記圧力室(14)に接続されている、請求項8から11までのいずれか1項記載の装置。
【請求項13】
前記集合糸ガイド(26)は、400mm~1500mmの範囲の間隔(k)をおいて前記円形紡糸ノズル(3)の前記ノズルプレート(6)の下に配置されている、請求項から12までのいずれか1項記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の上位概念部に記載の、合成糸を溶融紡糸する方法、および請求項9の上位概念部に記載の、この方法を実施する装置に関する。
【0002】
合成糸の製造時には通常、まず溶融紡糸プロセスにおいて複数の細いフィラメントが、紡糸ノズルを用いて押し出される。このときポリマ製の溶融物が、紡糸ノズルの複数の細いノズル孔を通して高圧下で押し出され、これによってノズル孔毎に各1つのフィラメントが形成される。フィラメントはその冷却および硬化後に、まとめられて、1本のマルチフィラメント糸を形成する。特に織編材料における使用のためには、糸を極めて細いフィラメント、つまりいわゆるマイクロフィラメントから形成するという要望が益々高まっている。これによって極めて柔軟で、曲がりやすく、軽量でかつ抵抗力のある織編材料を製造することができる。しかしながら織編分野における使用に対する要求を満たすためには、糸のマイクロフィラメントを、その物理的特性およびその長さ品質において高い均一性をもって製造しなくてはならない。繊度に基づいて、特に押出し直後におけるマイクロフィラメントの凝固は、特に繊細であることが公知である。そこで、冷却空気によって強いられる、マイクロフィラメントの凝固を、可能な限り丁寧に実施することが試みられた。
【0003】
独国特許出願公開第19821778号明細書(DE 19821778 A1)に開示された、高い番手均一性を有するマイクロフィラメントを製造する方法および装置では、マイクロフィラメントは、押出し後に、アクティブな冷却作用を有しない第1の凝固ゾーンと、アクティブな冷却作用を有する第2の凝固ゾーンとを通過する。アクティブな冷却作用を有する第2の凝固ゾーンにおいては、冷却空気流が、フィラメント群の内部に配置されたブローキャンドルを通して生ぜしめられ、半径方向内側から外側に向かって吹き付けられる。このときブローキャンドルの周囲に形成されたフィラメントカーテンは、広げられる。しかしながらこの広がりは、第1の凝固ゾーンに対して直接戻り作用し、この第1の凝固ゾーンにおいてマイクロフィラメントはなお程度の差こそあれ溶融流動状態である。したがってフィラメント横断面の形成における不均一性を回避することができない。
【0004】
さらに、ブローキャンドルへの冷却空気供給を可能にするために、ブローキャンドルの周囲におけるフィラメントカーテンを、1箇所において分割することが必要である。これによってフィラメントの一部は、紡糸ノズルと収束点との間の領域において比較的強く変位させられる。しかしながらこれらの相違は、マイクロフィラメントの分子配向および横断面形成のための基準である、いわゆる紡糸延伸(Spinnverzug)に影響を及ぼす。マイクロフィラメントの形成におけるこのような不均一性は、しかしながら特に織布における着色時に、いわゆるカラースポットまたはストライプによって不都合に顕著になる。
【0005】
ゆえに本発明の課題は、上位概念部に記載の形式の、合成糸を溶融紡糸する方法および装置を改良して、マイクロフィラメントのそれぞれにおいて、実質的に均一な紡糸延伸および冷却が作用するようにすることである。
【0006】
本発明の別の目的は、合成糸を溶融紡糸する、上位概念部に記載の方法および上位概念部に記載の装置を改良して、特に、織編分野における使用のための、0.1~0.7デニールの範囲におけるフィラメント番手を有するマイクロフィラメントから成る合成糸を製造することができる、方法および装置を提供することである。
【0007】
