(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-11
(45)【発行日】2022-04-19
(54)【発明の名称】誤ったアラーム検出
(51)【国際特許分類】
G16H 50/70 20180101AFI20220412BHJP
A61B 5/00 20060101ALI20220412BHJP
G16H 40/60 20180101ALI20220412BHJP
【FI】
G16H50/70
A61B5/00 G
A61B5/00 102
G16H40/60
(21)【出願番号】P 2019528058
(86)(22)【出願日】2017-11-21
(86)【国際出願番号】 EP2017079927
(87)【国際公開番号】W WO2018099767
(87)【国際公開日】2018-06-07
【審査請求日】2020-11-19
(32)【優先日】2016-11-29
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-11-09
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100091214
【氏名又は名称】大貫 進介
(72)【発明者】
【氏名】スウィッシャー,クリスティン メンキング
(72)【発明者】
【氏名】ラス,プレーティシュ
(72)【発明者】
【氏名】ファン ゾン,コルネリス コンラデュス アドリアニュス マリア
【審査官】竹下 翔平
(56)【参考文献】
【文献】国際公開第2016/156534(WO,A1)
【文献】特開2016-130886(JP,A)
【文献】米国特許出願公開第2012/0226108(US,A1)
【文献】特表2014-518140(JP,A)
【文献】特表2009-532072(JP,A)
【文献】米国特許出願公開第2011/0066062(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00-80/00
G06Q 10/00-99/00
A61B 5/00
(57)【特許請求の範囲】
【請求項1】
誤ったアラームを検出するための方法であって、
患者監視装置からインタフェースを使用して、前記患者監視装置によって発せられるアラーム信号に関連する患者のデータを受信することと、
特徴抽出モジュールを用いて、前記受信された患者のデータから少なくとも1つのアーチファクト特徴を抽出することと、
分類器を用いて、前記少なくとも1つの抽出されたアーチファクト特徴に基づいて、真陽性又は偽陽性としての前記アラーム信号の分類を提供することと、
前記アラーム信号が偽陽性として分類されたことに応じて、
前記少なくとも1つのアーチファクト特徴の各アーチファクト特徴に、前記誤ったアラームへの
該アーチファクト特徴の寄与を示
すスコアを割り当てることと、
を含む、方法。
【請求項2】
前記分類器が、複数のアンサンブル木を実行するアンサンブル木分類器である、請求項1に記載の方法。
【請求項3】
前記スコアを割り当てることは、偽陽性の分類に寄与する各アンサンブル木のすべてのノードを識別することを含む、請求項2に記載の方法。
【請求項4】
前記すべてのノードを識別することが、前記アラーム信号が誤ったアラームであると投票したアンサンブル木の巡回経路上のノードを識別することを含む、請求項3に記載の方法。
【請求項5】
各木からのすべての特徴に対してスコアを合計し、スコアがしきい値を超える少なくとも1つの特徴を特定することをさらに含む、請求項3に記載の方法。
【請求項6】
抽出される前記少なくとも1つのアーチファクト特徴が、ステップ・サイズ、高周波の標準偏差、ベースライン・ワンダリング、アラーム負荷、心拍数、電気手術装置アーチファクト、動きアーチファクト、呼吸アーチファクト、EMG信号、フラット・ライン、尖度、歪度、及びベースラインの相対パワーからなる群から選択される、請求項1に記載の方法。
【請求項7】
偽陽性の分類を受信したことに応じて、前記アラーム信号を抑制することをさらに含む、請求項1に記載の方法。
【請求項8】
前記受信された患者のデータがEKGデータを含む、請求項1に記載の方法。
【請求項9】
前記インタフェースを使用して、少なくとも1つのアラーム信号の分類を要約するレポートを出力することをさらに含む、請求項1に記載の方法。
【請求項10】
前記レポートを出力することは、前記少なくとも1つのアラーム信号の前記分類の少なくとも1つの理由を出力することを含む、請求項9に記載の方法。
【請求項11】
前記スコアは、複数のアラーム信号に対する前記少なくとも1つのアーチファクト特徴に割り当てられる、請求項1に記載の方法。
【請求項12】
誤ったアラームを検出するためのシステムであって、
患者監視装置によって発せられるアラーム信号に関連する患者のデータを前記患者監視装置から受信するように構成されたインタフェースと、
メモリと、
前記メモリに記憶された命令を実行するプロセッサであって、
受信された患者のデータから少なくとも1つのアーチファクト特徴を抽出するように構成された特徴抽出モジュールと、
少なくとも1つの抽出されたアーチファクト特徴に基づいて、真陽性又は偽陽性としての前記アラーム信号の分類を提供するように構成された分類器と、
前記アラーム信号が偽陽性として分類されたことに応じて、
前記少なくとも1つのアーチファクト特徴の各アーチファクト特徴に、前記誤ったアラームへの
該アーチファクト特徴の寄与を示
すスコアを割り当てるように構成されたスコアリング・モジュールと、
を提供する、プロセッサと、
を含む、システム。
【請求項13】
前記分類器は、複数のアンサンブル木を実行するアンサンブル木分類器である、請求項12に記載のシステム。
【請求項14】
前記スコアリング・モジュールは、偽陽性の分類に寄与する各アンサンブル木のすべてのノードを特定することによって、前記スコアを割り当てる、請求項12に記載のシステム。
