IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

<>
  • 特許-識別器の生成方法 図1
  • 特許-識別器の生成方法 図2
  • 特許-識別器の生成方法 図3A
  • 特許-識別器の生成方法 図3B
  • 特許-識別器の生成方法 図3C
  • 特許-識別器の生成方法 図3D
  • 特許-識別器の生成方法 図4
  • 特許-識別器の生成方法 図5A
  • 特許-識別器の生成方法 図5B
  • 特許-識別器の生成方法 図5C
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-11
(45)【発行日】2022-04-19
(54)【発明の名称】識別器の生成方法
(51)【国際特許分類】
   G01N 30/86 20060101AFI20220412BHJP
【FI】
G01N30/86 E
G01N30/86 Q
【請求項の数】 5
(21)【出願番号】P 2020550973
(86)(22)【出願日】2018-10-02
(86)【国際出願番号】 JP2018036801
(87)【国際公開番号】W WO2020070786
(87)【国際公開日】2020-04-09
【審査請求日】2021-03-25
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】100179969
【弁理士】
【氏名又は名称】駒井 慎二
(74)【代理人】
【識別番号】100173532
【弁理士】
【氏名又は名称】井上 彰文
(72)【発明者】
【氏名】金澤 慎司
(72)【発明者】
【氏名】早川 禎宏
【審査官】高田 亜希
(56)【参考文献】
【文献】特開平06-094696(JP,A)
【文献】特開2016-136125(JP,A)
【文献】HU YUZHU et al.,Assessment of chromatographic peak purity by means of artificial neural networks,JORNAL OF CHROMATOGRAPHY A,1996年,P259-270
【文献】ディープラーニング技術を活用したスモールスタートサービスで予測分析導入を支援,Wave,日本,東芝情報システム株式会社 [オンライン],2017年05月,vol.21,P6-7,https://www.tjsys.co.jp/wave/files/Wave-21_06.pdf,[検索日 2018.1.9],インターネット:〈URL:https://www.tjsys.co.jp/wave/files/Wave-21_06.pdf〉
(58)【調査した分野】(Int.Cl.,DB名)
G01N 30/00 -30/96
B01J 20/281-20/292
G01N 25/20
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
ピーク検出を行うための識別器を生成する方法であって、
第1のピークを有する時系列信号である第1の波形データを実測により得る第1の工程と、
前記第1のピークとは異なるピーク位置を有する第2のピークを有する時系列信号である第2の波形データを実測により得る第2の工程と、
前記第1の波形データ前記第2の波形データとを同一時間軸上で重ね合わせて、前記第1のピークと前記第2のピークとを含む未分離波形データを生成する第3の工程と、
前記未分離波形データを含む教師データを識別器に入力して学習を行う第4の工程と、
を有する、識別器の生成方法。
【請求項2】
前記第の工程において、前記識別器に入力する教師データとして、前記未分離波形データを生成する前の前記第1および第2の波形データを用いる、
請求項1に記載の識別器の生成方法。
【請求項3】
前記第1および第2の波形データにおける前記第1および第2のピークのうち少なくとも一方の面積値を用いる、
請求項に記載の識別器の生成方法。
【請求項4】
前記第4の工程における前記学習の結果に基づいて前記第1のピークと前記第2のピークとを分離する学習済みモデルを構築する、
請求項1から3の何れか一項に記載の識別器の生成方法。
【請求項5】
前記第1および第2の波形データがクロマトグラフにより得られ、前記第1の波形データの前記第1のピークが第1の成分に対応し、前記第2の波形データの前記第2のピークが第2の成分に対応する、
請求項1から4の何れか一項に記載の識別器の生成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、識別器の生成方法に関する。
【背景技術】
【0002】
