IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社北川鉄工所の特許一覧

<>
  • 特許-ワークの端面切削加工方法 図1
  • 特許-ワークの端面切削加工方法 図2
  • 特許-ワークの端面切削加工方法 図3
  • 特許-ワークの端面切削加工方法 図4
  • 特許-ワークの端面切削加工方法 図5
  • 特許-ワークの端面切削加工方法 図6
  • 特許-ワークの端面切削加工方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-13
(45)【発行日】2022-04-21
(54)【発明の名称】ワークの端面切削加工方法
(51)【国際特許分類】
   B23B 1/00 20060101AFI20220414BHJP
   B23B 5/00 20060101ALI20220414BHJP
   B23B 3/26 20060101ALI20220414BHJP
   B23B 27/08 20060101ALI20220414BHJP
   B23B 27/00 20060101ALI20220414BHJP
【FI】
B23B1/00 Z
B23B5/00 A
B23B3/26
B23B27/08 A
B23B27/00 B
【請求項の数】 5
(21)【出願番号】P 2017201031
(22)【出願日】2017-10-17
(65)【公開番号】P2019072809
(43)【公開日】2019-05-16
【審査請求日】2020-10-14
(73)【特許権者】
【識別番号】000154901
【氏名又は名称】株式会社北川鉄工所
(72)【発明者】
【氏名】小笠原 哲也
(72)【発明者】
【氏名】高山 遼
【審査官】村上 哲
(56)【参考文献】
【文献】米国特許第04177699(US,A)
【文献】特開2009-279665(JP,A)
【文献】特開2006-068831(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23B 1/00
B23B 5/00
B23B 3/26
B23B 27/08
B23B 27/00
(57)【特許請求の範囲】
【請求項1】
直交3軸とワークを載置したテーブルを一定の回転速度αで回転させる回転1軸と、
前記ワークを一定の回転速度βで回転させることによって、前記ワークを切削する丸駒インサートと、
前記直交3軸を駆動制御する数値制御装置を備えたマシニングセンタを用い、
前記直交3軸の移動方向に応じて、アップカットとなるように前記丸駒インサートの回転方向を制御し、
ワーク軸線回りに回転中のワークと丸駒インサート軸線回りに回転中の丸駒インサートの一方を他方に押し付けながらワーク径方向に移動することにより前記ワークの端面を切削加工することを特徴とするワーク端面の切削加工方法。
【請求項2】
請求項1に記載のワーク端面の切削加工方法において、
前記ワークの回転方向が前記丸駒インサートの切削端面に向けて回転することを特徴とするワーク端面の切削加工方法。
【請求項3】
請求項1に記載のワーク端面の切削加工方法において、
ワークの外周から中心方向、または、中心から外周方向に切削することを特徴とするワーク端面の切削加工方法。
【請求項4】
請求項1に記載のワーク端面の切削加工方法において、
前記回転1軸は、該軸線と前記丸駒インサートの軸線とが垂直になるように配置されていることを特徴とするワーク端面の切削加工方法。
【請求項5】
請求項1に記載のワーク端面の切削加工方法において、
前記丸駒インサートは、当該軸線上に一体回転可能なシャンク部を有しており、丸駒インサート径D とシャンク部径d がD > d であることを特徴とするワーク端面の切削加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マシニングセンタで軸線回りに回転する工作物(以下、ワークという)を軸線回りに回転する回転工具により切削が行われるワークの端面切削加工方法に関する。
【背景技術】
【0002】
