(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-12
(45)【発行日】2022-04-20
(54)【発明の名称】双極刺激プローブを用いた患者の神経組織の全方向性双極刺激のためのシステムおよび方法
(51)【国際特許分類】
A61N 1/04 20060101AFI20220413BHJP
A61N 1/36 20060101ALI20220413BHJP
【FI】
A61N1/04
A61N1/36
(21)【出願番号】P 2017552026
(86)(22)【出願日】2016-03-24
(86)【国際出願番号】 US2016023910
(87)【国際公開番号】W WO2016160482
(87)【国際公開日】2016-10-06
【審査請求日】2019-03-20
【審判番号】
【審判請求日】2021-01-18
(32)【優先日】2015-04-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】504101304
【氏名又は名称】メドトロニック・ゾーメド・インコーポレーテッド
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100117640
【氏名又は名称】小野 達己
(72)【発明者】
【氏名】マクファーリン,ケヴィン・エル
(72)【発明者】
【氏名】コートニー,ブライアン・エル
(72)【発明者】
【氏名】ハッカー,デーヴィッド・シー
【合議体】
【審判長】村上 聡
【審判官】佐々木 一浩
【審判官】木村 立人
(56)【参考文献】
【文献】米国特許出願公開第2014/0277259(US,A1)
【文献】米国特許出願公開第2014/0364920(US,A1)
【文献】米国特許出願公開第2014/0005753(US,A1)
【文献】特表2014-524279(JP,A)
【文献】米国特許出願公開第2005/0085743(US,A1)
【文献】特表2013-505080(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 1/04
A61N 1/36
(57)【特許請求の範囲】
【請求項1】
双極刺激プローブであって、
第1の電極と、
第2の電極と、
(i)前記第1の電極から出力される第1のパルスを示す第1の出力信号、および、(ii)前記第2の電極から出力される第2のパルスを示す第2の出力信号を生成することで、患者の神経組織を刺激するように構成される制御モジュールであって、前記第1のパルスおよび前記第2のパルスは単相である、制御モジュールと、
前記第1の出力信号に基づく前記第1のパルス、または前記第2の出力信号に基づく前記第2のパルスを生成するパルス生成手段と、
前記パルス生成手段及び前記第1の電極に連結される第1のスイッチと、
前記パルス生成手段及び前記第2の電極に連結される第2のスイッチと、
を備え、
前記制御モジュールは、前記第1及び第2のスイッチを制御し、前記双極刺激プローブからの出力を、(i)前記第1のスイッチを介して前記第1の電極に提供される前記第1のパルスと、(ii)前記第2のスイッチを介して前記第2の電極に提供される前記第2のパルスとの間で切り替える、
双極刺激プローブ。
【請求項2】
請求項1に記載の双極刺激プローブにおいて、
前記制御モジュールは、(i)前記双極刺激プローブの動作モードを変えるために、および、(ii)前記第1及び第2のスイッチの状態を制御するために、切替制御信号を生成するように構成され、
第1のモードの間、(i)前記第1のスイッチは第1の状態にあり、前記第1のパルスを前記第1の電極に提供し、(ii)前記第2のスイッチは第1の状態にあり、前記第1のパルスの結果として、前記患者からのリターン電流を受信し、
第2のモードの間、(i)前記第2のスイッチは第2の状態にあり、前記第2のパルスを前記第2の電極に提供し、(ii)前記第1のスイッチは第2の状態にあり、前記第2のパルスの結果として、前記患者からのリターン電流を受信する、双極刺激プローブ。
【請求項3】
請求項1または2に記載の双極刺激プローブにおいて、
前記制御モジュールは、前記神経組織の不応性の時間の期間を構成するために、前記第1の出力信号の生成と前記第2の出力信号の生成との間に所定の期間で待機するように構成される、双極刺激プローブ。
【請求項4】
請求項1から3のいずれか一項に記載の双極刺激プローブにおいて、
前記パルス生成手段は、
前記第1の出力信号に基づいて第1の入力を受信し、
前記第1のパルスを生成するために前記第1の入力を増幅し、
前記第2の出力信号に基づいて第2の入力を受信し、
前記第2のパルスを生成するために前記第2の入力を増幅する
ように構成される増幅モジュールをさらに備える双極刺激プローブ。
【請求項5】
請求項1から4のいずれか一項に記載の双極刺激プローブにおいて、
前記パルス生成手段は、
前記第1の出力信号に基づいて第1の入力を受信し、
第1の濾過された出力を生成するために前記第1の入力を濾過し、
前記第2の出力信号に基づいて第2の入力を受信し、
第2の濾過された出力を生成するために前記第2の入力を濾過する
ように構成されるフィルタをさらに備え、
(i)前記第1のスイッチは、前記第1の濾過された出力に基づく前記第1のパルスを前記第1の電極へと提供するように構成され、(ii)前記第2のスイッチは、前記第2の濾過された出力に基づく前記第2のパルスを前記第2の電極へと提供するように構成される、双極刺激プローブ。
【請求項6】
請求項1から5のいずれか一項に記載の双極刺激プローブにおいて、
前記パルス生成手段は、(i)前記第1の出力信号を第1のアナログ信号へと変換する、および、(ii)前記第2の出力信号を第2のアナログ信号へと変換するように構成されるデジタル/アナログ変換器をさらに備え、
(i)前記第1のスイッチは、前記第1のアナログ信号に基づく前記第1のパルスを前記第1の電極へと提供するように構成され、(ii)前記第2のスイッチは、前記第2のアナログ信号に基づく前記第2のパルスを前記第2の電極へと提供するように構成される、双極刺激プローブ。
【請求項7】
請求項1から6のいずれか一項に記載の双極刺激プローブにおいて、
(i)前記第1のパルスの生成の間に前記第1の電極および前記第2の電極
の間を流れる電流に対応する第1の電圧を検出する、(ii)前記第2のパルスの生成の間に前記第1の電極および前記第2の電極
の間を流れる電流に対応する第2の電圧を検出する、および、(iii)前記第1の電圧または前記第2の電圧に基づいてフィードバック信号を生成するように構成されるフィードバックモジュールをさらに備え、
前記制御モジュールは、前記第1の電圧または前記第2の電圧に基づいて
前記第1のパルス又は前記第2のパルスを調節するように構成される、双極刺激プローブ。
【請求項8】
請求項7に記載の双極刺激プローブにおいて、
前記フィードバックモジュールは相互コンダクタンス増幅器を備え、
前記相互コンダクタンス増幅器は、(i)前記第1の電圧を第1の電流へと変換する、および、(ii)前記第2の電圧を第2の電流へと変換するように構成され、
前記制御モジュールは、前記第1の電流または前記第2の電流に基づいて
前記第1のパルス又は前記第2のパルスを調節するように構成される、双極刺激プローブ。
【請求項9】
請求項1から8のいずれか一項に記載の双極刺激プローブにおいて、
前記制御モジュールは、(i)前記第1の電極から出力される第1の複数のパルスを示す第1の複数の出力信号、および、(ii)前記第2の電極から出力される第2の複数のパルスを示す第2の複数の出力信号を生成することで、前記患者の前記神経組織を刺激するように構成され、前記第1の複数のパルスおよび前記第2の複数のパルスは単相であり、前記第1の複数のパルスは前記第1のパルスを含み、前記第2の複数のパルスは前記第2のパルスを含み、
前記パルス生成手段は、前記第1の複数の出力信号に基づく前記第1の複数のパルス、または前記第2の複数の出力信号に基づく前記第2の複数のパルスを生成し、
前記制御モジュールは、前記第1及び第2のスイッチを制御し、前記双極刺激プローブからの出力を、(i)前記第1のスイッチを介して前記第1の電極に出力される前記第1の複数のパルスと、(ii)前記第2のスイッチを介して前記第2の電極に出力される前記第2の複数のパルスとの間で切り替える、双極刺激プローブ。
【請求項10】
請求項1から9のいずれか一項に記載の双極刺激プローブと、
前記患者の領域において信号活動を検出するように構成されるセンサと、
(i)前記第1のパルスおよび前記第2のパルスに基づいて、前記患者の領域における前記信号活動を監視し、(ii)前記第1のパルスおよび前記第2のパルスがいつ生成されるかを決定し、(ii)前記第1のパルスおよび前記第2のパルスがいつ生成されるかに基づいて、前記信号活動の一部を濾過するように構成される神経完全性監視装置と
を備えるシステム。
【請求項11】
請求項10に記載のシステムにおいて、
前記信号活動は、前記第1のパルスと、前記第2のパルスと、前記第1のパルスおよび前記第2のパルスの少なくとも1つのアーチファクトとを含み、
前記神経完全性監視装置は、
前記第1のパルスおよび前記第2のパルスの少なくとも1つに対応する拒絶期間の間に前記少なくとも1つのアーチファクトを濾過し、
前記拒絶期間の後の第1の監視期間の間に筋電図検査信号を監視するように構成され
る、システム。
【請求項12】
請求項11に記載のシステムにおいて、
前記神経完全性監視装置は、
拒絶期間の間、前記第1のパルスの第1のアーチファクト、または、前記第2のパルスの第2のアーチファクトを濾過するように構成され、
前記第1の監視期間は、前記拒絶期間の後であり、前記第1のパルスと前記第2のパルスとの両方に対応する、システム。
【請求項13】
請求項11に記載のシステムにおいて、
前記神経完全性監視装置は、
第1の拒絶期間の間に前記第1のパルスの第1のアーチファクトを濾過し、
第2の拒絶期間の間に前記第2のパルスの第2のアーチファクトを濾過し、
前記第1の拒絶期間の後の前記第1の監視期間の間に第1の筋電図検査信号を監視し、
前記第2の拒絶期間の後の第2の監視期間の間に第2の筋電図検査信号を監視する
ように構成され、
前記第1の監視期間は前記第1のパルスに基づき、
前記第2の監視期間は前記第2のパルスに基づく、システム。
【請求項14】
請求項1から9のいずれか一項に記載の双極刺激プローブと、
第1の要求信号を生成するように構成される神経完全性監視装置と
を備え、
前記制御モジュールは、前記第1の要求信号に基づいて、前記第1の出力信号または前記第2の出力信号を生成するように構成される、システム。
【請求項15】
請求項14に記載のシステムにおいて、
前記双極刺激プローブは、
(i)前記第1の電極および前記第2の電極
の間を流れる電流に対応する電圧を監視する、および、(ii)前記電圧に基づいてフィードバック信号を生成するように構成されるフィードバックモジュールと、
前記神経完全性監視装置と無線で通信するように構成される物理層モジュールと
を備え、
前記制御モジュールは、(i)前記フィードバック信号のパラメータを決定する、および、(ii)前記パラメータを、前記物理層モジュールを介して前記神経完全性監視装置へと無線で送信するように構成され、
前記神経完全性監視装置は、(i)前記パラメータに基づいて第2の要求信号を生成する、および、(ii)前記第2の要求信号を前記物理層モジュールへと戻すように無線で送信するように構成され、
前記制御モジュールは、前記第2の要求信号に基づいて
前記第1のパルス又は前記第2のパルスを調節するように構成される、システム。
【請求項16】
第1の電極と、第2の電極と、前記第1の電極に連結される第1のスイッチと、前記第2の電極に連結される第2のスイッチと、前記第1及び第2のスイッチに接続されるパルス生成手段と、前記第1及び第2のスイッチ並びに前記パルス生成手段に接続される制御モジュールとを備える双極刺激プローブを動作させる方法であって、
前記制御モジュールが、前記第1の電極から出力される第1のパルスを示す第1の出力信号を生成するステップと、
前記制御モジュールが、前記第2の電極から出力される第2のパルスを示す第2の出力信号を生成するステップであって、前記第1のパルスおよび前記第2のパルスは単相である、ステップと、
前記パルス生成手段が、前記第1の出力信号に基づく前記第1のパルス、または前記第2の出力信号に基づく前記第2のパルスを生成するステップと、
前記制御モジュールが、前記第1及び第2のスイッチを制御し、前記双極刺激プローブか
らの出力を、(i)前記第1のスイッチを介して前記第1の電極に提供される前記第1のパルスと、(ii)前記第2のスイッチを介して前記第2の電極に提供される前記第2のパルスとの間で切り替える、ステップと
を含む方法。
【請求項17】
請求項16に記載の方法において、
前記制御モジュールが、(i)前記双極刺激プローブの動作モードを変えるために、および、(ii)前記第1及び第2のスイッチの状態を制御するために、切替制御信号を生成するステップと、
第1のモードの間で、前記第1のスイッチが第1の状態にあり、前記第2のスイッチが第1の状態にある間、(i)前記第1のスイッチは、前記第1のパルスを前記第1の電極に提供し、(ii)前記第2のスイッチは、リターン電流を、前記第1のパルスの結果として、前記第2の電極から受信するステップと、
第2のモードの間で、前記第2のスイッチが第2の状態にあり、前記第1のスイッチが第2の状態にある間、(i)前記第2のスイッチは、前記第2のパルスを前記第2の電極に提供し、(ii)前記第1のスイッチは、リターン電流を、前記第2のパルスの結果として、前記第1の電極から受信するステップと
をさらに含む方法。
【請求項18】
請求項16または17に記載の方法において、
前記制御モジュールが、不応性の時間の期間を構成するために、前記第1の出力信号の生成と前記第2の出力信号の生成との間に所定の期間で待機するステップをさらに含む方法。
【請求項19】
請求項16から18のいずれか一項に記載の方法において、
前記パルス生成手段が増幅モジュールを有し、
前記第1のパルスまたは前記第2のパルスを生成するステップは、
前記増幅モジュールが、前記第1の出力信号に基づいて、第1の入力を受信するステップと、
前記増幅モジュールが、前記第1のパルスを生成するために前記第1の入力を増幅するステップと、
前記増幅モジュールが、前記第2の出力信号に基づいて、第2の入力を受信するステップと、
前記増幅モジュールが、前記第2のパルスを生成するために前記第2の入力を増幅するステップと
を含む方法。
【請求項20】
請求項16から19のいずれか一項に記載の方法において、
前記パルス生成手段がフィルタを有し、
前記第1のパルスまたは前記第2のパルスを生成するステップは、
前記フィルタが、前記第1の出力信号に基づいて第1の入力を受信するステップと、
前記フィルタが、第1の濾過された出力を生成するために前記第1の入力を濾過するステップと、
