(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-14
(45)【発行日】2022-04-22
(54)【発明の名称】映像表示装置、及び映像表示システム
(51)【国際特許分類】
G02B 27/48 20060101AFI20220415BHJP
G02B 26/10 20060101ALI20220415BHJP
G03B 21/00 20060101ALI20220415BHJP
H04N 5/74 20060101ALI20220415BHJP
【FI】
G02B27/48
G02B26/10 C
G03B21/00 D
H04N5/74 A
(21)【出願番号】P 2017021855
(22)【出願日】2017-02-09
【審査請求日】2019-05-08
(73)【特許権者】
【識別番号】501009849
【氏名又は名称】株式会社日立エルジーデータストレージ
(74)【代理人】
【識別番号】110000198
【氏名又は名称】特許業務法人湘洋内外特許事務所
(72)【発明者】
【氏名】鵜飼 竜志
(72)【発明者】
【氏名】中村 俊輝
(72)【発明者】
【氏名】瀬尾 欣穂
(72)【発明者】
【氏名】小笠原 浩
【審査官】堀部 修平
(56)【参考文献】
【文献】米国特許出願公開第2008/0297731(US,A1)
【文献】特表2013-533502(JP,A)
【文献】特開2014-186141(JP,A)
【文献】特表2015-508551(JP,A)
【文献】特開平06-208089(JP,A)
【文献】国際公開第2005/083492(WO,A1)
【文献】登録実用新案第3137219(JP,U)
【文献】国際公開第2009/035041(WO,A1)
【文献】特開2011-002547(JP,A)
【文献】国際公開第2005/062114(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/48
G02B 26/10
G03B 21/00
G03B 21/14
H04N 5/74
H04N 9/31
(57)【特許請求の範囲】
【請求項1】
レーザー光を出射するレーザー光源部と、
前記レーザー光を分岐する光分岐部と、
前記光分岐部を通過した光を集光する対物光学部と、
前記対物光学部からの光を拡散する反射型の光拡散部と、
前記光拡散部で拡散し、前記対物光学部を出射した
略平行光を用いて投影面に結像する結像光学部と、
前記結像光学部からの光を前記投影面上に走査する走査部と、を備え、
前記対物光学部及び前記結像光学部は合成結像光学部を形成し、
前記光分岐部は、前記光拡散部からの光を前記結像光学部へ導き、
前記結像光学部は、前記投影面におけるビーム径及び前記走査部における有効径を、前記投影面から前記走査部までの第1の距離及び前記投影面から前記結像光学部までの第2の距離を用いて補外した値以下の径で、前記光拡散部により拡散した光が前記結像光学部の前記光拡散部側の面に照射されるものであり、
前記レーザー光源部は、レンズ又はミラーを用いて、前記結像光学部の前記光拡散部側の面に照射される光の径
であって、前記光拡散部の出射した光のエネルギーの1/2を取り込む光の径が前記補外した値以下の径となるよう構成されることを特徴とする、映像表示装置。
【請求項2】
請求項1に記載の映像表示装置であって、
前記対物光学部は、前記光拡散部からの光が入射され、略平行光を出射することを特徴とする、映像表示装置。
【請求項3】
請求項1に記載の映像表示装置であって、
前記対物光学部は、主軸が前記光拡散部の法線と平行であって、該主軸と前記光分岐部から入射した光の光軸とが略等しいことを特徴とする、映像表示装置。
【請求項4】
請求項1に記載の映像表示装置であって、
前記光分岐部は、偏光分岐素子及びλ/4波長板を備え、
前記偏光分岐素子は、λ/4波長板から入射した光を分岐して前記結像光学部へ導くことを特徴とする、映像表示装置。
【請求項5】
レーザー光を出射するレーザー光源部と、
前記レーザー光源部が出射した光を集光する対物光学部と、
前記レーザー光源部から入射した光又は前記対物光学部から入射した光を反射するミラーと、
前記対物光学部からの光を拡散する反射型の光拡散部と、
前記光拡散部で拡散し、前記対物光学部を出射した
略平行光を用いて投影面に結像する結像光学部と、
前記結像光学部からの光を前記投影面上に走査する走査部と、を備え、
前記対物光学部及び前記結像光学部は合成結像光学部を形成し、
前記ミラーは、
