(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-08
(45)【発行日】2022-04-18
(54)【発明の名称】適応等化器、適応等化方法及び光通信システム
(51)【国際特許分類】
H04B 10/2507 20130101AFI20220411BHJP
H04B 3/06 20060101ALI20220411BHJP
H04L 27/01 20060101ALI20220411BHJP
H03H 21/00 20060101ALI20220411BHJP
H04J 11/00 20060101ALN20220411BHJP
【FI】
H04B10/2507
H04B3/06 C
H04L27/01
H03H21/00
H04J11/00 B
(21)【出願番号】P 2020093039
(22)【出願日】2020-05-28
【審査請求日】2020-05-28
(73)【特許権者】
【識別番号】591230295
【氏名又は名称】NTTエレクトロニクス株式会社
(74)【代理人】
【識別番号】100082175
【氏名又は名称】高田 守
(74)【代理人】
【識別番号】100106150
【氏名又は名称】高橋 英樹
(74)【代理人】
【識別番号】100148057
【氏名又は名称】久野 淑己
(72)【発明者】
【氏名】高椋 智大
(72)【発明者】
【氏名】吉田 光輝
(72)【発明者】
【氏名】仙北 智晴
(72)【発明者】
【氏名】竹谷 勉
【審査官】対馬 英明
(56)【参考文献】
【文献】特開2003-347977(JP,A)
【文献】特開2010-268404(JP,A)
【文献】特開2020-043492(JP,A)
【文献】特開2018-182620(JP,A)
【文献】特開2010-118817(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/00-10/90
H04J 14/00-14/08
H04B 1/76-3/44
H04B 3/50-3/60
H04B 7/00-7/015
H04L 27/00-27/38
H03H 15/00-15/02
H03H 19/00-21/00
H04B 1/69-1/719
H04J 1/00-1/20
H04J 4/00-13/22
H04J 99/00
H04L 5/00-5/12
(57)【特許請求の範囲】
【請求項1】
入力信号の歪を補償する第1デジタルフィルタと、前記第1デジタルフィルタのタップ係数を
収束動作により前記入力信号の
偏波状態に応じて適応的に更新する第1タップ係数更新器とを有する適応フィルタと、
前記入力信号の歪を補償する第2デジタルフィルタと、
前記第2デジタルフィルタのタップ係数を
収束動作により前記入力信号の
偏波状態に応じて適応的に更新する第2タップ係数更新器と、
前記第2タップ係数更新器で
収束したタップ係数を前記第1タップ係数更新器により更新される前記第1デジタルフィルタのタップ係数の初期値として設定し、前記第2タップ係数更新器で
収束したタップ係数について前記第1タップ係数更新器の
タップ係数更新の収束動作に寄与する度合が大きい順に並べ、上位の指定数以上のタップ係数を有効、前記指定数未満のタップ係数を無効と判定し、無効と判定したタップ係数に対応する前記第1デジタルフィルタのタップ係数を次の判定結果が出るまでゼロに設定して前記第1タップ係数更新器の計算に使用されないようにするタップ係数制御回路とを備えることを特徴とする適応等化器。
【請求項2】
前記タップ係数制御回路は、第1判定として、前記第2タップ係数更新器で
収束した複数のタップ係数をIQ平面上のI値とQ値をまとめて絶対値が大きい順に並べ、上位の前記指定数以上のタップ係数を有効、前記指定数未満のタップ係数を無効と判定
し、
前記絶対値の大きいタップ係数ほど、前記第1タップ係数更新器のタップ係数更新の収束動作に寄与する度合いが大きいことを特徴とする請求項1に記載の適応等化器。
【請求項3】
前記タップ係数制御回路は、
前記第1判定が行われたタップ係数を有効A、有効B及び無効の何れかに判定する第2判定として、前記第1判定で有効と判定されたタップ係数について
、前回の第2判定時に有効A又は有効Bであれば有効Aと判定し、第1の閾値以上かつ前回の第2判定時に無効であれば有効Bと判定し、前記第1の閾値未満かつ前回の第2判定時に無効であれば無効と判定し、
また前記第1判定で無効と判定されたタップ係数について
、前回の第2判定時も無効であれば無効と判定し、第2の閾値以上かつ前回の第2判定時に有効A又は有効Bであれば有効Aと判定し、前記第2の閾値未満かつ前回の第2判定時に有効A又は有効Bであれば無効と判定することを特徴とする請求項2に記載の適応等化器。
【請求項4】
前記タップ係数制御回路は、前記有効Aと判定したタップ係数の代わりに前記第1タップ係数更新器の前回の更新結果を前記第1タップ係数更新器により更新される前記第1デジタルフィルタのタップ係数の初期値として設定し、前記有効Bと判定したタップ係数を前記第1タップ係数更新器により更新される前記第1デジタルフィルタのタップ係数の初期値として設定することを特徴とする請求項3に記載の適応等化器。
【請求項5】
前記第1タップ係数更新器は前記第1デジタルフィルタのタップ係数を逐次更新アルゴリズムにより更新し、