昨今では、複合加工機(5軸加工機含む)による加工が普及しつつも、一般的なワークの加工工程として、未だに旋盤等を用いて、ワークの荒加工工程、仕上げ加工工程が旋削によってなされ、その後、マシニングセンタ等に段取り替えされ、マシニングセンタ等による切削加工工程がなされている。このように、一つのワークを加工する上で、段取り替えは避け難いものであった。
【0003】
このような加工工程の中で、マシニングセンタ等に搭載される回転テーブルは、取り付けられたワークを切削力に耐えうる回転速度で連続回転させる用途、および取り付けられたワークを任意の角度に割出して固定保持する用途などに使用されてきた。
【0004】
一方で、特許文献1に記載の本出願人が発明した回転テーブルをマシニングセンタに用いれば、ワークを旋盤相当に高速で回転させることができるため、従来の旋盤による荒加工工程とマシニングセンタによる切削加工を集約でき、高価な複合加工機および旋盤等を購入しなくても、既存のマシニングセンタのみで、段取り替えすることなく、加工することが可能となる。
【0005】
また、NC旋盤を用いてワークの端面切削を加工する場合は、軸線回りにワークを回転させながら、バイト(工具)を一定の速度で送ることで行っている。
このとき、ワークの回転数を一定にし、且つ、バイトの切削速度を一定にして切削するとワーク外周側と中心側では周速度が異なるため、その結果、仕上がりのワーク加工面が良好になり難い。
【0006】
そのため、NCプログラムによって、ワークの回転制御とバイトの送り速度制御を同期制御することで、周速度に応じて加工中の切削速度を変化させるといった周速一定制御がなされている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2015-174187号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、特許文献1の回転テーブルとマシニングセンタの組合せでは、端面切削において、旋盤相当の良好な加工面を得ることは、実用的ではなかった。
というのも、一般的には、マシニングセンタの工具はエンドミルを使用しており、このエンドミルでワークを加工すると刃先の構成上、ワークから見たときに断続的に切削することとなり、良好な加工面を得ることができない。
【0009】
そこで、周知技術の丸駒インサートを使用すれば、構成上、ワークから見たときに連続的に切削することが可能なので、エンドミルよりは良好な加工面を得ることができる。
しかしながら、丸駒インサートではエンドミルより良好な加工面を得ることができるものの加工条件によって、良好な加工面を得ることができなかった。
【0010】
そこで、本発明の目的は、丸駒インサートを備えるマシニングセンタに搭載した回転テーブルを用いて、丸駒インサートと回転テーブルの夫々の回転速度を一定とし、回転方向を制御することでワーク加工面の精度を良好にするワークの仕上げ加工方法を提供することにある。
【課題を解決するための手段】
【0011】
上記の課題を解決するために、本発明のワーク端面の切削加工方法は、直交3軸とワークを載置したテーブルを一定の回転速度αで回転させる回転1軸と、ワークを一定の回転速度βで回転しながら切削する丸駒インサートと、直交3軸を駆動制御する数値制御装置を備えたマシニングセンタを用い、直交3軸の移動方向に応じて、アップカットとなるように丸駒インサートの回転方向を制御し、ワーク軸線回りに回転中のワークと丸駒インサート軸線回りに回転中の丸駒インサートの一方を他方に押し付けながらワーク径方向に移動することによりワークの端面を切削加工することを特徴としている。
【0012】
上記手順によれば、ワークの回転速度と丸駒インサートの回転速度を変えることなく、一定の回転速度とした状態で、良好な加工面を得ることができる。したがって、同期制御をする必要がなく、また、それによる周速一定制御をする必要もなく、マシニングセンタと該マシニングセンタに搭載したテーブルのみで良好な加工精度を得ることができるため、設備増設によるコストを削減することができる。
【0013】
また、本発明のワーク端面の切削加工方法においては、ワークの回転方向が丸駒インサートの切削端面に向けて回転することが好ましい。上記手順によれば、詳細は後述するが工具のたわみを抑制することができる。
