(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-11
(45)【発行日】2022-04-19
(54)【発明の名称】モニタリングシステム、情報処理方法、及びプログラム
(51)【国際特許分類】
G01W 1/00 20060101AFI20220412BHJP
G01N 21/84 20060101ALI20220412BHJP
【FI】
G01W1/00 J
G01N21/84 Z
(21)【出願番号】P 2017208077
(22)【出願日】2017-10-27
【審査請求日】2020-09-09
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(74)【代理人】
【識別番号】110003339
【氏名又は名称】特許業務法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100117330
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100160989
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100168745
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】神田 淳
(72)【発明者】
【氏名】橋本 和樹
【審査官】福田 裕司
(56)【参考文献】
【文献】特開2016-170069(JP,A)
【文献】特開2008-180623(JP,A)
【文献】特表2003-502619(JP,A)
【文献】特開2014-052364(JP,A)
【文献】特開昭62-217144(JP,A)
【文献】特開2017-083352(JP,A)
【文献】特開2015-001379(JP,A)
【文献】特開2004-170432(JP,A)
【文献】米国特許出願公開第2016/0140854(US,A1)
【文献】伊藤 文和,さまざまな分野と連携する「次世代航空イノベーションハブ」,JAXA航空マガジン FLIGHT PATH,2015年12月,No.11,pp.3-7
【文献】CHAPTER2. AERODROME DATA,INTERNATINAL STANDARDS AND RECOMMENDED PRACTICES AERODROMES ANNEX14,INTERNATIONAL CIVIL AVIATION ORGANIZATION,2016年07月,pp.1-12
(58)【調査した分野】(Int.Cl.,DB名)
G01W 1/00
G01N 21/84
(57)【特許請求の範囲】
【請求項1】
測定対象表面となる第1の面と、前記第1の面の反対側の第2の面とを有する透過部材と、
前記透過部材の前記第2の面に1種類以上の第1の電磁波を出射する出射部と、
前記第1の電磁波の出射に応じて前記第2の面から出射される第2の電磁波を検出する検出部と
を有するモニタリング装置と、
前記モニタリング装置により検出された前記第2の電磁波の検出結果に基づいて、前記第1の面に堆積する堆積物に関する堆積物情報を生成する生成部と、
前記堆積物情報に基づいて、前記第1の面に対する前記堆積物の堆積状態に対応するように、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する設定部と
を有するコンピュータと
を具備するモニタリングシステム。
【請求項2】
請求項1に記載のモニタリングシステムであって、
前記堆積物情報は、前記第1の面に堆積する雪の雪厚、雪質、又は含水率の少なくとも一つを含み、
前記設定部は、前記雪厚、前記雪質、又は前記含水率の少なくとも1つに基づいて、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
モニタリングシステム。
【請求項3】
請求項2に記載のモニタリングシステムであって、
前記設定部は、前記雪厚が所定の閾値よりも大きい場合には前記第1の電磁波の波長を可視域の波長に設定し、前記雪厚が所定の閾値よりも小さい場合には前記第1の電磁波の波長を近赤外域の波長に設定する
モニタリングシステム。
【請求項4】
請求項2又は3に記載のモニタリングシステムであって、
前記設定部は、前記含水率が所定の閾値よりも大きい場合には前記第1の電磁波の波長を前記雪質及び前記含水率の
両方を測定するため
に適した波長として定められた第1の測定波長に設定し、前記含水率が所定の閾値よりも小さい場合には前記第1の電磁波の波長を
、前記第1の測定波長とは異なる前記雪質を測定するため
に適した波長として定められた第2の測定波長に設定する
モニタリングシステム。
【請求項5】
請求項1から4のうちいずれか1項に記載のモニタリングシステムであって、
前記生成部は、前記第2の電磁波の検出結果、又は前記堆積物情報の少なくとも一方に基づいて、前記第1の面
に対する前記堆積物の未来の堆積状態を予測する予測情報を生成し、
前記設定部は、前記予測情報に基づいて、
前記第1の面に対する前記堆積物の未来の堆積状態に対応するように、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
モニタリングシステム。
【請求項6】
請求項5に記載のモニタリングシステムであって、
前記予測情報は、前記第1の面に対する降雪量の予測を含み、
前記設定部は、前記降雪量が増加する旨の前記予測情報が生成された場合に、前記第1の電磁波の波長を、前記雪厚を測定するための可視域の波長に設定する
モニタリングシステム。
【請求項7】
請求項5又は6に記載のモニタリングシステムであって、
前記予測情報は、前記第1の面に対する降雨の予測を含み、
前記設定部は、前記第1の面に雪が積もっている状態において前記降雨がある旨の前記予測情報が生成された場合に、前記第1の電磁波の波長を、前記含水率を測定するための波長に設定する
モニタリングシステム。
【請求項8】
請求項1から7のうちいずれか1項に記載のモニタリングシステムであって、
前記コンピュータは、生成された前記堆積物情報の信頼度を判定し、
前記出射部は、前記堆積物情報の前記信頼度が所定の閾値よりも小さい場合に、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを
、前記設定部により設定された値に変更する
モニタリングシステム。
【請求項9】
請求項1から8のうちいずれか1項に記載のモニタリングシステムであって、
前記設定部は、ユーザの指示に基づいて、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
モニタリングシステム。
【請求項10】
請求項1から9のうちいずれか1項に記載のモニタリングシステムであって、
前記設定部は、所定の機械学習アルゴリズムに従って、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
モニタリングシステム。
【請求項11】
請求項1から10のうちいずれか1項に記載のモニタリングシステムであって、
前記第1の電磁波は、所定の偏波状態を有し、
前記第2の電磁波は、前記第2の面から出射される電磁波のうちの、前記第1の電磁波の偏波状態に基づいて規定される偏波成分である
モニタリングシステム。
【請求項12】
請求項11に記載のモニタリングシステムであって、
前記第1の電磁波は、第1の偏波方向を有する直線偏波であり、
前記第2の電磁波は、前記第1の偏波方向と略直交する第2の偏波方向を有する直線偏波である
モニタリングシステム。
【請求項13】
請求項1から12のうちいずれか1項に記載のモニタリングシステムであって、
前記堆積物情報は、前記堆積物の種類、厚み、密度、粒径、水分量、温度、堆積分布、摩擦係数、粒子の均一性、滑りやすさの指標となる情報、又は所定の基準に従った評価値の少なくとも1つを含む
モニタリングシステム。
【請求項14】
請求項13に記載のモニタリングシステムであって、
前記所定の基準に従った評価値は、国際民間航空機関が定める滑走路状態コードを含む
モニタリングシステム。
【請求項15】
請求項1から14のうちいずれか1項に記載のモニタリングシステムであって、
前記コンピュータは、さらに、前記堆積物情報を含む出力データを出力する出力部を有する
モニタリングシステム。
【請求項16】
請求項15に記載のモニタリングシステムであって、
前記出力データは、前記堆積物情報を含むテキストデータ、画像データ、又は音声データの少なくとも1つを含む