【請求項15】
誤ったアラームを検出するためのコンピュータ実行可能命令を含むコンピュータ読取可能媒体であって、
患者監視装置からインタフェースを使用してアラーム信号に関連付けられた患者のデータを受信するためのコンピュータ実行可能命令と、
特徴抽出モジュールを使用して、受信された患者のデータから少なくとも1つのアーチファクト特徴を抽出するためのコンピュータ実行可能命令と、
分類器を使用して、少なくとも1つの抽出されたアーチファクト特徴に基づく真陽性又は偽陽性としての前記アラーム信号の分類を提供するためのコンピュータ実行可能命令と、
前記アラーム信号が偽陽性として分類されたことに応じて、
前記少なくとも1つのアーチファクト特徴の各アーチファクト特徴に、前記誤ったアラームへの
該アーチファクト特徴の寄与を示
すスコアを割り当てるためのコンピュータ実行可能命令と、
を含む、コンピュータ読取可能媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に記載される実施形態は、一般に、アラームに関連するデータを分析するためのシステム及び方法、より具体的には、排他的ではないが、誤ったアラームを検出するためのデータを分析するためのシステム及び方法に関する。
【0002】
関連出願の相互参照
本出願は、2016年11月29日に出願された米国仮出願第62/427,220号に対する優先権及び利益を主張し、そのすべてが参照により本明細書に組み込まれる。
【背景技術】
【0003】
病院等の医療機関は、患者の健康を監視するためにいくつかのタイプの機器(devices)を操作する。機器が潜在的な異常(potential anomaly)又は懸念される原因(cause for concern)を検出した場合、機器はアラームを発することがある。その後、医療従事者は、患者を治療するために必要なあらゆるステップを実施することができる。
【0004】
しかしながら、医療機器は、高感度を有する様々なアルゴリズムを実行する。これにより、特にICUやEDなどの臨床病棟では、1日あたり最大数百件のアラームが発生する可能性がある。
【0005】
これらのアラームの多くは、臨床的に重要でない(irrelevant)か、又は誤ったアラーム(false alarms)であることが判明している。実際、カリフォルニア大学サンフランシスコ校の研究によると、わずか1カ月で250万件のアラームが発生し、そのうちほぼ89%が誤りであるという。
【0006】
これらの誤ったアラームは、患者の安全とスタッフの満足度の低下をもたらす。特に、アラームの洪水は、臨床医を鈍感にし、圧倒され、又はアラームの音に対する免疫に導くことがある。臨床医は、例えば、アラーム音量を下げるか、アラームをオフにするか、装置の設定を調整するか、又はアクティブなアラームを完全に無視することさえできる。臨床医は、たとえアラームが臨床的に重要で、おそらく生命を脅かす事象に対応する真陽性(true positives)であっても、これらの行動を取ることがある。
【0007】
これらの行動は、深刻な、あるいは致命的な結果をもたらす可能性がある。従って、誤ったアラームは実際に患者の安全を低下させ、技術関連の健康危害と考えられる。
【0008】
少なくとも、一定の警報(alerts)は、患者及び臨床医にストレスを引き起こす。音が絶えず激しく鳴ると、睡眠不足(sleep loss)や幻覚症状(delirium)を引き起こすことがある。さらに、過剰なアラームは、ワークフローの絶え間ない中断を引き起こすことによって、医療機関にもストレスを与える。
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、少なくとも誤ったアラームを検出するためのシステム及び方法に対する必要性が存在する。
【0010】
本概要は、詳細な説明の欄でさらに後述する単純化された形式で概念の選択を導入するために提供される。本概要は、請求された主題の主要な特徴又は本質的な特徴を特定又は除外することを意図するものではなく、また、請求された主題事項の範囲を決定する助けとして使用することを意図するものでもない。
【課題を解決するための手段】
【0011】
一態様において、実施形態は、誤ったアラームを検出する方法に関する。この方法は、インタフェースを用いてアラーム信号に関連するデータを受信するステップと、特徴抽出モジュールを用いて、受信されたデータから少なくとも1つのアーチファクト特徴を抽出するステップと、分類器を用いて、少なくとも1つの抽出されたアーチファクト特徴に基づいて真陽性又は偽陽性としてのアラーム信号の分類を受信するステップと、を含む。
【0012】
いくつかの実施形態において、分類器は、複数のアンサンブル木を実行するアンサンブル木分類器である。
【0013】
いくつかの態様において、本方法は、さらに、偽陽性の分類を受けると、スコアリング・モジュールを用いて、少なくとも1つの抽出されたアーチファクト特徴にスコアを割り当てることを含む。いくつかの態様において、スコアを割り当てることは、偽陽性の分類に寄与する各アンサンブル木のすべてのノードを識別することを含む。いくつかの実施態様において、本方法は、さらに、各木からのすべての特徴についてのスコアを合計し、スコアがしきい値を超える少なくとも1つの特徴を識別することを含む。
【0014】
いくつかの実施形態では、抽出される少なくとも1つのアーチファクト特徴は、ステップ・サイズ(step size)、高周波の標準偏差(standard deviation of high frequency)、ベースライン・ワンダリング(baseline wandering)、アラーム負荷(alarm load)、心拍数(heart rate)、電気手術装置アーチファクト(electrosurgical equipment artifact)、動きアーチファクト(motion artifact)、呼吸アーチファクト(respiration artifact)、EMG信号(EMG signal)、フラット・ライン(flat line)、尖度(kurtosis)、歪度(skewness)、及びベースラインの相対パワー(relative power of baseline)からなる群から選択される。