前記第2タップ係数更新器は前記第2デジタルフィルタのタップ係数を逐次更新アルゴリズムにより更新することを特徴とする請求項1~4の何れか1項に記載の適応等化器。
【請求項6】
前記適応フィルタは、前記第1タップ係数更新器による更新動作が収束して得られたタップ係数により前記入力信号の歪を補償する第3のデジタルフィルタを更に有することを特徴とする請求項5に記載の適応等化器。
【請求項7】
前記第2タップ係数更新器により更新された全体のタップ係数の数に対する無効と判定されたタップ係数の数の割合に応じて、前記第1タップ係数更新器の逐次更新アルゴリズムのステップサイズを変更することを特徴とする請求項5又は6に記載の適応等化器。
【請求項8】
前記割合が大きくなるに従って、前記ステップサイズを大きくすることを特徴とする請求項7に記載の適応等化器。
【請求項9】
第1デジタルフィルタが入力信号の歪を補償するステップと、
第1タップ係数更新器が前記第1デジタルフィルタのタップ係数を
収束動作により前記入力信号の
偏波状態に応じて適応的に更新するステップと、
第2デジタルフィルタが前記入力信号の歪を補償するステップと、
第2タップ係数更新器が前記第2デジタルフィルタのタップ係数を
収束動作により前記入力信号の
偏波状態に応じて適応的に更新するステップと、
タップ係数制御回路が、前記第2タップ係数更新器で
収束したタップ係数を前記第1タップ係数更新器により更新される前記第1デジタルフィルタのタップ係数の初期値として設定するステップとを備え、
前記タップ係数制御回路は、前記第2タップ係数更新器で
収束したタップ係数について前記第1タップ係数更新器の
タップ係数更新の収束動作に寄与する度合が大きい順に並べ、上位の指定数以上のタップ係数を有効、前記指定数未満のタップ係数を無効と判定し、無効と判定したタップ係数に対応する前記第1デジタルフィルタのタップ係数を次の判定結果が出るまでゼロに設定して前記第1タップ係数更新器の計算に使用されないようにすることを特徴とする適応等化方法。
【請求項10】
光信号を受信し、受信した前記光信号を電気信号に変換する光受信機と、
前記光受信機から出力された信号をデジタル信号に変換するAD変換器と、
前記AD変換器から出力された信号の偏波変動による歪みを補償する等化処理を行う請求項1~8の何れか1項に記載の適応等化器とを備えることを特徴とする光通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、データ通信において伝送路の特性を補償する適応等化器、適応等化方法及び光通信システムに関する。
【背景技術】
【0002】
コヒーレント光通信では、受信側において伝送信号の歪をデジタル信号処理により補償することで、数十Gbit/s以上の大容量伝送を実現している。デジタル信号処理では、主に、波長分散補償、周波数制御・位相調整、偏波多重分離及び偏波分散補償等の処理を行っている。
【0003】
偏波多重分離及び偏波分散補償の処理は、主に適応等化によって行われる。デジタル信号処理における適応等化器には、一般的にデジタルフィルタが使用される。伝送信号の歪が相殺されるように計算されたタップ係数をそのデジタルフィルタに設定することで、伝送信号を補償できる。デジタルフィルタのタップ係数は、フィルタ特性のインパルス応答に相当する。タップ係数は時間的に変化する状況に適応して逐次更新され、適応等化器は偏波状態SOP(State of Polarization)の変動に追従した補償を行う。
【0004】
適応等化器を構成するデジタルフィルタのタップ係数更新には、一般的には定包絡線基準アルゴリズム(CMA: Constant Modulus Algorithm)のような逐次更新アルゴリズムが用いられる。タップ係数は、このアルゴリズムに従って制御され所定値に収束する。このため、適応等化器では、タップ数が多いほど演算量が増加する。さらに、演算量の増加に伴って消費電力が増加する。タップ数を減少させれば演算量が減少するため、適応等化器の消費電力を低減できる。
【0005】
従来は、性能劣化を引き起こさない動的制御の方法が確立されていなかったため、タップ中心からのタップ数を制限して低消費電力化を図っていた。即ち、両端のタップ係数から削減していた。しかし、両端のタップ係数はDGD(Differential Group Delay)負荷が大きい時に必要となる。DGD負荷とは、水平偏波信号と垂直偏波信号の遅延差を示す。従って、タップ中心からのタップ数を制限することで補償精度が劣化していた。
【0006】
適応等化器の等化性能に応じて最適なタップ数を決定する方法がこれまでに提案されている。例えば、偏波多重光の各偏波間の群遅延時間差を検出し、その群遅延時間差に応じて適応等化器のタップ数を決定する方法(例えば、特許文献1参照)、受信したパイロット信号と元のパイロット信号との誤差に基づいてタップ数を制御する方法(例えば、特許文献2参照)等が提案されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2018-182620号公報
【文献】特開2010-118817号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、所望の等化性能に応じてタップ数を決定する方法では、高い等化性能を得つつ、タップ数を減少させて低消費電力化を図ることは難しいという問題があった。