【0014】
また、本発明のワーク端面の切削加工方法においては、ワークの外周から中心方向、または、中心から外周方向に切削することが好ましい。上記手順によれば、丸駒インサートにかかる荷重及び方向を一定にすることで工具のびびりやたわみを抑制することができる。
【0015】
また、本発明のワーク端面の切削加工方法においては、回転1軸は、この軸線と丸駒インサートの軸線とが垂直になるように配置されていることが好ましい。上記手順によれば、複合加工機のように少なくとも一方のワーク及び丸駒インサートを夫々の回転軸に対して傾斜する必要がなく、簡単な構成で加工することができる。
【0016】
さらに、本発明のワーク端面の切削加工方法においては、丸駒インサートは、当該軸線上に一体回転可能なシャンク部を有しており、丸駒インサート径Dとシャンク部径dがD>dであることが好ましい。上記手順によれば、切削加工中にシャンク部がワーク端面と干渉することなく確実に良好な加工を実現できる。
【発明の効果】
【0017】
本発明のワーク端面の切削加工方法によれば、マシニングセンタによる加工でも設備を増設することなく、回転工具及びワークを夫々回転させ、且つ、夫々回転方向を制御することで良好な加工面を得ることができる。
【図面の簡単な説明】
【0018】
図1】本発明の一実施形態によるワークの端面切削加工方法を説明するための模式斜視図である。
図2】アップカットによる前記端面切削加工方法である。
図3】アップカットによる前記端面切削加工方法である。
図4】本実施例2の加工動作を示した動作図である。
図5】表面粗さとワーク直径との関係を示したグラフである。
図6】丸駒インサートの拡大図であり、(a)が正面図、(b)が下面図を夫々示している。
図7】アップカットと切り屑との関係を示した図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態を図面に基づいて詳細に説明する。ただし、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。尚、後掲する図1図4には、x軸、y軸及びz軸を示している。x軸、y軸及びz軸の向きは、異なる図であっても、互いに一致させている。本明細書における説明では便宜上、x軸方向正側を「右」側、x軸方向負側を「左」側、y軸方向正側を「前」側、y軸方向負側を「後」側、z軸方向正側を「上」側、z軸方向負側を「下」側としている。
【0020】
図1は、本発明の一実施形態によるワークwの端面切削加工方法を説明するための模式斜視図である。
図1に示すように、マシニングセンタ100の基本構成は、テーブル台10と工具主軸20の組合せで直交3軸を有しており、それらの移動と工具主軸20の回転などを制御する数値制御装置40などで構成されている。
以下に、直交3軸の一例を示しながら構成を説明していく。
【0021】
工具主軸20は、テーブル台10に対して一次元的に上下方向(z軸方向)に移動可能となっており、一定の回転速度βで当該軸線A回りに、矢印a1方向、または、a2方向に回転可能となっている。
この工具主軸20の先端には、円柱状のシャンク部21が工具主軸20と回転一体に、且つ、工具主軸20の軸線Aとシャンク部21の軸線が一致するように取り付けられている。
【0022】
同様に、シャンク部21の先端には、丸駒インサート22が回転一体に、且つ、軸線Aと丸駒インサート22の軸線が一致するように取り付けられている。
【0023】
(丸駒インサート)
丸駒インサート22は、図6に示すように軸線Aと直交する断面で見たとき円形をなしており、その先端面22aと側面22bとの交差部が切れ刃22cとなっている。
丸駒インサート22の直径Dとシャンク部21の直径dとの関係は、ワークの端面w1を切削中にシャンク部が先にワークwに干渉しないように、D>dとなるようにしている。好ましくは、設定するワークwの切り込み量に応じて、切り込み量<(D-d)/2となるように適宜決定するのが良い。尚、ワークwの切り込み量は、加工に必要とされる量、丸駒インサートの許容量、工作機械の加工能力、または丸駒インサートの剛性等に応じて適宜決定されるものである。