ガスクロマトグラフ装置や液体クロマトグラフ装置では、各種成分が含まれる試料をカラムに導入し、この試料がカラムを通過する過程で各種成分を時間方向に分離し、カラムの出口に設けた検出器により検出する。検出器により得られたクロマトグラムには、試料中の成分に対応するピークが現れる。ピークが観測される時間(保持時間)は成分の種類に対応しているため、ピークの保持時間から成分を特定する、つまりは定性分析を行うことができる。また、ピークの高さや面積はその成分の濃度又は含有量に対応しているため、ピークの高さ値や面積値からその成分の濃度や含有量を求める、つまりは定量分析を行うことができる。
【0003】
定性分析や定量分析を行うには、クロマトグラム波形上でピーク検出(ピークの始点と終点の位置の決定、およびピーク位置での強度の決定を含む)を行う必要がある。実際のクロマトグラム波形では、複数の成分由来のピークが重なることで未分離ピークが検出されることがある。
【0004】
従来から、クロマトグラム波形に基づくピーク検出法として様々なアルゴリズムが提案され、実用に供されている。例えば、連続ウェーブレット変換を用いたピークの検出方法が提案されている(非特許文献1参照)。
【先行技術文献】
【非特許文献】
【0005】
【文献】Pan Du, Warren A. Kibbe and Simon M. Lin著「Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching」Oxford University Press、2006年、22巻、17号、p. 2059―2065
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来におけるピークの検出方法では、オペレータが検出用パラメータを設定する必要がある。従って、オペレータの巧拙によっては、ピーク検出を正確に行うことができない、あるいは、ピーク検出に過度の試行錯誤が必要となり、ひいては時間がかかってしまうという問題がある。
【0007】
そこで、本発明は、上記課題を解決するために、各種成分のピークが重なった未分離ピークにおいても、各種成分の正確なピーク検出を行うことが可能な識別器の生成方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の例示的な識別器の生成方法は、ピーク検出を行うための識別器を生成する方法であって、第1のピークを有する時系列信号である第1の波形データを実測により得る第1の工程と、前記第1のピークとは異なるピーク位置を有する第2のピークを有する時系列信号である第2の波形データを実測により得る第2の工程と、前記第1の波形データ前記第2の波形データとを同一時間軸上で重ね合わせて、前記第1のピークと前記第2のピークとを含む未分離波形データを生成する第3の工程と、前記未分離波形データを含む教師データを識別器に入力して学習を行う第4の工程と、を有する。本発明において、ピーク検出には、例えば、ピーク位置の検出、ピーク始点・終点の検出、ピーク強度の検出、面積の検出等が含まれる。
【発明の効果】
【0009】
本発明によれば、測定により得られた各種成分のピーク同士を重ね合わせることで未分離ピークの学習データを生成するため、未分離ピークの生成前の各ピークを教師データとして用いることができる。これにより、機械学習の精度を向上させることができ、測定対象の試料の各種成分のピークを正確に検出することができる。
【図面の簡単な説明】
【0010】
図1】データ解析装置の機能構成を示すブロック図である。
図2】コンピュータの機能構成を示すブロック図である。
図3A】従来における未分離ピークの学習方法を説明するための図である。
図3B】従来における未分離ピークの学習方法を説明するための図である。
図3C】従来における未分離ピークの学習方法を説明するための図である。
図3D】従来における未分離ピークの学習方法を説明するための図である。
図4】本実施の形態に係る未分離ピークの最適な分離方法を決定するための機械学習を行うコンピュータの動作を示すフローチャートである。
図5A】本実施の形態に係る未分離ピークの学習方法を説明するための図である。
図5B】本実施の形態に係る未分離ピークの学習方法を説明するための図である。
図5C】本実施の形態に係る未分離ピークの学習方法を説明するための図である。
【発明を実施するための形態】
【0011】
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
【0012】
<データ解析装置1の構成例>
まず、試料に含まれる各種成分のピークを検出するデータ解析装置1について説明する。本実施の形態では、データ解析装置1として、例えば液体クロマトグラフを採用した例について説明する。図1は、データ解析装置1の機能構成の一例を示すブロック図である。
【0013】
図1に示すように、データ解析装置1は、測定装置10と、演算装置60とを備えている。測定装置10は、移動相容器100と、送液ポンプ110と、試料注入部120と、カラム130と、検出器140とを有している。
【0014】