この課題は、本発明によれば、請求項1に記載の特徴を備えた方法、および請求項9に記載の特徴を備えた装置によって解決される。
【0008】
本発明の好適な発展形態は、従属請求項の特徴および特徴の組合せによって定義されている。
【0009】
本発明は、押出し後における均一なフィラメント横断面の形成のために、紡糸延伸と冷却とが共働するということを考慮する。例えば一般的に、比較的大きなノズル孔において引出し速度を高めると、分子の予備配向が高まるということが公知である。他方において同様に、紡糸ノズルの下における冷却の遅延は、迅速なフィラメント表面冷却およびこれによって惹起される予備配向を妨げるということが公知である。したがって、特に、極めて細いマイクロフィラメント横断面を形成する場合には、冷却と紡糸延伸とを調和させることが必要である。ゆえに本発明に係る方法では、マイクロフィラメントを、0.12mm~0.50mmの範囲における、ノズル孔の各1つの開口横断面から進出させ、第1の凝固ゾーンにおいて、50mmの最小長さにわたってアクティブな冷却作用なしに案内するようにした。その後で第2の凝固ゾーンにおいて、マイクロフィラメントの冷却が、半径方向外側から内側に向かって流れる冷却空気によって行われ、このときマイクロフィラメントを、糸にまとめた後で、1400m/分~3000m/分の範囲における引出し速度で引き出す。このとき引出し速度は、ほぼ糸型式に応じて、つまり例えば延伸されていない糸(POY)を製造したいのかまたは完全延伸糸(FDY)を製造したいのかによって、調整される。外側から内側に向かってフィラメントに向けられた冷却空気によっては、マイクロフィラメントの拡大も変位も生ぜしめられない。これによりすべてのフィラメントにおいて均一に作用する極めて安定した、マイクロフィラメントの硬化を生ぜしめることができる。比較的長く延ばされた第1の凝固ゾーンによって、マイクロフィラメントの十分な周壁硬化が得られるので、冷却作用を有する凝固ゾーンへの安定した進入が可能になる。
【0010】
マイクロフィラメントの押出し時に高すぎる進出速度が生じないようにするために、さらに、マイクロフィラメントは、50バール~150バールの範囲における溶融物の正圧で、ノズル孔を通して押し出され、このときノズル孔の開口横断面はそれぞれ、0.4mm~1.5mmの範囲における長さにわたって延びている。このとき好ましくは、ノズル孔の長さとノズル孔の開口横断面との間においては、約3の比が望まれる。
【0011】
糸の内部におけるすべてのマイクロフィラメントの極めて安定した番手均一性は、特に、高い着色均一性に対して影響を及ぼす。したがって本発明に係る方法の変化形態では、好ましくは、溶融物は、押出しの前に、着色剤または着色マスタバッチによって直接着色される。このようにすると、マイクロフィラメントを後で着色することは、もはや不要である。
【0012】
第2の凝固ゾーンの内部において周囲から半径方向に流入する冷却空気によって、凝固ゾーンの比較的短い冷却区間におけるアクティブな冷却作用を実現することができる。そのために、マイクロフィラメントは、150mm~250mmの範囲における長さにわたって、アクティブに冷却されて第2の凝固ゾーンを通して案内される。このときに調節される冷却空気消費は、同時に押し出されるマイクロフィラメントの数に合わせて調整され、このとき極めて細くて少数のマイクロフィラメントは、約35Nm/時間の冷却空気量で冷却され、多数のマイクロフィラメントは、約120Nm/時間の冷却空気量で冷却される。
【0013】
冷却空気はこのとき特に優しくマイクロフィラメントに向かって案内され、そのために方法の好適な発展形態によれば、冷却空気は、マイクロフィラメントをアクティブに冷却するために、マイクロフィラメントを取り囲むスクリーンシリンダの通気性の円筒周壁を通して生ぜしめられ、スクリーンシリンダは、冷却空気で満たされた圧力室の内部に配置されている。
【0014】