【0024】
テーブル台10は、工具主軸20に対して二次元的に前後方向(y軸方向)及び左右方向(x軸方向)に移動可能となっている。
このテーブル台10には、回転1軸である回転テーブル30がテーブル台10と移動一体可能に搭載されている。
回転テーブル30の搭載は、好ましくは、回転テーブル30の軸線Bと、丸駒インサートの軸線Aとが垂直になるように配置されるのが良い。
【0025】
数値制御装置40は、主に、工具主軸20とテーブル台10とで構成される直交3軸の移動方向を制御し、且つ、工具主軸20の回転方向及び回転速度を制御している。
この数値制御装置40によって、直交3軸の移動方向に応じて、後述のアップカットとなるように丸駒インサート22の回転方向を制御することで、ワークの端面を切削加工している。これにより、良好な加工面を得ることが可能となっている。
【0026】
(回転テーブル)
回転テーブル30には、図示しないチャックが固定されており、この図示しないチャックを駆動させることで、ワークwを把持している。
内部には、図示しないサーボモータが搭載されており、それによって、ワークを回転駆動可能にしている。
また、回転速度及び回転方向などを制御する制御装置50が接続されている。
換言すると、制御装置50によって回転テーブル30を駆動させることで、一定の回転速度αでワークwを回転テーブル30の軸線B回りに、矢印b1方向、または、b2方向に回転可能となっている。
【0027】
(実施例1)
本実施例1のワークwの端面切削加工方法について、図2を用いて説明する。図2は、アップカットによる端面切削加工方法であり、所定の位置で回転可能、且つ、移動不能に停止している丸駒インサート22にワークwを移動させることでワークの端面w1を切削する際の丸駒インサート22の回転方向、ワークwの回転方向、及びワークwの移動方向の制御を示している。
【0028】
図2(a)と図2(b)は、ワークの外周から中心方向へ切削する際の丸駒インサート22の回転方向と、ワークwの回転方向及び移動方向を示している。
一方、図2(c)と図2(d)は、ワークの中心から外周方向へ切削する際の丸駒インサート22の回転方向と、ワークwの回転方向及び移動方向を示している。
【0029】
まず、最初にアップカットの定義について、図2を用いて説明する。図2に示すように、丸駒インサート22が軸線A回りに矢印a1方向に回転しているときに、ワークが前側に移動(図2(a)、(c))し、逆に、丸駒インサート22が軸線A回りに矢印a2方向に回転しているときに、ワークwが後側に移動(図2(b)、(d))することで、丸駒インサート22の刃が切削済の部分に当たり、削り上げながら加工することをアップカットと定義した。
【0030】
図2(a)は、ワークwが丸駒インサート22にむけて移動することで、ワークwの端面を外周から中心まで切削する図を示している。図2(a)に示すように、丸駒インサート22の切削面は、z軸に沿ってy軸と平行なワークwの中心線に接する位置に移動した状態で移動不能に停止している。この状態でワークwが丸駒インサート22に向けて相対的に切削開始位置s1まで移動する。ここでは、切削開始位置s1は、y軸に対してワークwを丸駒インサート22の後側近傍(ここで近傍は、ワークwと丸駒インサート22が接することのない丸駒インサート外周外のことをいう)に移動させている。また、x軸に対して所定の切り込み量となる位置にワークwを左方向に移動させている。
【0031】
この切削開始位置s1で、丸駒インサート22を軸線A回りに矢印a1方向に回転させ、ワークwを軸線B回りに矢印b1方向に回転させるとともに、y軸と平行に前側に移動させている。
【0032】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、丸駒インサート22をa1方向に回転させ、ワークwをb1方向に回転させつつワークwを前側に移動させることで、ワーク外周からワーク中心に向けて端面切削が行われている。
【0033】