【0009】
本開示は、上述のような課題を解決するためになされたもので、その目的は高い等化性能を得つつ、低消費電力化を図ることができる適応等化器、適応等化方法及び光通信システムを得るものである。
【課題を解決するための手段】
【0010】
本開示に係る適応等化器は、入力信号の歪を補償する第1デジタルフィルタと、前記第1デジタルフィルタのタップ係数を収束動作により前記入力信号の偏波状態に応じて適応的に更新する第1タップ係数更新器とを有する適応フィルタと、前記入力信号の歪を補償する第2デジタルフィルタと、前記第2デジタルフィルタのタップ係数を収束動作により前記入力信号の偏波状態に応じて適応的に更新する第2タップ係数更新器と、前記第2タップ係数更新器で収束したタップ係数を前記第1タップ係数更新器により更新される前記第1デジタルフィルタのタップ係数の初期値として設定し、前記第2タップ係数更新器で収束したタップ係数について前記第1タップ係数更新器のタップ係数更新の収束動作に寄与する度合が大きい順に並べ、上位の指定数以上のタップ係数を有効、前記指定数未満のタップ係数を無効と判定し、無効と判定したタップ係数に対応する前記第1デジタルフィルタのタップ係数を次の判定結果が出るまでゼロに設定して前記第1タップ係数更新器の計算に使用されないようにするタップ係数制御回路とを備えることを特徴とする。
【発明の効果】
【0011】
本開示により、高い等化性能を得つつ、低消費電力化を図ることができる。
【図面の簡単な説明】
【0012】
【
図1】実施の形態に係る光通信システムの送信側の構成を示すブロック図である。
【
図2】実施の形態に係る光通信システムの受信側の構成を示すブロック図である。
【
図3】実施の形態1に係る適応等化器を示す構成図である。
【
図6】実施の形態1に係る適応等化器の実施例を示す図である。
【
図7】タップ係数制御回路のタップ係数有効/無効判定アルゴリズムのフローチャートである。
【
図8】実施の形態1に係る適応等化器の動作タイミングを示す図である。
【
図9】実施の形態2に係る適応等化器を示す構成図である。
【
図10】実施の形態2の適応等化器の実施例を示す図である。
【発明を実施するための形態】
【0013】
実施の形態に係る適応等化器、適応等化方法及び光通信システムについて図面を参照して説明する。同じ又は対応する構成要素には同じ符号を付し、説明の繰り返しを省略する場合がある。
【0014】
実施の形態1.
図1は、実施の形態に係る光通信システムの送信側の構成を示すブロック図である。本実施の形態に係る光通信システムは、送信側に、送信信号処理器1と光送信機2を備えている。
【0015】
送信信号処理器1は、入力データに対して所定の処理を施す回路である。具体的には、送信信号処理器1は、入力データを水平偏波用データと垂直偏波用データに分け、それぞれのデータに対して誤り訂正用符号化、帯域制限フィルタリング、及び変調用マッピング等の処理を行う。このような処理を施された水平偏波用信号及び垂直偏波用信号が、光送信機2に出力される。
【0016】
光送信機2は、水平偏波用信号及び垂直偏波用信号を光信号に変換し、変換された光信号を送信する回路である。この光送信機2は、信号光源2a(信号LD)、2つの90゜合成器2b,2c、及び偏波合成器2dを含んでいる。90゜合成器2b,2cは、信号光源2aの出力光をそれぞれ水平偏波用信号及び垂直偏波用信号で変調することによって、これらの信号を光信号に変換する。偏波合成器2dは、光信号に変換された水平偏波用信号と垂直偏波用信号を合成する。合成された光信号は、光ファイバ伝送路3を通して受信側に伝送される。
【0017】
図2は、実施の形態に係る光通信システムの受信側の構成を示すブロック図である。本実施の形態に係る光通信システムは、受信側に、光受信機4、AD変換器5、波長分散補償器6、適応等化器7、及び復号器8を備えている。
【0018】
光受信機4は、光信号を受信し、受信した光信号を電気信号に変換して出力する回路である。この光受信機4は、偏波分離器4a、局部発振光源4b(局発LD)、2つの90゜ハイブリッド回路4c,4d、及び光電変換器4eを含んでいる。偏波分離器4aは、光信号を2つの直交偏波成分、即ちX偏波(水平偏波)とY偏波(垂直偏波)に分離する。90゜ハイブリッド回路4c,4dは、偏波分離器4aから出力された光信号の各偏波に局部発振光源4bの出力光を合成させ、光信号の各偏波を更に同相(I)成分と直交(Q)成分に分離する。光電変換器4eは、90゜ハイブリッド回路4c,4dから出力された光信号の各成分を電気信号に変換し、この電気信号をX偏波信号及びY偏波信号として出力する。以下、X偏波信号及びY偏波信号を受信信号と呼ぶ。なお、X偏波信号及びY偏波信号を得る上記の構成は、一例であり上記の構成に限定されない。
【0019】
AD変換器5は、光受信機4から出力された受信信号をデジタル信号に変換する。光信号が光ファイバ伝送路3を伝搬する際に、波長分散によって信号波形が歪む。波長分散補償器6は、その歪の大きさをAD変換器5から出力された受信信号から推定し、波長分散による受信信号の歪みを補償する。
【0020】