このとき冷却空気は、圧力室の通気性の底部を介して圧力室の内部に導かれる。このようにしてスクリーンシリンダの全周にわたって、冷却空気流をマイクロフィラメントに吹き付ける均一な圧力状態が生ぜしめられる。
【0015】
紡糸ノズルを通して押し出されるマイクロフィラメントの数およびこれによって生じるフィラメント密度に関連して、マイクロフィラメントを糸にまとめることを、紡糸ノズルに対する種々異なった間隔において実施することができる。このとき好ましくは、マイクロフィラメントは、紡糸ノズルの下で400mm~1500mmの範囲における間隔をおいて、糸にまとめられる。
【0016】
したがって本発明に係る方法は、例えばポリエステルまたはポリアミド製の合成糸をマイクロフィラメントによって製造するのに特に適している。
【0017】
本発明に係る方法を実施するために特に適した、本発明に係る装置では、ノズル孔が、0.12mm~0.50mmの範囲における同一の開口横断面を有しており、第1の凝固ゾーンが、50mmの最小長さを有しており、かつ冷却空気ブロー手段は、冷却空気が半径方向外側から内側に向かってマイクロフィラメントに作用するように、円筒形に形成されている。このように構成されていると、ほぼ同一のフィラメント横断面と同一の物理的特性とを備えた、比較的多数のマイクロフィラメントをも、同じ紡糸延伸において製造することができる。
【0018】
このときノズル孔は、好ましくは、0.4mm~1.5mmの範囲における同一の長さを有している。このように構成されていると、押し出されたフィラメント横断面を形成するのに必要でかつ望まれている、ノズル孔の長さ直径比を維持することができる。
【0019】
パッシブな冷却作用とアクティブな冷却作用とを互いに切り離すために、本発明に係る装置の特に有利な発展形態では、第2の凝固ゾーンは、冷却空気ブロー手段の通気性の円筒壁の内部において延びていて、冷却空気ブロー手段は、マイクロフィラメントを案内するために、150mm~250mmの範囲における冷却長さを有している。このように構成されていると、硬化および凝固のために必要な冷却効果がマイクロフィラメントにおいて得られる。
【0020】
マイクロフィラメントを冷却するための冷却空気の供給を好適に実現する実施形態では、冷却空気ブロー手段は、通気性の円筒壁を備えたスクリーンシリンダが内部に配置されている圧力室を有している。このように構成されていると、均一な冷却空気流を、スクリーンシリンダの長さにわたってかつ横断面にわたって得ることができる。
【0021】
このとき冷却空気の供給は、好ましくは、スクリーンシリンダの円筒周壁の開放面積を介して行われ、この開放面積は、円筒周壁にわたって均一に分配されていて、円筒周壁の全面積の5%~最大12%の範囲における大きさを有している。このように構成されていると、冷却空気量を相応に僅かに保つことができ、かつマイクロフィラメントに対して均一に作用させることができる。
【0022】
このとき、空気分配室を介して行われる冷却空気の供給は、特に均一な流れを生ぜしめることが判明している。この空気分配室は、圧力室に対して同軸的に配置されていて、かつ通気性の底部を介して圧力室に接続されている。このように構成されていると、スクリーンシリンダの内部への進入までに冷却空気流を複数回変向させることが必要である。これによって、冷却空気の供給時におけるあらゆる乱流を回避することができる。
【0023】
可能な限り沈静化された第1の凝固ゾーンを得るために、本発明に係る装置の特に好適な発展形態では、第1の凝固ゾーンは、冷却装置の内部において、部分的に円錐形に形成された周壁リングによって形成されていて、該周壁リングは、自由端部が円形紡糸ノズルに向けられていて、かつスクリーンシリンダにおける円筒周壁の周壁端部を覆っている。周壁リングの形状付与は、第1の凝固ゾーンと第2の凝固ゾーンとの間における穏やかな移行部を可能にする。さらに、スクリーンシリンダの上側領域におけるスクリーンシリンダ周壁のカバーによって、第1の凝固ゾーンからの揮発性成分がシリンダ周壁に付着することが回避される。これによって、特に着色された溶融物の場合に、押出し時に発生する無色の色粒子を、第1の凝固ゾーンにおいて拘束することができる。