図2(b)は、ワークwが丸駒インサート22にむけて移動することで、ワークの端面w1を外周から中心まで切削する図を示している。図2(b)に示すように、丸駒インサート22の切削面は、z軸に沿ってy軸と平行なワークwの中心線に接する位置に移動した状態で移動不能に停止している。この状態でワークwが丸駒インサート22に向けて相対的に切削開始位置s2まで移動する。ここでは、切削開始位置s2は、y軸に対してワークwを丸駒インサート22の前側近傍に移動させている。また、x軸に対して所定の切り込み量となる位置にワークwを左方向に移動させている。
【0034】
この切削開始位置s2で、丸駒インサート22を軸線A回りに矢印a2方向に回転させ、ワークwを軸線B回りに矢印b2方向に回転させるとともに、y軸と平行に後側に移動させている。
【0035】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、丸駒インサート22をa2方向に回転させ、ワークwをb2方向に回転させつつワークwを後側に移動させることで、ワーク外周からワーク中心に向けて端面切削が行われている。
【0036】
図2(c)は、ワークwが丸駒インサート22から離れる方向に移動することで、ワークの端面w1を中心から外周まで切削する図を示している。図2(c)に示すように、丸駒インサート22の切削面は、z軸に沿ってy軸と平行なワークwの中心線に接する位置に移動した状態で移動不能に停止している。この状態でワークwが丸駒インサート22に向けて相対的に切削開始位置s3まで移動する。ここでは、切削開始位置s3は、y軸に対してz軸方向のワークwの中心線を丸駒インサート22の軸線Aと一致する位置に移動させている。また、x軸に対して丸駒インサート22の右側に一定の隙間を有するようにワークwを移動させている。
【0037】
この切削開始位置s3で、丸駒インサート22を軸線A回りに矢印a1方向に回転させ、ワークwを軸線B回りに矢印b2方向に回転させるとともに、x軸と平行に右側に所定の切り込み量となる位置に移動させる。そして、所定の切り込み量の位置に達したら、各回転方向を維持した状態で、ワークwをy軸と平行に前側に移動させている。
【0038】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、丸駒インサート22をa1方向に回転させ、ワークwをb2方向に回転させつつワークwを前側に移動させることで、ワーク中心からワーク外周に向けて端面切削が行われている。
【0039】
図2(d)は、ワークwが丸駒インサート22から離れる方向に移動することで、ワークの端面w1を中心から外周まで切削する図を示している。図2(d)に示すように、丸駒インサート22の切削面は、z軸に沿ってy軸と平行なワークwの中心線に接する位置に移動した状態で移動不能に停止している。この状態でワークwが丸駒インサート22に向けて相対的に切削開始位置s3まで移動する。ここでは、切削開始位置s3は、y軸に対してz軸方向のワークwの中心線を丸駒インサート22の軸線Aと一致する位置に移動させている。また、x軸に対して丸駒インサート22の右側に一定の隙間を有するようにワークwを移動させている。
【0040】
この切削開始位置s3で、丸駒インサート22を軸線A回りに矢印a2方向に回転させ、ワークwを軸線B回りに矢印b1方向に回転させるとともに、x軸と平行に右側に所定の切り込み量となる位置に移動させる。そして、所定の切り込み量の位置に達したら、各回転方向を維持した状態で、ワークwをy軸と平行に後側に移動させている。
【0041】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、丸駒インサート22をa2方向に回転させ、ワークwをb1方向に回転させつつワークwを後側に移動させることで、ワーク中心からワーク外周に向けて端面切削が行われている。
【0042】
(変形例1)
上記実施例1は、丸駒インサート22を回転可能、且つ、移動不能に停止させた状態でワークwを移動させることで端面切削を行う際の丸駒インサート22の回転方向、ワークwの回転方向、及びワークwの移動方向の制御を説明したが、本変形例1は、図3に示すように、アップカットによる端面切削加工方法であり、ワークwを移動させずに、丸駒インサート22を移動させることで端面切削を行う際の丸駒インサート22の回転方向、ワークwの回転方向、及びワークwの移動方向の制御を説明する。