また、送信側においてX偏波信号とY偏波信号を合成して送信し、受信側においてX偏波信号とY偏波信号を分離する際に、偏波モード分散によって偏波変動が生じ、信号波形が歪む。適応等化器7は、波長分散補償器6から出力された受信信号の偏波変動による歪みを補償する等化処理を行う。なお、偏波分離は最初に光受信機4で行われるが、適応等化器7でより完全に偏波分離が処理される。復号器8は、適応等化器7から出力された受信信号を復号し、元のデータ(即ち、送信信号処理器1の入力データ)を再生する。
【0021】
図3は、実施の形態1に係る適応等化器を示す構成図である。適応等化器7は、適応フィルタ9、第2デジタルフィルタ10、第2タップ係数更新器11、及びタップ係数制御回路12を備えている。適応フィルタ9は、第1デジタルフィルタ13と第1タップ係数更新器14を有する。
【0022】
第1デジタルフィルタ13は入力信号を補償する。補償した結果は、第1タップ係数更新器14に供給される。入力信号の偏波状態は時間的に変化する。そこで、第1タップ係数更新器14は、第1デジタルフィルタ13のタップ係数をCMAにより入力信号の偏波状態に応じて適応的に更新する。更新されたタップ係数は、第1デジタルフィルタ13に設定される。CMAでは、第1デジタルフィルタ13の出力が本来あるべき値になるように、タップ係数が逐次更新され所定値に収束する。
【0023】
第1デジタルフィルタ13の出力は、補償された受信信号として、
図2に示す復号器8に供給される。入力信号は水平偏波信号と垂直偏波信号の両方でもよいし、どちらか一方でもよい。以下の説明では、コヒーレント光通信の一般的構成として水平偏波信号及び垂直偏波信号で伝送する場合について説明するが、本実施の形態は片方の信号だけの場合についても適用可能である。
【0024】
なお、適応フィルタ9のタップ係数は一般的には行列方程式を立ててウィナー解として一度に求めることができる。しかし、これは大変複雑な計算を要するので、簡易に求める手法として逐次更新アルゴリズムが一般的に用いられる。適応フィルタ9のタップ係数を求めるアルゴリズムは、CMAに限定されず、各種の逐次更新アルゴリズム、例えば、その他のブラインド等化方式(RDE(Radius directed equalization)等)でもよい。更に、RLS(Recursive Least-Squares)又はLMS(Least Mean Square)等のように、送信側でトレーニング信号又はパイロット信号等の既知信号を光信号に挿入し、伝送されてきた既知信号とこの既知信号の真値(送信側で設定された値)との誤差を最小化するようにタップ係数をステップサイズ毎に更新して求める逐次更新アルゴリズムを用いることもできる。なお、CMAにおいても、デジタルフィルタの出力と本来あるべき値(「あるべき値」は、定包絡線の場合、振幅の所望値として容易に推定できる)との誤差を最小化するようにタップ係数を更新する。
【0025】
第2デジタルフィルタ10が第1デジタルフィルタ13と並列に接続されている。第2デジタルフィルタ10も第1デジタルフィルタ13と同様に入力信号を補償する。また、第2タップ係数更新器11も第1タップ係数更新器14と同様に動作し、第2デジタルフィルタ10のタップ係数をCMAにより入力信号の偏波状態に応じて適応的に更新する。更新されたタップ係数は更新ごとに第2デジタルフィルタ10に設定される。この更新を繰り返してタップ係数は所定値に収束する。しかし、第2デジタルフィルタ10の出力は、第1デジタルフィルタ13の出力と異なり、補償された受信信号として復号器8に供給されることはない。第2デジタルフィルタ10の出力は、第1デジタルフィルタ13のタップ係数を算出するためだけに使用される。
【0026】
タップ係数制御回路12は、第2タップ係数更新器11で収束したタップ係数を、第1タップ係数更新器14により更新される第1デジタルフィルタ13のタップ係数の初期値として設定する。その際、収束したタップ係数について、タップごとに有効(valid)か又は無効(invalid)かを判定し、無効と判定したタップ係数に対応する第1デジタルフィルタのタップ係数を強制的にゼロに設定する。さらに、次の判定結果が出るまで第1タップ係数更新器14の更新動作の間、そのタップ係数をゼロに設定し続ける。タップ係数がゼロに設定されたタップに関しては、第1デジタルフィルタ13で乗算処理を行わないようにする。
【0027】
図4は、第1デジタルフィルタを示す構成図である。第1デジタルフィルタ13は、バタフライ型に構成されたFIR(Finite Impulse Response)フィルタFIR_A,FIR_B,FIR_C,FIR_Dを有する。各FIRフィルタはN個のタップを備える。ただし、FIRフィルタのタップ数が互いに異なっていてもよい。なお、第2デジタルフィルタ10も第1デジタルフィルタ13と同様に構成することができる。
【0028】
図5は、各FIRフィルタの詳細を示す図である。FIR_Aは、水平偏波信号に対するフィルタであり、タップ係数W
HH_1~W
HH_Nを有する。FIR_Bは、垂直偏波信号から水平偏波信号への影響に対するフィルタであり、タップ係数W
VH_1~W
VH_Nを有する。FIR_Cは、水平偏波信号から垂直偏波信号への影響に対するフィルタであり、タップ係数W
HV_1~W
HV_Nを有する。FIR_Dは、垂直偏波信号に対するフィルタであり、タップ係数W
VV_1~W
VV_Nを有する。Nはタップ数である。各タップ係数は、順次的に遅延された入力信号と乗算され、それらの合計値がフィルタ結果として出力される。Z^(-1)は、順次的な遅延を示す。