前記フィルタが、前記第2の出力信号に基づいて第2の入力を受信するステップと、
前記フィルタが、第2の濾過された出力を生成するために前記第2の入力を濾過するステップと、
を含み、
(i)前記第1のスイッチは、前記第1の濾過された出力に基づく前記第1のパルスを前記第1の電極へと提供し、(ii)前記第2のスイッチは、前記第2の濾過された出力に基づく前記第2のパルスを前記第2の電極へと提供する、方法。
【請求項21】
請求項16から20のいずれか一項に記載の方法において、
前記パルス生成手段がデジタル/アナログ変換器を有し、
前記第1のパルスまたは前記第2のパルスを生成するステップは、
前記デジタル/アナログ変換器が、(i)前記第1の出力信号を第1のアナログ信号へと変換し、(ii)前記第2の出力信号を第2のアナログ信号へと変換するステップを含み、
(i)前記第1のスイッチは、前記第1のアナログ信号に基づく前記第1のパルスを前記第1の電極へと提供し、(ii)前記第2のスイッチは、前記第2のアナログ信号に基づく前記第2のパルスを前記第2の電極へと提供する、方法。
【請求項22】
請求項16から21のいずれか一項に記載の方法において、
前記双極刺激プローブは、前記第1及び第2のスイッチに接続されたフィードバックモジュールを備え、
前記フィードバックモジュールが、前記第1のパルスの生成の間に前記第1の電極および前記第2の電極
の間を流れる電流に対応する第1の電圧を検出するステップと、
前記フィードバックモジュールが、前記第2のパルスの生成の間に前記第1の電極および前記第2の電極
の間を流れる電流に対応する第2の電圧を検出するステップと、
前記フィードバックモジュールが、前記第1の電圧または前記第2の電圧に基づいてフィードバック信号を生成するステップと、
前記制御モジュールが、前記パルス生成手段を制御して、前記第1の電圧または前記第2の電圧に基づいて
前記第1のパルス又は前記第2のパルスを調節するステップと
をさらに含む方法。
【請求項23】
請求項22に記載の方法において、
前記フィードバックモジュールが、前記第1の電圧を第1の電流へと変換するステップと、
前記フィードバックモジュールが、前記第2の電圧を第2の電流へと変換するステップと、
前記制御モジュールが、前記パルス生成手段を制御して、前記第1の電流または前記第2の電流に基づいて
前記第1のパルス又は前記第2のパルスを調節するステップと
をさらに含む方法。
【請求項24】
請求項16から23のいずれか一項に記載の方法において、
前記制御モジュールが、(i)前記第1の電極から出力される第1の複数のパルスを示す第1の複数の出力信号、および、(ii)前記第2の電極から出力される第2の複数のパルスを示す第2の複数の出力信号を生成し、前記第1の複数のパルスおよび前記第2の複数のパルスは単相であり、前記第1の複数のパルスは前記第1のパルスを含み、前記第2の複数のパルスは前記第2のパルスを含み、
前記パルス生成手段が、前記第1の複数の出力信号に基づく前記第1の複数のパルス、または前記第2の複数の出力信号に基づく前記第2の複数のパルスを生成し、
前記制御モジュール手段が、前記第1及び第2のスイッチを制御し、前記双極刺激プローブからの出力を、(i)前記第1のスイッチを介して前記第1の電極に提供される前記第1の複数のパルスと、(ii)前記第2のスイッチを介して前記第2の電極に提供される前記第2の複数のパルスとの間で切り替えるステップと
をさらに含む方法。
【請求項25】
請求項16から24のいずれか一項に記載の方法において、
前記双極刺激プローブは、領域において信号活動を検出するように構成されるセンサ、及び、前記信号活動を監視する神経完全性監視装置と無線で通信するように構成され
前記神経完全性監視装置が、前記領域において前記センサが検出した信号活動を受け取るステップと、
前記制御神経完全性監視装置が、前記第1のパルスおよび前記第2のパルスに基づいて、前記領域における前記信号活動を監視するステップと、
前記神経完全性監視装置が、前記第1のパルスおよび前記第2のパルスがいつ生成されるかを決定するステップと、
前記神経完全性監視装置が、前記第1のパルスおよび前記第2のパルスがいつ生成されるかに基づいて、前記信号活動の一部を濾過するステップと
をさらに含む方法。
【請求項26】
請求項25に記載の方法において、
前記神経完全性監視装置が、
前記第1のパルスおよび前記第2のパルスの少なくとも1つに対応する拒絶期間の間、前記第1のパルスおよび前記第2のパルスの少なくとも1つのアーチファクトを濾過するステップであって、前記信号活動は、前記第1のパルス、前記第2のパルス、および前記少なくとも1つのアーチファクトを含む、ステップと、
前記神経完全性監視装置が、
前記拒絶期間の後の第1の監視期間の間に信号を監視す
るステップと
をさらに含む方法。
【請求項27】
請求項26に記載の方法において、
前記神経完全性監視装置が、拒絶期間の間、前記第1のパルスの第1のアーチファクトまたは前記第2のパルスの第2のアーチファクトを濾過するステップであって、前記第1の監視期間は、前記拒絶期間の後であり、前記第1のパルスと前記第2のパルスとの両方に対応する、ステップをさらに含む方法。
【請求項28】
請求項26に記載の方法において、
前記神経完全性監視装置が、第1の拒絶期間の間に前記第1のパルスの第1のアーチファクトを濾過するステップと、
前記神経完全性監視装置が、第2の拒絶期間の間に前記第2のパルスの第2のアーチファクトを濾過するステップと、
前記神経完全性監視装置が、
前記第1の拒絶期間の後の前記第1の監視期間の間に第1の信号を監視するステップと、
前記神経完全性監視装置が、
前記第2の拒絶期間の後の第2の監視期間の間に第2の信号を監視するステップと
をさらに含み、
前記第1の監視期間は前記第1のパルスに基づき、
前記第2の監視期間は前記第2のパルスに基づく、方法。
【請求項29】
請求項25から27のいずれか一項に記載の方法において、
前記神経完全性監視装置が、第1の要求信号を生成するステップと、
前記神経完全性監視装置が前記第1の要求信号を前記双極刺激プローブへと送信するステップと、
前記制御モジュールが、前記第1の要求信号に基づいて、前記第1の出力信号または前記第2の出力信号を生成するステップと
をさらに含む方法。
【請求項30】
請求項22を引用先に含む請求項29に記載の方法において、
前記双極刺激モジュールは、前記神経完全性監視装置と無線で通信するように構成される物理層モジュールを更に備え、
前記フィードバックモジュールが、前記第1の電極および前記第2の電極
の間を流れる電流に対応する電圧を監視するステップと、
前記フィードバックモジュールが、前記電圧に基づいてフィードバック信号を生成するステップと、
前記制御モジュールが、前記フィードバック信号のパラメータを決定するステップと、
前記物理層モジュールが、前記パラメータを前記双極刺激プローブから前記神経完全性監視装置へと無線で送信するステップと、
前記神経完全性監視装置が、前記パラメータに基づいて第2の要求信号を生成するステップと、
前記神経完全性監視装置が、前記第2の要求信号を前記双極刺激プローブへと戻すように無線で送信するステップと、
前記制御モジュールが、前記パルス生成手段を制御して、前記第2の要求信号に基づいて、前記双極刺激プローブを介して
前記第1のパルス又は前記第2のパルスを調節するステップと
をさらに含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願への相互参照
[0001]本開示は、代理人整理番号5074X-000027-USである、本出願と同時に出願された「System and Method for Omni-directional Bipolar Stimulation of Nerve Tissue of a Patient via a Surgical Tool」という名称の米国特許出願と関連されている。この出願の全体の開示が、本明細書において参照により組み込まれている。
【0002】
[0002]本開示は、神経刺激および神経刺激装置に関する。
【背景技術】
【0003】
[0003]本明細書で提供されている背景技術の記載は、開示の文脈を大まかに提示する目的のためである。ここで名前の挙げられている発明者の取り組みは、この背景技術の部分に記載されている取り組みと、他の様式では出願のときにおける先行技術としての条件を満たすことができない記載の態様との範囲において、本開示に対する先行技術として明示的にも言外的にも認められない。
【0004】
[0004]患者の神経は、単極刺激プローブを用いて電流を神経に加えることによって、刺激できる。単極刺激プローブは、刺激する電極先端を備え得る。外科医は、患者における部位に電圧および/または電流を提供し、神経活動を刺激し、結果として筋肉反応(または、筋肉活動)を刺激するために、電極先端で患者における部位に触れることができる。リターンの(または、アノードの)ニードルが、ワイヤを介して単極刺激プローブに取り付けできると共に、(i)センサと、(ii)刺激されている領域とから離して、患者に取り付けできる。センサは、患者に取り付けられ、筋肉活動を監視するために使用される電極を備え得る。単極刺激プローブは、神経に加えられる電流の深い集中した透過を提供できるが、単極刺激プローブは、リターンニードルへの単極刺激プローブの取り付けのため、外科医の手の動きを制限してしまう。
【0005】
[0005]ワイヤおよびリターンニードルの使用を排除するために、同心のプローブ、並んだ双極刺激プローブ、または三極刺激プローブが使用できる。同心のプローブは、カソードの電極内で延びるアノードの(または、中心の)電極を備える。アノードの電極は、アノードの電極の周りの絶縁遮蔽体を介して、カソードの電極から絶縁される。同心のプローブは、単極刺激プローブと関連付けられるワイヤおよびリターンニードルの必要性を排除するが、電流密度および電流の組織への透過が小さい。
【0006】
[0006]並んだ双極刺激プローブおよび三極刺激プローブは同様である。並んだ双極刺激プローブは、2つの先端(アノードの電極およびカソードの電極)を備える。三極刺激プローブは3つの先端(2つのカソードの電極および単一のアノードの電極)を有する。アノードの電極は、2つのカソードの電極の間に位置決めされる。三極刺激プローブは、追加の(または、第3の)電極のため、並んだ双極刺激プローブよりおおよそ30%大きい寸法である。
【0007】
[0007]並んだ双極刺激プローブは、単一のアノードの電極と単一のカソードの電極とを有する。2つの電極を通って流れる電流は、神経を刺激するために、直接的または間接的に神経に加えられ得る。負の電流が、カソードの電極(カソードまたは負の電極と称される)を介して神経に加えられてもよい。神経は、アノードの電極(アノードまたは正の電極と称される)において励起に抗する。これは、神経の神経細胞膜の外側の電圧を低減するカソードからの負の電流の結果であり、脱分極と活動電位とを引き起こす。アノードは神経細胞膜の外側に正の電流を投入し、これが過分極をもたらす。優先的なカソードの刺激は、カソードが刺激電極として使用されるとき、筋肉の運動反応を引き起こすために必要とされる電流の大きさの低減(3分の1から4分の1)を参照する。カソードが使用されるときに加えられる電流の大きさは、アノードが刺激電極として使用されるときに筋肉の運動反応を引き起こすために必要とされる電流の大きさより小さい。カソードを使用して神経を刺激するためには、カソードは刺激ニードルまたはカテーテルに取り付けられ、アノードは電流リターン電極として使用され、リターンワイヤを介して患者の皮膚に取り付けられ得る、または、患者の皮膚と接触され得る。
【0008】
[0008]外科医が並んだ双極刺激プローブを使用するとき、並んだ双極刺激プローブの電極の神経に対する配向は、神経の刺激と関連付けられた誘発される応答に影響を与える。刺激によって誘発される神経活動電位は、神経に対する電極の配向に依存して異なる。双極刺激プローブのカソードは、適切な応答を誘発するために、神経に沿って末端に配置されなければならない。カソードを神経に沿って末端に配置するとき、カソードは、アノードに対して、神経の軸索先端(または、細胞体)から、神経の軸索末端および/または目標の筋肉に向かって方向付けられる。適切に配向されない場合、応答がない、または、不適切な応答(例えば、異常な信号、または、信号強度の低い信号)が生成され得る。
【0009】
[0009]並んだ双極刺激プローブの電極は、適切な応答を得るために、および、適切な応答を受信するために加えられる電流の大きさを最小限にするために、神経に対して適切に配向されなければならないが、電極は様々な理由のために不適切に配向される可能性がある。例えば、外科医は、並んだ双極刺激プローブの電極が神経に対して適切に配向される必要があることを分かっていない可能性がある。他の例として、外科医は、神経の配向が分からない可能性があり、結果として、軸索先端または神経の遠位端がどこに存在するか分からない可能性がある。この理由のため、外科医は、並んだ双極刺激プローブの電極の適切な配向を決定することができない可能性がある。さらなる他の例として、外科医は、患者の神経の解剖学的な違いのため、神経における双極刺激装置の電極の配向が分からない可能性がある。また、外科医は、並んだ双極刺激プローブを外科医の手において回転させるだけで並んだ双極刺激プローブの電極の配向を不注意で変えてしまう可能性がある。これらの人為的な要因は、並んだ双極刺激プローブが神経からの適切な応答を誘発し損ねる結果をもたらす可能性がある。結果として、外科医は、無視できるほどの筋肉応答のため、および/または、検出される筋肉応答がないため、神経組織ではないと考えられる神経組織を不注意で切除する可能性がある。
【発明の概要】
【課題を解決するための手段】
【0010】
[0010]双極刺激プローブが提供され、双極刺激プローブは、第1の電極と、第2の電極と、制御モジュールと、スイッチとを備える。制御モジュールは、(i)第1の電極から出力される第1のパルスを示す第1の出力信号、および、(ii)第2の電極から出力される第2のパルスを示す第2の出力信号を生成することで、患者の神経組織を刺激するように構成される。第1のパルスおよび第2のパルスは単相である。スイッチは、双極刺激プローブから、(i)第1の出力信号に基づいて第1の電極において第1のパルスを出力し、(ii)第2の出力信号に基づいて第2の電極において第2のパルスを出力するように構成される。
【0011】
[0011]他の特徴では、双極刺激プローブを動作させる方法が提供される。双極刺激プローブは第1の電極と第2の電極とを備える。方法は、第1の電極から出力される第1のパルスを示す第1の出力信号を生成するステップと、第2の電極から出力される第2のパルスを示す第2の出力信号を生成するステップとを含む。第1のパルスおよび第2のパルスは単相であり、患者の神経組織を刺激するように生成される。方法は、複数のスイッチを介して、双極刺激プローブから、(i)第1の出力信号に基づいて第1の電極において第1のパルスを出力し、(ii)第2の出力信号に基づいて第2の電極において第2のパルスを出力するステップをさらに含む。