【0043】
図3(a)と図3(b)は、ワークの外周から中心方向へ切削する際の丸駒インサート22の回転方向及び移動方向と、ワークwの回転方向を示している。
一方、図3(c)と図3(d)は、ワークの中心から外周方向へ切削する際の丸駒インサート22の回転方向及び移動方向と、ワークwの回転方向を示している。
【0044】
図3(a)は、丸駒インサート22がワークwにむけて移動することで、ワークwの端面を外周から中心まで切削する図を示している。図3(a)に示すように、切削開始位置s4まで丸駒インサート22を移動させる。ここでは、切削開始位置s4は、x軸に対して所定の切り込み量となる位置に右方向へ移動させ、y軸に対してワークwの前側近傍(ここで近傍は、ワークwと丸駒インサート22が接することのないワーク外周外のことをいう)に移動させ、且つ、z軸に対して丸駒インサート22の切削面をy軸と平行なワークwの中心線に接する位置に移動させている。
【0045】
この切削開始位置s4で、ワークwを軸線B回りに矢印b1方向に回転させ、丸駒インサート22を軸線A回りに矢印a1方向に回転させるとともに、y軸と平行に後側に移動させている。
【0046】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、ワークwをb1方向に回転させ、丸駒インサート22をa1方向に回転させつつ後側に移動させることで、ワーク外周からワーク中心に向けて端面切削が行われている。
【0047】
図3(b)は、丸駒インサート22がワークwにむけて移動することで、ワークの端面を外周から中心まで切削する図を示している。図3(b)に示すように、切削開始位置s5まで丸駒インサート22を移動させる。ここでは、切削開始位置s5は、x軸に対して所定の切り込み量となる位置に右方向へ移動させ、y軸に対してワークwの後側近傍に移動させ、且つ、z軸に対して丸駒インサート22の切削面をy軸と平行なワークwの中心線に接する位置に移動させている。
【0048】
この切削開始位置s5で、ワークwを軸線B回りに矢印b2方向に回転させ、丸駒インサート22を軸線A回りに矢印a2方向に回転させるとともに、y軸と平行に前側に移動させている。
【0049】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、ワークwをb2方向に回転させ、丸駒インサート22をa2方向に回転させつつ前側に移動させることで、ワーク外周からワーク中心に向けて端面切削が行われている。
【0050】
図3(c)は、丸駒インサート22がワークwから離れる方向に移動することで、ワークwの端面を中心から外周まで切削する図を示している。図3(c)に示すように、切削開始位置s6まで丸駒インサート22を移動させる。ここでは、切削開始位置s6は、x軸に対して丸駒インサート22の右側とワークwとの間に一定の隙間を有するように移動させ、y軸に対して丸駒インサート22の軸線Aをz軸方向のワークwの中心線と一致する位置に移動させ、且つ、z軸に対して丸駒インサート22の切削面をy軸と平行なワークwの中心線に接する位置に移動させている。
【0051】
この切削開始位置s6で、ワークwを軸線B回りに矢印b2方向に回転させ、丸駒インサート22を軸線A回りに矢印a1方向に回転させるとともに、x軸と平行に右側に所定の切り込み量となる位置に移動させる。そして、所定の切り込み量の位置に達したら、各回転方向を維持した状態で、丸駒インサート22をy軸と平行に後側に移動させている。
【0052】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、ワークwをb2方向に回転させ、丸駒インサート22をa1方向に回転させつつ後側に移動させることで、ワーク中心からワーク外周に向けて端面切削が行われている。
【0053】