モニタリングシステム。
【請求項17】
請求項15又は16に記載のモニタリングシステムであって、
前記第1の面に堆積する堆積物は、滑走路表面に堆積する雪を含み、
前記出力部は、前記滑走路表面に堆積する雪の厚み、種類、密度、粒径、水分量、温度、堆積分布、摩擦係数、粒子の均一性、滑りやすさに関する情報、国際民間航空機関が定める滑走路状態コード、除雪作業の必要性の有無、又は離着陸が可能か否かを示す情報の少なくとも1つを含む前記出力データを出力する
モニタリングシステム。
【請求項18】
請求項1から17のうちいずれか1項に記載のモニタリングシステムであって、
前記生成部は、所定の機械学習アルゴリズムに従って、前記堆積物情報を生成する
モニタリングシステム。
【請求項19】
請求項1から18のうちいずれか1項に記載のモニタリングシステムであって、
前記コンピュータは、さらに、前記第2の電磁波の検出結果、又は前記堆積物情報の少なくとも一方に基づいて、外部の装置を制御するための制御情報を生成する制御情報生成部を有する
モニタリングシステム。
【請求項20】
測定対象表面となる第1の面と、前記第1の面の反対側の第2の面とを有する透過部材と、
前記透過部材の前記第2の面に1種類以上の第1の電磁波を出射する出射部と、
前記第1の電磁波の出射に応じて前記第2の面から出射される第2の電磁波を検出する検出部と
を有するモニタリング装置に通信可能に接続されるコンピュータシステムにより実行される情報処理方法であって、
前記モニタリング装置により検出された前記第2の電磁波の検出結果に基づいて、前記第1の面に堆積する堆積物に関する堆積物情報を生成し、
前記堆積物情報に基づいて、前記第1の面に対する前記堆積物の堆積状態に対応するように、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
情報処理方法。
【請求項21】
測定対象表面となる第1の面と、前記第1の面の反対側の第2の面とを有する透過部材と、
前記透過部材の前記第2の面に1種類以上の第1の電磁波を出射する出射部と、
前記第1の電磁波の出射に応じて前記第2の面から出射される第2の電磁波を検出する検出部と
を有するモニタリング装置に通信可能に接続されるコンピュータシステムに情報処理方法を実行させるプログラムであって、
前記情報処理方法は、
前記モニタリング装置により検出された前記第2の電磁波の検出結果に基づいて、前記第1の面に堆積する堆積物に関する堆積物情報を生成し、
前記堆積物情報に基づいて、前記第1の面に対する前記堆積物の堆積状態に対応するように、前記第1の電磁波の波長、波長帯域、波長幅、強度、偏波状態、又はパルス間隔の少なくとも1つを設定する
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、路面や構造物の表面の状態のモニタリングに適用可能な情報処理装置、情報処理方法、プログラム、及びモニタリングシステムに関する。
【背景技術】
【0002】
道路面や滑走路面(以降「路面」と言う)の着雪・着氷状態をモニタリングすることは、安全管理上、重要である。当該モニタリングのために、路面上の外部からレーザや音波等を照射して距離を測定することで積雪の深さを計測する技術が知られている。また外部から電磁波を照射して積雪等の状態を計測する技術も知られている。
【0003】
しかしながら、上記の技術を実施する場合に、路面上や路面傍にモニタリング装置を設置すると、交通障害の原因となってしまう可能性が高い。また空港の滑走路やその周囲の上方にモニタリング装置を設置することは、航空機の離着陸の安全性に影響を与えるため、設置に関して大きな制限がある。
【0004】
特許文献1には、路面や構造物の内部に埋め込むことが可能であり、路面や構造物の表面に局所的に付着した雪等(雪、氷、水、火山灰、砂等)の有無を判定できるとともに、詳細な積雪の深さや質に関する状態をモニタリングすることが可能な雪氷モニタリング装置が開示されている。
【0005】
この雪氷モニタリング装置を滑走路の内部に埋め込むことで、航空機の障害となることを回避することが可能である。また外部からの異物の衝突等による破損等を防止しつつ、滑走路全体の詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる(特許文献1の明細書段落[0011][0016])。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
このように路面や構造物の表面の状態を高精度にモニタリングすることは非常に重要であり、そのモニタリング結果を有効に利用することを可能とする技術が求められている。
【0008】
以上のような事情に鑑み、本発明の目的は、測定対象となる表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することを可能とする情報処理装置、情報処理方法、プログラム、及びモニタリングシステムを提供することにある。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明の一形態に係る情報処理装置は、取得部と、生成部とを具備する。
前記取得部は、測定対象表面に関する測定データを取得する。
前記生成部は、前記取得された測定データの特徴に基づいて、前記測定対象表面に堆積する堆積物に関する堆積物情報を生成する。
【0010】
この情報処理装置では、測定対象表面の測定データの特徴に基づいて、堆積物情報が生成される。これにより、測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0011】
前記堆積物情報は、前記堆積物の種類、厚み、密度、粒径、水分量、温度、堆積分布、摩擦係数、滑りやすさの指標となる情報、及び所定の基準に従った評価値の少なくとも1つを含んでもよい。
これにより高精度のモニタリング及びモニタリング結果の有効利用が可能となる。
【0012】
前記所定の基準に従った評価値は、国際民間航空機関が定める滑走路状態コードを含んでもよい。
これにより滑走路状態コードに基づいた滑走路の管理等が容易に実現される。
【0013】
前記生成部は、前記取得された測定データ、及び前記生成された堆積物情報の少なくとも一方に基づいて、前記測定対象表面の状態を予測する予測情報を生成してもよい。
これにより高精度のモニタリング及びモニタリング結果の有効利用が可能となる。
【0014】
前記取得部は、前記取得した測定データの特徴に基づいて、前記測定対象表面に関する予測測定データを生成してもよい。この場合、前記生成部は、前記生成された予測測定データに基づいて、前記予測情報を生成してもよい。
これにより高精度のモニタリング及びモニタリング結果の有効利用が可能となる。
【0015】
前記情報処理装置は、さらに、前記生成された堆積物情報を含む出力データを出力する出力部を具備してもよい。
これにより測定対象表面の状態を容易に把握することが可能となり、管理指針等を容易に決定することが可能となる。
【0016】
前記出力データは、前記堆積物情報を含むテキストデータ、画像データ、及び音声データの少なくとも1つを含んでもよい。
これにより測定対象表面の状態を容易に把握することが可能となり、管理指針等を容易に決定することが可能となる。
【0017】
前記測定対象表面に堆積する堆積物は、滑走路表面に堆積する雪を含んでもよい。
これにより滑走路表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。なお本開示では、氷、及び水は、雪の種類の1つ(雪の状態の1つ)に含まれ、従って「雪」は「雪氷」を含む。
【0018】
前記出力部は、前記滑走路表面に堆積する雪の厚み、種類、密度、粒径、水分量、温度、堆積分布、摩擦係数、滑りやすさに関する情報、国際民間航空機関が定める滑走路状態コード、除雪作業の必要性の有無、及び離着陸が可能か否かを示す情報の少なくとも1つを含む前記出力データを出力してもよい。
これにより滑走路表面の状態を容易に把握することが可能となり、滑走路の管理指針等を容易に決定することが可能となる。
【0019】
前記生成部は、所定の機械学習アルゴリズムに従って、前記堆積物情報を生成してもよい。もちろん所定のディープラーニング(深層学習)アルゴリズムや、所定のAI(人工知能)アルゴリズムが用いられてもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0020】