【0012】
[0012]本開示の適用可能性のさらなる分野は、詳細な記載、請求項、および図面から明らかとなる。詳細な記載および具体的な例は、例示の目的のために意図されているだけであり、本開示の範囲を限定するように意図されていない。
【図面の簡単な説明】
【0013】
【
図1】[0013]本開示による刺激プローブを備える無線神経完全性監視(WNIM:Wireless Nerve Integrity Monitoring)システムの斜視図である。
【
図2】[0014]本開示による刺激プローブの斜視図である。
【
図3】[0015]本開示による刺激プローブ、コンソールインターフェースモジュール、およびNIM装置の機能性のブロック図である。
【
図4】[0016]本開示による
図3の刺激プローブおよび別のNIM装置の機能性のブロック図である。
【
図5】[0017]本開示によるモジュール式刺激モジュールを含む
図3の刺激プローブの一部の機能性のブロック図である。
【
図6】[0018]本開示によるモジュール式刺激モジュールの一部の機能性のブロックおよび概略の図である。
【
図7】[0019]本開示による刺激プローブを動作させる方法を示す図である。
【
図8】[0020]本開示による刺激プローブによって生成される信号の双極性信号のグラフである。
【
図9】[0021]本開示による機器の斜視図である。
【
図10】[0022]本開示による別の機器の斜視図である。
【
図11】[0023]本開示によるモジュール式刺激モジュールに接続するように構成された器具の斜視図である。
【
図13】[0025]
図11の器具の一部の透視断面図である。
【
図14】[0026]
図11の器具のヒンジ部の透視断面図である。
【
図15】[0027]
図11の器具のヒンジ部の斜視組立図である。
【
図16】[0028]
図16Aは、本開示による露出された先端パッチを有する器具の斜視上面図である。
図16Bは、本開示による露出された先端パッチを有する器具の斜視上面図である。
図16Cは、本開示による露出された先端パッチを有する器具の斜視上面図である。
図16Dは、本開示による露出された先端パッチを有する器具の斜視上面図である。
【
図17】[0029]
図17Aは、本開示による露出された螺旋トレースを有する器具の斜視上面図である。
図17Bは、本開示による露出された螺旋トレースを有する器具の斜視上面図である。
図17Cは、本開示による露出された螺旋トレースを有する器具の斜視上面図である。
図17Dは、本開示による露出された螺旋トレースを有する器具の斜視上面図である。
【
図18】[0030]
図18Aは、本開示によるニードルノーズパッチを有する器具の斜視上面図である。
図18Bは、本開示によるニードルノーズパッチを有する器具の斜視上面図である。
図18Cは、本開示によるニードルノーズパッチを有する器具の斜視上面図である。
図18Dは、本開示によるニードルノーズパッチを有する器具の斜視上面図である。
【
図19】[0031]
図19Aは、本開示による内部に露出されたずれたトレースと外部に露出されたパッチとを有する器具の斜視上面図である。
図19Bは、本開示による内部に露出されたずれたトレースと外部に露出されたパッチとを有する器具の斜視上面図である。
図19Cは、本開示による内部に露出されたずれたトレースと外部に露出されたパッチとを有する器具の斜視上面図である。
図19Dは、本開示による内部に露出されたずれたトレースと外部に露出されたパッチとを有する器具の斜視上面図である。
図19Eは、本開示による内部に露出されたずれたトレースと外部に露出されたパッチとを有する器具の斜視上面図である。
【発明を実施するための形態】
【0014】
[0032]図面では、符号が同様の要素および/または同一の要素を特定するために再使用され得る。
[0033]単極刺激プローブ、同心の刺激プローブ、並んだ双極刺激プローブ、および三極刺激プローブと関連付けられる欠点を克服するために、双極刺激プローブと、対応するシステムおよび方法とが、本明細書において開示されている。以下に開示されている双極刺激プローブの例は、リターンニードルおよび対応するワイヤの必要性を排除し、双極刺激プローブと関連付けられる刺激される神経の透過を提供し、優先的なカソード刺激に安定した筋肉応答を提供する。開示されている例は、双極刺激プローブの電極を適切に配向する必要性を排除する一方、従来の双極刺激プローブの設計と関連付けられる偽陰性を防止する。開示されている例は、同心のプローブ設計より深い組織透過をもたらすが、従来の三極プローブ先端の設計よりおおよそ30%小さいプローブ先端の設計を提供する。例は、手持ち式の、電池を動力源とする、および/または、ワイヤのない双極刺激プローブを含んでいる。例は、ワイヤの短縮および/または排除と、不適切な神経の刺激と関連付けられる不適切な応答の防止とにより、手術室における乱雑性および/または時間の非効率性を最小限にする。以下で開示されている刺激は、神経を刺激することと関連付けられる電力消費も最小限にする。
【0015】
[0034]以下の図では、様々な刺激プローブが開示されている。刺激プローブは、神経完全性監視システムと無線で通信することができる無線装置として主に記載されているが、刺激プローブは、(i)神経完全性監視システムに配線されてもよい、および/または、(ii)神経完全性監視システムとは関係なく使用され、神経完全性監視システムと通信していなくてもよい。
【0016】
[0035]
図1は、無線神経完全性監視(WNIM)システム10を示している。WNIMシステム10は、図示しているように、センサ12、13と、双極刺激プローブ(以後において、「刺激プローブ」と称される)14と、無線インターフェースアダプタ(WIA:Wireless Interface Adaptor)16と、NIM装置18とを備えている。並んだ双極刺激プローブが示されているが、双極刺激プローブ14は、双極刺激プローブとして使用される同心または三極の形式の刺激プローブであってもよい。したがって、双極刺激プローブの電極は、並んだ配置、同心の配置、または三極の配置であり得る。例えば、同心の刺激プローブは、内側電極と、内側電極を包囲する外側電極とを備える。内側電極および外側電極が神経組織に対して鋭角である場合、同心の刺激プローブは、外側電極が神経組織に対して垂直でなく、したがって神経組織と完全に接触していないため、双極刺激プローブとして使用できる。他の例として、三極プローブの唯一の内側電極と2つの外側電極のうちの1つとが神経組織と接触している場合、第2の外側電極が神経組織と接触していないため、三極プローブが双極プローブとして使用できる。
【0017】
[0036]WIA16は、
図2に示したコンソールインターフェースモジュール(CIM)と、NIM装置18に接続するためのインターフェース20(例えば、32ピンコネクタ)とを備えている。WIA16は、NIM装置18の後側へと差し込まれるとして示されている。WIA16がインターフェース20を介してNIM装置18へと差し込まれるとして示されているが、WIA16は、NIM装置18から分離し、NIM装置18と無線で通信してもよい。センサ12、13および刺激プローブ14は、CIMおよび/またはNIM装置18と無線で通信する。一実施形態では、WIA16は、NIM装置18と接続され、センサ12、13および刺激プローブ14と無線で通信する。そのため、NIM装置18からCIMへと送信される以下に記載している情報は、CIMからセンサ12、13および/または刺激プローブ14へと中継されてもよい。そのため、センサ12、13および/または刺激プローブ14からCIMへと送信される以下に記載している情報および/またはデータは、CIMからNIM装置18へと中継されてもよい。
【0018】
[0037]WIA16は、(i)NIM装置18と、(ii)センサ12、13および刺激プローブ14との間で信号を送信し、ならびに/または、後で記載しているように、信号をセンサ12、13および/もしくは刺激プローブ14へと転送する前に、NIM装置18から受信した信号に追加的な情報を加える。WIA16は、本質的には通過装置として動作でき、高性能装置として動作でき、受信された信号で提供される情報を追加および/もしくは置き換えでき、ならびに/または、受信された信号に基づいて、決定された情報を含む信号を生成できる。WIA16は、NIM装置18をレガシーハードウェアと互換性を持たせることができる。WIA16は、NIM装置18からプラグが抜かれてもよく、従来の電極接続箱が、NIM装置18のWIA16と同じインターフェースを用いて、WIA16に接続されてもよい。WIA16は、(i)NIM装置18と、(ii)センサ12、13および刺激プローブ14との間で従来接続されていたケーブルを置き換える。これは、患者が置かれる無菌領域を横断する(内部から外部へと延びる)ワイヤを排除する。
【0019】
[0038]別の例として、WIA16は、センサ12、13および/または刺激プローブ14から信号を受信できる。センサ12、13および/または刺激プローブ14からの信号は、電圧、電流レベル、持続時間、振幅などを示すことができる。WIA16は、例えば、受信した信号に基づいて持続時間および振幅を決定できる。刺激プローブ14からの信号は、例えば、患者に提供される刺激パルスの電圧、電流レベル、持続時間、振幅を含み得る。受信された信号および/または決定された情報は、評価のために、および/または、NIM装置18の画面での表示のために、NIM装置18へと転送されてもよい。WIA16および/またはNIM装置18は、刺激プローブ14と通信でき、刺激プローブ14の動作を制御でき、および/または、刺激プローブ14から受信される信号/パラメータに基づいて刺激プローブ14に応答できる。WIA16および/またはNIM装置18は、刺激プローブ14によって生成されるパルスの数、パルス持続時間、パルスの方向(カソードの電極またはアノードの電極を介して加えられる)、パルスの振幅、および/または、パルスの周波数を制御できる。
【0020】
[0039]2種類のセンサ12、13が
図1に示されているが、他の種類のセンサがWNIMシステム10に組み込まれてもよい。第1の種類のセンサ12は、ピンセンサと称され、例えば患者の筋肉組織へと挿入されるそれぞれの対のピン21(または、ニードル)を備える。第2の種類のセンサ13は、表面センサと称され、例えば筋肉組織の上で患者の皮膚に付着される。ピンセンサ12は、例えば、ピンセンサ12のそれぞれの対のピン21の間の電位を検出するために使用され得る。表面センサ13は、例えば、表面センサ13のそれぞれのパッドの間の電位を検出するために使用され得る。ピンセンサ12は、図示しているように2つのピンを各々含み得る、または、異なる数のピンを含み得る。ピンは電極と称されてもよい。表面センサ13の各々は2つ以上のパッドを備え得る。パッドは電極と称されてもよい。
【0021】
[0040]センサ12、13は、電極34を介して患者の組織において生成される筋電図信号を検出する。筋電図信号は、電位を有する電圧信号の形態であり得る。センサ12、13は、神経および/または筋肉の活動をデジタル化するために使用され、この情報をCIMおよび/またはNIM装置18へと無線で送信する。センサ12、13は、CIMおよび/またはNIM装置18に、神経および/または筋肉の活動におけるバースト(例えば、誘発された応答信号の電圧における増加)の警報を出してもよい。誘発された応答信号は、刺激プローブ14によって生成された刺激信号の結果として患者の組織において生成される信号のことを言う。
【0022】
[0041]刺激プローブ14は、患者の神経および/または筋肉を刺激するために使用される。刺激プローブ14は、把持部32を伴う筐体30と、2つの電極34と、1つまたは複数のスイッチ36(別の例が
図2に示されている)と、制御モジュール(例が
図3~
図6に示されている)とを備えている。電極34は、互いから分離されて絶縁されており、管44内で筐体30へと延び得る。スイッチ36は、刺激プローブ14をオンにするために、および/または、刺激パルスを電極34に加えるために、使用され得る。刺激パルスの例は、
図8に示されている。刺激パルスは、スイッチ36を作動させることで、手動で生成され得る、または、CIMを介して、NIM装置18および/またはWIA16を介して生成され得る。NIM装置18および/またはCIMは、刺激パルスを生成して、電極34に近接する1つまたは複数の神経および/または筋肉を刺激するために、刺激プローブ14の制御モジュールに信号を送ることができる。電極34間の電位は、刺激プローブ14の制御モジュール、NIM装置18の制御モジュール(例が
図3~
図4に示されている)、および/または、CIMの制御モジュール(例が
図3に示されている)によって決定できる。
【0023】
[0042]刺激プローブ14は、情報をCIMおよび/またはNIM装置18に無線で送信できる。情報には、タイミング情報、電極34間の電位、刺激パルスの数、パルス識別子(ID)、生成される刺激パルスの電圧および電流レベル、ならびに、生成される刺激パルスの振幅、ピークの大きさ、および/または持続時間があり得る。タイミング情報には、刺激パルスの開始時間および終了時間、刺激パルスの持続時間、異なる電極の刺激パルス同士の間の時間、ならびに/または、同じ電極の刺激パルス同士の間の時間があり得る。
【0024】
[0043]別の実施形態では、WIA16はWNIMシステム10に含まれない。この実施形態では、NIM装置18は、センサ12、13および刺激プローブ14と直接的に無線で通信する。これは、
図1に示したセンサ12、13および刺激プローブ14との通信、ならびに/または、他のセンサおよび/もしくは刺激装置との通信を含み得る。WNIMシステム10は、任意の数のセンサおよび/または刺激プローブを備え得る。
【0025】
[0044]ここで
図2も参照すると、
図2は、
図1の刺激プローブ14を置き換えることができる刺激プローブ46を示している。並んだ双極刺激プローブが示されているが、双極刺激プローブ46は、双極刺激プローブとして使用される同心または三極の形式の刺激プローブであってもよい。刺激プローブ46は、筐体47と、2つの電極48と、スイッチ49と、ライト50と、制御モジュール(例が
図3~
図6に示されている)とを備える。電極48は、互いから分離されて絶縁されており、管51内で筐体47へと延び得る。スイッチ49は、刺激プローブ14をオンにするために、および/または、刺激パルスを電極48に加えるために、使用され得る。スイッチ49は、刺激の間に電極48に供給される電流の大きさを増加する(もしくは増分で増やす)、または、低減する(もしくは、減分で減らす)ために使用されてもよい。刺激プローブ46は、電極同士が接触しているとき、および/または、電極が電流を組織に供給しているときを示すために、(ライト50を介して)視覚的および/または聴覚的な警報を含んでもよい。例として、ライト50は、電極48同士が接触している、および/または、電極48が電流を組織に供給しているかどうかに基づいて、点滅してもよい、および/または、色を変えてもよい。刺激プローブ46によって提供され得る刺激パルスの例は、