【0024】
本発明に係る方法を実施する本発明に係る装置は、特に、第2の凝固ゾーンにおける穏やかな冷却によって傑出している。
【0025】
次に本発明に係る方法を、本発明に係る装置の実施形態について、添付の図面を参照しながら説明する。
【図面の簡単な説明】
【0026】
図1】1本の合成糸を溶融紡糸する本発明に係る装置の第1実施形態を、概略的に示す縦断面図である。
図2図1に示された冷却装置を概略的に示す縦断面図である。
図3図2に示された冷却装置を概略的に示す横断面図である。
図4図1に示された実施形態のノズルプレートの一部を概略的に示す縦断面図である。
図5】複数の合成糸を溶融紡糸する本発明に係る装置の別の実施形態を、概略的に示す縦断面図である。
【0027】
図1には、合成糸を溶融紡糸する本発明に係る装置の第1実施形態が、概略的に縦断面図で示されている。この実施形態は、鉛直方向において互いに上下に配置された紡糸装置1と冷却装置8とを有している。紡糸装置1は、この実施形態では、加熱された紡糸ビーム2から成っており、この紡糸ビーム2はその下側に円形紡糸ノズル3を保持している。円形紡糸ノズル3は、紡糸ビーム2の上側に配置された紡糸ポンプ4に接続されている。紡糸ポンプ4は、溶融物供給路5を介して、ここには図示されていない溶融物形成機、例えば押出し機または重縮合設備に接続されている。紡糸ポンプ4は、ポンプ駆動装置29によって運転回転数で駆動され、かつポリマ溶融物を圧力下で円形紡糸ノズル3に供給する。装置はそのために図1では運転状態で示されている。
【0028】
紡糸ビーム2の内部に保持された円形紡糸ノズル3は、下側にノズルプレート6を有しており、このノズルプレート6は、複数のノズル孔を有している。
【0029】
ノズルプレート6について説明するために、追加的に図4を参照する。図4には、円形紡糸ノズル3のノズルプレート6が断面図で示されている。下側には複数のノズル孔7がノズルプレート6において形成されており、これらのノズル孔7はノズルプレート6の内部において各1つの溶融物通路34に直接開口している。ノズル孔7は、符号dで示された直径によって特徴付けられた自由な流れ横断面38を有している。ノズル孔7における自由な流れ横断面38は、本発明に係る方法を実施するために、最小0.12mm~最大0.50mmの、その都度製造すべきマイクロフィラメントに関連した直径dを有している。開口横断面38は、このときノズルプレート6の内部において、図4において符号Lによって示された長さにわたって延びている。ノズル孔7の長さLとノズル孔7の開口横断面38との比を2.5~3.5に維持するために、ノズル孔7の長さLは、開口横断面38の直径dに関連して制限されている。本発明に係る方法のために、ノズル孔7の長さLは、0.4mm~1.5mmの範囲に制限されている。このようにして、ノズル孔7の直径dおよび長さLによって、マイクロフィラメントの押出し時における溶融物の流出速度を、引出し速度ひいては所望の紡糸延伸に適合された範囲において設定することができる。このとき紡糸ノズルの内部に存在する溶融物圧は、貫流を変化させるために、制御値として働く。
【0030】
円形紡糸ノズル3の下側に保持されたノズルプレート6は、マイクロフィラメントの所望の数に関連して、最小50~最大400の数のノズル孔7を有している。ノズル孔7は、好ましくは均一にノズルプレート6の円形面に分配されて形成されている。しかしながらまた、ノズル孔7の数が比較的少ない場合には、ノズル孔7の分配形態をノズルプレート6においてリング形状に形成することも可能である。
【0031】