【0015】
本いくつかの実施態様において、方法は、さらに、偽陽性の分類を受け取ったときにアラーム信号を抑制することを含む。
【0016】
いくつかの実施形態において、受信されたデータは、患者に関連し、患者監視装置から受信される。いくつかの実施形態では、受信データはEKG(心電図)データを含む。いくつかの実施形態において、本方法は、さらに、インタフェースを使用して、少なくとも1つのアラーム信号の分類を要約するレポートを出力することを含む。いくつかの実施態様において、レポートを出力することは、少なくとも1つのアラーム信号の分類についての少なくとも1つの理由を出力することを含む。
【0017】
別の態様によれば、実施形態は、誤ったアラームを検出するシステムに関する。システムは、アラーム信号に関連付けられたデータを受信するように構成されたインタフェースと、メモリと、メモリ上に記憶された命令を実行するプロセッサであって、受信データから少なくとも1つのアーチファクト特徴を抽出するように構成された特徴抽出モジュールと、少なくとも1つの抽出されたアーチファクト特徴に基づいて真陽性又は偽陽性としてのアラーム信号の分類を提供するように構成された分類器とを提供する、プロセッサと、を含む。
【0018】
いくつかの実施形態において、分類器は、複数のアンサンブル木を実行するアンサンブル木分類器である。
【0019】
いくつかの実施形態では、システムは、さらに、偽陽性の分類を受けると、少なくとも1つの抽出されたアーチファクト特徴にスコアを割り当てるように構成されたスコアモジュールを含む。いくつかの実施形態において、スコアリング・モジュールは、偽陽性の分類に寄与する各アンサンブル木のすべてのノードを識別することによってスコアを割り当てる。いくつかの実施形態では、分類器は、各木からのすべての特徴のスコアを合計し、スコアがしきい値を超える少なくとも1つの特徴を識別するように構成される。
【0020】
いくつかの実施形態では、抽出される少なくとも1つのアーチファクト特徴は、ステップ・サイズ、高周波の標準偏差、ベースライン・ワンダリング、アラーム負荷、心拍数、電気手術装置アーチファクト、動きアーチファクト、呼吸アーチファクト、EMG信号、フラット・ライン、尖度、歪度、及びベースラインの相対パワーからなる群から選択される。
【0021】
いくつかの実施形態では、プロセッサは、さらに、偽陽性の分類を受信したときにアラーム信号を抑制するように構成される。
【0022】
いくつかの態様において、受信データは、患者に関連する。
【0023】
さらに別の態様によれば、実施形態は、誤ったアラームを検出するためのコンピュータ実行可能命令を含むコンピュータ読み取り可能媒体に関する。媒体は、インタフェースを用いてアラーム信号に関連するデータを受信するためのコンピュータ実行可能命令を含み、特徴抽出モジュールを用いて、受信したデータから少なくとも1つのアーチファクト特徴を抽出するためのコンピュータ実行可能命令、及び分類器を用いて少なくとも1つの抽出されたアーチファクト特徴に基づいて真陽性又は偽陽性としてのアラーム信号の分類を受信するためのコンピュータ実行可能命令を含む。
【図面の簡単な説明】
【0024】
本発明の非限定的及び非包括的な実施形態は、以下の図面を参照して説明され、同様の参照番号は、別段の指定がない限り、種々の図を通して同様の部分を指す。
【0025】
【
図1】一実施形態による誤ったアラームを検出するためのシステムを説明する。
【0026】
【
図2】一実施形態による
図1の構成要素の例示的なワークフローを説明する。
【0027】
【
図3】一実施形態によるアーチファクト特徴を抽出する
図1のシステムを説明する。
【0028】
【
図4】一実施形態による高周波及びベースラインのワンダアーチファクト特徴を示すグラフを説明する。
【0029】
【
図5】一実施形態による利得選択不良を示すグラフを説明する。
【0030】
【
図6】一実施形態による移動アーチファクトを示すグラフを説明する。
【0031】
【
図7】一実施形態による
図1の分類器によって実行される複数の決定木のアンサンブルを説明する。
【0032】
【
図8】一実施形態によるアーチファクト特徴を分析する例示的な決定木を説明する。
【0033】
【
図9】一実施形態による決定木のトラバーサルを説明する。
【0034】
【
図10】別の実施形態による決定木のトラバーサルを説明する。
【0035】
【
図11】一実施形態による、
図9の決定木の逆マッピングを説明する。
【0036】
【
図12】一実施形態によるICUユニットにおいて偽陽性を引き起こす頻繁な特徴のカウントを示す棒グラフを示す。
【0037】
【
図13】一実施形態による様々なアーチファクト及びアーチファクト解決策を示す表を説明する。
【0038】
【
図14】一実施形態による誤ったアラームを検出する方法のフローチャートを示す。
【0039】
【
図15】一実施形態による
図1のアンサンブル木分類器に対する受信者動作特性(ROC)曲線を示す。
【0040】
【発明を実施するための形態】
【0041】
種々の実施形態は、本明細書の一部を構成し、具体的な例示的な実施形態を示す添付の図面を参照して以下にさらに詳細に説明する。しかしながら、本開示の概念は、多くの異なる形態で実現することができ、本明細書に記載される実施形態に限定されるものと解釈されるべきではなく、むしろ、これらの実施形態は、本開示の概念、技術及び実装の範囲を当業者に十分に伝えるために、全部かつ完全な開示の一部として提供される。実施形態は、方法、システム又は装置として実施することができる。従って、実施形態は、ハードウェア実装、完全にソフトウェア実装、又はソフトウェアとハードウェアの態様を組み合わせた実装の形態をとってもよい。従って、以下の詳細な説明は、限定的な意味で取られるべきではない。