前記測定データは、前記測定対象表面に測定波を照射することで得られる測定テキストデータ、又は測定画像データを含んでもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0021】
前記測定データは、前記測定対象表面に向けて所定波長の電磁波、所定波長帯域の電磁波、及び所定波長幅の電磁波の少なくとも1つを照射することで得られる測定テキストデータ、又は測定画像データを含んでもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0022】
前記測定データは、前記測定対象表面に向けて波長の異なる複数の電磁波を照射することで得られる、前記複数の電磁波に対応する複数の測定データを含んでもよい。この場合、前記生成部は、前記複数の測定データに基づいて、前記堆積物情報を生成してもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0023】
前記測定データは、前記測定対象表面に向けて波長帯域又は波長幅の異なる複数の電磁波を照射することで得られる、前記複数の電磁波に対応する複数の測定データを含んでもよい。この場合、前記生成部は、前記複数の測定データに基づいて、前記堆積物情報を生成してもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0024】
前記生成部は、前記複数の測定データに対応する種類の異なる複数の堆積物情報を生成してもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0025】
前記種類の異なる複数の堆積物情報は、前記堆積物の厚み、水分量、及び粒径を含んでもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0026】
前記情報処理装置は、さらに、前記取得された測定データ、及び前記生成された堆積物情報の少なくとも一方に基づいて、前記測定波の特性を設定する設定部を具備してもよい。
これにより測定対象表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0027】
前記情報処理装置は、さらに、前記取得された測定データ、及び前記生成された堆積物情報の少なくとも一方に基づいて、外部の装置を制御するための制御情報を生成する制御情報生成部を具備してもよい。
【0028】
本発明の一形態に係る情報処理方法は、コンピュータシステムにより実行される情報処理方法であって、測定対象表面に関する測定データを取得することを含む。
前記取得された測定データの特徴に基づいて、前記測定対象表面に堆積する堆積物に関する堆積物情報が生成される。
【0029】
本技術の一形態に係るプログラムは、コンピュータシステムに以下のステップを実行さ
せる。
測定対象表面に関する測定データを取得するステップ。
前記取得された測定データの特徴に基づいて、前記測定対象表面に堆積する堆積物に関する堆積物情報を生成するステップ。
【0030】
本技術の一形態に係るモニタリングシステムは、モニタリング装置と、情報処理装置とを具備する。
前記モニタリング装置は、前記測定対象表面に測定波を照射することで測定対象表面に関する測定データを生成する。
前記情報処理装置は、生成部と、出力部とを有する。
前記生成部は、前記生成された測定データの特徴に基づいて、前記測定対象表面に堆積する堆積物に関する堆積物情報を生成する。
前記出力部は、前記生成された堆積物情報を含む出力データを出力する。
【発明の効果】
【0031】
以上のように、本発明によれば、測定対象となる表面の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【図面の簡単な説明】
【0032】
【
図1】第1の実施形態に係る雪氷モニタリングシステムの構成例を示す模式図である。
【
図2】モニタリング装置の構成例を示す模式図である。
【
図3】モニタリング装置から送信される測定データの一例を示す写真である。
【
図4】モニタリング装置から送信される測定データの一例を示す写真である。
【
図5】モニタリング装置から送信される測定データの一例を示す写真である。
【
図6】解析装置の機能的な構成例を示すブロック図である。
【
図7】雪氷モニタリング動作の一例を示すフローチャートである。
【
図8】積雪の放射伝達モデルの一例を示すグラフである。
【
図9】厚みの異なる雪に対し同一の波長の電磁波を照射した場合の測定画像データを示す写真である。
【
図10】実際の積雪に対する同定結果を示す表である。
【
図11】モニタリング画像の一例を示す模式図である。
【
図12】第2の実施形態に係る解析装置の機能的な構成例を示すブロック図である。
【
図13】他の実施形態に係るモニタリング装置の構成例を示す模式図である。
【発明を実施するための形態】
【0033】
以下、本発明に係る実施形態を、図面を参照しながら説明する。
【0034】
<第1の実施形態>
[雪氷モニタリングシステム]
図1は、本発明の第1の実施形態に係る雪氷モニタリングシステムの構成例を示す模式図である。雪氷モニタリングシステム100は、モニタリング装置10と、解析装置30と、データベース40と、ディスプレイ50とを有する。
【0035】
モニタリング装置10は、空港の滑走路1の内部(地中)に埋め込まれる。モニタリング装置10は、滑走路1の表面2の状態をモニタリングし、そのモニタリング結果として滑走路1の表面2に関する測定データを、解析装置30に送信する。本実施形態において、滑走路1の表面は、測定対象表面に相当する。
【0036】
測定データを送信するための通信形態は限定されない。例えばWAN(Wide Area Network)やLAN(Local Area Network)等のネットワークを介して、測定データが送信される。あるいは高周波信号等を用いた無線通信により、測定データが送信されてもよい。その他、無線や有線による通信を可能とする任意の通信形態が構築されてよい。
【0037】
解析装置30は、モニタリング装置10から送信された測定データを受信する。解析装置30は、測定データの特徴に基づいて、滑走路1の表面2に堆積する雪(雪氷)3に関する雪氷情報を生成する。
【0038】
なお本開示では、氷、及び水も、雪の種類の1つ(雪の状態の1つ)に含まれるものとして、説明を行う。例えば雪の厚みといえば、滑走路1の表面2に堆積する氷の厚みを含む。また滑走路1の表面2が水で濡れている状態も、雪の1つの種類である水が堆積している状態とみなされる。
【0039】
本実施形態において雪3は、測定対象表面に堆積する堆積物に相当する。また雪氷情報は、測定対象表面に堆積する堆積物に関する堆積物情報に相当する。
【0040】
雪氷情報には、例えば雪3の種類、厚み(堆積量)、密度、水分量、温度、及び堆積分布等が含まれる。また雪氷情報として、雪3が堆積した滑走路1の表面2の摩擦係数の推定値や、雪3が堆積した滑走路1の状態を所定の基準に従って評価した評価値が生成される。そのような評価値として、例えば国際民間航空機関(ICAO:International Civil Aviation Organization)が定める滑走路状態コード(RWYCC:Runway Condition Code)が挙げられる。所定の基準に従った評価値は、所定の基準の従った数値への換算量ということもできる。なお所定の基準として、他の評価基準や指標等が採用されてもよい。
【0041】
雪3に関する雪氷情報としてどのような情報が生成されるかは限定されず、堆積する雪3に関する任意の物理量、雪3が堆積した滑走路1の表面2の状態、雪3が堆積したタイミングにおける外気温等、雪3に関する任意の情報が生成されてよい。また滑りやすさの指標となる任意の情報等、滑りやすさに関する任意の情報が堆積物情報として生成されてよい。
【0042】
これにより滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。なおモニタリング結果は、雪氷情報に基づいて導出される情報、及び雪氷情報自体の両方を含む。
【0043】
解析装置30は、雪氷情報を含む出力データとして、テキストデータ、画像データ、及び音声データの少なくとも1つを生成して出力することが可能である。例えば雪氷情報を含むモニタリング画像60が生成され、ディスプレイ50に出力される。例えば空港の管制室等にいる管理者5aは、ディスプレイ50aに表示されるモニタリング画像60を確認することで、滑走路1の管理指針等を決定することが可能となる。
【0044】