図1の図面から分かるように、紡糸ビーム2の下には直接、冷却装置8が接続している。この冷却装置8は、紡糸ビーム2の下側にシール作用をもって保持されており、このとき円形紡糸ノズル3の下には、直接、第1の凝固ゾーン9および第2の凝固ゾーン10が接続している。第1の凝固ゾーン9は、円形紡糸ノズル3と冷却空気ブロー手段11との間に形成されている。第1の凝固ゾーン9の内部においては、アクティブな冷却は行われない。
【0032】
冷却空気ブロー手段11は、第2の凝固ゾーン10に対応配置されており、この実施形態では、通気性の円筒壁13を備えたスクリーンシリンダ12によって形成される。スクリーンシリンダ12は、その端面において開放しているので、円形紡糸ノズル3を通して押し出されたフィラメント群は、スクリーンシリンダ12を貫通することができる。スクリーンシリンダ12は、圧力室14の内部に配置されており、この圧力室14は冷却空気によって満たされている。冷却空気は、鉛直方向で圧力室14の下に配置された空気分配室15を介して、圧力室14の通気性の底部17を通して供給される。空気分配室15は、空気接続通路16を介して、ここには図示されていない冷却空気源に接続されている。空気分配室15の内部には、出口管片18が同心的にスクリーンシリンダ12の下に配置されており、かつ糸出口25を形成している。
【0033】
冷却装置8の機能についてさらに述べるために、追加的に図2および図3を参照する。図2には冷却装置が縦断面図で示され、かつ図3には冷却装置が横断面図で示されている。図面のうちの1つを特に参照しない場合には、以下の記載はすべての図面に対するものである。
【0034】
紡糸ビーム2の内部における円形紡糸ノズル3の温度調整を、第1の凝固ゾーン9の形成によって可能な限り影響されないように保つために、紡糸ビーム2の下側には、断熱プレート19が円形紡糸ノズル3に対して同心的に配置されている。したがって円形紡糸ノズル3は、紡糸ビーム2の下側面に対してずらされて保持されている。断熱プレート19には、押圧プレート20が接続されており、この押圧プレート20は、汎用の形式で紡糸ビーム2に不動に結合されている。押圧プレート20は、圧力室14の上側に保持されたシール部材21と共働する。そのために圧力室14は、ボックス形状に形成されている。圧力室14の内部には、スクリーンシリンダ12が配置されており、このスクリーンシリンダ12は、圧力室14を完全に貫通しており、かつこれによって圧力室14の上側および圧力室14の下側においてそれぞれ、マイクロフィラメントを案内するための開口を形成している。スクリーンシリンダ12の上端部には、周壁リング22が保持されている。この周壁リング22は、自由端部23が円形紡糸ノズル3のノズルプレート6に向かって延びており、かつ反対側に位置するカバー端部24が、スクリーンシリンダ12の内部に延びていて、カバーを形成している。周壁リング22は、円錐形に形成されているので、比較的大きな直径を有する円形紡糸ノズル3とスクリーンシリンダ12との間における穏やかな移行部が形成されている。これによって周壁リング22は、第1の凝固ゾーン9の下端部を形成しており、第1の凝固ゾーン9内においてマイクロフィラメントは、ノズルプレート6を通した押出しの直後に、冷却作用なしに案内される。第1の凝固ゾーン9は、図1および図2において符号Eで示された長さを有している。
【0035】
第1の凝固ゾーン9の内部において、特に、フィラメント材料の分子鎖の配向は、マイクロフィラメントの縁部における予備硬化に到るまで影響を受ける。本発明に係る方法のために、少なくとも50mmの最小長さEが維持されねばならない。例えば0.5デニール(den)の比較的大きなフィラメント番手の場合にE=75mmの長さに拡大することができる、この最小長さ内において、マイクロフィラメントは鎮静した雰囲気を通して案内される。このとき第1の凝固ゾーンの長さEの変化は、周壁リング22の交換によって簡単に実現することができる。
【0036】