【0029】
第1デジタルフィルタ13は、水平偏波信号に対するFIR_Aのフィルタリング結果と垂直偏波信号に対するFIR_Bのフィルタリング結果との加算値を水平偏波信号の補償出力とし、水平偏波信号に対するFIR_Cのフィルタリング結果と垂直偏波信号に対するFIR_Dのフィルタリング結果との加算値を垂直偏波信号の補償出力とする。なお、第1デジタルフィルタ13はバタフライ型の構成には限定されず、FIR_B及びFIR_Cを有さない構成でもよい。
【0030】
また、第1デジタルフィルタ13と第1タップ係数更新器14は適応フィルタ9を構成する。その際、FIR_A、FIR_B、FIR_C及びFIR_Dのタップ係数は以下の式で示される。
W
HH(n+1)=W
HH(n)+μe
H(n)H
out(n)・Hin
*(n)
W
VH(n+1)=W
VH(n)+μe
V(n)H
out(n)・Vin
*(n)
W
HV(n+1)=W
HV(n)+μe
H(n)V
out(n)・Hin
*(n)
W
VV(n+1)=W
VV(n)+μe
V(n)V
out(n)・Vin
*(n)
ここで、nは、逐次更新アルゴリズムにおける更新順を示す値である。タップ係数W
HH(n)は、更新順nの場合のタップ係数W
HH_1~W
HH_Nを示す。タップ係数W
VH(n)は、更新順nの場合のタップ係数W
VH_1~W
VH_Nを示す。タップ係数W
HV(n)は、更新順nの場合のタップ係数W
HV_1~W
HV_Nを示す。タップ係数W
VV(n)は、更新順nの場合のタップ係数W
VV_1~W
VV_Nを示す。μは更新アルゴリズムのステップサイズを示す。e
H(n)は水平偏波におけるフィルタ出力での所望値との誤差を示す。e
V(n)は垂直偏波におけるフィルタ出力での所望値との誤差を示す。H
out(n)は水平偏波におけるフィルタ出力を示す。Hin(n)は水平偏波におけるフィルタ入力を示す。V
out(n)は垂直偏波におけるフィルタ出力を示す。Vin(n)は垂直偏波におけるフィルタ入力を示す。*は共役又は複素共役を示す。なお、
図4,5において、第1タップ係数更新器14へ入力信号の入力の線は省略している。また、信号及びタップ係数は複素数で表される。
【0031】
なお、上記の式は逐次更新アルゴリズムを表す式の一例であり、逐次更新アルゴリズムを表す式は上記に限定されない。ステップサイズによって値が更新されることが表される式であればよい。このステップサイズは、上記のタップ係数の適応制御において、デジタル信号処理の追従性と雑音耐性を決定する。ステップサイズが大きくなると、デジタル信号処理の追従性が向上して高速な偏波状態変動に対する受信耐力が向上するが、低速な偏波変動状態の変動時に雑音に対する影響を受けて伝送特性が悪化する。
【0032】
上記の逐次更新アルゴリズムによって、タップ係数の更新が更新順nで順次的に行われ、最終的にタップ係数が収束する。収束の条件は、更新順nの回数、又はフィルタ出力と所望値との誤差等で判定される。そして、上記のアルゴリズムの収束によって、各FIRフィルタのタップ係数WHH_1~WHH_N、WVH_1~WVH_N、WHV_1~WHV_N、及びWVV_1~WVV_Nが求まる。
【0033】
第2デジタルフィルタ10及び第2タップ係数更新器11においても、上記と同様に各FIRフィルタのタップ係数WHH_1~WHH_N、WVH_1~WVH_N、WHV_1~WHV_N、及びWVV_1~WVV_Nが求まる。なお、第1タップ係数更新器14と第2タップ係数更新器11の更新順nの間隔は互いに異なってもよく、シンボルの周期(データの値が変更或いは更新される周期)と一致する必要はない。さらに、第1タップ係数更新器14と第2タップ係数更新器11の収束条件も互いに異なってもよい。また、シンボルの周期は、FIRフィルタの順次的な遅延のタイミングZ^(-1)とは異なる。
【0034】
図6は、実施の形態1に係る適応等化器の実施例を示す図である。この実施例では、
図3に示す適応等化器7の第1デジタルフィルタ13、第2デジタルフィルタ10、及びそれらの間の配線が詳細化されている。
【0035】
以下、実施の形態1に係る適応等化器の動作について説明する。第2デジタルフィルタ10及び第2タップ係数更新器11のCMAで求められたタップ係数は、タップ係数制御回路12に供給される。それらのタップ係数は、WHH_1~WHH_N、WVH_1~WVH_N、WHV_1~WHV_N、及びWVV_1~WVV_Nである。
【0036】
タップ係数制御回路12では、後に述べるアルゴリズムに基づいて、上記の全タップに対して有効か無効かの判定を行う。無効と判定とされたタップについては、ゼロに変更して、第1デジタルフィルタ13のタップに第1タップ係数更新器14のCMA動作の初期値として設定される。
【0037】
設定後は、第1デジタルフィルタ13と第1タップ係数更新器14とでタップ係数更新動作がCMAによって行われる。実施の形態1では、タップ係数更新動作が行われている間、即ち収束途中の第1デジタルフィルタ13の値も出力される。さらに、タップ係数制御回路12がゼロとして設定したタップについては、第1タップ係数更新器14の更新結果に関わらず、次の収束結果が出るまでゼロに設定し続ける。ゼロに設定されたタップ係数は第1タップ係数更新器14の計算に使用されないように設定する。また仮に使用されても電力消費が限りなくゼロになるような回路設計にする。