【0042】
明細書における「一実施形態」又は「実施形態」への言及は、実施形態に関連して記載される特定の特徴、構造、又は特性が、本開示による少なくとも1つの実装又は技法に含まれることを意味する。明細書の様々な箇所における「一実施形態における(in one embodiment)」という語句の出現は、必ずしもすべて同じ実施形態を指しているわけではない。
【0043】
以下の説明のいくつかの部分は、コンピュータメモリ内に記憶された非一時的信号に対する動作の記号的表現として提示される。これらの説明及び表現は、データ処理技術の当業者によって使用され、その仕事の内容を他の当業者に最も効果的に伝達する。このような動作は、典型的には、物理量の物理的操作を必要とする。通常、必ずしも必要ではないが、これらの量は、記憶、転送、結合、比較、及び他の方法で操作することができる電気信号、磁気信号、又は光学信号の形態をとる。これらの信号をビット、値、要素、シンボル、文字、用語、数字などと呼ぶことは、主に一般的な使用の理由からときに便利である。さらに、ときには、一般性を損なうことなく、モジュール又はコードデバイスとして物理量の物理的操作を必要とするステップの特定の配置を参照することも便利である。
【0044】
しかし、これら及び類似の用語はすべて、適切な物理量と関連付けられるべきであり、これらの量に適用される単に便利なラベルである。以下の検討から明らかなように、特に明記しない限り、説明全体を通じて、「処理(processing)」又は「計算(computing)」又は「算出(calculating)」又は「決定(determining)」又は「表示(displaying)」などの用語を使用する検討は、コンピュータ・システム、又は同様の電子計算装置の動作及びプロセスを指し、コンピュータ・システム・メモリ又はレジスタ、又は他のそのような情報記憶、送信又は表示装置内の物理(電子)量として表されるデータを操作及び変換することであると理解される。本開示の一部は、ソフトウェア、ファームウェア又はハードウェアで具体化され得るプロセス及び命令を含み、ソフトウェアで具体化される場合、様々なオペレーティング・システムによって使用される色々なプラットフォームに常駐し、そこから動作させることができる。
【0045】
本開示はまた、本明細書の動作を実行するための装置に関する。この装置は、必要とされる目的のために特別に構成されてもよく、又は、コンピュータに記憶されたコンピュータ・プログラムによって選択的に起動又は再構成される汎用コンピュータを含んでもよい。このようなコンピュータ・プログラムは、制限されず、フロッピーディスク、光ディスク、CD-ROM、磁気光学ディスク、リードオンリ・メモリ(ROM)、ランダム・アクセス・メモリ(RAM)、EPROM、EEPROM、磁気カード又は光カード、特定用途向け集積回路(ASIC)、又は電子命令を記憶するのに適した任意の種類の媒体を含む任意のタイプのディスクに記憶することができ、各々はコンピュータシステムバスに接続することができる。さらに、本明細書において言及されるコンピュータは、単一のプロセッサを含んでもよく、又は計算能力を高めるために複数のプロセッサ設計を使用するアーキテクチャであってもよい。
【0046】
本明細書に提示されるプロセス及びディスプレイは、本質的に、任意の特定のコンピュータ又は他の装置に関連しない。種々の汎用システムは、本明細書の教示に従ってプログラムと共に使用することもでき、又は、1つ以上の方法ステップを実行するためのより特殊な装置を構成することが便利であることが証明され得る。種々のこれらのシステムの構造を以下の説明で検討する。加えて、本開示の技法及び実装を達成するのに十分な任意の特定のプログラミング言語を使用することができる。様々なプログラミング言語を用いて、本明細書において検討されるように、本開示を実施することができる。
【0047】
さらに、明細書において使用される用語は、主として読みやすさ及び説明の目的で選択されており、開示された主題を描写又は範囲を定めるために選択されていない場合がある。従って、本開示は、本明細書で検討される概念の範囲を例示するものであり、限定することを目的とするものではない。
【0048】
本明細書に記載するシステム及び方法の種々の実施形態の特徴は、最終的に誤ったアラームにつながる予防可能な非生理的事象を示す信号からの特徴を特定し、それに関する統計を報告するための新規な技法を開示する。誤ったアラームの考えられる原因は、例えば、動きのアーチファクト、患者の不快感、ケーブルの故障、患者から来るリード線、電極の配置不良、及び高ゲイン設定が含まれる。本明細書に記載のシステム及び方法は、誤ったアラーム及びそれらの対応する根本原因を検出するだけでなく、根本原因を防止又は少なくとも低減するための行為も示唆する。特に、本明細書に記載される様々な実施形態の特徴は、誤ったアラームの根本原因を識別するために、訓練されたアンサンブル木分類器(trained ensemble tree classifier)上で逆マッピング・アプローチを使用する。
【0049】
図1は、一実施形態による誤ったアラームを検出するためのシステム100を説明する。システム100は、1つ以上のシステム・バス110を介して相互接続されたプロセッサ120、メモリ130、ユーザ・インタフェース140、ネットワーク・インタフェース150、及び記憶装置160を含む。
図1は、いくつかの点で抽象概念を構成し、システム100の実際の構成及びその構成要素は、図示されているものと異なる場合があることが理解されよう。
【0050】
プロセッサ120は、メモリ130、記憶装置160上に記憶された命令を実行することができる任意のハードウェア装置であってもよく、又は他の方法でデータを処理することができる任意のハードウェア装置であってもよい。そのため、プロセッサ120は、マイクロプロセッサ、フィールド・プログラマブル・ゲート・アレイ(FPGA)、特定用途向け集積回路(ASIC)、又は他の類似の装置を含むことができる。