また解析装置30により、モニタリング画像60の画像データが、航空機6に無線等を介して送信される。これによりパイロット5bは、操縦室にあるディスプレイ50bに表示されたモニタリング画像60を確認することで、滑走路1に対する離着陸の可否を決定することが可能となる。また地上の運航管理者5cが視聴可能なディスプレイ50cにモニタリング画像60の画像データが送信されてもよい。これにより地上の運航管理者5cは、モニタリング画像60を確認することで、滑走路1に対する離着陸の可否等を決定することが可能となる。
【0045】
もちろん解析装置30により、雪氷情報を含む音声データが生成されてもよい。管制室等や操縦室等、地上の管理室等にあるスピーカを介して、雪氷情報を含む音声が出力される。これにより管理者5a、パイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態に応じた適切な対応を選択することが可能となる。
【0046】
また、雪氷情報である数値データ等を含むテキストデータが生成され、ディスプレイ50に出力されてもよい。例えばディスプレイ50a、50b、50cに所定の画像が表示されている状態で、画面の上方や下方等に、雪氷情報を含むテキストデータが表示される。これにより管理者5a、パイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態を容易に把握することが可能となり、適切な対応を選択することが可能となる。
【0047】
データベース40には、モニタリング装置10から送信される測定データや、解析装置30により生成された雪氷情報等の履歴が格納される。その他、雪氷モニタリングシステム100に用いられる種々のデータが格納される。
【0048】
[モニタリング装置]
図2は、モニタリング装置10の構成例を示す模式図である。モニタリング装置10は、筐体部11と、透過部材12と、発信ユニット13と、受信ユニット14と、制御ブロック15とを有する。
【0049】
筐体部11は、内部空間Sを有し、筐体部11の上面11aが滑走路1の表面2と略同じ高さとなるように、滑走路1の内部に埋め込まれる。また筐体部11の上面11aには、開口16が形成される。筐体部11の形状(内部空間Sの形状)や開口16の形状は限定されない。例えば円筒形状を有し円形状の開口16が形成された筐体部11が用いられてもよい。あるいは、直方体形状を有し、矩形状の開口16が形成された筐体部11が用いられてもよい。
【0050】
透過部材12は、透明性を有する部材であり、筐体部11の上面11aに形成された開口16に隙間なく嵌め込まれる。透過部材12は、透過部材12の表面12aが滑走路1の表面2と同じ高さとなるように、筐体部11の開口16に設けられる。これにより測定対象表面である滑走路1の表面2に関する測定データを取得することが可能となる。なお透過部材12の表面12aは測定対象表面に含まれる面となる。ただし、表面12aが必ずしも滑走路1の表面2と同じ高さである必要は無く、高さが異なっていても構わない。
【0051】
透過部材12の具体的な材質は限定されず、強化ガラスや強化プラスチック等、所望の耐性を有する部材が適宜用いられればよい。また透明性を有するとは、電磁波E1に対して透明な状態及び半透明な状態のいずれも含まれるもので、必ずしも可視光に対して透明・半透明であるとは限らない。
【0052】
発信ユニット13は、筐体部11の内部空間Sの所定の位置に設けられ、測定波として電磁波E1を出射する発信機17を有する。本実施形態では、互いに波長の異なる複数の電磁波E1を出射することが可能である。
【0053】
発信機17は、例えばレーザ発振器であり、それ自体で異なる複数の波長のレーザ光を発信可能であってもよい。あるいは発信ユニット13に、互いに異なる波長のレーザ光をそれぞれ発信可能な複数の発信機17が設けられてもよい。レーザ光の波長帯域及び波長幅は限定されず、広帯域のレーザ光や狭帯域のレーザ光等が、測定波(電磁波E1)として適宜用いられてよい。
【0054】
発信ユニット13の構成、及び測定波として出射される電磁波E1の種類は限定されない。例えばLED等の他の光源やランプ光源等を発信機17として備える発信ユニット13が用いられてもよい。また透過部材12に出射される電磁波E1の波長帯域、波長幅、偏波方向等を制御することが可能な光学フィルタ等が、発信ユニット13に設置されてもよい。なお「電磁波」は、赤外光、可視光、紫外光等、任意の波長域の光を含む。
【0055】
図2に示すように発信ユニット13は、透過部材12の下面に向けて所定の角度傾けられて配置される。すなわち発信ユニット13は、透過部材12の下面に入射する電磁波E1の入射角度が傾けられて構成されている。
図2では、発信ユニット13の設置角度θ1を、曲線の矢印を用いて模式的に図示している。
【0056】
設置角度θ1の具体的な値は限定されない。例えば透過部材12の下面に対して垂直に発信ユニット13が向けられる角度(電磁波E1が垂直に入射する角度)を0°として、受信ユニット14側へ0°~90°の範囲で設置角度θ1が設定される。
【0057】
受信ユニット14は、筐体部11の内部空間Sの発信ユニット13に対向する位置に、所定の距離tをあけて設けられる。受信ユニット14は、透過部材12の下面から出射される電磁波E2の強度分布を検出可能な受信機18を有する。
【0058】
図2に模式的に示すように、発信ユニット13から出射される電磁波E1は、透過部材12の表面12aに堆積する雪3により、反射・散乱される。その雪3により反射・散乱された散乱波(散乱光)が、透過部材12の下面から出射される。以下、透過部材12の下面から出射される電磁波E2を、同じ符号を用いて散乱波E2と記載する場合がある。
【0059】
受信機18は、例えばCCDやCMOSカメラ等の二次元光学センサであり、それ自体で波長の異なる複数の散乱波E2の二次元的な強度分布を検出可能であってもよい。あるいは受信ユニット14に複数の受信機18が設置され、全体として波長の異なる複数の散乱波E2の一次元あるいは二次元的な強度分布が検出されてもよい。
【0060】
受信ユニット14の構成は限定されず、任意に構成されてよい。例えば検出対象となる電磁波E2のみを透過させるような波長選択性を有する光学フィルタ等が、受信ユニット14に設置されてもよい。
【0061】
図2に示すように受信ユニット14は、透過部材12の下面に向けて所定の角度傾けられて配置される。
図2では、受信ユニット14の設置角度θ2を、曲線の矢印を用いて模式的に図示している。
【0062】
発信ユニット13及び受信ユニット14間の距離t、及び受信ユニット14の設置角度θ2の具体的な値は限定されない。例えば透過部材12の下面に対して垂直に受信ユニット14が向けられる角度を0°として、発信ユニット13側へ0°~90°の範囲で設置角度θ2が設定される。
【0063】
また、例えば図示しない駆動機構により、発信ユニット13の位置及び姿勢、受信ユニット14の位置及び姿勢等が、任意に制御可能であってもよい。例えば発信ユニット13の設置角度θ1、すなわち電磁波E1の透過部材12への入射角度が、任意に制御可能であってもよい。また発信ユニット13及び受信ユニット14間の距離t、及び受信ユニット14の設置角度θ2が任意に制御可能であってもよい。これにより精度の高い測定データを取得すること可能となる。
【0064】
駆動機構は、例えばモータやギア機構等を含む任意のアクチュエータ機構により実現可能である。もちろん他の任意の構成が採用されてよい。もちろん手動により、発信ユニット13の設置角度θ1、発信ユニット13及び受信ユニット14間の距離t、及び受信ユニット14の設置角度θ2が変更可能な構成が採用されてもよい。
【0065】
制御ブロック15は、図示しない電源ユニット、制御ユニット、及び通信ユニット等を含む。電源ユニットは、発信ユニット13及び受信ユニット14に電力を供給する。電源ユニットの具体的な構成は限定されない。
【0066】
制御ユニットは、発信ユニット13や受信ユニット14の各々の動作を制御し、所定の波長の電磁波E1の出射や、所定の波長の散乱波E2の二次元分布の強度検出等を実行させる。本実施形態では、制御ユニットにより、受信ユニット14の受信機18にて得られた強度信号(測定信号)を含む測定データが、通信ユニットを介して
図1に示す解析装置30に送信される。
【0067】