移動相容器100は、移動相を貯留するための容器である。送液ポンプ110は、移動相容器100内に貯留されている移動相を吸引して一定流量で送給する。試料注入部120は、標準試料および未知試料といった複数の液体試料から一つの液体試料を選択し、選択した液体試料を送液ポンプ110から送給される移動相中に注入する。なお、必要な場合には、試料に対して希釈または濃縮等の前処理を行ってから、処理後における試料を移動相中に注入することもできる。
【0015】
カラム130は、移動相に注入された試料が通過する間に、この試料に含まれる成分を時間的に分離する。検出器140は、例えば分光測定装置を用いた検出器であって、カラム130で分離された試料の成分を電気信号の波形データ(スペクトルと称してもよい)に変換してデータ処理部30に出力する。なお、本実施の形態において、波形データには、第1の変数(例えば横軸の周波数)に対する第2の変数(例えば縦軸の強度)をプロットした2次元データ、または、第1の変数、第2の変数の他に第3の変数(例えば波長、質量数)を加えた3次元データが含まれる。また、波形データのピークとは、第1の変数の所定の値としてのピーク位置に対して第2の変数の値が極大値ないし最大値をとることを意味する。ピークは所定の幅(ピーク幅)を有し、ピーク幅は第1の変数のピーク中心であるピーク位置に対して対称または非対称に広がることを意味する。
【0016】
演算装置60は、制御部20と、データ処理部30と、入力部40と、表示部50と、インタフェース52とを有している。
【0017】
制御部20には、送液ポンプ110と、試料注入部120、検出器140、データ処理部30、入力部40、表示部50およびインタフェース52のそれぞれが接続されている。制御部70は、例えばCPU(Central Processing Unit)を含み、ROM(Read Only Memory)等のメモリに記憶されているプログラムやデータ処理部30のプログラム等を実行することにより、装置全体の動作を制御する。
【0018】
データ処理部30は、制御部20および検出器140のそれぞれに接続され、制御部20およびプログラムにより具現化されるものである。データ処理部30は、データ収集部310と、ピーク検出処理部320と、定性・定量解析部330とを有している。
【0019】
データ収集部310は、測定装置10により測定された試料の各種成分に基づくクロマトグラムの波形データをそれぞれ収集し、収集した波形データを記憶する。
【0020】
ピーク検出処理部320は、機能ブロックとして、学習済みモデル記憶部322と、ピーク決定部324とを有している。後述するコンピュータで作成される学習済みモデルが、データ処理部30におけるメモリに格納されて学習済みモデル記憶部322として機能する。ここで、学習済みモデルとは、後述する識別器を教師データで機械学習させたものである。ピーク検出処理部320のピーク決定部324は、例えば、測定装置10により測定された波形データに未分離ピークが含まれる場合、学習済みモデル記憶部322に格納された学習済みモデルを用いて、未分離ピークを各種成分に対応する複数のピークに自動的に分離する。これにより、各種成分に対応した分離ピークを検出できる。
【0021】
定性・定量解析部330は、ピーク検出処理部320から与えられたピーク情報に基づいて、各ピークに対応する成分を同定し、ピーク高さおよびピーク面積値を計算し、その値から各成分の濃度または含有量を算出する。
【0022】
なお、通常、データ処理部30の実態は、所定のソフトウェアがインストールされたパーソナルコンピュータやより性能の高いワークステーション、またはこれらのコンピュータと通信回線を介して接続された高性能なコンピュータを含むコンピュータシステムである。すなわち、データ処理部30に含まれる各ブロックの機能は、コンピュータ単体または複数のコンピュータを含むコンピュータシステムに搭載されているソフトウェアを実行することで実施される。
【0023】
入力部40は、例えば、キーボード、マウス、タッチパネル等により構成され、測定装置10の各種操作を行い、測定装置10から供給されるクロマトグラムの波形データの解析等の操作を行う。表示部50は、例えば、液晶ディスプレイ等から構成されるモニタであり、検出器140で検出された各種成分の波形データ等を表示し、定性・定量分析結果を表示する。
【0024】
インタフェース52は、LAN(Local Area Network)やWAN(Wide Area Network)、USB(Universal Serial Bus)等により構成され、例えば後述するコンピュータ2との間で双方向の通信を行い、コンピュータ2側で作成された学習済みモデルを受信等する。
【0025】
<コンピュータ2の構成例>
次に、入力される学習データに基づいて機械学習を行うコンピュータ2について説明する。図2は、コンピュータ2の機能構成の一例を示すブロック図である。
【0026】
図2に示すように、コンピュータ2は、制御部70と、モデル作成部80と、記憶部92と、表示部94と、入力部96と、インタフェース98とを備えている。制御部70、モデル作成部80、記憶部92、表示部94、入力部96およびインタフェース98は、バス72を介して互いに接続されている。