【0038】
例えば、第1デジタルフィルタ13のFIR_Aの出力は、n回目の更新時、以下の式で示される。
Hout(n)=Hin_1(n)・WHH_1(n)+Hin_2(n)・WHH_2(n)+Hin_3(n)・WHH_3(n)+・・・・Hin_N(n)・WHH_N(n)
ここで、Hin_1(n)~Hin_N(n)は、水平偏波信号Hin(n)のFIR_Aにおける順次的に遅延した信号である。初期値においてはn=0回となる。
【0039】
ここで、タップ係数制御回路12から、第1デジタルフィルタ13へ初期値として、WHH_1(0)~WHH_N(0)が設定された場合について考える。この時に、仮に、FIR_Aの2番目のタップ係数が、実数部及び虚数部共にゼロ、即ちWHH_2(0)=0+j・0に設定された場合、
Hout(0)=Hin_1(0)・WHH_1(0)+Hin_2(0)・WHH_2(0)+Hin_3(0)・WHH_3(0)+・・・・Hin_N(0)・WHH_N(0)
=Hin_1(0)・WHH_1(0)+0+Hin_3(0)・WHH_3(0)+・・・・Hin_N(0)・WHH_N(0)
となる。
【0040】
次に、CMAのアルゴリズムによって、WHH_1(1)~WHH_N(1)が計算される。この時、WHH_2(1)の値として、有限の値が算出されても、WHH_2(n)=0+j・0として、FIR_Aのタップ係数の計算は行われる。即ち、2番目のタップでは実数部の乗算及び虚数部の乗算共に最初から結果をゼロに設定する。これは、タップ係数制御回路12から次の初期値が設定されるまで続けられる。なお、タップ係数のゼロ設定は、4つのFIRフィルタ、実数部、虚数部で、それぞれ独立に行われる。
【0041】
次に、タップ係数制御回路12のタップ係数有効/無効判定アルゴリズムについて説明する。
図7は、タップ係数制御回路のタップ係数有効/無効判定アルゴリズムのフローチャートである。
【0042】
タップ係数有効/無効判定アルゴリズムとは、算出されたタップ係数に対して、有効か、無効かを判定するアルゴリズムである(以降、有効/無効の判定と記載する)。また、タップ係数制御回路12のタップ係数の有効/無効の判定は、第2デジタルフィルタ10及び第2タップ係数更新器11によってタップ係数の逐次更新アルゴリズムの収束動作が完了しタップ係数が求められる毎に行われる。
【0043】
以下に、各ステップの動作を説明する。まず、ステップ1として、第2デジタルフィルタ10と第2タップ係数更新器11によって、逐次更新アルゴリズムに基づいて第2デジタルフィルタ10の全タップ係数WHH_1~WHH_N、WVH_1~WVH_N、WHV_1~WHV_N、及びWVV_1~WVV_N、が求められる。これらの値は、逐次更新アルゴリズムの収束動作の完了後の値である。各タップ係数は、IQ平面上の座標(I値+jQ値)で表記される。I+jQは、所謂複素数である。
【0044】
次に、ステップ2として、ステップ1で求められた第2デジタルフィルタ10の全タップ係数について、IQ平面上のI値とQ値をまとめて絶対値が大きい順に並べる。この場合、I値だけに対しての有効/無効の判定、及びQ値だけに対しての有効/無効判定を行うことも可能である。しかし、実験的検証において、I値とQ値をまとめて行う有効/無効判定の方が、別々に行う判定よりも、高い性能が得られた。また、
図6に示すように、水平偏波信号と垂直偏波信号の両者について処理を行う場合、4つのFIRフィルタのI値とQ値をまとめて有効/無効判定を行うことができる。この場合も、4つのFIRフィルタをまとめて行う判定の方が、フィルタ個別に行う判定よりもより高い性能が得られる。
【0045】
次に、ステップ3(第1判定)として、絶対値順に並べられたタップ係数に対して、上位の指定数M以上のタップ係数を有効、指定数M未満のタップ係数を無効と仮判定する。ここで、絶対値の大きいタップ係数ほど、第1タップ係数更新器14のタップ係数更新の計算に寄与する度合いが大きい。従って、第2タップ係数更新器11で更新したタップ係数について第1タップ係数更新器14の計算に寄与する度合が大きい順に並べ、上位の指定数以上のタップ係数を有効、指定数未満のタップ係数を無効と判定することになる。
【0046】
ステップ4-1(第2判定)として、ステップ3で有効と仮判定されたタップ係数について、前回の第2判定時に有効A又は有効Bであれば有効Aと最終判定する(最終有効A判定(Final validity “A” judgment))。一方、前回の第2判定時に無効とされた場合、ステップ5-1に進む。
【0047】
ステップ4-2(第2判定)として、ステップ3で無効と仮判定されたタップ係数について、前回の第2判定時にも無効とされた場合、無効と最終判定する(最終無効判定(Final invalidity judgment))。一方、前回の第2判定時に有効とされた場合、ステップ5-2に進む。
【0048】
ステップ5-1(第2判定)として、ステップ4-1で前回の第2判定時に無効とされたタップ係数について、その絶対値が閾値T1以上の場合は有効Bと最終判定する(最終有効B判定(Final validity “B” judgment))。一方、その絶対値が閾値T1未満の場合は無効と最終判定する(最終無効判定)。
【0049】