図8に示されている。刺激パルスは、1つもしくは複数のスイッチ49を作動させることで、手動で生成され得る、または、CIMを介して、NIM装置18および/またはWIA16を介して生成され得る。NIM装置18および/またはCIMは、刺激パルスを生成して、電極34に近接する1つまたは複数の神経および/または筋肉を刺激するために、刺激プローブ14の制御モジュールに信号を送ることができる。
【0026】
[0045]ここで
図1および
図3を参照すると、
図3は、刺激プローブ53と、CIM54と、NIM装置55とを示している。刺激プローブ53は、CIM54と、および/または、CIM54を介してNIM装置55と、無線で通信できる。刺激プローブ53は、先に記載した刺激プローブ14および46のいずれかを置き換えできる、ならびに/または、そのいずれかと同様に動作できる。CIM54は、
図1のWIA16に含まれてもよい。
【0027】
[0046]刺激プローブ53は、制御モジュール56(例えば、マイクロプロセッサ)と、記憶装置58と、物理層(PHY)モジュール60(例えば、送受信機および/または無線機)と、刺激及び監視モジュール62と、電極68と、電力モジュール70と、電力源72とを備えている。電極68は、刺激プローブ53の先端に接続され得る、および/または、その先端を備え得る。刺激及び監視モジュール62は、電力を電力モジュール72から受け取り、電極68を介して刺激信号を生成し、電極68は、患者の組織と接触している、および/または、電流を患者の組織に供給する。モジュール60、62、70は制御モジュール56から分離しているとして示されているが、モジュール60、62、70のうちの1つもしくは複数、または、それらの一部は、制御モジュール56に組み込まれてもよい。電極68は、刺激プローブ53内にあるとして示されているが、刺激プローブ53から延びていてもよい、患者の組織と直接的に接触してもよい、および/または、外科器具(例えば、
図5、
図9、および
図10を参照)と接続され、電流を組織に器具を介して間接的に供給してもよい。ここで開示された器具は、外科器具と称されてもよい。外科器具は、鉗子、ピンセット、プライヤ、クランプなど、手術の間に使用される任意の器具、および/または、本明細書で開示されている他の器具であり得る。
【0028】
[0047]刺激及び監視モジュール62は、電極68に供給される電圧、および/または、電極68のうちの2つにわたって加えられる電位を検出でき、それらを示す刺激情報信号を生成する。刺激及び監視モジュール62は、(i)電極68のうちの1つまたは複数に供給される電流を測定し、(ii)それを示す刺激情報信号を生成する。刺激情報信号は制御モジュール56に提供されてもよい。
【0029】
[0048]刺激及び監視モジュール62は、電極68の状態を交互にする双極刺激モジュール74を備えている。双極刺激モジュール74は、アノード状態とカソード状態との間で電極68の状態を変える。例えば、第1のパルスの第1のモードおよび生成の間、電極68のうちの第1のものがアノードとして動作でき、電極68のうちの第2のものがカソードとして動作できる。第2のパルスの第2のモードおよび生成の間、第1の電極はカソードとして動作でき、第2の電極はアノードとして動作できる。刺激プローブ53の先端へのアノードおよびカソードの物理的な接続を交互にするために電気的な切り替えを使用することは、二つの方向で二つのパルスを生成することを可能とし、各々のパルスは同じ極性を有している。例えば、両方のパルスが正の極性(例えば、5V)を有し得る、または、両方のパルスが負の極性(例えば、-5V)を有し得る。これは、単一の極性を伴う単一の出力電圧を有するおよび/または供給する単一の電力源の使用を可能にする。モード/電極状態の間の電気的な切り替えは、制御モジュール56によって時間が決められ得る。切り替えは、
図6~
図8に関連して後でさらに記載されている。アノード状態とカソード状態との間の切り替え、および、神経への二つの方向での二つのパルスの生成の結果として、神経活動電位は、外科医の手における刺激プローブ53の配向、および/または、神経の解剖学的な違い(または、神経の配向)に依存しない。カソードを神経に沿って遠位へと配向する必要性は、パルスが神経に沿って遠位方向と近位方向との両方で送られるため、排除される。刺激プローブ53のカソードの配向は、神経がカソードの刺激パルスを受信することを確保するために、電気的に交互にさせられる。
【0030】
[0049]制御モジュール56は、CIM54および/または1つもしくは複数のNIM装置55と、PHYモジュール60およびアンテナ76を介して無線で通信する。制御モジュール56は濾過モジュール78とBBモジュール80とを備えている。濾過モジュール78は、バンドパスフィルタとして動作でき、所定の周波数範囲外の増幅された信号の周波数と、直流(DC)電圧とを濾過できる。これは、60Hzのノイズなど、ノイズを排除および/または最小限にする。濾過モジュール78は、刺激情報信号を刺激及び監視モジュール62から受信でき、刺激情報信号、および/または、刺激情報信号に基づいて生成された信号を、BB信号へと変換できる。刺激及び監視モジュール62は、刺激パルスの実際の電圧、電流レベル、振幅、および持続時間を、刺激情報信号を介して監視して制御モジュール56に指示できる。次に、制御モジュール56は、この情報を、PHYモジュール60を介してCIM54および/またはNIM装置55へと送信できる。
【0031】
[0050]BBモジュール80は、アナログ/デジタル(A/D)変換器を備えることができ、濾過モジュール78からのBB信号をデジタルBB信号へと変換できる。BBモジュール80および/またはA/D変換器は、デジタルBB信号に含まれるフレームを生成するために、所定のレートで濾過モジュール78の出力をサンプリングする。次に、BBモジュール80は、デジタルBB信号を中間周波数(IF:Intermediate Frequency)信号へとアップコンバートできる。BBモジュール80は、デジタルBB信号からIF信号へのアップコンバートの間、DSSS変調を実施できる。BBモジュール80は、アップコンバートの目的のために、混合器と発振器とを備え得る。BBモジュール80および/または制御モジュール56は、IF信号へとアップコンバートする前に、PHYモジュール60へと送信されるBB信号を圧縮および/もしくは暗号化でき、ならびに/または、PHYモジュール60から受信される信号を解凍および/もしくは復号できる。
【0032】
[0051]記憶装置58は、制御モジュール56によってアクセスされ、例えばパラメータ82を保存する。パラメータ82は、電極68を介して生成される刺激パルスと関連付けられるパラメータを含み得る。刺激パルスと関連付けられるパラメータは、電圧、波長、電流レベル、振幅、最大振幅、パルス持続時間などを含み得る。
【0033】
[0052]PHYモジュール60は、送信経路84(または送信機)と、受信経路86(または受信機)とを備えている。送信経路84は、変調モジュール88と増幅モジュール90とを備えている。変調モジュール88は、IF信号をRF信号へとアップコンバートするためにIF信号を変調する。これはGFSK変調を含み得る。変調モジュール88は、例えば、フィルタと、混合器と、発振器とを備え得る。増幅モジュール90は、RF信号を増幅してからアンテナ76を介してRF信号を送信する電力増幅器92を備え得る。
【0034】
[0053]受信経路86は、第2の増幅モジュール94と復調モジュール96とを備えている。第2の増幅モジュール94はLNA98を備え得る。第2の増幅モジュール94は、CIMから受信されるRF信号を増幅する。復調モジュール96は、IF信号を生成するために、増幅されたRF信号を復調する。IF信号はBBモジュール80へと提供され、BBモジュール80は、次に、IF信号をBB信号へとダウンコンバートする。
【0035】
[0054]電力モジュール70は、電力を電力源72から受け入れ、電力を、刺激及び監視モジュール62と、制御モジュール56と、PHYモジュール60とに供給する。電力モジュール70はスイッチ99を備え得る。スイッチ99は、刺激パルスを生成するために作動され得る。スイッチ99が閉じられる、もしくは、切り替えられるとき、および/または、制御モジュール56が1つまたは複数の刺激パルスの制御信号命令生成を生成するとき、電力モジュール70および/または制御モジュール56は、1つまたは複数の刺激パルスを生成するために、刺激及び監視モジュール62に信号を送る。刺激パルスの各々のタイミング、振幅、および/または持続時間は、CIM54および/またはNIM装置55から受信される情報に基づき得る。刺激パルスの周波数および/または刺激パルス同士の間の時間は、制御されてもよく、CIM54および/またはNIM装置55から受信される対応する情報に基づき得る。刺激プローブ53は、CIM54および/またはNIM装置55と同期させられ得る。記憶装置104に保存されているとして示されている同期(SYNC)要求132は、(i)刺激プローブ53と(ii)CIM54およびNIM55との間で送信され得る。CIM54および/またはNIM55は、刺激パルスを生成するときに刺激プローブ53へと指示する命令信号を生成でき、このタイミングに基づいて、センサによって検出される応答を監視できる(例えば、
図1のセンサ12、13)。代替として、刺激プローブ53は、刺激パルスがいつ生成される必要があるか、および/または、刺激パルスがいつ生成されることになるかを示す信号を、CIM54および/またはNIM55に送信できる。この方法では、刺激パルス生成は、検出された応答と同期される。これは、CIM54および/もしくはNIM55に、ならびに/または、外科医に、応答をそれぞれの刺激パルスと関連付けさせることができ、これは、第1の刺激パルスと関連付けられる応答および/またはアーチファクトを、他の刺激パルスの結果と混同させないように防止する。これは、刺激パルス応答と筋電図検査(EMG)信号との間の混同も防止でき、したがって偽陽性を防止できる。これは、CIMおよび/またはNIMと無線で通信しない無線刺激プローブと異なる。後で記載しているように、所定の監視期間および/または選択された監視期間を除いて、CIM54および/またはNIM55は、アーチファクト、応答、および/またはEMG信号を濾過できる。監視期間は、刺激パルスにそれぞれ対応し、刺激パルスが生成されるときに続いて起こる。
【0036】
[0055]CIM54は、PHYモジュール100と、制御モジュール102と、記憶装置104と、NIMインターフェース106(例えば、32ピンコネクタ)とを備えている。PHYモジュール100は、受信経路(または受信機)108と、送信経路(または送信機)110とを備えている。受信経路108は、増幅モジュール112と復調モジュール114とを備えている。増幅モジュール112は、刺激プローブ53および/またはセンサ12、13から受信されるRF信号を増幅する。増幅モジュール112はLNA115を備え得る。復調モジュール114は、IF信号を生成するために、増幅されたRF信号を復調およびダウンコンバートする。復調モジュール114は、フィルタと、混合器と、発振器とを備え得る(集合的に符号117で称される)。送信経路110は、変調モジュール116と増幅モジュール118とを備えている。変調モジュール116は、RF信号を生成するために、制御モジュール102からのIF信号を変調およびアップコンバートする。これは、ガウス型周波数偏移変調(GFSK)を含み得る。変調モジュール116は、例えば、フィルタと、混合器と、発振器とを備え得る(集合的に符号119で称される)。増幅モジュール118は、RF信号を、アンテナ120を介して刺激プローブ53へと送信する。増幅モジュール118は電力増幅器121を備え得る。
【0037】
[0056]制御モジュール102はBBモジュール124と濾過モジュール126とを備えている。BBモジュール124は、PHYモジュール100から受信されたIF信号をBB信号へと変換し、BB信号を濾過モジュール126へと転送する。BBモジュール124は、濾過モジュール126からのBB信号をIF信号に変換もし、IF信号は変調モジュール116へと転送される。BBモジュール124はD/A変換モジュール128を備え得る。D/A変換モジュール128は、濾過モジュール126からのアナログ信号をデジタル信号へと変換するために、A/D変換器を備え得る。D/A変換モジュール128は、PHYモジュール100からのデジタル信号をアナログ信号へと変換するために、D/A変換器を備え得る。一実施形態では、BBモジュール124はD/A変換モジュール128を備えておらず、デジタル信号は濾過モジュール126とPHYモジュール100との間で通過させられる。BBモジュール124は、刺激プローブ53のゲインモジュール63および/または濾過モジュール64において受信される信号の振幅と同様の振幅とするために、復調モジュール114から受信される信号を減衰できる。
【0038】
[0057]濾過モジュール126は、バンドパスフィルタとでき、所定の範囲外の信号および/またはDC信号の周波数を除去できる。これは、60Hzのノイズなど、ノイズを排除および/または最小限にする。BBモジュール124および/または制御モジュール102は、変調モジュール116へと送信される信号を圧縮および/もしくは暗号化でき、ならびに/または、復調モジュール114から受信される信号を解凍および/もしくは復号できる。CIM54がNIMインターフェース106を介してNIM装置55に接続されているとして示されているが、CIM54は、NIM装置55から分離し、PHYモジュール100を介してNIM装置55と無線で通信してもよい。
【0039】
[0058]記憶装置104は、制御モジュール102によってアクセスされ、例えばパラメータ130を保存する。パラメータ130は、先に記載したように、刺激パルスの生成と関連付けられるパラメータを含み得る。パラメータ130は、電圧、電流レベル、振幅、最大振幅、パルス持続時間などを含むことができ、パラメータ82を含み得る、または、パラメータ82と同じであり得る。
【0040】
[0059]NIM装置55は、制御モジュール140と、PHYモジュール142と、CIMインターフェース144と、表示装置146と、記憶装置148とを備え得る。制御モジュール140は、CIM54を介して、刺激プローブ53および/またはセンサ12、13へと要求信号を送り、刺激プローブ53および/またはセンサ12、13から情報を受け取り、筋電図信号および/または他の関連する情報を表示装置146に表示する。PHYモジュール142は、図示されているようにインターフェース106、144を介して、または、アンテナ(図示せず)を介して無線で、制御モジュール140へと信号を送信でき、制御モジュール140から信号を受信できる。記憶装置148は、制御モジュール140によってアクセスされ、パラメータ130を保存する。