半径方向外側から内側に向かって流れる冷却空気を生ぜしめるために、圧力室14の内部にはスクリーンシリンダ12が保持されている。スクリーンシリンダ12は、通気性の円筒壁13を有しており、この円筒壁13は、好ましくは複数の層から形成されている。マイクロフィラメントに向けられた内壁39は、好ましくは、孔付金属薄板シリンダとして形成されている。圧力室14の圧力空間から円筒壁13を通って流れる冷却空気を均一化するために、外壁40が例えばワイヤ織布として形成されている。このとき円筒壁13の内壁39と外壁40とは、互いに間隔をおいて配置されていてよい。
【0037】
マイクロフィラメント30を冷却するためにスクリーンシリンダ12を介して吹き込まれる空気量は、スクリーンシリンダ12の円筒壁13の通気性によって確定される。そのために円筒壁13は、円筒周壁の全面積の5%~最大12%の範囲における、円筒壁にわたって均一な開放面積を有している。円筒壁13の開放面積は、例えば内壁39の孔によって確定することができる。スクリーンシリンダ12の周囲における開放面積の均一な分配は、スクリーンシリンダ12の周囲およびスクリーンシリンダ12の長さにわたって、マイクロフィラメントを冷却するための冷却空気を半径方向に供給することを可能にする。このとき冷却空気の流出速度は、単に、圧力室14の内部において生ぜしめられる正圧によって確定される。この正圧は、圧力室14の内室全体にわたって作用するので、マイクロフィラメントに対してすべての側から均一な吹付けが行われる。
【0038】
図1および図2の図面から分かるように、スクリーンシリンダ12は第2の凝固ゾーン10の内部において延びている。したがって第2の凝固ゾーン10は、内部においてマイクロフィラメントがアクティブに冷却される領域である。吹付けの高い均一性によって、特に均一なフィラメント横断面、ひいては高い番手均一性が得られる。第2の凝固ゾーン10の長さは、符号Eで示されている。第2の凝固ゾーン10は、本発明に係る方法を実施するために、150mm~250mmの範囲における長さEを有している。このときマイクロフィラメントの数およびフィラメント番手は、アクティブな冷却作用のための基準である。
【0039】
図1の図面から分かるように、マイクロフィラメント30は1本の糸31にまとめられる。そのために円形紡糸ノズル3の下には、集合糸ガイド26が設けられており、この集合糸ガイド26は、いわゆる収束点を形成している。したがって集合糸ガイド26は円形紡糸ノズル3に対して中心に保持されており、これによってマイクロフィラメント30は、収束点において糸31にまとめられる。円形紡糸ノズル3の紡糸ノズル下側と集合糸ガイド26との間の間隔は、符号kで示されている。円形紡糸ノズル3の直径に関連してかつマイクロフィラメントの数に関連して、この間隔kは、最小400mmでかつ最大1500mmである。このとき特に、第2の凝固ゾーンと収束点との間における移行ゾーンが、マイクロフィラメントの冷却の均一化を得るために使用される。このとき冷却の均一化のためには、周囲空気が働く。
【0040】
それぞれの溶融紡糸法に関連して、フィラメントを、まとまりを促進するために同時に流体によって湿潤することができる。このとき流体は、ピンまたはローラによってマイクロフィラメントに塗布することができる。
【0041】
集合糸ガイド26の下には、糸31を収容するための引出しゴデット27が配置されている。引出しゴデット27は、ゴデット駆動装置28.1を介して、予め設定された周速度で駆動されており、これによってマイクロフィラメントを押出し後に引き出すことができ、かつマイクロフィラメントを形成するために確定された紡糸延伸を得ることができる。方法を実施するために、引出しゴデット27における引出し速度は、糸型式に関連して1400m/分~3000m/分の範囲において調節される。引出し速度は、紡糸延伸に、ひいては形成される分子構造に影響を及ぼす。完全延伸糸(FDY)を製造するためには、したがって比較的低い引出し速度が調節され、かつ部分延伸糸(POY)を製造するためには、比較的高い引出し速度が調節される。
【0042】