制御ユニットは、例えばCPUやメモリ(RAM、ROM)等のコンピュータに必要なハードウェア構成を有する。制御ユニットとして、例えばFPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific IntegratedCircuit)等のデバイスが用いられてもよい。通信ユニットとしては、例えば任意の無線モジュール等、任意の構成が用いられてよい。
【0068】
図3~
図5は、モニタリング装置10から解析装置30に送信される測定データの一例を示す写真である。本実施形態では、互いに異なる波長の散乱波E2の二次元強度分布が、測定データとして送信される。具体的には、受信機18により生成される各画素の強度情報(輝度情報)を含む画像信号が、測定データとして送信される。
【0069】
本実施形態において、受信機18により生成される画像信号は、測定対象表面に向けて測定波を照射することで得られる測定画像データに相当する。以下、当該画像信号を、測定画像データと記載する。
【0070】
図3~
図5は、透過部材12上に雪3が堆積している状態で、互いに波長が異なる電磁波E1を照射した場合に得られる測定画像データに基づいて生成された画像を示す図である。以下、この画像自体を、測定画像データとして説明する場合がある。
【0071】
透過部材12に向かって出射された電磁波E1は、雪3により反射・散乱され、散乱波E2として透過部材12から受信ユニット14に向かって出射される。この雪3により反射・散乱された散乱波E2の画像信号が、測定画像データとして生成される。
【0072】
例えば互いに異なる第1~第3の波長λ1~λ3の電磁波E1が出射されることで、
図3~
図5に示す3種類の画像(画像信号)が生成される。これらの画像は、電磁波E1の出射により得られる散乱波E2の2次元光散乱画像である。すなわち第1~第3の波長λ1~λ3の散乱波E2の各々の2次元光散乱画像である。これら3種類の2次元光散乱画像(画像信号)が、測定画像データとして解析装置30に送信される。
【0073】
本実施形態において、3種類の測定画像データは、測定対象表面に向けて波長の異なる複数の電磁波を照射することで得られる、複数の電磁波に対応する複数の測定データに相当する。もちろん、複数の測定データが3種類の測定画像データに限定される訳ではなく、2以上の任意の数の測定画像データが生成されてよい。もちろん1種類の波長の電磁波が照射されることで得られる1種類の測定画像データのみが、解析装置30に送信され雪氷情報が生成されてもよい。
【0074】
図6は、解析装置30の機能的な構成例を示すブロック図である。解析装置30は、CPU、ROM、RAM、HDD等のコンピュータの構成に必要なハードウェアを有する。解析装置30として、例えばPC(Personal Computer)が用いられるが、他の任意のコンピュータが用いられてもよい。
【0075】
CPUが、ROMやHDDに格納された本技術に係るプログラムをRAMにロードして実行することにより、
図6に示す機能ブロックである測定データ取得部31、雪氷情報生成部32、モニタリング画像生成部33、及び音声データ生成部34が実現される。そしてこれらの機能ブロックにより、本技術に係る情報処理方法が実行される。なお各機能ブロックを実現するために専用のハードウェアが適宜用いられてもよい。本実施形態では、解析装置30は、情報処理装置に相当する。
【0076】
プログラムは、例えば種々の記録媒体を介して解析装置30にインストールされる。又はインターネット等を介してプログラムのインストールが実行されてもよい。
【0077】
[雪氷モニタリング動作]
図7は、雪氷モニタリング動作の一例を示すフローチャートである。図中の「滑走路雪氷モニタリング装置」はモニタリング装置10に相当し、「雪氷状態解析用コンピュータ」は解析装置30に相当する。また図中の「雪氷状態及び管理指針表示機」は、
図1に示すディスプレイ50に相当する。
【0078】
本実施形態では、ステップ0として、まずモニタリング装置10による測定が実行される。具体的には、透過部材12の表面12aに堆積する雪3の測定画像データが生成される。本実施形態では、
図3~
図5に例示するような、第1~第3の波長λ1~λ3の電磁波E1が出射さることで得られる3種類の測定画像データが生成され、解析装置30に送信される。送信された測定画像データは、
図6に示す測定データ取得部31により取得される。本実施形態において、測定データ取得部31は、取得部として機能する。
【0079】
次にステップ1として、解析装置30により、測定画像データの特徴に基づいて、透過部材12に堆積する雪(滑走路1の表面2に堆積する雪)に関する雪氷情報が生成される。
図7に示すように、本実施形態では、
図6に示す雪氷情報生成部32により、まず雪3の種類(雪質)及び雪3の厚み(雪厚)が算出される。
【0080】
雪質としては、例えば「霜(FROST)」「乾いた雪(DRY SNOW)」「スラッシュ(SLUSH)」「湿った雪(WET SNOW)」「圧雪(COMACTED SNOW)」「氷(ICE)」「新雪(FRESH)」「ざらめ雪(GRANULAR)」等の任意の雪の状態を含む。また雪に関する雪氷情報として、雪がない状態である「乾いている(DRY)」という情報や、「濡れている(DRY)」「水たまり(STANDING WATER)」等の情報が生成されてもよい。これらの情報が、雪質の情報と同列に扱われてもよい。
【0081】
雪厚としては、例えばmm単位の情報が生成される。もちろん5mm、10mm、50mm等、任意の厚みを単位として、雪厚の情報が生成されてもよい。
【0082】
図3~
図5に例示する測画像定データの特徴に基づいて、雪質及び雪厚を算出する方法について説明する。
【0083】
図8は、積雪の放射伝達モデルの一例を示すグラフである。積雪の放射伝達モデルに基づけば、アルベド(入射光に対する反射光の比)は波長によって変化する(図中のre=50μmは新雪に相当、1000μmはざらめ雪に相当)。このことにより、反射・散乱する光の量は、雪質と波長に対して大きく変化し、雪厚と雪質は、光の波長に対する反射・散乱強度の関係から算出が可能である。
【0084】
従って複数の異なる波長の電磁波E1を照射して、波長毎の散乱波E2の二次元的な強度分布を検出することで、透過部材12上に存在する雪(氷、水を含む)3の質や厚みを分離して高精度に求めることが可能である。この結果、雪3に関する状態を詳細にモニタリングすることが可能となる。
【0085】
図9は、厚みの異なる雪3に対し同一の波長の電磁波E1を照射した場合の測定画像データを示す写真である。雪厚が厚くなるほど、雪3により反射・散乱される散乱波E2の量が多くなる。従って透過部材12から受信ユニット14に向けて出射される散乱波E2の量は多くなり、測定画像データに含まれる散乱波E2の最大径(受光領域の最大径)が大きくなる。すなわち雪厚に応じて散乱波E2の最大径が変化するので、測定画像データの特徴に基づいて、雪厚を高精度にモニタリングすることが可能となる。
【0086】
また透過部材12上に堆積する雪3の水分量(含水率)及び粒径の変化に応じて、雪3により反射・散乱される散乱波E2の量が変化することも分かった。従って測定画像データの特徴に基づいて、雪厚のみならず、水分量及び粒径を高精度にモニタリングすることが可能である。この水分量及び粒径に基づいて、上記した「乾いた雪(DRY SNOW)」等の雪質を同定することが可能である。
【0087】
本実施形態では、雪厚の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波、水分量の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波、粒径の変化に応じて反射・散乱される光の量が大きく変化する波長の電磁波の、3種類の電磁波E1が測定波として用いられる。
【0088】
そしてこれらの3種類の電磁波E1に対応する複数の測定画像データ、すなわち
図3~
図5に例示す3つの測定画像データの特徴に基づいて、雪厚、水分量、及び粒径が高精度にモニタリングすることが可能である。なお受信機18の各画素において輝度値に関する閾値が設定されてもよい。そして閾値以下の輝度値に関しては、輝度ゼロとして画像信号が生成されてもよい。これにより、散乱波E2の最大径に基づいたモニタリングの精度を向上させることが可能である。
【0089】
本実施形態において、雪厚、水分量、及び粒径は、複数の測定画像データに対応する種類の異なる複数の堆積物情報に相当する。なお雪厚、水分量、及び粒径の各々を高精度にモニタリングするための具体的な波長の値は、キャリブレーション等により適宜設定することが可能である。
【0090】