【0041】
[0060]制御モジュール56、102、BBモジュール80、128、PHYモジュール60、100、および/またはそれらの1つまたは複数のモジュールは、刺激プローブ53とCIM54との間で送信される信号のタイミングを制御する。PHYモジュール60、100は、所定の周波数範囲で互いと通信できる。例として、PHYモジュール60、100は、2.0~3.0ギガヘルツ(GHz)の範囲で互いと通信できる。一実施形態では、PHYモジュール60、100は、信号を2.4~2.5GHzの範囲で送信する。PHYモジュール60、100は、1つまたは複数のチャンネルを介して互いと通信できる。PHYモジュール60、100は、所定のレート(例えば、1秒間あたり2メガビット(Mbps))でデータを送信できる。
【0042】
[0061]ここで
図1および
図4を参照すると、
図4は、刺激プローブ53とNIM装置162とを示している。刺激プローブ53は、NIM装置162と直接的に通信できる。刺激プローブ53は、制御モジュール56と、記憶装置58と、PHYモジュール60と、刺激及び監視モジュール62と、電極68と、電力モジュール70と、電力源72と、アンテナ76とを備えている。制御モジュール56は濾過モジュール78とベースバンドモジュール80とを備えている。記憶装置58はパラメータ82を保存する。刺激及び監視モジュール62は双極刺激モジュール74を備えている。電力モジュール70はスイッチ99を備えている。PHYモジュール60は、経路84、86と、モジュール88、92、94、96とを備えている。
【0043】
[0062]NIM装置162は、制御モジュール164と、記憶装置166と、PHYモジュール168と、表示装置146とを備えている。
図2のCIM54の機能性はNIM装置162に含まれている。PHYモジュール168は、受信経路170(または受信機)と、送信経路172(または送信機)とを備えている。受信経路170は、増幅モジュール174と復調モジュール176とを備えている。増幅モジュール174は、LNA175を介して、刺激プローブ53および/またはセンサ12、13から受信されるRF信号を増幅する。復調モジュール176は、IF信号を生成するために、増幅されたRF信号を復調およびダウンコンバートする。送信経路172は、変調モジュール178と増幅モジュール180とを備えている。変調モジュール178および増幅モジュール180は、変調モジュール116および増幅モジュール118と同様に動作できる。増幅モジュール118は、電力増幅器182を備えることができ、RF信号を、アンテナ183を介して、刺激プローブ53へと送る、および/または、センサ12、13からRF信号を受ける。
【0044】
[0063]制御モジュール164はBBモジュール184と濾過モジュール186とを備えている。BBモジュール184は、PHYモジュール168から受信されたIF信号をBB信号へと変換し、BB信号を濾過モジュール186へと転送する。BBモジュール184は、濾過モジュール186からのBB信号をIF信号に変換もし、IF信号は変調モジュール178へと転送される。BBモジュール184はD/A変換モジュール188を備え得る。D/A変換モジュール188は、濾過モジュール186からのアナログ信号をデジタル信号へと変換するために、A/D変換器を備え得る。D/A変換モジュール188は、PHYモジュール168からのデジタル信号をアナログ信号へと変換するために、D/A変換器を備え得る。一実施形態では、BBモジュール184はD/A変換モジュール188を備えておらず、デジタル信号は濾過モジュール186とPHYモジュール168との間で通過させられる。BBモジュール184は、刺激プローブ53のゲインモジュール63および/または濾過モジュール64において受信される信号の振幅と同様の振幅とするために、復調モジュール176から受信される信号を減衰できる。濾過モジュール186は、バンドパスフィルタとでき、所定の範囲外の信号および/またはDC信号の周波数を除去できる。これは、60Hzのノイズなど、ノイズを排除および/または最小限にする。BBモジュール184および/または制御モジュール164は、変調モジュール178へと送信される信号を圧縮および/もしくは暗号化でき、ならびに/または、復調モジュール176から受信される信号を解凍および/もしくは復号できる。
【0045】
[0064]
図3~
図4のCIM54およびNIM162の濾過モジュール126、186は、所定の監視期間および/または選択された監視期間を除いて、アーチファクト、応答、および/またはEMG信号を濾過できる。監視期間は、刺激プローブによって生成される刺激パルスにそれぞれ対応し、刺激パルスが生成されるときに続いて起こる。例として、濾過モジュール126、186は、刺激パルスが生成されるときに開始する調整可能な拒絶期間を設定でき、刺激アーチファクトが刺激パルスの結果として起こる期間を越えて延長する。次に、拒絶期間に続いて、および、対応する監視期間の間に監視されたトレースが監視され、これは、刺激パルスによって引き起こされる電子ノイズを、EMGデータを読み取る前に解決させることができる。監視期間は、拒絶期間が終わるときに開始できる。拒絶期間の各々と監視期間の各々とは、1つまたは複数の刺激パルスに対応できる。拒絶期間の各々は、1つまたは複数の刺激パルスが生成される1つまたは複数の期間を含み得る。監視期間の各々は、1つまたは複数の刺激パルスの後であり得る。1つまたは複数の一連の刺激パルスが提供される場合、拒絶期間は、第1の一連における第1の刺激パルスの開始において開始でき、(i)第1の一連における最後の刺激パルスの後に、または、(ii)第2以降の一連における最後の刺激パルスの後に、終わることができる。
【0046】
[0065]
図5は、モジュール式刺激モジュール202を備える刺激プローブ53の一部200を示している。モジュール式刺激モジュール202は、記憶装置58と、制御モジュール56と、PHYモジュール60と、刺激及び監視モジュール62と、電力モジュール70と、電力源72とを備えている。刺激及び監視モジュール62は、双極刺激モジュール74と、デジタル/アナログ(D/A)変換器204と、フィードバックモジュール206とを備えている。電力モジュール70はスイッチ99を備えている。D/A変換器204は、(i)制御信号CTRLを制御モジュール56から受信し、(ii)制御信号をデジタル信号からアナログ信号へと変換する。制御信号は、電極68を介して加えられる電流の大きさを含み得る、および/または、その電流の大きさを指示し得る。制御モジュール56からD/A変換器204へと供給される電流の大きさは、電極68へと実際に供給される電流の大きさと比例的であり得る。制御信号CTRLは、
図3~
図4のNIM装置55、162および/またはCIM54のうちの1つから受信される要求信号に基づいて生成され得る。電流をD/A変換器204へと供給する制御モジュール56の代替として、制御モジュール56は、電流をD/A変換器204に供給するために、電力モジュール70を制御し得る。
【0047】
[0066]動作中、双極刺激モジュール74は、D/A変換器204の出力と制御モジュール56からの切替制御信号SWとに基づいてパルスを生成する。切替制御信号SWは双極刺激モジュール74におけるスイッチの状態を変更し、そのため、2つのパルスは、神経および/または神経組織に沿って反対の方向において提供される。フィードバックモジュール206は、(i)電極68へと供給される電流を監視し、(ii)制御モジュール56へと提供されるフィードバック信号FBを生成する。したがって、制御モジュール56は、フィードバック信号に基づいて、刺激プローブ200によって生成されるパルスを調整できる(例えば、パルス電圧、電流レベル、振幅、持続時間、タイミングなどを変更する)、および/または、双極刺激モジュール74におけるスイッチの状態を変えることができる。フィードバック信号FBは、PHYモジュール60から、
図3~
図4のNIM装置55、162および/またはCIM54のうちの1つへと送信され得る。したがって、NIM装置55、162および/またはCIM54のうちの1つは、刺激プローブ200によって生成されるパルスを調整するために(例えば、パルス電圧、電流レベル、振幅、持続時間、タイミングなどを変更する)、および/または、双極刺激モジュール74におけるスイッチの状態を変えるために、要求信号を制御モジュール56へと送信できる。フィードバック信号FBと関連付けられる情報は、記憶装置58において保存され、制御モジュール56によって評価され得る。
【0048】
[0067]電極68は、コネクタ210、211(接続要素と称されてもよい)を介して器具208に接続できる。コネクタ210はコネクタ211に接続する。器具208の一部の例は
図9~
図19Eに示されている。器具208は、例えば、鉗子、クランプ、鋏、プライヤ、開大器、または、患者の組織に接触するための2つの電気的接点を有する他の器具であり得る。電極68は、モジュール式刺激モジュール202内にあり得る、および/または、モジュール式刺激モジュール202から延び得る。電極68がモジュール式刺激モジュール内にある場合、電極は、導体、トレース、または、電流を器具208に提供するための、および/もしくは、器具208から電流を受け入れるための他の適切な導電性の要素の形態であり得る。電極68がモジュール式刺激モジュール202から延びる場合、電極68はピン、コネクタ、ワイヤなどの形態とできる。二つのパルスが電極68を介して二つの方向(アノード方向およびカソード方向)で生成されるため、極性表示子が電極68において提供される必要はない。これは、電極がカソードとして動作することを外科医に視覚的に示すために、カソードの電極における極性マーカを典型的には含む従来の双極刺激プローブと異なる。
【0049】
[0068]
図6は、
図5のモジュール式刺激モジュール202の一部220の例を示している。一部220は、制御モジュール56と、D/A変換器204と、フィードバックモジュール206と、電圧フォロワモジュール209と、フィルタ/ゲインモジュール211と、電力増幅モジュール212と、切替モジュール214、216とを備えている。制御モジュール56は、制御信号CTRLと切替制御信号SWとを生成し、フィードバックモジュール206からフィードバック信号FBを受信する。D/A変換器204は、制御信号CTRLを命令信号218へと変換する。
【0050】
[0069]電圧フォロワモジュール209は第1の演算増幅器220と第1のキャパシタンスC1とを備えている。第1の演算増幅器220は非反転入力と反転入力とを備えている。非反転入力は、D/A変換器204の出力に接続されており、その出力を受信する。反転入力は第1の演算増幅器220の出力に接続されている。電圧フォロワモジュール209の出力における電圧は、第1の演算増幅器220の非反転入力における電圧と比例している。第1の演算増幅器220は、電力を電力端子222から受け入れ、接地または基準端子224に接続されている。電力端子222は、基準端子224に接続されているキャパシタンスC1に接続されている。
【0051】
[0070]フィルタ/ゲインモジュール211は、抵抗R1、R2、R3、R4と、キャパシタンスC2、C3と、非反転入力および反転入力を伴う第2の演算増幅器230と、を備えている。抵抗R1、R2は、第1の演算増幅器220の出力と、第2の演算増幅器230の非反転入力との間で、直列で接続されている。第2のキャパシタンスC2と抵抗R4とは、(i)抵抗R1とR2との間の接続点と、(ii)第2の演算増幅器230の出力との間で、直列に接続されている。キャパシタンスC3は、第2の演算増幅器230の非反転入力と基準端子224との間で接続されている。抵抗R3は、第2の演算増幅器230の反転入力と基準端子224との間で接続されている。第2の演算増幅器230は、電力を電力端子222から受け入れ、基準端子224に接続されている。
【0052】
[0071]電力増幅モジュール212は抵抗R5と第3の演算増幅器240とを備えている。抵抗R5は、第2の演算増幅器230の出力と、第3の演算増幅器240の非反転入力との間で接続されている。第3の演算増幅器240の反転入力は、電圧分配器242と、切替モジュール214、216のフィードバック出力244、246とに接続されている。第3の演算増幅器240は、第3の演算増幅器240が電圧電流変換器を実施するように、図示しているような相互コンダクタンス増幅器として、または、電圧増幅器として構成され得る。第3の演算増幅器240は、電力を電力端子222から受け入れ、基準端子224に接続されている。
【0053】
[0072]切替モジュール214、216は、スイッチ250、252とバッファ254、256とをそれぞれ備えている。スイッチ250、252の各々は、第1の端子と、中間端子と、第2の端子とを備えている。中間端子は電極68にそれぞれ接続されている。スイッチ250、252の第1の端子は、第3の演算増幅器240の反転入力と電圧分配器242とに接続されている。スイッチ250、252の第2の端子は、互いと、第3の演算増幅器240の出力とに接続されている。スイッチ250、252は切替制御信号SWを介して制御され、切替制御信号SWは、バッファ254、256を介して両方のスイッチに提供される。切替制御信号SWは、スイッチの状態を、(i)第3の演算増幅器240の反転入力および電圧分配器242に接続されている状態と、(ii)第3の演算増幅器240の出力に接続されている状態との間で変更する。いかなる時点においても、スイッチ250、252の第1の端子のうちの1つだけが、第3の演算増幅器240の反転入力と電圧分配器242とに接続される。いかなる時点においても、スイッチ250、252の第1の端子のうちの1つだけが、第3の演算増幅器240の出力に接続される。結果として、電流がスイッチ250、252の一方を介して電極68のうちの一方に供給されている間、電流は、電極68のうちの他方によって受け入れられ、スイッチ250、252の他方を介して、第3の演算増幅器240の反転入力と電圧分配器242とに提供される。
【0054】
[0073]フィードバックモジュール206は、抵抗R6、R7を伴う電圧242と、第4の演算増幅器260と、抵抗R8とを備え得る。抵抗R6、R7は、第3の演算増幅器240の反転入力と基準端子224との間で直列に接続されている。抵抗R6とR7との間の中間端子262が、第4の演算増幅器260の非反転入力に接続されている。第4の演算増幅器260の出力が、第4の演算増幅器260の反転入力に接続されている。第4の演算増幅器260は、電力を電力端子222から受け入れ、基準端子224に接続されている。第4の演算増幅器260は、第4の演算増幅器260が電圧電流変換器を実施するように、図示しているような相互コンダクタンス増幅器として構成され得る。抵抗R8は、第4の演算増幅器260の出力と制御モジュール56との間で接続されている。