本発明に係る装置の、図1に示された実施形態は、引出しゴデット27の下流側に配置された延伸ゴデット33を有しており、この延伸ゴデット33は、別体の第2のゴデット駆動装置28.2に連結されている。延伸ゴデット33の下流にさらなる延伸ゴデットが配置されていない場合に対しては、例えば延伸されていない糸(POY)を生ぜしめることができる。この場合には、約2500m/分の比較的高い引出し速度が、引出しゴデット27において調節される。延伸ゴデット33に、さらに別の延伸ゴデットが糸31を延伸するために続いている場合に対しては、引出し速度は、予備配向および延伸可能性に影響を及ぼすために、例えば1500m/分の周速度に調節される。
【0043】
複数のマイクロフィラメントから合成糸を溶融紡糸する本発明に係る方法を実施する、図1に示された装置は、好ましくは、例えばポリエステルまたはポリアミド製の既に着色されたポリマ溶融物を押し出すために使用される。このとき溶融物源を介して供給される溶融物は、例えば押出し機または溶融物流において染料を直接供給することによって、または溶融物流をマスタバッチ(粒子状着色剤)とまとめることによって、着色することができる。しかしながらこのようにして着色されたポリマ溶融物には、押出し時に幾つかの色粒子が解離し、第1の凝固ゾーン内に直接進入するという欠点がある。しかしながら周壁リング22によって、これらの自由な色粒子は周壁リング22の周囲に付着し、第2の凝固ゾーン内には達しないということが達成される。したがって本発明に係る装置は、特に、着色された溶融物を押し出してマイクロフィラメントを形成するために有利であることが判明している。
【0044】
マイクロフィラメントの押出し時に、溶融物は50バール~150バールの範囲の、紡糸ノズルの内部における溶融物圧で、ノズルプレート6のノズル孔7を通して押し出される。これによって、その都度の引出し速度およびマイクロフィラメントの所望のフィラメント番手に適合された溶融物流量が得られる。このとき0.3~0.7デニールの範囲におけるフィラメント番手を得るためには、ノズル孔7が0.12mm~0.5mmの範囲の直径を有する同一の開口直径を有するノズルプレート6が使用される。
【0045】
次いで、マイクロフィラメントは、50mmの最小長さを有する第1の凝固ゾーンを通過する。ここで、特にマイクロフィラメントの縁部層の予備配向および予備硬化が行われる。引出し速度および流速度によって確定された紡糸延伸によって、所望の予備配向および横断面形成が達成される。
【0046】
全フィラメント横断面を硬化するために、マイクロフィラメントは第2の凝固ゾーンを通して案内され、かつ150mm~250mmの範囲における冷却長さにわたって、半径方向で外側から内側に向かって吹き込まれる冷却空気によって冷却される。スクリーンシリンダ12の円筒壁13における開放面積および圧力室14における冷却空気の内圧は、マイクロフィラメントが第2の凝固ゾーンの内部において、35Nm/時間~120Nm/時間の範囲における冷却空気量で冷却されるように設定されている。またこの場合、マイクロフィラメントの数は冷却空気量のための基準である。例えば、200f384と呼称される糸のためには、すべての384のフィラメントを均一に冷却するために、最大の冷却空気量が必要になる。糸の呼称における最初の数値200は、200デニールを有する糸の全番手を定義している。
【0047】
冷却後にマイクロフィラメントは、集合糸ガイド26によって糸31にまとめられ、1400m/分~2000m/分の範囲における周速度で引出しゴデット27によって収容される。
【0048】
したがって本発明に係る方法および本発明に係る装置は、織編分野における使用のために汎用のすべての糸、例えば糸30f72または60f128または100f192またはそれどころか糸200f384のようなすべての糸を製造するのに適している。このときフィラメント番手は、0.1~0.7デニールの範囲、好ましくは0.3~0.5デニールの範囲にある。このとき好ましくは、ポリエステルまたはポリアミド製のポリマ溶融物が押し出される。