【0027】
制御部70は、例えばCPUを含み、ROM等のメモリに記憶されているプログラムやモデル作成部80のプログラム等を実行することにより、装置全体の動作を制御し、未分離ピークの分離方法を推定するための機械学習を実施する。
【0028】
モデル作成部80は、例えば複数のピークが重なり合った未分離ピークにおける最適な分離方法を決定するための学習済みモデルを構築する。モデル作成部80は、機能ブロックとして、学習データ生成部810と、識別器820とを有している。なお、モデル作成部80は、記憶部92内に格納することもできる。
【0029】
学習データ生成部810は、データ解析装置1により測定される各種試料のクロマトグラムの波形データを用いて、複数のピークが重なり合った未分離ピークを含む学習用の波形データを生成する。また、学習データ生成部810は、生成した未分離ピークを含む波形データに対して、未分離ピークの重ね合わせる前における各ピークの波形データを教師データとして対応付ける。教師データには、例えば波形データの各ピークの面積値や高さ値を利用することができる。さらに、学習データ生成部810は、データ解析装置1により測定される試料に未分離ピークの波形データが含まれていない場合を考慮し、未分離ピーク以外の分離した様々な波形データも測定により取得する。
【0030】
なお、上述した実施の形態では、コンピュータ2の学習データ生成部810により未分離ピークの波形データD12を作成し、その作成した波形データD12を識別器820に取り込んで機械学習を行うようにしたが、これに限定されることはない。例えば、コンピュータ2とは別の装置で、取得した波形データD1,D2から未分離ピークを含む波形データD12を作成し、この作成した波形データD12をコンピュータ2の識別器820に入力するようにしても良い。
【0031】
また、本実施の形態では、機械学習で用いる試料の波形データを、便宜上図1に示したデータ解析装置1の測定装置10を用いて取得する例について説明するが、測定装置10と同等の機能を有する他の測定装置を用いて学習用の試料の波形データを取得することもできる。
【0032】
識別器820は、学習データ生成部810により生成された未分離ピークの波形データと、未分離ピークの生成前における各ピークの波形データとを含む学習データを用いて機械学習を実施し、未分離ピークにおける最適な分離方法を決定するための学習済みモデルを作成する。本実施の形態では、未分離ピークに対して未分離ピークを構成する各ピークの教師データを付けているので、機械学習の精度の向上を図ることができる。また、識別器820は、未分離ピーク以外の波形データも取り込んで機械学習を実施し、未分離ピーク以外のピークも正確に検出することが可能な機能も学習済みモデルに含める。ここで、識別器820の機械学習の手法としては、例えば、ニューラルネットワークや、SVM(サポートベクトルマシン)、アダブースト(AdaBoost)等の公知のアルゴリズムを用いることができる。
【0033】
記憶部92は、ROM(Read only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、HDD(Hard Disc Drive)、SSD(Solid State Drive)等の不揮発性記憶装置により構成されている。記憶部92には、例えばOS(Operating System)等が格納される。
【0034】
表示部94は、例えば、液晶ディスプレイ等から構成されるモニタである。入力部96は、例えば、キーボード、マウス、タッチパネル等により構成され、機械学習の実施に関する各種操作を行う。
【0035】
インタフェース98は、LANやWAN、USB等により構成され、例えばデータ解析装置1との間で双方向の通信を行い、クロマトグラムの波形データをデータ解析装置1から受信し、作成した学習済みモデルをデータ解析装置1に送信する。
【0036】
<機械学習方法>
次に、データ解析装置1により測定される試料のクロマトグラムが複数のピークが重なり合った未分離ピークである場合に、識別器820を用いて各種成分のピークを正確に分離するための学習済みモデルを構築する機械学習方法について説明する。以下では、従来における機械学習方法について説明し、続けて、本実施の形態における機械学習方法について説明する。また、データ解析装置1により分離、検出を行う試料としては、例えば、成分A,Bを含む試料を用いるものとする。
【0037】
[従来における未分離ピークの機械学習方法]
まず、データ解析装置1により成分A、Bを含む試料の分離、検出を行い、成分AのピークP3と成分BのピークP4とが重ね合わされた未分離ピークを含む波形データD34を取得する。図3Aは、波形データD34の一例を示している。図3Aに示すように、波形データD34は、保持時間t1に成分AのピークP3を有し、保持時間t2に成分BのピークP4を有する。取得した波形データD34は、学習データとして識別器820に入力される。