【0055】
[0074]本明細書で開示されているシステム、装置、およびモジュールは、いくつかの方法を用いて動作されてもよく、例の方法は
図7に示されている。
図7では、刺激プローブを動作させる方法が示されている。以下のタスクは
図1~
図6の実施に関して主に記載されているが、タスクは、本開示の他の実施に適用するために、容易に変更され得る。タスクは繰り返して実施され得る。
【0056】
[0075]方法はタスク300において始まる。タスク302において、制御モジュール56は、スイッチ250、252を第1のモードのためのそれぞれの第1の状態に置くために、切替制御信号SWを生成する。タスク304において、制御モジュール56は、第1のパルスのための制御信号CTRLを生成する。制御信号CTRLを生成しているときの制御モジュール56は、第1のパルスの振幅および持続時間を制御する。制御信号CTRLは、第1のパルスの電圧に基づくバージョンを含む。
【0057】
[0076]タスク306において、D/A変換器204は、制御信号CTRLを命令信号218へと変換する。タスク308において、フィルタ/ゲインモジュール211は、命令信号218および/または電圧フォロワモジュール209の出力を濾過および/または増幅する。
【0058】
[0077]タスク310において、電力増幅モジュール212は、フィルタ/ゲインモジュール211の出力の電圧から電流への変換を増幅して実施する。タスク312において、電力増幅モジュール212からの電流がスイッチ250に提供される。第1のパルス311の例は
図8に示されている。第1のパルスが特定の振幅および持続時間を有して示されているが、第1のパルスは、異なる振幅および持続時間を有してもよい。タスク314において、第1のパルスは、スイッチ250から、電極68のうちの第1のものおよび/または第1の先端へと供給される(
図8における先端A)。
【0059】
[0078]タスク316において、制御モジュール56は、スイッチ250、252を第2のモードのためのそれぞれの第2の状態に置くために、切替制御信号SWを生成する。タスク317において、制御モジュール56は、タスク318へと進む前に、所定の時間の期間で待機し得る(例えば、100~300マイクロ秒)。これは、第1のパルスを加えることに続いて起こり得る神経組織の不応性の期間のためである。タスク318において、制御モジュール56は、所定の期間の経過の後、第2のパルスのための制御信号CTRLを生成する。制御信号CTRLを生成しているときの制御モジュール56は、第2のパルスの振幅および持続時間を制御する。制御信号CTRLは、第2のパルスの電圧に基づくバージョンを含む。
【0060】
[0079]タスク320において、D/A変換器204は、制御信号CTRLを命令信号218へと変換する。タスク322において、フィルタ/ゲインモジュール211は、命令信号218および/または電圧フォロワモジュール209の出力を濾過および/または増幅する。
【0061】
[0080]タスク324において、電力増幅モジュール212は、フィルタ/ゲインモジュール211の出力の電圧から電流への変換を増幅して実施する。タスク326において、電力増幅モジュール212からの電流がスイッチ252に提供される。第2のパルス325の例は
図8に示されている。第2のパルスが特定の振幅および持続時間を有して示されているが、第2のパルスは、異なる振幅および持続時間を有してもよい。タスク328において、第2のパルスは、スイッチ252から、電極68のうちの第2のものおよび/または第2の先端へと供給される(
図8における先端B)。タスク314、328における第1のパルスおよび第2のパルスの出力は単相である。
【0062】
[0081]上記の方法によって神経組織に提供される二つのパルスの結果として、筋電図信号が、例えば
図1のセンサ12、13によって、生成および検出され得る。方法は、タスク330において終了でき、追加のパルスが生成される場合、タスク302へと戻ることができる。例として、制御モジュール56は、フィードバック信号FBに基づいてパルスのパラメータを調整でき、調整されたパラメータに基づいて方法の別の繰り返しを実施できる。
【0063】
[0082]従来の双極刺激プローブを用いて神経組織を刺激するためには、カソード刺激とは対照的に、5倍もの大きな電流がアノード刺激のために必要とされ得る。神経組織を刺激するための電流レベルまたは閾値は、最大の神経応答が検出されるまで、電流レベルを加え、電流レベルを増加することで決定され得る。最大の神経応答が検出されると、電流レベルはもはや増加されない。例として、カソードの刺激電流は1ミリアンペア(mA)とでき、アノードの刺激は5mAまでを必要とし得る。対照的に、
図7の前述の方法で加えられる第1および第2のパルスの電流レベルは、各々1mAであり得る。結果として、全体で2mAの電流が、方法の一回だけの繰り返しのために組織に供給され得る。したがって、前述の方法は、神経組織を刺激するために使用される電流の大きさを低減でき(例えば、5mAではなく2mA)、アノードのパルスとカソードのパルスとの両方が生成されるため、神経組織がカソードで刺激されることを確保する。神経組織は、電極68の配向に拘わらず刺激される。また、二つで生成されるパルスは、単一のアノードまたはカソードのパルスを加えるよりも安定した(または、より誤りのない)応答を提供できる。これは、第1のパルスが神経組織を最初に興奮(または、「予備刺激」)させることができるためであり、第2のパルスは神経組織を刺激できる。また、前述の方法は、神経組織に対する電極68の配向に拘わらず、より小さい神経閾値(より小さい電流レベル)において神経組織を興奮させることができる。
【0064】
[0083]前述の方法が、二つのパルス(例えば、第1の方向における第1のパルス、および、第2の方向における第2のパルス)の生成を含むように主に記載されているが、方法は、任意の数のパルスの生成を含み得る。方法は、第1のモードで動作している間、一連の第1の連続的なパルスを第1の方向で生成し(例えば、カソード、および/または、二つの先端のプローブの第1のプローブ先端を介して送られる)、第2のモードで動作している間、一連の第2の連続的なパルスを第2の方向で生成する(アノード、および/または、二つの先端のプローブの第2のプローブ先端を介して送られる)ことを含み得る。第2の一連のパルスは、第1の一連のパルスの前に生成され得る。所定の待機期間が、連続的なパルスの間に設けられてもよい。待機期間は、同じ長さであり得る、または、異なる長さであり得る。第1の方向で複数の連続的なパルスを提供してから第2の方向で複数の連続的なパルスを提供することで、第1の方向で1回のパルスと第2の方向で1回のパルスとを提供するだけより、より小さい電流が一パルス当たりで供給され得る。これは、神経またはニューロの加重の促進を向上する。特定の神経構造および/または皮質は、一方向当たりで単一のパルスより、一方向当たり複数の連続的なパルスでより良好に刺激される。皮質運動軌跡のマッピングなど、特定の神経構造および/または皮質は、一方向当たりで単一のパルスだけが提供される場合、刺激され得ない、および/または、適切に刺激され得ない。したがって、一方向当たりで複数の連続的なパルスを提供することで、これらの種類の構造は適切に刺激される。他の実施形態では、方法は、正のパルスと負のパルスとの間で交互にすることを含む。
【0065】
[0084]前述のタスクは、図示による例であるように意味されており、つまり、タスクは、連続して、同期して、同時に、途切れることなく、重なる時間期間の間に、または、用途に依存して異なる順番で、実施され得る。また、タスクのうちのいずれかは、事象の実施および/または連続に依存して、実施されなくてもよい、または、省略されてもよい。
【0066】
[0085]
図9は、器具351とモジュール式刺激モジュール352とを備える機器350を示している。器具351は、
図5の器具208を置き換えてもよい。機器350は二つの目的を有している。機器350は、器具として機能し、並んだ双極刺激プローブとして動作する。モジュール式刺激モジュール352は、
図5のモジュール式刺激モジュール202の例を示している。器具351は鉗子であるとして示されているが、他の器具が使用されてもよい。器具351は、再使用可能であるように設計されてもよく、各々の使用の間に殺菌され得る。モジュール式刺激モジュール352は、一回の使用の後に廃棄されるように設計され得る。モジュール式刺激モジュール352は、(i)機器350における第1のコネクタ356に接続する第1のコネクタ354と、(ii)第2のコネクタ360を介して器具351における第2のコネクタ359に接続するワイヤ358とを備えている。コネクタ354、360は、
図5のコネクタ210の例である。器具351のコネクタ356、359の例は、
図11において異なる器具で示されている。
【0067】
[0086]器具351は伝導性の内側の芯材を有しており、その芯材は絶縁材料で被覆されている。器具351の先端362は、露出された伝導性の部分を有する。露出された伝導性の部分の例は、
図11、
図12、および
図16A~
図19Eに示されている。絶縁材料には、例えば、プラスチック、セラミック、または他の適切な材料があり得る。一実施形態では、絶縁材料は、耐摩耗性であるダイヤモンド状炭素(DLC)被覆である。絶縁材料は、器具351の操作部(例えば、先端362および腕部366)を絶縁する。器具351は、輪状の指保持部材364と、鋏の形式の腕部366と、先端362とを有する鉗子として示されている。
【0068】
[0087]モジュール式刺激モジュール352は、筐体367と、多機能ボタン368と、電流調整ボタン369と、発光ダイオード(LED)370とを有している。多機能ボタンは、事象およびスクリーンショットを捕らえるためのキャプチャボタン368として使用できる。多機能ボタン368は事象を捕らえるために押され、スクリーンショットは、捕らえられた事象に対応して表示装置に提供され得る。一実施形態では、多機能ボタン368は、モジュール式刺激モジュール352をオンおよびオフするために設けられてもよい。一実施形態では、ボタン364、368のいずれかが押されるとき、モジュール式刺激モジュール352が作動させられる。多機能ボタン368を押し下げるおよび/または押し下げたままにする異なるパターンが、多機能ボタン368の異なる可能な機能を提供するために使用されてもよい。一実施形態では、電力は、モジュール式刺激モジュール352が包装から取り出されるとき、器具351がモジュール式刺激モジュール352に差し込まれるとき、モジュール式刺激モジュール352が器具351に差し込まれるとき、および/または、モジュール式刺激モジュール352が器具351に接続されるとき、自動的に(つまり、ボタン364、368のいずれかを押すことなく)作動させられてもよい。電流調整ボタン369は、器具351に供給されるパルスの電流を増加または低減するために使用されてもよい。LED370は、モジュール式刺激モジュール352がオンであるかどうかを、モジュール式刺激モジュール352が電流を器具351に供給していることを、無線刺激モジュール352の状態もしくは作動を、および/または、器具351の先端362が組織と接触しているかどうかを、指示してもよい。
【0069】
[0088]
図10は、器具381と別の例のモジュール式刺激モジュール382とを備える別の例の機器380を示している。機器380は二つの目的を有している。機器380は、器具として機能し、並んだ双極刺激プローブとして動作する。器具381は鉗子として示されているが、他の種類の機器であってもよい。モジュール式刺激モジュール382は、
図9のモジュール式刺激モジュール352と同様であるが、器具381の鋏形の腕部384の間に一部配置されるように成形されている。モジュール式刺激モジュール382は、機器380を使用するとき、外科医の指同士の間の干渉を最小限にするように成形されてもいる。モジュール式刺激モジュール382は、(i)器具381に接続する第1の部分386と、(ii)鋏形の腕部384の間で延びている第2の部分388とを備えている。モジュール式刺激モジュール382内に収容されたハードウェアの大部分は、第2の部分388に位置付けられ得る。
【0070】
[0089]
図11~
図15は、モジュール式刺激モジュール(例えば、
図5および
図9~
図10のモジュール式刺激モジュール202、352、382の1つ)に接続するように構成されている別の例の器具390を示している。器具390は、輪状の指保持部材394にコネクタ356、359を有する鉗子として示されている。器具390は、伝導要素398が先端396の側部に露出されている先端396を有している。伝導要素398の各々は、単一(一体品)の品物として示されているが、直列に接続された複数の伝導要素を備えてもよい。伝導要素の露出された部分は、例えば組織に接触するための接触要素として機能する。代替として、伝導要素398は、伝導要素398の示した露出された部分と同じ接触表面積を有する接触要素に接続されてもよい。器具390は、ヒンジ領域404における留め具402を介して接続されている鋏の種類の腕部400を備えている。鋏の種類の腕部400は伝導要素398を備えている。留め具402は腕部400における孔を通じて延びている。留め具402は、腕部400、ワッシャ410、412、インサート414における孔を通じて延び、ナット416へと捩じ込まれ得る。インサート414は、腕部400のうちの1つの孔内に配置され得る。ワッシャ410は腕部400同士の間に配置され得る。ワッシャ412は、ナット416と腕部400のうちの1つ(例えば、インサート414のための孔を有する腕部)との間に配置され得る。ワッシャ410、412およびインサート414は、絶縁ブッシングと称されてもよい。一実施形態では、留め具402は、伝導性であり(例えば、1つまたは複数の伝導性材料および/または金属材料から作られる)、腕部402および絶縁ブッシング410、412、414上の絶縁被覆のため、腕部402から絶縁される。他の実施形態では、留め具402は、1つまたは複数の絶縁材料(例えば、セラミックまたはポリマの材料)から形成されている。
【0071】
[0090]前述した器具は、異なる露出された表面(または、伝導要素)を伴う様々な異なる形式の先端を有し得る。露出された表面とは、絶縁材料で被覆されていない先端および/もしくは器具の一部を言うことができる、ならびに/または、コネクタが器具においてどこか他に位置付けられている場合、コネクタを介してモジュール式刺激モジュールに電気的に接続される器具の露出された伝導部分を言うことができる。以下の
図16A~
図19Eは、使用され得る異なる形式の先端の一部の例を開示している。
【0072】
[0091]