【0051】
メモリ130は、例えば、L1、L2、又はL3キャッシュ又はシステム・メモリのような種々のメモリを含んでもよい。このように、メモリ130は、スタティック・ランダム・アクセス・メモリ(SRAM)、ダイナミックRAM(DRAM)、フラッシュ・メモリ、リードオンリ・メモリ(ROM)、又は他の同様のメモリ装置及び構成を含んでもよい。
【0052】
ユーザ・インタフェース140は、ユーザとの通信を可能にするための1つ以上の装置を含んでもよい。例えば、ユーザ・インタフェース140は、ディスプレイ、マウス、及びユーザ・コマンドを受信するためのキーボードを含み得る。いくつかの実施形態では、ユーザ・インタフェース140は、ネットワーク・インタフェース150を介してリモート端末に提示され得るコマンドラインインタフェース又はグラフィカルユーザインタフェースを含み得る。ユーザ・インタフェース140は、PC、ラップトップ、タブレット、モバイル・デバイスなどのユーザ・デバイス上で実行することができる。
【0053】
ネットワーク・インタフェース150は、他のハードウェア装置との通信を可能にするための1つ以上の装置を含んでもよい。例えば、ネットワーク・インタフェース150は、イーサネット(登録商標)・プロトコルに従って通信するように構成されたネットワーク・インタフェース・カード(NIC)を含むことができる。さらに、ネットワーク・インタフェース150は、TCP/IPプロトコルに従って通信のためにTCP/IPスタックを実装してもよい。
【0054】
ネットワーク・インタフェース150のための様々な代替又は追加のハードウェア又は構成が明らかであろう。ネットワーク・インタフェース150は、1つ以上の医療装置、例えば患者監視装置と動作可能な通信をしてもよい。これらの患者監視装置は、少なくとも実質的にリアルタイムで患者に関するデータを収集し、患者データをシステム100に通信することができる。
【0055】
記憶装置160は、リードオンリ・メモリ(ROM)、ランダム・アクセス・メモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュ・メモリ装置、又は同様の記憶媒体のような、1つ以上の機械読取り可能記憶媒体を含んでもよい。様々な実施形態では、記憶装置160は、プロセッサ120による実行のための命令又はプロセッサ120が動作し得るデータを記憶することができる。
【0056】
例えば、記憶装置160は、データ取得モジュール(data acquisition module)162、特徴抽出モジュール(feature extraction module)163、複数の決定木165を実行する分類器(classifier)164、及びスコアリング・モジュール(scoring module)166を含むことができる。プロセッサ120は、メモリ130に記憶された命令を実行して、これらの各構成要素を提供して、本明細書に記載される実施形態の種々の特徴を実行してもよい。しかしながら、種々のモジュールによって実行されるタスクは処理機能であり、従って、種々のモジュールは、プロセッサ120と共に、又はそれ以外はプロセッサ120の一部として構成されてもよいことに留意されたい。
【0057】
図2は、一実施形態による、
図1の様々な構成要素の例示的なワークフロー200を説明する。第一に、様々な患者監視装置(patient monitoring devices)202は、特定の患者に関するデータを収集することができる。これらの患者監視装置は、心拍数、体温、SpO2、EKGデータ、EMGデータ、バイタルサインデータなどの患者データを収集するように構成することができる。考慮されるデータのタイプ(及びデータを収集するために使用される装置のタイプ)は、本明細書に記載される様々な実施形態の特徴が達成され得る限り、変化し得る。
【0058】
1つ以上のディスプレイ204は、収集されたデータを読みやすいフォーマットで提示することができる。例えば、ディスプレイ204は、波形としてデータを図形的に提示することができる。
図2に示すように、取り込まれたデータ及びアラーム・インスタンス(alarm instances)(例えば、アラームが発生した時)は、
図1の記憶装置160の様々なモジュールに通信されてもよい。
【0059】
まず、データ取得モジュール162は、例えば、中央局(central station)又はアグリゲーション・モジュール(aggregation module)204を介して全データを集約し、データのスナップショットを取得することができる。いくつかの実施形態では、データ取得モジュール162は、患者の健康のある態様に対応する波形セグメントを抽出することができる。例えば、この波形セグメントは、患者のEKG及び/又はEMG信号の1つ以上のスナップショットを含むことができる。
【0060】
集約されたデータは、特徴抽出モジュール163に通信されてもよい。抽出される特徴は、もちろん、変化し得、収集されるデータのタイプに依存し得る。例えば、特徴抽出モジュール163によって抽出される特徴は、以下のいずれか1つ又は複数を含み得る:
ステップ・サイズ-これは、アナログ・デジタル・コンバータ(ADC)解像度を意味する。大きなステップ・サイズは、EKG又はEMG波形に導入されるステップを生じ得、それによって、ゲイン設定が悪いことを意味する。
高周波の標準偏差-これは、周波数スペクトルの平均からの偏差を示す。
ベースライン・ワンダリング-この特徴は、そのベースラインからの信号のうねり(ワンダリング(wandering))の推定値を与える。
アラーム負荷-この特徴は、同じタイプのアラーム(例えば、心停止/V-fib/..)が、前回のアラームの所定の時間(例えば、1時間)内にトリガされたかどうかを示す。
心拍数- 患者の心拍数を計算する。