次に、ステップ5-2(第2判定)として、ステップ4-2で前回の第2判定時に有効A又は有効Bとされたタップ係数について、その絶対値が閾値T2以上の場合は有効Aと最終判定する(最終有効A判定)。一方、その絶対値が閾値T2未満の場合は無効と最終判定する(最終無効判定)。なお、ステップ5-1における閾値T1とステップ5-2における閾値T2は互いに異なってもよいし同じでもよい。以上のアルゴリズムにより、全てのタップ係数について有効/無効の判定が行われる。
【0050】
ステップ6-1として、タップ係数制御回路12は、有効Aと最終判定したタップ係数は使用せず、その代わりに第1タップ係数更新器14の前回の更新結果を、第1タップ係数更新器14により更新される第1デジタルフィルタ13のタップ係数の初期値として設定する。前回は有効と判定されているので、設定されている係数はゼロではない。従って、第2のタップ係数更新の新たな結果を初期値に設定する必要はないとした。
【0051】
ステップ6-2として、タップ係数制御回路12は、有効Bと最終判定したタップ係数を、第1タップ係数更新器14により更新される第1デジタルフィルタ13のタップ係数の初期値として設定する。前回は無効と判定されているので、設定されている係数はゼロである。従って、今回、新たに設定を行うため、初期値を設定する必要がある。
【0052】
ステップ6-3として、タップ係数制御回路12は、無効と判定したタップ係数に対応する第1デジタルフィルタ13のタップ係数の初期値をゼロに設定する。さらに、次の判定が行われ新たな初期値が設定されるまでゼロ設定を維持する。なお、タップ係数をゼロに設定した場合、そのタップ係数の乗算と乗算結果の加算は実行しないようにする。これは、フィルタの計算式に予めゼロを設定した式を作成し、その式に更新したタップ係数を入力することで可能となる。
【0053】
上述したように、タップ係数有効/無効判定アルゴリズムは、1回前の判定結果と、任意に設定した閾値とで、タップ係数の有効/無効を判定する。しかし、判定方法は上記の方法に限定されない。過去の判定結果と複数の閾値とを組み合わせることで種々の判定アルゴリズムが構成可能である。
【0054】
図8は、実施の形態1に係る適応等化器の動作タイミングを示す図である。(a)は、受信信号のシンボルタイミングを示す。(b)は、第2タップ係数更新器11の動作タイミングを示す。(c)は、タップ係数制御回路12の有効/無効の判定タイミングを示す。(d)は、第1タップ係数更新器14の動作タイミングを示す。ここで言うシンボルとは、受信信号のデータが変化或いは更新される周期を言う。
【0055】
(a)及び(b)に示すように、受信信号のシンボルp1~p2まで、第2タップ係数更新器11の収束動作2-1が行われる。同様に、シンボルp2~p3まで、第2タップ係数更新器11の収束動作2-2が行われ、シンボルp3~p4まで、第2タップ係数更新器11の収束動作2-3が行われる。これらの収束動作ごとに求められた第2デジタルフィルタ10のタップ係数は、(c)に示すように、タップ係数制御回路12で有効/無効の判定が行われる。それぞれの判定結果は、(d)に示すように、第1タップ係数更新器14の収束動作に反映される。
【0056】
例えば、第2タップ係数更新器11の収束動作2-1で求められたタップ係数は、タップ係数制御回路12において判定2として判定される。判定2として判定されたタップ係数は、第1タップ係数更新器14の収束動作1-2に反映される。第1タップ係数更新器14の収束動作1-2が収束した後は、その収束結果が次の収束動作1-3が開始されるまで継続して使用される。
【0057】
上記の動作の中で、収束動作2-1で求められたタップ係数が、その前の収束動作で求められたタップ係数と同じ場合は、タップ係数制御回路12の制御(有効/無効の判定を含む)を行う必要はなく、第1タップ係数更新器14の収束動作1-1の結果を更に次の判定(判定3)が出るまで継続できる(図示していない)。また、判定2が判定1と同じ場合でも、それ以上の制御は行われず、第1タップ係数更新器14の収束動作1-1の結果が更に次の判定(判定3)が出るまで継続される(図示していない)。
【0058】
また、タップ係数制御回路12の有効/無効の判定結果は、判定3から収束動作1-3に示すように、即時的に反映する必要はない。回路遅延などを考慮して多少遅延させることも可能である。
また、第2タップ係数更新器11が係数更新に使用するシンボルは1シンボル目、11シンボル目、21シンボル目だが、第1タップ係数更新器14が使用するシンボルは2シンボル目、12シンボル目、22シンボル目でも構わない。
【0059】
以上説明したように、本実施の形態では、第2タップ係数更新器11で収束したタップ係数について有効か又は無効かを判定し、無効と判定したタップ係数に対応する第1デジタルフィルタ13のタップ係数を次の判定結果が出るまでゼロに設定して第1タップ係数更新器14の計算に使用されないようにする。このため、消費電力が低減される。また、第2タップ係数更新器11で更新したタップ係数について第1タップ係数更新器14の計算に寄与する度合が大きい順に並べ、上位の指定数以上のタップ係数を有効、指定数未満のタップ係数を無効と判定する。このようにしてタップ係数の値が等化処理への寄与が小さいと判断したタップの計算を行わないようにする。これにより、高い等化性能を得つつ、低消費電力化を図ることができる。
【0060】
実施の形態2.