【0049】
本発明に係る方法および本発明に係る装置によって製造された、ポリエステル製の糸(POY)であって、144のフィラメントおよび70デニールの全番手ならびに着色グレイを有する糸(POY)は、ウスター測定装置(Uster)による通常検査において0.7U%の、番手における高い均一性を示している。強度および残留伸びから計算される品質数は、29.0であった。このとき、それぞれ0.2mmの直径および3.0のL/D比をもって形成されたノズル孔を備えた紡糸ノズルが使用された。紡糸ノズルは、ポリマ溶融物が60バールの紡糸圧下で紡糸ノズルに供給される紡糸ポンプに連結されていた。フィラメントを冷却するために、第1の凝固ゾーンは60mmの長さ(E)に、かつ第2の凝固ゾーンは161mmの長さ(E)に調節された。紡糸ノズルの下に670mmの間隔をおいて、フィラメントは油剤を用いて糸にまとめられた。糸は、2700m/分の引出し速度で部分延伸されて巻き取られた。
【0050】
実地においては、1つの紡糸ポジションの内部において複数の糸が同時に形成されるのが通常である。そのために図5には、本発明に係る方法を実施することができる本発明に係る装置の1実施形態が示されている。図5に示された実施形態は、4本の糸から1つの糸群を形成する、1つの紡糸装置1および1つの冷却装置8を示している。このとき糸の数は一例である。
【0051】
この実施形態において、1つの紡糸ビーム2には、4つの円形紡糸ノズル3が並んで配置されている。これらの円形紡糸ノズル3は、分配系35を介してマルチ紡糸ポンプ(Mehrfachspinnpumpe)4に連結されている。紡糸ポンプ4は、ポンプ駆動装置29を介して駆動される。溶融物供給路5を介して紡糸ポンプ4は、ここには図示されていない押出し機に接続されている。冷却装置8は、円形紡糸ノズル3毎にそれぞれ紡糸ノズル3の下に、第1の凝固ゾーン9および第2の凝固ゾーン10を形成している。紡糸ビーム2の下における凝固ゾーン9,10の形成は、図1に示された実施形態と同一なので、ここでは図1を参照することとし、さらなる説明は行わない。
【0052】
このとき第2の凝固ゾーン10は、スクリーンシリンダ12によって形成され、これらのスクリーンシリンダ12はすべて一緒に、1つの圧力室14内に配置されている。したがってスクリーンシリンダ12には一緒に1つの圧力室14から、冷却空気が供給される。圧力室14には底部17に空気分配室15が対応配置されており、この空気分配室15は、空気接続通路16を介して、ここには図示されていない冷却空気源に連結されている。圧力室14および空気分配室15は、等しい大きさで形成されているので、通気性の底部17を介して連続的な冷却空気流が上側の圧力室14内に導入される。
【0053】
冷却装置8の下には、マイクロフィラメント30をそれぞれ1つの糸31にまとめるために、複数の集合糸ガイド26および複数の油剤供給ピン36が配置されている。油剤供給ピン36を介してマイクロフィラメントは湿潤される。
【0054】
引出しゴデット27によって収容するために、糸31は糸ガイド37を介してまとめられ、これによって糸31を可能な限り小さな糸ピッチで互いに平行に引出しゴデット27の周囲において案内することができる。引出しゴデット27は、ゴデット駆動装置28によって直接駆動されている。したがって糸群のすべての糸31は、引出しゴデット27の周囲において一緒に案内される。
【0055】
このときマイクロフィラメントを押し出し、冷却しかつ引き出すための機能は、図1に示された実施形態と同一であるので、ここではそれに対してさらなる説明は行わず、上における記載を参照することとする。したがって本発明に係る方法および本発明に係る装置は、複数の糸を押し出されたマイクロフィラメントから同時に製造するのに、特に適している。
図1
図2
図3
図4
図5