雪氷情報として算出される情報は、雪厚、水分量、及び粒径に限定されず、密度、温度、粒子の均一性等の他のパラメータが算出されてもよい。電磁波E1の波長を適宜設定することで、雪3の吸収特性や散乱特性を変化させるような任意のパラメータを、測定画像データの特徴に基づいて算出することが可能である。
【0091】
測定画像データの特徴としては、散乱波E2の最大径のみならず、散乱波E2の位置、面積(受光領域の面積)、形状(扁平度、真円度等)、受光領域内における強度の傾き(輝度の傾き)、受光領域の中心部分の強度、強度の平均等、強度(輝度)等の二次元分布に関する任意の特徴が採用されてよい。これにより雪厚、水分量、及び粒径を高精度にモニタリングすることが可能となる。
【0092】
また本実施形態では、雪氷情報生成部32により、所定の機械学習アルゴリズムに従って雪氷情報が生成される。例えばRNN(Recurrent Neural Network:再帰型ニューラルネットワーク)、CNN(Convolutional Neural Network:畳み込みニューラルネットワーク)、MLP(Multilayer Perceptron:多層パーセプトロン)等のDNN(Deep NeuralNetwork:深層ニューラルネットワーク)を用いた機械学習アルゴリズムが用いられる。その他、教師あり学習法、教師なし学習法、半教師あり学習法、強化学習法等を実行する任意の機械学習アルゴリズムが用いられてよい。
【0093】
例えばディープラーニング(深層学習)を行うAI(人工知能)を構築することで、非常に精度の高い雪氷情報を生成することが可能となる。なお機械学習アルゴリズムによる学習を行わせるためにオペレータ等が定義する特徴量や、アルゴリズムにより抽出される特徴量も、本実施形態に係る測定画像データの特徴に含まれる。
【0094】
図10は、実際の積雪に対する同定結果を示す表である。雪質及び雪厚に関して、AIによる同定結果が、実測値と非常に近い結果となっていることが分かる。なお機械学習アルゴリズムを適宜構築することで、さらに高い精度の同定結果を得ることも可能である。
【0095】
図7に戻り、本実施形態ではステップ1として、算出された雪質及び雪厚と、滑走路状態コードとの紐付けが実行される。すなわち雪氷情報として、滑走路状態コードが生成される。これらの情報を紐付ける方法は限定されない。例えば滑走路状態コードを導き出すために必要な雪質・雪厚が直接的に算出されてもよいし、ステップ1にて算出された雪質・雪厚が、滑走路状態コードを導き出すために適宜換算されてもよい。もちろん、滑走路状態コードを導き出すための、外気温等の他のパラメータが適宜参照されてもよい。
【0096】
次にステップ2として、解析装置30により、滑走路1の除雪の必要性が判定される。また滑走路1に対する離着陸の可否が決定される。これらの処理は、典型的には、ステップ1にて算出された雪質及び雪厚や滑走路状態コードに基づいて実行される。
【0097】
ステップ2の処理も、雪氷情報生成部32により実行される。すなわち本実施形態では、除雪作業の必要性の有無、及び離着陸が可能か否かを示す情報が、透過部材12に堆積する雪(滑走路1に堆積する雪)3に関する雪氷情報として生成される。このように管理指針に関する情報や、運航に関する判断情報等が、雪氷情報として生成されてもよい。
【0098】
なおステップ1にて生成された雪質及び雪厚や滑走路状態コードではなく、ステップ0にて取得された測定画像データに基づいて、直接的に、除雪作業が必要か否かを示す情報、及び離着陸が可能か否かを示す情報が生成されてもよい。もちろん所定の機械学習アルゴリズムが用いられてもよい。
【0099】
ステップ3として、解析装置30により、ステップ1及び2にて生成された雪氷情報を含む出力データが生成される。本実施形態では、モニタリング画像生成部33により、雪氷情報を含むモニタリング画像60が生成される。また音声データ生成部34により、雪氷情報を含む音声データが生成される。本実施形態において、モニタリング画像生成部33、及び音声データ生成部34は、出力部として機能する。
【0100】
図11は、モニタリング画像60の一例を示す模式図である。モニタリング画像60は、測定画像データ表示部61と、雪質(雪の種類)表示部62と、雪厚表示部63と、滑走路状態コード表示部64と、除雪必要性表示部65と、離着陸可否表示部66とを有する。
【0101】
測定画像データ表示部61には、モニタリング装置10から送信される測定画像データが表示される。本実施形態では、
図3~
図5に例示する3種類の2次元光散乱画像が表示される。雪質表示部62には、ステップ1にて算出された雪質が表示される。雪厚表示部63には、ステップ1にて算出された雪厚が表示される。滑走路状態コード表示部64には、ステップ1にて生成された滑走路状態コードが表示される。
【0102】
除雪必要性表示部65には、ステップ2にて雪氷情報として生成された除雪作業の必要性の有無が表示される。離着陸可否表示部66には、ステップ2にて雪氷情報として生成された離着陸が可能か否かを示す情報が表示される。
【0103】
ステップ4として、モニタリング画像60が出力され、空港(滑走路1)の管理者5aが視聴可能なディスプレイ50aに表示される。またモニタリング画像60は、航空機のパイロット5bが視聴可能なディスプレイ50bに表示される。もちろん地上の運航管理者5cが視聴可能なディスプレイ50cに、モニタリング画像60が表示されてもよい。
【0104】
これにより管理者5a、パイロット5b、及び地上の運航管理者5cは、モニタリング画像60を確認することで、滑走路1の表面2の状態を容易に把握することが可能となり、管理指針等を容易に決定することが可能となる。例えば管理者5aは、除雪の必要性を容易に判断することが可能となり、滑走路状態コードに基づいた滑走路1の管理等を容易に行うことが可能となる。また航空機のパイロット5bは、滑走路1の表面2を直接確認することなく、滑走路1に対する離着陸の可否を容易に判断することが可能となる。もちろん滑走路状態コードに基づいた操作等を行うことが可能となる。また地上の運航管理者5cは、滑走路1に対する離着陸の可否等を容易に判断することが可能となり、例えば現場で直接確認した結果と合わせて、適切な対応を総合的に判断するといったことも可能となる。
【0105】
なおステップ4として、雪氷情報を含む音声データが生成されてもよい。管制室等や操縦室等、地上の管理室等にあるスピーカを介して、雪氷情報を含む音声が出力される。これにより管理者5aやパイロット5b、地上の運航管理者5cは、滑走路1の表面2の状態に応じた適切な対応を選択することが可能となる。
【0106】
なおモニタリング画像60の構成は限定されず、任意の画像(GUI)が生成されて表示されてもよい。またモニタリング画像60に含まれる雪氷情報は限定されず、任意の雪氷情報が表示されてよい。
【0107】
例えば同一のモニタリング画像60が生成される場合に限定されず、管理者5aに提供するための管理者用モニタリング画像と、パイロット5bに提供するためのパイロット用モニタリング画像と、地上の運航管理者5cに提供するための運航管理者用モニタリング画像とが、別個にそれぞれ構成されてもよい。もちろん管理者5a、パイロット5b、地上の運航管理者5cにより、モニタリング画像60が自由にカスタマイズ可能であってもよい。すなわち確認したい雪氷情報が適宜選択可能であってもよい。
【0108】
また環境や状況に応じて、表示する雪氷情報の内容(文字・記号・画像)やその配置・大きさ・配色等が手動又は自動で変更可能であってもよい。音声データについても、環境や状況、生成された雪氷情報等に基づいて、音声内容が適宜変更可能であってもよい。例えば警告や伝達するべき情報等が適宜判断され、出力される音声データが適宜生成されてもよい。
【0109】
なお、
図1に例示するように、滑走路1の複数の箇所に、複数のモニタリング装置10が設置される場合も多い。このような場合、例えば各々のモニタリング装置10について、
図11に例示するモニタリング画像60が生成されてもよい。これにより滑走路1の各ポイントにおける表面状態を把握することが可能となる。
【0110】
また各々のモニタリング装置10により測定された測定データに基づいて生成された雪氷情報を統合し、その統合された雪氷情報を含むモニタリング画像60が生成されてもよい。例えば各々のポイントにおける表面状態(雪氷情報)を統合して、雪質、雪厚、滑走路状態コード、除雪の必要性の有無、及び離着陸の可否が生成されて表示されてもよい。これにより、滑走路1の全体の状態を把握することが可能となる。