図9は、実施の形態2に係る適応等化器を示す構成図である。本実施の形態に係る適応等化器7は、第1デジタルフィルタ13と同じ構成を有する第3のデジタルフィルタ15が第1デジタルフィルタ13に並列に接続されている点が
図3に示す実施の形態1に係る適応等化器7とは異なる。
【0061】
実施の形態1では、第1デジタルフィルタ13の出力は、第1タップ係数更新器14に供給されると共に、適応フィルタ9の出力として
図2に示す復号器8に供給される。これに対して、本実施の形態では、第3のデジタルフィルタ15の出力が適応フィルタ9の出力となり、第1デジタルフィルタ13の出力は第1タップ係数更新器14のみに供給される。
【0062】
この時、第3のデジタルフィルタ15のタップ係数には、第1デジタルフィルタ13のタップ係数と同じ値が設定される。しかし、第1タップ係数更新器14が収束動作中は、前回の収束動作の結果が維持され、収束動作終了後に新たな収束結果が設定される。これにより、第1デジタルフィルタ13と第1タップ係数更新器14が収束動作中、第3のデジタルフィルタ15のタップ係数は変動しないため、安定的な補償出力が得られる。その他、第2デジタルフィルタ10、第2タップ係数更新器11、及びタップ係数制御回路12の構成及び動作は実施の形態1と同じである。
【0063】
図10は、実施の形態2の適応等化器の実施例を示す図である。この実施例では、
図9に示した適応等化器7の第1デジタルフィルタ13、第2デジタルフィルタ10、第3のデジタルフィルタ15、及びそれらの間の配線が詳細化されている。
【0064】
以下、実施の形態2に係る適応等化器の動作について説明する。第2デジタルフィルタ10及び第2タップ係数更新器11のCMAで求められたタップ係数は、タップ係数制御回路12に供給される。それらのタップ係数は、WHH_1~WHH_N、WVH_1~WVH_N、WHV_1~WHV_N、及びWVV_1~WVV_Nである。
【0065】
タップ係数制御回路12は、前述したアルゴリズムに基づいて、上記の全タップに対して有効か無効かの判定を行う。そして、タップ係数制御回路12は、無効と判定とされたタップをゼロに変更し、第1デジタルフィルタ13のタップに第1タップ係数更新器14のCMA動作の初期値として設定する。
【0066】
設定後は、第1デジタルフィルタ13と第1タップ係数更新器14においてタップ係数更新動作がCMAによって行われる。タップ係数制御回路12がゼロとして設定したタップについては、第1タップ係数更新器14の更新結果に関わらず、次の収束結果が出るまでゼロに設定し続ける。タップ係数をゼロに設定したタップにおいては、乗算・加算が行われないように設定する。また仮に行われても電力消費が限りなくゼロになるような回路設計にする。
【0067】
なお、この構成では、タップ係数更新動作が行われている間、第3のデジタルフィルタ15は前回の収束動作で求められたタップ係数で動作を継続し、その出力が適応等化器7の出力となる。第1デジタルフィルタ13と第1タップ係数更新器14による収束動作が終了した後、それによって求められたタップ係数が第3のデジタルフィルタ15に設定される。以降、第3のデジタルフィルタ15は第1タップ係数更新器14から次の収束結果(タップ係数)が設定されるまで先のタップ係数で動作を継続する。
【0068】
以上説明したように、実施の形態2に係る適応等化器7においても、タップ係数の絶対値が小さいタップの計算を行わない。これにより、高い等化性能を得つつ、低消費電力化を図ることができる。さらに、主信号が通る第3のデジタルフィルタ15のタップ係数が収束動作中に変動することがないので、安定した補償出力を得ることができる。
【0069】
また、上述した逐次更新アルゴリズムにおいては、タップ係数の更新の幅の指標となるステップサイズを定義している。第2タップ係数更新器11により更新された全体のタップ係数の数に対する無効と判定されたタップ係数の数の割合に応じて、第1タップ係数更新器14の逐次更新アルゴリズムのステップサイズを変更してもよい。例えば、無効と判定されたタップ係数の数が全体のタップ係数の数の半分になるような状態では、フィルタ出力と所望値との誤差も半分になるので、ステップサイズを倍にして追従速度を保つ必要がある。従って、全体のタップ係数の数に対する無効と判定されたタップ係数の数の割合が大きくなるに従って、タップ係数に足し込む誤差が小さく見えるので、その分ステップサイズを大きくする必要がある。
【0070】
また、上述の通り、無効と判定されたタップ係数にゼロを設定する場合、第1デジタルフィルタ13において、次の判定が行われるまで乗算を行わない。その具体的な方法として、第1タップ係数更新器14からその無効と判定されたタップ係数の番号にはフィードバックしない方法、フィードバック値をゼロに設定する方法、フィードバック後にゼロに設定する方法などがある。
【0071】
また、第1及び第2タップ係数更新器14,11の係数更新タイミングは1シンボル毎に行うことも可能である。この場合、係数更新は、1シンボル毎に行い、有効/無効の判定は、数十シンボル毎にすることも可能である。
【符号の説明】
【0072】
4 光受信機、5 AD変換器、7 適応等化器、9 適応フィルタ、10 第2デジタルフィルタ、11 第2タップ係数更新器、12 タップ係数制御回路、13 第1デジタルフィルタ、14 第1タップ係数更新器、15 第3のデジタルフィルタ