図3(d)は、丸駒インサート22がワークwから離れる方向に移動することで、ワークの端面w1を中心から外周まで切削する図を示している。図3(d)に示すように、切削開始位置s6まで丸駒インサート22を移動させる。ここでは、切削開始位置s6は、x軸に対して丸駒インサート22の右側とワークwとの間に一定の隙間を有するように移動させ、y軸に対して丸駒インサート22の軸線Aをz軸方向のワークwの中心線と一致する位置に移動させ、且つ、z軸に対して丸駒インサート22の切削面をy軸と平行なワークwの中心線に接する位置に移動させている。
【0054】
この切削開始位置s6で、ワークwを軸線B回りに矢印b1方向に回転させ、丸駒インサート22を軸線A回りに矢印a2方向に回転させるとともに、x軸と平行に右側に所定の切り込み量となる位置に移動させる。そして、所定の切り込み量の位置に達したら、各回転方向を維持した状態で、丸駒インサート22をy軸と平行に前側に移動させている。
【0055】
すなわち、ワークの端面w1に丸駒インサート22を押し付けながら、ワークwをb1方向に回転させ、丸駒インサート22をa2方向に回転させつつ前側に移動させることで、ワーク中心からワーク外周に向けて端面切削が行われている。
【0056】
(実施例2)
本発明者は、以下、加工装置、加工動作及び加工条件を用いて、円柱のワークと丸駒インサートの回転方向及び移動方向による切削(アップカット及びダウンカット)に対する表面粗さを評価した。
【0057】
〈加工装置〉
加工装置は、市販の3軸マシニングセンタ(ヤマザキマザック(株)製のVERTICAL CENTER NEXUS 430B-2 HS)を用いて、そのテーブル台に本出願人開発の円テーブルを搭載した。
マシニングセンタの主軸は、18000min-1まで回転可能であり、テーブルサイズは、x軸方向の長さ1100mm、y軸方向の長さ430mmであり、主軸には、丸駒インサートを取り付けた。
円テーブルは、1000min-1まで回転可能なものを使用した。
【0058】
〈加工動作〉
本実施例2における加工動作を、図4を用いて説明する。図4は本実施例2の加工動作を示した動作図であり、図4(a)はアップカットによる切削動作、図4(b)はダウンカットによる切削動作を夫々示している。
【0059】
まず、所定の切削回転位置s7にワークwと丸駒インサート22を移動させた状態で、回転可能、且つ、移動不能に停止している丸駒インサート22に対してワークwを回転させながら、y軸と平行に前側に移動させることで、ワーク外周から中心まで切削を行うようにした。
【0060】
そして、アップカットをする場合は、図4(a)で示すように、丸駒インサート22を軸線A回りに矢印a1方向に回転させた。その状態でワークwを軸線B回りに矢印b1方向に回転させながらy軸と平行に前側に移動させた。
【0061】
また、ダウンカットをする場合は、図4(b)で示すように、丸駒インサート22を軸線A回りに矢印a2方向に回転させた。その状態でワークwを軸線B回りに矢印b1方向に回転させながらy軸と平行に前側に移動させた。
【0062】
〈加工条件〉
本実施例2における加工条件を下記表1に示す。
【0063】
【表1】
【0064】
表1で示すように、本加工条件は、インサート回転方向、ワーク材質、ワーク直径、インサート直径、ワーク1回転当たりの送り量、切り込み量、インサート回転数及び円テーブル回転数の8項目の中で、6項目は固定とし、アップカット(インサート回転方向)時の円テーブルの回転速度を300、400、500及び600min-1に変えて、夫々のワーク端面を切削した。同様にダウンカット時の円テーブルの回転速度を400及び600min-1に変えて、切削した。そして、各切削後のワーク直径に対して、10、30、50、70、90mmの箇所の表面粗さを夫々測定した。
また、加工の際の加工環境は切削油を使用しない乾式で行った。
【0065】
〈表面粗さの測定結果〉
図5は、表面粗さとワーク直径との関係を示したグラフである。ここで表面粗さとは加工面のことをいい、表面粗さが小さい程、加工面は良好と表現している。
図5に示すように、ダウンカットよりもアップカットの方が良好な加工面が得られた。特にNo.2、No.3は顕著にあらわれた。
【0066】