【0111】
複数の雪氷情報を統合する方法は限定されず、各ポイントの雪質や雪厚を平均的に見積もった情報が表示される。あるいはモニタリング装置10が設置されているポイントに応じて、重み付けが実行されてもよい。例えば滑走路1の中心に設置されたモニタリング装置10の測定データやそこから生成される雪氷情報は重み付けが大きくされる。一方滑走路1の端部の位置に設置されたモニタリング装置10の測定データ等は、重み付けが小さくされる。このような処理も可能である。
【0112】
また滑走路1のエリアごとに雪氷情報が生成されて表示されてもよい。各エリアにモニタリング装置10が1つずつ設置される場合には、当該モニタリング装置10から送信される測定データに基づいて雪氷情報を生成し、モニタリング画像60に表示する。各エリアに複数のモニタリング装置10が設置される場合には、例えば測定データや雪氷情報が統合されて、モニタリング画像60に表示される。
【0113】
あるいは、各ポイントにて生成された雪氷情報のうち、最も状態が悪い情報が選択されてモニタリング画像60に表示されてもよい。例えば1つのポイントについて、除雪の必要性があり、離着陸が不可能であるという旨の雪氷情報が生成されたとする。この場合、他の複数のポイントについて、除雪の必要性なし、離着陸が可能、の旨の雪氷情報が生成されたとしても、除雪の必要性があり、離着陸が不可能の旨の雪氷情報が表示される。このような処理も可能である。
【0114】
[測定データ及び雪氷情報の予測]
本実施形態では、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成した雪氷情報の少なくとも一方に基づいて、測定対象表面である滑走路1の表面2の状態を予測する予測情報を生成することが可能である。例えば今後、雪質、雪厚、滑走路状態コード、除雪作業の必要性の有無、及び離着陸の可否がどのように推移しているかを予測する予測情報を生成することが可能である。
【0115】
予測情報は、例えば
図1に示すデータベース40に格納された測定データや雪氷情報等の現在までの履歴情報、所定の予測モデルや予測データ等に基づいて生成される。例えば空港に設置された気象レーダー等を介して取得される気象情報等に基づいて、10分後、30分後、60分後等の雪質や雪厚を含む予測情報を生成することが可能である。もちろん予測情報の生成に、任意の機械学習アルゴリズムが用いられてよい。予測情報を生成することで、空港の管理指針や運航計画等を精度よく決定することが可能である。
【0116】
なおモニタリング装置10から取得された測定データの特徴に基づいて、測定対象表面である滑走路1の表面2に関する予測測定データが生成されてもよい。例えば
図3~
図5に例示するような2次元光散乱画像がどのように変化するかを予測する予測測定データが生成される。そしてこの予測測定データに基づいて、予測情報が生成されてもよい。
【0117】
以上、本実施形態に係る雪氷モニタリングシステム100では、測定対象表面である滑走路1の表面2の測定データの特徴に基づいて、雪氷情報が生成される。これにより、滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。
【0118】
例えばモニタリング結果として、雪質、雪厚、滑走路状態コード、除雪作業の必要性の有無、及び離着陸の可否等、種々の分析結果を提供することが可能であるので、滑走路1の表面2の状態を非常に精度よく把握することが可能となる。
【0119】
またモニタリング画像60を介して、滑走路1の表面2の積雪状態、離着陸可否、除雪の必要性等をリアルタイムで空港の管理者5aやパイロット5b、地上の運航管理者5c等に表示することで、積雪によるオーバーラン事故や運航遅延及び欠航を防ぐことができるため、運航安全性の向上および運航効率性の向上を図ることができる。また滑走路面状態の予測を表示することによって航空運航の効率化をさらに図ることができる。
【0120】
また本実施形態では、モニタリング装置10が、滑走路1の内部に埋め込まれるので、航空機の障害となることを回避することが可能である。また外部からの異物の衝突等による破損等を防止しつつ、滑走路全体の詳細な積雪の深さや質に関する状態をモニタリングすることが可能となる
【0121】
<第2の実施形態>
本発明に係る第2の実施形態の雪氷モニタリングシステムについて説明する。これ以降の説明では、上記の実施形態で説明した雪氷モニタリングシステム100における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
【0122】
図12は、本実施形態に係る解析装置230の機能的な構成例を示すブロック図である。解析装置230は、機能ブロックとして、測定波長決定部235、及び外部制御部236を有する。
【0123】
測定波長決定部235は、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成された雪氷情報の少なくとも一方に基づいて、モニタリング装置10の発信機17から出射される測定波の特性を決定することが可能である。本実施形態において、測定波長決定部235は、設定部に相当する。
【0124】
例えば、発信機17が複数の波長の電磁波E1を出射可能である場合に、その複数の波長から、測定に用いられる波長が選択される。上記したように、吸収・散乱・反射特性が異なる第1~第3の波長λ1~λ3の電磁波E1が出射される場合に、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の各々を、複数の波長から適宜選択して決定することが可能である。
【0125】
あるいは、発信機17が所定の波長域内において、電磁波E1の波長を連続的に変更可能である場合は、当該波長域内において、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の各々が適宜決定される。
【0126】
また、測定された雪質や雪厚に応じて、第1の波長λ1、第2の波長λ2、及び第3の波長λ3の中から、測定に必要な波長が選択される場合もあり得る。例えば雪3の状態に応じて、所望とする雪氷情報を得られるように、電磁波E1の波長が第1の波長λ1、第2の波長λ2、及び第3の波長λ3の中から適宜選択される。このような処理も可能である。
【0127】
またPC等の所定のコンピュータ等を介して入力される、管理者5aや専門のオペレータ等の操作により、電磁波E1の波長等の発信機17から出射される測定波の特性が設定可能であってもよい。すなわち手動により、測定波の特性が変更可能であってもよい。
【0128】
電磁波E1の波長の設定の具体例について説明する。例えば積雪予測に基づいて電磁波E1の波長を設定することが可能である。例えば予測情報として、降雪量が増える旨の情報が生成された場合には、予め雪厚観測に適した波長を選択する(雪の層の中によりもぐっていける可視域波長等)。例えば雪が積もっている状態から何分後雨が降る旨の予測情報が生成された場合には、予め含水率(水分含有率)測定に適した波長を選択する。
【0129】
また、雪厚の結果に基づいて電磁波E1の波長を設定することが可能である。例えば、ある波長で雪厚を最初に測定した場合に、雪厚が薄くしか積もっていないと判定されたとする。この場合には、雪厚よりむしろ表層の雪質を重点的に測定する必要があるため粒径判定に効果的な近赤外等の波長による測定にシフトする。雪厚がある程度厚いと判定された場合には、近赤外の波長よりもむしろ雪の層の中をもぐっていける可視域波長等を選択することで雪厚測定を重点に置く。
【0130】
また、含水率の結果に基づいて電磁波E1の波長を設定することが可能である。例えば、ある波長で含水率を最初に測定した場合に、ある程度含水率が高いと判定されたとする。この場合には、雪質の光学的観測において含水率による誤差が生じる可能性があるため、含水率計測に効果的な波長と雪質計測に効果的な波長を同時に選択し誤差を補う。誤差の影響が出ないレベルの含水率であると判定された場合には、雪質観測に効果的な波長のみを選択して雪質を重点的に測定する。
【0131】
また、生成された雪氷情報の信頼度を判定し、信頼度が所定の閾値よりも低い場合に、電磁波E1の波長を変更するといった処理も可能である。
【0132】
このように測定波の特性を設定可能とすることで、滑走路1の表面2の状態を高精度にモニタリングして、そのモニタリング結果を有効に利用することが可能となる。なお、測定波の特性は、電磁波E1の波長に限定されず、電磁波E1の強度、偏波状態、パルス間隔等、任意の特性が決定されてもよい。また測定波の特性の設定に、任意の機械学習アルゴリズムが用いられてよい。