電気手術装置のアーチファクト-EKG波形における高周波外乱(high frequency disturbance)の存在を示す。この外乱は、患者の近くの 装置によって引き起こされることがある。
動きアーチファクト-患者の動きによるEKG波形の外乱をいう。
呼吸アーチファクト-これは患者呼吸によるEKGベースラインの外乱を示す。
EMG信号を含まない信号のパーセンテージ-これは、高周波EMGノイズを含まない信号の周波数成分のパーセンテージを示す。
フラット・ライン-信号のリード線(lead)が機能していないことを示す。これは、電極の配置不良及び/又はリード線が患者から外れることによる。
尖度(Kurtosis)-これは、拍動検出のパフォーマンスと正の相関を示す。
歪度(Skewness)-これは、真のアラームの可能性と正の相関があることを示す。
ベースラインの相対パワー-ベースライン・ワンダリングによって支配される信号内容の指標を与える。
【0061】
特徴抽出モジュール163によって抽出される上述のタイプの特徴は、単に例示に過ぎない。他のタイプの特徴を抽出することができ、様々な患者監視装置202によって収集されるデータのタイプに依存し得ることが企図される。
【0062】
図3は、例えば、システム100を示し、データ302を抽出し、特徴304-310を抽出する。これらの特徴には、AC干渉(AC interference)304、体性振戦(somatic tremor)306、不規則なベースライン(irregular baseline)308、及びワンダリング・ベースライン(wandering baseline)310が含まれる。
【0063】
図4、
図5、及び
図6は、それぞれ、EKGデータから得られたさらなるタイプの例示的特徴のグラフ400、500、及び600を示す。特に、グラフ400は、高周波及びベースラインのふらつき(wander:ワンダー)を示し、そのベースラインからの信号のふらつきの推定値を提供する。グラフ500は、利得選択不良を示し、グラフ600は、動きアーチファクト(例えば、痛みを誘発する患者の動きに起因する)を示す。
【0064】
一旦、適切なアーチファクト特徴が抽出されると、それらは、分類器164に伝達され得る。分類器164は、専門家の注釈付き真陽性(TP:true positive)アラーム及び偽陽性(FP:false positive)アラームについて予め訓練されてもよい。具体的には、分類器164は、複数の決定木165を実行するバッグ付きアンサンブル木分類器(bagged ensemble tree classifier)であってもよい。例えば、
図7は、複数の決定木t
1...t
Tのアンサンブル700を示し、ここでTは、アンサンブル700内の決定木の数である。
【0065】
各決定木は、トレーニングデータのランダムなサブセットを使用して構築することができる。例えば、
図8は、例示的な決定木G1(x)、G2(x)...Gm(x)を示し、ここでmはアンサンブルの木の数である。各木は、特徴802(
図8におけるEKGテスト波形)を使用して構築してもよく、特徴802の何らかの特性に関してフィルタ又は分類器として動作する複数のノード804を含んでもよい。
【0066】
従って、分類器164は、各決定木165を実行して、1つ以上の基準に関して各抽出された特徴を分析する。
図8に見られるように、例えば、木G1(x)のノード806は、ベースラインのワンダー値が所定のしきい値よりも大きいか否かを尋ねる。ベースラインのワンダー値がしきい値よりも大きい場合、木G1(x)は、これが誤ったアラームであることを決定するか、少なくとも提案するかもしれない。ベースラインのワンダー値がしきい値より大きくない場合、木G1(x)は、これが真のアラームであることを決定するか、少なくとも提案するかもしれない。
【0067】
図9は、一実施形態による決定木900の巡回を示す。第1に、患者監視装置によって警報902(例えば、アラーム信号)が発せられる。第2に、データ取得モジュール162は、ステップ904においてアラーム信号を引き起こしたデータのスナップショット(例えば、波形セグメント)を得ることができる。次に、特徴抽出モジュール163は、ステップ906において、データから1つ以上の特徴を抽出することができる。抽出された特徴は、例えば、波形に関係し得る。
【0068】
次いで、収集されたデータ及び抽出された特徴は、決定木900を巡回してもよい。巡回の(traversal)経路は、暗色ノード908及び矢印910によって示される。巡回するノードに応じて、決定木900は、この特定のアラーム信号が誤ったアラームであることを示唆することができる。巡回したノードに基づいて、分類器164はまた、誤ったアラームの原因を示唆し得る。例えば、決定木900による誤ったアラームの分類は、この誤ったアラームが電極接触不良によって引き起こされたというメッセージを伴ってもよい。
【0069】
図10は、別の決定木1000の巡回を示す。ステップ1002、1004、及び1006は、それぞれ、
図9のステップ902、904、及び906に類似しており、ここでは繰り返さない。分析されたデータ及び/又は抽出された特徴は、
図9のものとは異なっていてもよい。
図10に見られるように、このアラーム信号が真のアラームであることを示唆する決定木1000の特定のノードが巡回される。
【0070】
すべての木の出力は、分類器164によって分析されてもよい。例えば、分類器164は、アンサンブル内の何本の木が、特定の信号が誤ったアラームと関連付けられたことを投票したかに注目することができる。アラームが誤ったアラームであることを示唆する木の数が所定のしきい値を超える場合、分類器164は、信号が偽陽性であることを判定することができる。
【0071】
次いで、スコアリング・モジュール166は、偽陽性として分類されたアラームについて特徴をスコア化することができる。各木に対して、スコアリング・モジュール166は、アラームが偽陽性であることに寄与するすべての関連ノード(例えば、