図16A~
図16Dは、露出された先端パッチ452を有する器具の先端450を示している。先端パッチ452は、互いを向いておらず、先端450の反対の外側にある。先端パッチ452の各々は、先端450のうちの対応するものの外部の周りで延びている。先端450同士が閉じた状態にあるとき(つまり、先端450同士が互いと接しているとき)、先端パッチ452は互いと接触しておらず、先端パッチ452同士の間に所定の距離がある。所定の距離は、先端パッチ452同士の間で電流の短絡またはシャントを防止するように設計されている。例として、先端パッチ452は、先端450が閉じた状態にあるとき、互いから1~2ミリメートル(mm)離れていることができる。先端パッチ452は、先端450の内側454にはない。
【0073】
[0092]
図17A~
図17Dは、露出された螺旋トレース472を有する器具の先端470を示している。螺旋トレース472は、先端470の外側の周りで延びている。先端470のうちの第1のものにおける螺旋トレース472のうちのいくつかは、先端470のうちの第2のものにおける螺旋トレース472のうちのいくつかからずれている。例として、第1の先端における螺旋トレースは、第2の先端における螺旋トレースより遠位に位置付けられている。螺旋トレース472は、第1の先端における第1のトレースが第2の先端における第1のトレースより遠位に位置付けられ、第2の先端における第1のトレースが第1の先端における第2のトレースより遠位に位置付けられ、第1の先端における第2のトレースが第2の先端における第2のトレースより遠位に位置付けられるように、交互の関係になっている。
【0074】
[0093]
図18A~
図18Dは、ニードルノーズパッチ482を有する器具の先端480を示している。先端パッチ482は、互いを向いておらず、先端480の反対の外側にある。先端パッチ482の各々は、先端480のうちの対応するものの外部の周りで延びている。先端480同士が閉じた状態にあるとき(つまり、先端480同士が互いと接しているとき)、先端パッチ482は互いと接触しておらず、先端パッチ482同士の間に所定の距離がある。所定の距離は、先端パッチ482同士の間で電流の短絡またはシャントを防止するように設計されている。先端パッチ482は、先端480の内側484にはない。
【0075】
[0094]
図19A~
図19Eは、外部に露出されたパッチ494に加えて、内部に露出されたずれたトレース492を有する器具の先端490を示している。外部に露出されたパッチ494は、互いを向いておらず、先端490の反対側にある。先端パッチ494の各々は、先端490のうちの対応するものの外部の周りで延びている。トレース492は、パッチ494から、先端490の内側496の周りで延びている。先端490同士が閉じた状態にあるとき(つまり、先端490同士が互いと接しているとき)、トレース492は互いと接触しておらず、先端パッチ494同士は互いと接触していない。先端490が閉じられているとき、トレース492および先端パッチ494は、互いから所定の距離である。所定の距離は、トレース492同士の間、先端パッチ494同士の間、および/または、トレース492と先端パッチ494との間の電流の短絡またはシャントを防止するように設計されている。先端パッチ494は、(i)第1の先端にあるトレースの各々と第2の先端における先端パッチとの間、および、(ii)第2の先端にあるトレースの各々と第1の先端における先端パッチとの間で、最小の所定距離を維持するように成形されてもいる。例えば、先端パッチ494は、トレース492のうちの反対の対応するものと位置の合っている切り込み498を有している。先端パッチ494は、先端480の内側496にはない。
【0076】
[0095]前述の器具の露出されたトレースおよびパッチの大きさは、電流に曝される組織の大きさを制限するために最小限とされている。トレースおよびパッチの大きさは、加えられている電流を特定の目標組織領域に集中させるために最小限とされてもよい。器具の各々の露出された表面の先端(例えば、トレースまたはパッチ)は、使用中に、第1の先端が神経組織に接触でき、他方の先端が同じ神経組織の他の組織または同じ患者の他の解剖学的要素(組織、筋肉、皮膚、血液など)に接触できるように成形されている。
【0077】
[0096]
図16A~
図19Eの前述のパッチ452、482、492、およびトレース472の各々は、電流を、対応する先端から、先端の長手方向軸に対して180°までで離すように方向付けることができる。これは、対応する先端の外部の周りで延びているパッチ452、482、492、およびトレース472のためである。結果として、パッチ452、482、492、およびトレース472は、360°の可能な電流放出を提供する。また、先端の器具がモジュール式刺激モジュール(例えば、モジュール式刺激モジュール202、352、382のうちの1つ)に接続でき、パルスが先端の各々から送信され得るため、先端は全方向性の器具/機器を提供する。
図19A~
図19Eの先端490のトレース492およびパッチ494は、先端490の各々によって、360°の可能な電流放出を提供する。
【0078】
[0097]従来の電極配向の問題を解決することに対する同時期の別の解決策は、二相の刺激波形を生成することを含んでいる。これは、第1の(例えば、アノードの)方向における第1のパルスと、第2の(例えば、カソードの)方向における第2のパルスを、それぞれの電力源を介して生成することを含んでいる。例えば、第1のパルスは+5ボルト(V)のパルスとでき、第2のパルスは-5Vのパルスとできる。二相の波形の生成は、二つの電力供給回路および/または二つの電力源を必要とし、これは、二つの単相の波形(例えば、
図5のモジュール式刺激モジュール202および
図7の方法を用いて生成される波形)を生成する回路よりも複雑な回路と電力の消費とを必要とする。単相の波形とは、正のパルスまたは負のパルスであるパルスを有する波形を言っているが、正のパルスと負のパルスとの両方ではない。別の言い方をすれば、両方のパルスが同じ極性を有している。二つの単相の波形の実施は、二相の波形の実施に比べて、より複雑とはならず、より少ない電力を消費し、より小さい空間を必要とする。したがって、二つの単相の波形の実施は、小さい手持ち式の電池を動力源とする刺激装置にとって、より実行可能性がある。
【0079】
[0098]前述の例は、アノード(または、基準の接地)の電極を終端処理するために、アノードのニードルおよびワイヤに対する必要性を排除している。先に開示した例は、神経解剖学的組織に対するプローブ配向の懸念を排除し、神経の活動電位を誘発するために必要とされる神経閾値をより小さくする。
【0080】
[0099]本開示で記載されている無線通信は、IEEE規格802.11-2012、IEEE規格802.16-2009、および/またはIEEE規格802.20-2008との完全な準拠または部分的な準拠で実施され得る。様々な実施において、IEEE802.11-2012は、草案IEEE規格802.11ac、草案IEEE規格802.11ad、および/または草案IEEE規格802.11ahによって補われ得る。
【0081】
[0100]前述の記載は、本質的には単なる例示であり、本開示、その用途、または使用を限定するようにはまったく意図されていない。本開示の幅広い教示は、様々な形態で実施できる。そのため、本開示は特定の例を含んでいるが、そのように本開示の真の範囲が限定されるべきではなく、それは、他の変形が図面、明細書、および以下の特許請求の範囲の研究で明らかになるためである。本明細書で用いられているように、A、B、およびCの少なくとも1つという文言は、非排他的な論理の「または」を用いて、論理(AまたはBまたはC)を意味するように解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、Cの少なくとも1つ」を意味するように解釈されるべきではない。方法内の1つまたは複数のステップは、本開示の原理を変えることなく、異なる順番で(または、同時に)実行されてもよい。
【0082】
[0101]以下の定義を含む本出願では、「モジュール」という用語、または、「制御装置」という用語は、「回路」という用語と置き換えられてもよい。「モジュール」という用語は、特定用途向け集積回路(ASIC)、デジタル、アナログ、もしくは混合されたアナログ/デジタルディスクリート回路、デジタル、アナログ、もしくは混合されたアナログ/デジタル集積回路、組み合わせ論理回路、フィールド・プログラマブル・ゲート・アレイ(FPGA)、コードを実行するプロセッサ回路(共用、専用、もしくはグループ)、プロセッサ回路によって実行されるコードを保存する記憶回路(共用、専用、もしくはグループ)、上記の機能性を提供する他の適切なハードウェア部品、または、システムオンチップなどの上記の一部または全部の組み合わせのことに言及し得る、そのことの一部であり得る、または、そのことを含み得る。
【0083】
[0102]モジュールは、1つまたは複数のインターフェース回路を備え得る。一部の例では、インターフェース回路は、ローカルエリアネットワーク(LAN)、インターネット、広域ネットワーク(WAN)、またはそれらの組み合わせに接続される有線または無線のインターフェースを備え得る。本開示の任意の所与のモジュールの機能性は、インターフェース回路を介して接続される複数のモジュールの間で分配されてもよい。例えば、複数のモジュールは、負荷バランシングを許容できる。さらなる例では、サーバー(遠隔またはクラウドとしても知られている)モジュールが、クライアントモジュールの代わりに一部の機能性を遂行してもよい。
【0084】
[0103]先に使用したようなコードという用語は、ソフトウェア、ファームウェア、および/またはマイクロコードを含むことができ、プログラム、ルーティン、機能、クラス、データ構造、および/またはオブジェクトに言及し得る。共用のプロセッサ回路という用語は、複数のモジュールからの一部または全部のコードを実行する単一のプロセッサ回路を包含する。グループのプロセッサ回路という用語は、追加のプロセッサ回路との組み合わせで1つまたは複数のモジュールからの一部または全部のコードを実行するプロセッサ回路を包含する。複数のプロセッサ回路への言及は、個別のダイにおける複数のプロセッサ回路、単一のダイにおける複数のプロセッサ回路、単一のプロセッサ回路の複数のコア、単一のプロセッサ回路の複数のスレッド、または、上記の組み合わせを包含する。共用の記憶回路という用語は、複数のモジュールからの一部または全部のコードを保存する単一の記憶回路を包含する。グループの記憶回路という用語は、追加の記憶装置との組み合わせで1つまたは複数のモジュールからの一部または全部のコードを保存する記憶回路を包含する。
【0085】
[0104]記憶回路という用語は、コンピュータ読取可能媒体という用語の部分集合である。本明細書で用いられているようなコンピュータ読取可能媒体という用語は、媒体を通じて伝搬する一時的な電気信号または電磁信号(搬送波など)を包含せず、そのため、コンピュータ読取可能媒体という用語は、有体で非一時的であると考えられ得る。非一時的で有体のコンピュータ読取可能媒体の非限定的な例には、不揮発性記憶回路(フラッシュメモリ回路またはマスク読み取り専用メモリ回路など)、揮発性記憶回路(スタティックランダムアクセスメモリ回路およびダイナミックランダムアクセスメモリ回路など)、磁気記憶装置(磁気テープまたはハードディスクドライブなど)などの二次記憶装置、および、光学記憶装置がある。
【0086】
[0105]本出願に記載されている装置および方法は、コンピュータプログラムで具現化された1つまたは複数の特定の機能を実行するために、汎用コンピュータを構成することで作り出された専用コンピュータによって部分的または完全に実施できる。コンピュータプログラムは、少なくとも1つの非一時的で有体のコンピュータ読取可能媒体に保存されているプロセッサ実行可能命令を含む。コンピュータプログラムは、保存されたデータも含み得る、または、保存されたデータにも依存し得る。コンピュータプログラムは、専用コンピュータのハードウェアと相互作用する基本入出力システム(BIOS)と、専用コンピュータの特定の装置と相互作用するデバイスドライバと、1つまたは複数のオペレーティングシステムと、ユーザアプリケーションと、バックグラウンドサービスと、アプリケーションなどを備え得る。
【0087】
[0106]コンピュータプログラムは、(i)アッセンブリコード、(ii)コンパイラによってソースコードから生成されるオブジェクトコード、(iii)インタープリタによる実行のためのソースコード、(iv)ジャストインタイムコンパイラによるコンパイルおよび実行のためのソースコード、(v)HTML(ハイパーテキストマークアップ言語)またはXML(拡張マークアップ言語)などの構文解析のための説明文などを含み得る。単なる例として、ソースコードは、C、C++、C#、オブジェクティブC、ハスケル、Go、SQL、Lisp、Java(登録商標)、ASP、Perl、Javascript(登録商標)、HTML5、エイダ、ASP(アクティブサーバページ)、Perl、Scala、Erlang、Ruby、Flash(登録商標)、Visual Basic(登録商標)、Lua、またはPython(登録商標)で書かれ得る。
【0088】
[0107]請求項において列挙された要素は、要素が「~のための手段」という文言を用いて明示的に列挙されていない場合、または、「~のための動作」もしくは「~のためのステップ」の文言を用いた方法クレームの場合、米国特許法第112条(f)の意味内のミーンズプラスファンクション要素であるように意図されていない。
[形態1]
双極刺激プローブであって、
第1の電極と、
第2の電極と、
(i)前記第1の電極から出力される第1のパルスを示す第1の出力信号、および、(ii)前記第2の電極から出力される第2のパルスを示す第2の出力信号を生成することで、患者の神経組織を刺激するように構成される制御モジュールであって、前記第1のパルスおよび前記第2のパルスは単相である、制御モジュールと、
前記双極刺激プローブから、(i)前記第1の出力信号に基づいて前記第1の電極において前記第1のパルスを出力し、(ii)前記第2の出力信号に基づいて前記第2の電極において前記第2のパルスを出力するように構成される複数のスイッチと
を備える双極刺激プローブ。
[形態2]
形態1に記載の双極刺激プローブにおいて、
前記複数のスイッチは第1のスイッチと第2のスイッチとを備え、
前記制御モジュールは、(i)前記双極刺激プローブの動作モードを変えるために、および、(ii)前記複数のスイッチの状態を制御するために、切替制御信号を生成するように構成され、
第1のモードの間、(i)前記第1のスイッチは第1の状態にあり、前記第1のパルスを前記第1の電極に提供し、(ii)前記第2のスイッチは第1の状態にあり、前記第1のパルスの結果として、前記患者からのリターン電流を受信し、