【0038】
ここで、入力する波形データD34により機械学習を行う場合、未分離ピークにおける成分AのピークP3と成分BのピークP4とを正確に分離するために、波形データD34に対応する教師データを用意する必要がある。教師データとしては、例えばオペレータが未分離ピークを分離することで得られるピークP3を含む波形データD3とピークP4を含む波形データD4とをそれぞれ用いることができる。この場合、分離したピークP3およびピークP4の各面積値については予め知ることができるため、入力した波形データD34における未分離ピークからピークP3とピークP4とを分離できる。なお、未分離ピークの分離作業は、コンピュータによるアルゴリズムにより自動的に実施することも可能である。
【0039】
未分離データの分離方法としては、以下のような方法がある。図3Bは、垂直分割法を示している。図3Bに示すように、垂直分割法では、波形データD34におけるピークP3とピークP4との間の振幅値が最小となる地点(以下、境界点という)からベースライン上に垂直に引いた垂線により、ピークP3とピークP4とを分離し、波形データD3と波形データD4とを得る。
【0040】
図3Cは、第1のベースライン分割法を示している。図3Cに示すように、第1のベースライン分割法では、ピークP3における始点と上記境界点との間に亘ってベースラインを引き、ピークP4における上記境界点と終点との間に亘ってベースラインを引くことにより、ピークP3とピークP4とを分離し、波形データD3と波形データD4とを得る。
【0041】
図3Dは、図3Cとは異なる第2のベースライン分割法を示している。図3Dに示すように、第2のベースライン分割法では、ピークP3における始点とピークP4の終点との間に亘ってベースラインを引き、上記境界点とピークP4の終点との間に亘ってベースラインを引きくことにより、ピークP3とピークP4とを分離し、波形データD3と波形データD4とを得る。
【0042】
上述した各分離方法により得られた、ピークP3を含む波形データD3およびピークP4を含む波形データD4のそれぞれは、教師データとして識別器に入力される。識別器では、未分離ピークの波形データD34と、波形データD34に対応する教師データとしての波形データD3および波形データD4を用いて機械学習を実施し、未分離ピークを各ピークに正確に分離するための学習済みモデルを構築する。
【0043】
しかしながら、上述した未分離ピークの分離方法では、以下のような問題がある。すなわち、分離方法の種類によって分離後における各ピークの面積値や高さ値が異なってしてしまうという問題がある。そのため、各ピークP3,P4の教師データも、採用する分離方法の種類によってばらつきが発生するので、精度の高い機械学習を実施することができないという問題があった。その結果、所定の試料における各種成分のピークも正確に検出することができないという問題があった。そこで、以下に示す本実施の形態の機械学習方法により、上述した従来における問題を解決する。
【0044】
[本発明における未分離ピークの機械学習方法]
図4は、本実施の形態に係る成分A,Bの未分離ピークを分離する識別器820を構築するための機械学習方法の一例を示すフローチャートである。図5Aは、成分Aの波形データD1の一例を示している。図5Bは、成分Bの波形データD2の一例を示している。図5Cは、波形データD12の一例を示している。コンピュータ2は、モデル作成部80等のプログラムを実行することにより、図4に示す動作を実行する。
【0045】
ステップS10において、コンピュータ2の入力部96は、例えば図1に示したデータ解析装置1により測定された成分Aの波形データD1の入力を受け付ける。図5Aに示すように、波形データD1には、保持時間t1で成分Aに対応した振幅A1のピークP1が現れている。
【0046】
ステップS20において、コンピュータ2の入力部96は、データ解析装置1により成分Bの波形データD2の入力を受け付ける。図5Bに示すように、波形データD2には、保持時間t2で成分Bに対応した振幅A2のピークP2が現れている。なお、保持時間t2は保持時間t1よりも遅い時間であり、ピークP2はピークP1とは異なるピーク位置を有する。振幅A1は振幅A2よりも大きい振幅である。
【0047】
ステップS30において、コンピュータ2の学習データ生成部810は、入力部96から取り込んだ時系列信号である波形データD1と波形データD2とを重ね合わせて未分離ピークを含む波形データD12を作成する。つまり、ピークP1とピークP2とが未分離となるような波形データD12を意図的に作成する。図5Cに示すように、波形データD12は、保持時間t1にピークP1を有し、保持時間t2にピークP2を有し、互いに隣接するピークP1の終点とピークP2の始点が未分離の状態となっている。
【0048】