図9の暗色ノード908)を特定することができる。
【0072】
図11は、
図9の決定木900を示す。前述のように、この決定木900は、特定のアラームが誤ったアラームであることを投票した。
図11に見られるように、木900は、アラームが偽陽性であったことに寄与した各ノードを特定するために「逆マッピング」される。この逆マッピングは、矢印1102によって示される。
【0073】
スコアリング・モジュール166は、各木を分析して、単一のアラームに対するすべての特徴の総和を得ることができる。換言すれば、スコアリング・モジュール166は、特定の特徴が誤ったアラーム分類に寄与した回数をカウントすることができる。次いで、分類器164は、各特徴のスコアをしきい値と比較することができる。特定の特徴が誤ったアラーム投票に寄与する回数がしきい値よりも大きい場合、臨床医は、この特徴が誤ったアラームの頻繁な原因であり、臨床医が何らかの是正措置を取るべきであることを知らされる。
【0074】
逆マッピングは、医療機関が偽陽性アラームを減らすために取るかもしれない最も重要な行動を識別するために、データベース内のすべての警報に適用できる。
図2に戻って参照すると、システム100は、次に、誤ったアラーム及びそれらの原因に関する収集された統計206を要約するレポートを出力することができる。これらの統計は、病院(又は他のタイプの医療機関)及び様々な施設の研究開発(R&D)部門に役立つであろう。
【0075】
レポートは、様々な方法で統計を要約することができる。例えば、
図2は、医療機関の様々な部署において誤ったアラームを引き起こす特徴に関する統計を示す棒グラフ208及び210を示す。別の例として、
図12は、ICUユニットにおいて偽陽性を引き起こす最も頻度の高い特徴のカウントを示す棒グラフ1200を示す。
【0076】
生成されたレポートには、特定の特徴のアーチファクトが誤ったアラームを引き起こすことを防止又は軽減する方法に関する提案も含まれることもある。
図13は、種々のアーチファクト及び各アーチファクトを防止するための可能な解決策を示す表1300を示す。これらのタイプのレポートは、PC、ラップトップ、タブレット、モバイル・デバイス等のようなユーザ・デバイスを介して臨床医に提示されてもよい。
【0077】
臨床医に誤ったアラーム(及びその原因)に関するデータを出力することに加えて、本明細書に記載される様々な実施形態のシステム及び方法は、この情報を様々な機関のR&D部門に出力することができる。例えば、患者監視装置を設計又は製造する会社は、この種の知識を活用して自社の製品を改善することができる。
【0078】
図14は、一実施形態による誤ったアラームを検出する方法のフローチャート1400を示す。ステップ1402は、インタフェースを用いてアラーム信号に関連するデータを受信することを含む。このデータは、患者に関するものであってもよく、1以上の患者監視装置から受信されてもよい。
【0079】
ステップ1404は、特徴抽出モジュールを用いて、受信データから少なくとも1つのアーチファクト特徴を抽出することを含む。特徴抽出モジュールは、
図1の特徴抽出モジュール163に類似していてもよい。
【0080】
抽出されたアーチファクト特徴は、例えば、ステップ・サイズ、高周波の標準偏差、ベースライン・ワンダリング、アラーム負荷、EKGデータ、心拍数、電気手術装置アーチファクト、動きアーチファクト、呼吸アーチファクト、EMG信号、フラット・ライン、尖度、歪度、及びベースラインの相対パワーのうちのいずれか1つ以上を含み得る。
【0081】
ステップ1406は、少なくとも1つの抽出されたアーチファクト特徴に基づいて、アラーム信号の真陽性又は偽陽性としての分類を、分類器を用いて受信することを含む。分類器は、
図1の分類器164と同様であってもよく、複数の決定木を実行する。これらの決定木は、例えば、
図7~
図10の決定木に類似していてもよく、アラームを偽陽性又は偽陰性と分類するための1つ以上の基準に関して、抽出されたアーチファクト特徴をそれぞれ分析してもよい。
【0082】
ステップ1408は、インタフェースを使用して、少なくとも1つのアラーム信号の分類を要約するレポートを出力することを含む。このレポートは、臨床医が患者ケアを改善する助けとなるかもしれないし、及び/又はR&D部門が自身の患者監視装置を改善する助けとなるかもしれない。
【0083】
ステップ1410は、偽陽性の分類を受け取ったときに、アラーム信号を抑制することを含む。本明細書に記載される様々な実施形態の特徴は、患者監視装置を改善するため、及び/又はアラームが発せられた後に患者治療を改善するために、分類データを分析することに向けられているが、リアルタイムでアラームを抑制することもできる。従って、患者及び臨床医は、過剰なアラームに悩まされない。
【0084】
システム100の精度は、木の数を増やすことによって改善することができる。例えば、
図15は、誤ったアラーム(false alarms)及び真のアラーム(true alarms)を分類するアンサンブル木の性能を示す受信者動作特性(ROC:receiver operating characteristic)曲線1500を示す(例えば、木数n=90)。ROC曲線1500は特異度(specificity)をプロットし、これは(1~特異度)に対する真陽性率とも呼ばれ、ここで“特異度”は真陰性率である。曲線下の面積(AUC)は0.94である。
【0085】
理想的なROC曲線は、座標(0、1)を有する点を有し、これは、偽陰性及び偽陽性を伴わない分類器の性能を表す(すなわち、完全な分類)。しかしながら、曲線1500は、訓練された分類器164から得られた好ましい結果を示す(例えば、6,602の訓練サンプル及び1651の試験サンプルを超える)。例えば、点1502は、感度率(sensitivity rate)が84.12%、(1~特異度率)が93%に相当する。
【0086】