第2のモードの間、(i)前記第2のスイッチは第2の状態にあり、前記第2のパルスを前記第2の電極に提供し、(ii)前記第1のスイッチは第2の状態にあり、前記第2のパルスの結果として、前記患者からのリターン電流を受信する、双極刺激プローブ。
[形態3]
形態1または2に記載の双極刺激プローブにおいて、
前記制御モジュールは、前記神経組織の不応性の時間の期間を構成するために、前記第1の出力信号の生成と前記第2の出力信号の生成との間に所定の期間で待機するように構成される、双極刺激プローブ。
[形態4]
形態1から3のいずれか一項に記載の双極刺激プローブにおいて、
前記第1の出力信号に基づいて第1の入力を受信し、
前記第1のパルスを生成するために前記第1の入力を増幅し、
前記第2の出力信号に基づいて第2の入力を受信し、
前記第2のパルスを生成するために前記第2の入力を増幅する
ように構成される増幅モジュールをさらに備える双極刺激プローブ。
[形態5]
形態1から4のいずれか一項に記載の双極刺激プローブにおいて、
前記第1の出力信号に基づいて第1の入力を受信し、
第1の濾過された出力を生成するために前記第1の入力を濾過し、
前記第2の出力信号に基づいて第2の入力を受信し、
第2の濾過された出力を生成するために前記第2の入力を濾過する
ように構成されるフィルタをさらに備え、
前記複数のスイッチは、(i)前記第1の濾過された出力に基づいて前記第1のパルスを前記第1の電極へと提供する、および、(ii)前記第2の濾過された出力に基づいて前記第2のパルスを前記第2の電極へと提供するように構成される、双極刺激プローブ。
[形態6]
形態1から5のいずれか一項に記載の双極刺激プローブにおいて、
(i)前記第1の出力信号を第1のアナログ信号へと変換する、および、(ii)前記第2の出力信号を第2のアナログ信号へと変換するように構成されるデジタル/アナログ変換器をさらに備え、
前記複数のスイッチは、(i)前記第1のアナログ信号に基づいて前記第1のパルスを前記第1の電極へと提供する、および、(ii)前記第2のアナログ信号に基づいて前記第2のパルスを前記第2の電極へと提供するように構成される、双極刺激プローブ。
[形態7]
形態1から6のいずれか一項に記載の双極刺激プローブにおいて、
(i)前記第1のパルスの生成の間に前記第1の電極および前記第2の電極にわたる第1の電圧を検出する、(ii)前記第2のパルスの生成の間に前記第1の電極および前記第2の電極にわたる第2の電圧を検出する、および、(iii)前記第1の電圧または前記第2の電圧に基づいてフィードバック信号を生成するように構成されるフィードバックモジュールをさらに備え、
前記制御モジュールは、前記第1の電圧または前記第2の電圧に基づいて第3のパルスを生成するように構成される、双極刺激プローブ。
[形態8]
形態7に記載の双極刺激プローブにおいて、
前記フィードバックモジュールは相互コンダクタンス増幅器を備え、
前記相互コンダクタンス増幅器は、(i)前記第1の電圧を第1の電流へと変換する、および、(ii)前記第2の電圧を第2の電流へと変換するように構成され、
前記制御モジュールは、前記第1の電流または前記第2の電流に基づいて前記第3のパルスを生成するように構成される、双極刺激プローブ。
[形態9]
形態1から8のいずれか一項に記載の双極刺激プローブにおいて、
前記制御モジュールは、(i)前記第1の電極から出力される第1の複数のパルスを示す第1の複数の出力信号、および、(ii)前記第2の電極から出力される第2の複数のパルスを示す第2の複数の出力信号を生成することで、前記患者の前記神経組織を刺激するように構成され、前記第1の複数のパルスおよび前記第2の複数のパルスは単相であり、前記第1の複数のパルスは前記第1のパルスを含み、前記第2の複数のパルスは前記第2のパルスを含み、
前記複数のスイッチは、前記双極刺激プローブから、(i)前記第1の複数の出力信号に基づいて前記第1の電極において前記第1の複数のパルスを出力し、(ii)前記第2の複数の出力信号に基づいて前記第2の電極において前記第2の複数のパルスを出力するように構成される、双極刺激プローブ。
[形態10]
形態1から9のいずれか一項に記載の双極刺激プローブと、
前記患者の領域において信号活動を検出するように構成されるセンサと、
(i)前記第1のパルスおよび前記第2のパルスに基づいて、前記患者の領域における前記信号活動を監視し、(ii)前記第1のパルスおよび前記第2のパルスがいつ生成されるかを決定し、(ii)前記第1のパルスおよび前記第2のパルスがいつ生成されるかに基づいて、前記信号活動の一部を濾過するように構成される神経完全性監視装置と
を備えるシステム。
[形態11]
形態10に記載のシステムにおいて、
前記信号活動は、前記第1のパルスと、前記第2のパルスと、前記第1のパルスおよび前記第2のパルスの少なくとも1つのアーチファクトとを含み、
前記神経完全性監視装置は、拒絶期間の間に前記少なくとも1つのアーチファクトを濾過し、第1の監視期間の間に筋電図検査信号を監視するように構成され、
前記第1の監視期間は前記拒絶期間の後である、システム。
[形態12]
形態11に記載のシステムにおいて、
前記神経完全性監視装置は、
拒絶期間の間、前記第1のパルスの第1のアーチファクト、または、前記第2のパルスの第2のアーチファクトを濾過するように構成され、
前記第1の監視期間は、前記拒絶期間の後であり、前記第1のパルスと前記第2のパルスとの両方に対応する、システム。
[形態13]
形態11に記載のシステムにおいて、
前記神経完全性監視装置は、
第1の拒絶期間の間に前記第1のパルスの第1のアーチファクトを濾過し、
第2の拒絶期間の間に前記第2のパルスの第2のアーチファクトを濾過し、
前記第1の監視期間の間に第1の筋電図検査信号を監視し、
第2の監視期間の間に第2の筋電図検査信号を監視する
ように構成され、
前記第1の監視期間は前記第1のパルスに基づき、
前記第2の監視期間は前記第2のパルスに基づく、システム。
[形態14]
形態1から9のいずれか一項に記載の双極刺激プローブと、
第1の要求信号を生成するように構成される神経完全性監視装置と
を備え、
前記制御モジュールは、前記第1の要求信号に基づいて、前記第1の出力信号または前記第2の出力信号を生成するように構成される、システム。
[形態15]
形態14に記載のシステムにおいて、
前記双極刺激プローブは、
(i)前記第1の電極および前記第2の電極にわたる電圧を監視する、および、(ii)前記電圧に基づいてフィードバック信号を生成するように構成されるフィードバックモジュールと、
前記神経完全性監視装置と無線で通信するように構成される物理層モジュールと
を備え、
前記制御モジュールは、(i)前記フィードバック信号のパラメータを決定する、および、(ii)前記パラメータを、前記物理層モジュールを介して前記神経完全性監視装置へと無線で送信するように構成され、
前記神経完全性監視装置は、(i)前記パラメータに基づいて第2の要求信号を生成する、および、(ii)前記第2の要求信号を前記物理層モジュールへと戻すように無線で送信するように構成され、
前記制御モジュールは、前記第2の要求信号に基づいて第3のパルスを生成するように構成される、システム。
[形態16]
第1の電極と第2の電極とを備える双極刺激プローブを動作させる方法であって、
前記第1の電極から出力される第1のパルスを示す第1の出力信号を生成するステップと、
前記第2の電極から出力される第2のパルスを示す第2の出力信号を生成するステップであって、前記第1のパルスおよび前記第2のパルスは単相である、ステップと、
複数のスイッチを介して、前記双極刺激プローブから、(i)前記第1の出力信号に基づいて前記第1の電極において前記第1のパルスを出力し、(ii)前記第2の出力信号に基づいて前記第2の電極において前記第2のパルスを出力するステップと
を含む方法。
[形態17]
形態16に記載の方法において、
(i)前記双極刺激プローブの動作モードを変えるために、および、(ii)前記複数のスイッチの状態を制御するために、切替制御信号を生成するステップであって、前記複数のスイッチは第1のスイッチと第2のスイッチとを含む、ステップと、
第1のモードの間で、前記第1のスイッチが第1の状態にあり、前記第2のスイッチが第1の状態にある間、(i)前記第1のパルスを前記第1のスイッチを介して前記第1の電極に提供し、(ii)リターン電流を、前記第1のパルスの結果として、前記第2のスイッチを介して受信するステップと、
第2のモードの間で、前記第2のスイッチが第2の状態にあり、前記第1のスイッチが第2の状態にある間、(i)前記第2のパルスを前記第2のスイッチを介して前記第2の電極に提供し、(ii)リターン電流を、前記第2のパルスの結果として、前記第1のスイッチを介して受信するステップと
をさらに含む方法。
[形態18]
形態16または17に記載の方法において、
不応性の時間の期間を構成するために、前記第1の出力信号の生成と前記第2の出力信号の生成との間に所定の期間で待機するステップをさらに含む方法。
[形態19]
形態16から18のいずれか一項に記載の方法において、
前記第1の出力信号に基づいて、増幅モジュールにおいて第1の入力を受信するステップと、
前記第1のパルスを生成するために前記第1の入力を増幅するステップと、
前記第2の出力信号に基づいて、前記増幅モジュールにおいて第2の入力を受信するステップと、
前記第2のパルスを生成するために前記第2の入力を増幅するステップと
をさらに含む方法。
[形態20]
形態16から19のいずれか一項に記載の方法において、
前記第1の出力信号に基づいて第1の入力をフィルタにおいて受信するステップと、
第1の濾過された出力を生成するために前記第1の入力を濾過するステップと、
前記第2の出力信号に基づいて第2の入力を前記フィルタにおいて受信するステップと、
第2の濾過された出力を生成するために前記第2の入力を濾過するステップと、
前記複数のスイッチを介して、(i)前記第1の濾過された出力に基づいて前記第1のパルスを前記第1の電極へと提供する、および、(ii)前記第2の濾過された出力に基づいて前記第2のパルスを前記第2の電極へと提供するステップと
をさらに含む方法。
[形態21]
形態16から20のいずれか一項に記載の方法において、
(i)前記第1の出力信号を第1のアナログ信号へと変換し、(ii)前記第2の出力信号を第2のアナログ信号へと変換するステップと、
前記複数のスイッチを介して、(i)前記第1のアナログ信号に基づいて前記第1のパルスを前記第1の電極へと提供し、(ii)前記第2のアナログ信号に基づいて前記第2のパルスを前記第2の電極へと提供するステップと
をさらに含む方法。
[形態22]
形態16から21のいずれか一項に記載の方法において、
前記第1のパルスの生成の間に前記第1の電極および前記第2の電極にわたる第1の電圧を検出するステップと、
前記第2のパルスの生成の間に前記第1の電極および前記第2の電極にわたる第2の電圧を検出するステップと、
前記第1の電圧または前記第2の電圧に基づいてフィードバック信号を生成するステップと、
前記第1の電圧または前記第2の電圧に基づいて第3のパルスを生成するステップと
をさらに含む方法。
[形態23]
形態22に記載の方法において、
前記第1の電圧を第1の電流へと変換するステップと、
前記第2の電圧を第2の電流へと変換するステップと、
前記第1の電流または前記第2の電流に基づいて前記第3のパルスを生成するステップと
をさらに含む方法。
[形態24]
形態16から23のいずれか一項に記載の方法において、
(i)前記第1の電極から出力される第1の複数のパルスを示す第1の複数の出力信号、および、(ii)前記第2の電極から出力される第2の複数のパルスを示す第2の複数の出力信号を生成するステップであって、前記第1の複数のパルスおよび前記第2の複数のパルスは単相であり、前記第1の複数のパルスは前記第1のパルスを含み、前記第2の複数のパルスは前記第2のパルスを含む、ステップと、
前記双極刺激プローブから、(i)前記第1の複数の出力信号に基づいて前記第1の電極において前記第1の複数のパルスを出力し、(ii)前記第2の複数の出力信号に基づいて前記第2の電極において前記第2の複数のパルスを出力するステップと
をさらに含む方法。
[形態25]
形態16から24のいずれか一項に記載の方法において、
領域においてセンサで信号活動を検出するステップと、
前記第1のパルスおよび前記第2のパルスに基づいて、領域における前記信号活動を監視するステップと、
前記第1のパルスおよび前記第2のパルスがいつ生成されるかを決定するステップと、
前記第1のパルスおよび前記第2のパルスがいつ生成されるかに基づいて、前記信号活動の一部を濾過するステップと
をさらに含む方法。
[形態26]
形態25に記載の方法において、
拒絶期間の間、前記第1のパルスおよび前記第2のパルスの少なくとも1つのアーチファクトを濾過するステップであって、前記信号活動は、前記第1のパルス、前記第2のパルス、および前記少なくとも1つのアーチファクトを含む、ステップと、
第1の監視期間の間に信号を監視するステップであって、前記第1の監視期間は前記拒絶期間の後である、ステップと
をさらに含む方法。
[形態27]
形態26に記載の方法において、
拒絶期間の間、前記第1のパルスの第1のアーチファクトまたは前記第2のパルスの第2のアーチファクトを濾過するステップであって、前記第1の監視期間は、前記拒絶期間の後であり、前記第1のパルスと前記第2のパルスとの両方に対応する、ステップをさらに含む方法。
[形態28]
形態26に記載の方法において、
第1の拒絶期間の間に前記第1のパルスの第1のアーチファクトを濾過するステップと、
第2の拒絶期間の間に前記第2のパルスの第2のアーチファクトを濾過するステップと、
前記第1の監視期間の間に第1の信号を監視するステップと、
第2の監視期間の間に第2の信号を監視するステップと
をさらに含み、
前記第1の監視期間は前記第1のパルスに基づき、
前記第2の監視期間は前記第2のパルスに基づく、方法。
[形態29]
形態16から27のいずれか一項に記載の方法において、
神経完全性監視装置において第1の要求信号を生成するステップと、
前記第1の要求信号を前記双極刺激プローブへと送信するステップと、
前記第1の要求信号に基づいて、前記第1の出力信号または前記第2の出力信号を生成するステップと
をさらに含む方法。
[形態30]
形態29に記載の方法において、
前記第1の電極および前記第2の電極にわたる電圧を監視するステップと、
前記電圧に基づいてフィードバック信号を生成するステップと、
前記フィードバック信号のパラメータを決定するステップと、
前記パラメータを前記双極刺激プローブから前記神経完全性監視装置へと無線で送信するステップと、
前記パラメータに基づいて第2の要求信号を生成するステップと、
前記第2の要求信号を前記双極刺激プローブへと戻すように無線で送信するステップと、
前記第2の要求信号に基づいて、前記双極刺激プローブを介して第3のパルスを生成するステップと
をさらに含む方法。