ステップS40において、コンピュータ2の識別器820は、作成した未分離ピークの波形データD12を学習データとして取り込むと共に、波形データD12に対応する波形データD1,D2を教師データとして取り込む。教師データとしては、上述したように、各ピークP1,P2の面積値が利用される。
【0049】
ステップS50において、コンピュータ2の識別器820は、取り込んだ波形データD12および教師データである波形データD1,D2を用いて機械学習を実施し、その学習結果に基づいて未分離ピークの正確な分離方法(分離位置)を推定するための学習済みモデルを構築する。このような学習方法により作成された学習済みモデルは、例えばコンピュータ2の記憶部92等のメモリに保存される。
【0050】
また、上述した学習済みモデルは、通信回線を介して図1に示したデータ解析装置1に送信され、学習済みモデル記憶部322に保存される。データ解析装置1では、所定の試料のピーク検出時において未分離ピークが検出された場合、未分離ピークの波形データを学習済みモデル記憶部322の学習済みモデルを用いることで成分毎のピークに分離する。未分離ピークに関する機械学習を実施した学習済みモデルを用いることで、例えば、未分離ピークのどの位置で分割するのが最適かを算出できるため、未分離ピークを各種成分に対応するピークに正確に分離できる。
【0051】
以上説明したように、本実施の形態によれば、予め独立して測定した各成分のピーク同士を重ね合わせることで未分離ピークの学習データを生成するため、未分離ピークの生成前の各ピークを教師データとして用いることができ、機械学習の精度を向上させることができる。これにより、精度が向上した機械学習を用いて未分離ピークの分離を実施できるので、測定対象となる試料の各種成分のピークを正確に検出することができる。また、本実施の形態によれば、学習データを多数取得するのが困難な場合でも、複数のピークを重ね合わせることで学習データを生成できるので、学習データの拡充を図ることができ、より機械学習の精度の向上を図ることができる。
【0052】
また、本実施の形態では、個々に測定した2つのピークP1,P2を重ね合わせて生成した未分離ピークの波形データD12に対して、その未分離ピークの生成前における各ピークP1,P2を教師データとして対応付けて識別器820に入力する。ピークP1,P2はそれぞれ独立してデータ解析装置1により検出するので、各ピークP1,P2の正確な面積値を予め取得することができる。これにより、各ピークP1,P2の既知の面積値を利用して、未分離ピークを正確に分離するための機械学習を実施することができるので、未分離ピークにおける最適な分離方法を決定することが可能な識別器820を構築できる。
【0053】
なお、本発明の技術範囲は、上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。
【0054】
例えば、本明細書において、拡充させるための学習データは、分析装置を用いて実測したスペクトルのピークを重ね合わせたものに限定されず、実測されるスペクトルを模擬したスペクトルのピークを重ね合わせたものであってもよい。当該模擬したスペクトルは、例えば、ピークのブロード化(テーリング、リーディングも含む)、ショルダーピークの出現、ピーク割れなどを模擬したもの、ベースラインのドリフト、ノイズを模擬したものであってもよい。当該模擬したピークは、公知のアルゴリズム、例えばi-PDeA II(島津製作所製)を用いて作成できる。
【0055】
また、上述した実施の形態では、成分A,Bの2つのピークP1,P2を重ね合わせて意図的に未分離ピークを生成したが、これに限定されることはない。例えば、3種以上の成分における3つ以上のピークを重ね合わせることで未分離ピークを生成し、これを学習データとして用いることもできる。この場合、各ピークの面積値を教師データとして利用することができる。また、成分A,BのピークP1,P2にはそれぞれ2つ以上のピークを含む場合があり、3種以上の成分の3つ以上のピークを用いた場合でも各ピークに対して2つ以上のピークを含む場合がある。
【0056】
また、上述した実施の形態では、機械学習の対象として液体クロマトグラフ装置で測定された波形データを用いた例について説明したが、これに限定されることはない。例えば、液体クロマトグラフ装置以外にも、ガスクロマトグラフ装置(GC)、ガスクロマトグラフ質量分析計(GC-MS)、液体クロマトグラフ質量分析計(LC-MS)、フォトダイオードアレイ検出器(LC-PDA)、液体クロマトグラフィータンデム質量分析装置(LC/MS/MS)、ガスクロマトグラフィータンデム質量分析装置(GC/MS/MS)、液体クロマトグラフ質量分析計(LC/MS-IT-TOF)等で得られた波形データに対しても本実施の形態に係る機械学習法を適用することができる。
【符号の説明】
【0057】
1 データ解析装置
2 コンピュータ
80 モデル作成部
810 学習データ生成部
820 識別器
D1,D2,D12 波形データ
P1,P2 ピーク
図1
図2
図3A
図3B
図3C
図3D
図4
図5A
図5B
図5C