【0133】
測定データや雪氷情報等に基づいて、電磁波E1の強度や受信機18のゲインが手動又は自動で選定可能であってもよい。例えば測定データにレンジオーバー(サチュレーション)の部分が存在する場合は、電磁波E1の強度(輝度)を下げるとともに、受信機18のゲインを小さくする。また測定データ全体が所定の閾値よりも小さければ、電磁波E1の強度(輝度)を上げるとともに、受信機18のゲインを小さくする。このように、測定データの傾向から強度やゲインを適切に変更することで、最適な測定が可能となる。
【0134】
また外部の気象情報等に基づいて、電磁波E1の強度や受信機18のゲインが変更されてもよい。例えば、外部の環境光が強く、測定データの値が大きくなるようであれば、電磁波E1の強度(輝度)を上げるとともに、受信機18のゲインを小さくして、データのS/Nを向上させる。このような処理も可能である。
【0135】
外部制御部236は、モニタリング装置10から取得した測定データ(測定画像データ)、及び生成された雪氷情報の少なくとも一方に基づいて、外部の装置を制御するための制御情報を生成する。例えば外部制御部236は、環境や状況・解析装置230で処理した測定データや雪氷情報に応じて、外部の機器をコントロールするための信号を伝達することが可能である。
【0136】
これにより、例えば積雪による注意を喚起するための警報の開始や、除雪の必要性を報知するランプの点灯等を、リアルタイムで素早く実行することが可能となり、次のアクションを適切に起動させることが可能となる。本実施形態において、外部制御部236は、制御情報生成部に相当する。
【0137】
<その他の実施形態>
本発明は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
【0138】
図13は、他の実施形態に係るモニタリング装置の構成例を示す模式図である。モニタリング装置310は、筐体部311と、透過部材312と、発信ユニット313と、複数の受信ユニット314と、制御ブロック315とを有する。
【0139】
複数の受信ユニット314は、発信ユニット313側から5列に並ぶように配置される。このように複数の受信ユニット314を設置することで、雪3の広い範囲に対して、雪質や雪厚を測定することが可能となり、滑走路1の表面2の状態を高精度にモニタリングすることが可能となる。
【0140】
本技術が適用可能な範囲は、空港の滑走路の雪氷モニタリングに限定される訳ではない。道路、橋梁、建築物等の他の構造物の表面状態のモニタリングに適用可能である。また航空機の離着陸に限定されず、車両等の他の移動体の走行等に関する判定に適用することも可能である。また堆積物に関しても、雪、氷、水、泥、火山灰等、任意の堆積物に対して本技術を適用することが可能である。すなわち本技術は、様々な分野に適用可能である。
【0141】
例えば道路面にモニタリング装置を設置することで、道路面の積雪や砂等の表面状態を道路管理者に表示し、道路管理に生かすことができる。例えば道路の封鎖の必要性の判断や、迂回路の選定等を容易に実行することが可能となる。また一般自動車の表示パネルにモニタリング画像等を表示することで、例えばネットワーク等を通じてリアルタイムで路面の状態をドライバーに通知することが可能となり、事故の防止や交通の効率化を図ることができる。またリアルタイムの表面状態だけではなく、今後の降雪状況等の予測モデルと組み合わせた路面状態予測表示としても適応可能であり、交通の効率化をより一層図ることができる。
【0142】
また空港の滑走路の表面状態として、火山灰の堆積量や予測堆積量等に基づいて、滑走路の清掃の必要性や離着陸の可否を通知することも可能である。もちろん、空港の誘導路に対して、本技術を適用することも可能である。
【0143】
堆積物情報として、堆積物の層構造に関する情報が生成されてもよい。例えば雪や火山灰の厚み方向における質の変化や、積層される各々の層の状態等が、堆積物情報として生成されてもよい。
【0144】
上記では、測定対象表面に向けて波長の異なる複数の電磁波を照射することで、複数の電磁波に対応する複数の測定データが取得された。これに限定されず、測定対象表面に向けて波長帯域又は波長幅の異なる複数の電磁波が照射され、複数の電磁波に対応する複数の測定データが取得されてもよい。例えば、広帯域のレーザ光や狭帯域のレーザ光等が、複数の測定波(電磁波E1)として照射され、これらレーザ光に応じた複数の測定データが生成される。そして複数の測定データに対応する複数の堆積物情報が生成されてもよい。
【0145】
もちろん所定波長(単一波長)の電磁波、所定波長帯域の電磁波、所定波長幅の電磁波等、1種類の電磁波が照射されることで得られる1種類の測定データに基づいて堆積物情報を生成することも可能である。
【0146】
モニタリング装置に関して、直線偏波状態の電磁波を照射可能な発信ユニットと、特定方向の直線偏波状態の電磁波を検出可能な受信ユニットとを備える構成が採用されてもよい。例えば出射される電磁波の偏波方向と検出可能な電磁波の偏波方向とを、互いに略直交となる略直交ニコルの関係となるように設定する。
【0147】
これにより透過部材の下面又は表面にて反射される電磁波E1の正反射成分をカットすることが可能となり、透過部材上に存在する堆積物(雪・氷・粉塵・水・泥など)のみの情報をもつ電磁波(散乱波)を得ることができる。この結果、例えば互いに異なる波長毎の散乱波を検出することで、深さや質を分離して高精度に求めることでき、詳細な堆積物の深さや質に関する状態をモニタリングすることが可能となる。
【0148】
モニタリング装置が可搬可能に構成されてもよい。これにより例えば雪山や火山の近くの土地等に、モニタリング装置を運び込んで設置することが可能となる。そしてモニタリング装置から送信される測定データに基づいて、所望とする表面の状態を高精度にモニタリングすることが可能となる。例えば雪崩の発生の可能性や、噴火の可能性等の情報を、堆積物情報やその予測情報として生成することが可能となる。
【0149】
上記では、モニタリング装置として、電磁波を照射することで測定データを生成する装置が挙げられた。これに限定されず、外気温等を測定データとして測定可能な温度センサ等、他のセンサ装置等がモニタリング装置として用いられてもよい。この場合、測定データである温度が、雪氷情報としてそのまま用いられてもよい。
【0150】
またモニタリング装置として、テキストデータを測定データとして出力する装置が用いられてもよい。例えば任意の測定方法により得られた測定データに基づいて、テキストデータを生成し、そのテキストデータを測定テキストデータとして出力する構成が採用されてもよい。その他、測定データとして、任意のデータが出力されてよい。上記した複数の測定画像データと同様に、複数の測定テキストデータが出力され、複数の測定テキストデータに対応する複数の堆積物情報が生成されてもよい。
【0151】
上記では、本技術に係る情報処理装置の一実施形態として、解析装置を例に挙げた。これに限定されず、クラウドサーバにより、本技術に係る情報処理方法が実行されてもよい。あるいは互いに通信可能な複数のコンピュータが連動することで、本技術に係る情報処理方法が実行されてもよい。
【0152】
コンピュータシステムによる本技術に係る情報処理方法、及びプログラムの実行は、堆積物情報の生成等の処理が、単体のコンピュータにより実行される場合、及び各処理が異なるコンピュータにより実行される場合の両方を含む。また所定のコンピュータによる各処理の実行は、当該処理の一部または全部を他のコンピュータに実行させその結果を取得することを含む。
【0153】
すなわち本技術に係る情報処理方法及びプログラムは、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成にも適用することが可能である。
【0154】
以上説明した本発明に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。
【符号の説明】
【0155】
E1…電磁波
E2…電磁波(散乱波)
1…滑走路
2…表面
3…雪
10、310…モニタリング装置
30、230…解析装置
31…測定データ取得部
32…雪氷情報生成部
33…モニタリング画像生成部
34…音声データ生成部
50、50a、50b、50c…ディスプレイ
60…モニタリング画像
100…雪氷モニタリングシステム
235…測定波長決定部
236…外部制御部