図16は、1651個の試験サンプル上で訓練された分類器の結果を示す混同行列(confusion matrix)1600を示す。ボックス1602は、1651個の試験サンプルのうちの612個の真陽性の数を表す。ボックス1604は、1651個の試験サンプルのうちの60個の偽陽性の数を表す。ボックス1606は、1651個の試験サンプルのうちの130個が偽陰性の数を表し、ボックス1608は、849個の真陰性の数を表す。各ボックスには、試験セット全体に対するパーセンテージも含まれる。
【0087】
ボックス1610は、真陽性率又は感度を表す。この値は、真陽性の合計を条件陽性(condition positive)の数で割ることによって得られる。
すなわち、真陽性率(True positive rate):
【0088】
【0089】
ボックス1610も偽陰性率(すなわち、1-82.5%=17.5%)を表す。
【0090】
ボックス1612は、偽陽性率を表す。この値は、偽陽性の合計を条件陰性の合計で割ることによって得られる。
すなわち、偽陽性率(False positive rate):
【0091】
【0092】
ボックス1612は、真陰性率(すなわち、1-6.6%=93.4%)も表している。
【0093】
ボックス1614は、陽性予測値(positive predicted value)を表す。この値は、真陽性の合計を予測条件陽性(predicted condition positives)の合計で割ることによって得られる。
すなわち、陽性予測値(positive predicted value):
【0094】
【0095】
ボックス1614は、偽発見率(false discovery rate)(すなわち、1-91.1%=8.9%)も表している。
【0096】
ボックス1616は、偽不作為率(false omission rate)を表す。この値は、偽陰性の合計を予測条件陰性の合計で割ることによって得られる。
すなわち、偽不作為率(false omission rate):
【0097】
【0098】
ボックス1616は、負の予測値(すなわち、1-13.3%=86.7)も表す。
【0099】
最後に、ボックス1618は、真陽性率を真陰性率で割ったものに等しい陽性尤度比を表す。
すなわち、陽性尤度比(positive likelihood ratio):
【0100】
【0101】
ボックス1618は、陰性尤度比(negative likelihood ratio)(すなわち、1-88%=12%)も表す。
【0102】
上述の方法、システム、及びデバイスは、例である。種々の構成は、種々の手続き又は構成要素を省略、代替、又は追加してもよい。例えば、代替構成において、方法は、記載されたものと異なる順序で実行することができ、種々のステップを追加、省略、又は組み合わせることができる。また、特定の構成に関して説明した特徴は、種々の他の構成において組み合わされてもよい。構成の異なる態様及び要素は、同様の方法で組み合わされてもよい。また、技術は進歩し、従って、要素の多くは例であり、開示又は請求項の範囲を制限しない。
【0103】
本開示の実施形態は、例えば、本開示の実施形態による方法、システム、及びコンピュータ・プログラム製品のブロック図及び/又は動作図を参照して上述された。ブロックに表示される機能/動作は、フローチャートに示すように順序が異なって起こってもよい。例えば、連続して示される2つのブロックは、実際には実質的に並行して実行されてもよく、あるいは、ブロックは、含まれる機能/動作に応じて、逆の順序で実行されてもよい。加えて、又は代わりに、フローチャートに示されるすべてのブロックを遂行及び/又は実行する必要はない。例えば、所定のフローチャートが機能/動作を含む5つのブロックを有する場合、5つのブロックのうち3つのみが遂行及び/又は実行される場合がある。この例では、5つのブロックのうちの3つのいずれかを遂行及び/又は実行することができる。
【0104】
値が第1のしきい値を超える(又はより大きい)という表現は、その値が第1のしきい値よりもわずかに大きい第2のしきい値に一致する、又は超えるという表現と等価であり、例えば、第2のしきい値は、関連するシステムの解像度における第1のしきい値よりも1大きい値である。値が第1のしきい値よりも小さい(又はその範囲内にある)という表現は、その値が第1のしきい値よりもわずかに小さい第2のしきい値よりも小さい、又はそれに等しいという表現と等価であり、例えば、第2のしきい値は、関連するシステムの解像度における第1のしきい値よりも1小さい値である。
【0105】
具体的な詳細は、例示的な構成(実装を含む)の完全な理解を提供するために、明細書に記載されている。しかしながら、構成は、これらの具体的な詳細なしに実施されてもよい。例えば、周知の回路、プロセス、アルゴリズム、構造、及び技法は、構成を不明瞭にすることを避けるために、不必要な詳細なしに示されてきた。この説明は、例示的な構成のみを提供し、請求項の範囲、適用可能性、又は構成を制限するものではない。むしろ、構成の先の説明は、記載された技法を実装するための実施可能な説明を当業者に提供するであろう。本開示の精神又は範囲から逸脱することなく、要素の機能及び構成において様々な変更を行うことができる。
【0106】
これまで幾つかの例示的な構成について説明してきたが、本開示の精神から逸脱することなく、様々な変更形態、代替の構成、及び均等物を使用してもよい。例えば、上述の要素は、より大きなシステムの構成要素であってもよく、他の規則では、本開示の種々の実装又は技法の適用を優先するか、又はそうでなければ修正してもよい。また、上述の要素が考慮される前、中、又は後に、いくつかのステップが実行されてもよい。
【0107】
本出願の説明及び図解が提供されたので、当業者は、以下の請求項の範囲から逸脱せずに本出願において検討される一般的な発明概念の範囲内に入る変形形態、修正形態、及び代替の実施形態を予見することができる。