図5より、良好な表面粗さを考察すると、図7で示すように、丸駒インサート22をインサート外周がワークwの既加工面から未加工面に向かう回転方向で一定速度で回転させたことで、切り屑が薄い部分A部から切り屑が厚い部分B部にかけてインサートに徐々に抵抗が加わっていき、スムーズに切削できたものと考えられる。
【0067】
また、加工後のワーク表面となる切り屑が薄い部分A部では、まだ削り始めの為、切削による丸駒インサート22の発熱温度が小さく、切り屑が厚くなる部分B部にいくにつれて丸駒インサート22の発熱温度が大きくなることから、切削加工による発熱が切り屑によって持ち去られ易く、安定した加工を行うことができたと考えられる。
それに伴って、良好な加工面が得られるとともに、発熱による工具寿命への影響を小さくすることもできる。
【0068】
また、一般的なワークが回転し、切削工具が送ることで切削する、旋盤加工方法では、ワークの中心付近での切削速度は、外周側に対して遅くなるが、本実施例2では、切削工具である丸駒インサートが回転するため、丸駒インサートの周速度がワーク回転による切削速度の不足分を補って切削するため、良好な加工面を得ることできる。
すなわち、直交3軸(丸駒インサートとワーク)の移動方向に応じて、アップカットとなるように前記丸駒インサートの回転方向を制御することで、良好な加工面を得ることができる。
【0069】
また、マシニングセンタで良好な加工面を有するワークの端面切削も行えることより、高価な複合加工機や旋盤などを新たに増設する必要もなく、既存の機械で加工することができる。
【0070】
さらに、ワークと丸駒インサートを回転させることで、周速度を考慮する必要がなくなり、それによる回転速度を切削中に変更する必要がない。
すなわち、夫々一定の回転速度で回転させることができ、それによるプログラムもシンプルにすることができる。
【0071】
また、図2及び図3で示すようにワークの回転方向を丸駒インサートの切削端面に向けて回転するように制御している。これによって、工具(丸駒インサートとシャンク部)の軸方向に荷重を伝えるため、工具のたわみを小さくできる。また、正のすくい角で切削することができる。
【0072】
以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。上記実施形態では、図2図3を用いて、直交3軸の組合せを説明したが、これに限らず、ワークがx軸方向に移動し、丸駒インサートがy及びz軸に移動しても良いし、ワークがy軸方向に移動し、丸駒インサートがx及びz軸に移動しても良いし、これに限るものではない。
【0073】
また、本実施形態では、マシニングセンタを立形(工具主軸が垂直方向)で説明したが、これに限らず、横形または門形でも構わなく、横形マシニングセンタの場合は、円テーブルを横置き(回転軸がz軸と平行)にすれば尚良い。
【0074】
また、本実施形態では、マシニングセンタの数値制御装置で直交3軸を制御し、円テーブルの制御装置で回転1軸を制御しているが、これに限らず、マシニングセンタの数値制御装置で円テーブルの回転1軸を制御しても構わない。
【0075】
また、本実施例2では表1の加工条件で測定を行ったが、これに限らず、ワーク材質、ワーク直径によって適宜変更するものである。
【0076】
また、図2及び図3を用いて、端面切削をワーク外周からワーク中心にする際にy軸と平行にワークを移動または丸駒インサートを移動させていたが、平行に限らず、ワーク径方向ならワーク中心に対してどの角度で移動させても良い。
【0077】
また、加工環境は乾式に限らず、切削水を用いたウェット式でも良いし、乾式とウェット式の間のセミウェット式でも良い。
【0078】
さらに、ワークは円柱に限らず、円筒、角柱でも良く、ワークの形状を限定するものではない。
【0079】
また、円テーブルに搭載のサーボモータは、これに限らず、DDモータなどでも良い。
【符号の説明】
【0080】
10 テーブル台
20 工具主軸
21 シャンク部
22 丸駒インサート
30 円テーブル
40 数値制御装置
50 制御装置
100 マシニングセンタ
A、B 軸線
a1、a2、b1、b2 回転方向
s1~s7 切削開始位置
w ワーク
図1
図2
図3
図4
図5
図6
図7