前記レーザー光源部から入射した光を反射する場合、反射した光は前記対物光学部に入射され、
前記対物光学部から入射した光を反射する場合、反射した光は前記結像光学部に入射され、
前記対物光学部へ出射した光の光軸と、前記対物光学部から入射した光の光軸とが異なり、
前記結像光学部は、前記投影面におけるビーム径及び前記走査部における有効径を、前記投影面から前記走査部までの第1の距離及び前記投影面から前記結像光学部までの第2の距離を用いて補外した値以下の径で、前記光拡散部により拡散した光が前記結像光学部の前記光拡散部側の面に照射されるものであり、
前記レーザー光源部は、レンズ又はミラーを用いて、前記結像光学部の前記光拡散部側の面に照射される光の径
であって、前記光拡散部の出射した光のエネルギーの1/2を取り込む光の径が前記補外した値以下の径となるよう構成されることを特徴とする、映像表示装置。
【請求項6】
請求項1又は5に記載の映像表示装置であって、
前記光拡散部を出射する光の半径=h、前記光拡散部と前記
合成結像光学部
の前側主平面との距離=a、前記
合成結像光学部
の後側主平面と前記投影面との距離=b、前記走査部と前記投影面との距離=c、前記光拡散部で拡散した光の広がり角の半角=θ、前記投影面に投影される光の半径=Hである場合に、
h+a×tanθ≦{(r-H)×b/c}+H
を満たし、
θは、前記光拡散部の出射した光のエネルギーの1/2を取り込むことが可能な前記広がり角の半角であることを特徴とする、映像表示装置。
【請求項7】
請求項1に記載の映像表示装置であって、
前記光拡散部は少なくとも1つの拡散部材を備え、
前記拡散部材の少なくとも1つは、振動又は回転することを特徴とする、映像表示装置。
【請求項8】
請求項1に記載の映像表示装置であって、
前記結像光学部は、前記光拡散部側が平となる平凸レンズ、前記光拡散部側が凹となるメニスカスレンズ、又は非球面レンズを備えることを特徴とする、映像表示装置。
【請求項9】
請求項1に記載の映像表示装置と、スクリーンとを備え、
前記映像表示装置は、前記スクリーンを前記投影面として映像を表示し、
前記スクリーンは、映像表示中に振動又は回転することを特徴とする、映像表示システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、映像表示装置、及び映像表示システムに関する。
【背景技術】
【0002】
特許文献1には、レーザ投射装置に関する技術が開示されている。同文献の実施例中、段落[0017]において、「本実施形態のレーザ投射装置101は、レーザ走査式のレーザ投射装置であり、レーザ光源110からの出射光の集光領域に拡散部150を配置し、拡散部150を透過し再びコリメートされたレーザ光を走査機構140にてスクリーン201に走査し映像を生成するという構成を有する。」と記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
レーザー光を用いる映像表示装置において、レーザーの可干渉性のために生じるスペックルの低減が求められる。
【0005】
特許文献1に記載された技術は、スペックルの低減を目指すものの、コリメート光をスクリーン上に投影しているため、投影された映像の解像度が低下する場合がある。
【0006】
本発明は、上記の点に鑑みてなされたものであって、画質のよい映像を効率よく表示する技術の提供を目的とする。
【課題を解決するための手段】
【0007】
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下の通りである。
【0008】
上記課題を解決するため、本発明の一態様に係る映像表示装置は、レーザー光を出射するレーザー光源部と、前記レーザー光を分岐する光分岐部と、前記光分岐部を通過した光を集光する対物光学部と、前記対物光学部からの光を拡散する反射型の光拡散部と、前記光拡散部で拡散し、前記対物光学部を出射した略平行光を用いて投影面に結像する結像光学部と、前記結像光学部からの光を前記投影面上に走査する走査部と、を備え、前記対物光学部及び前記結像光学部は合成結像光学部を形成し、前記光分岐部は、前記光拡散部からの光を前記結像光学部へ導き、前記対物光学部は、前記投影面におけるビーム径及び前記走査部における有効径を、前記投影面から前記走査部までの第1の距離及び前記投影面から前記合成結像光学部までの第2の距離を用いて補外した値以下の径で、前記光拡散部により拡散した光が前記対物光学部の前記光拡散部側の面に照射されるものであり、前記レーザー光源部は、レンズ又はミラーを用いて、前記対物光学部の前記光拡散部側の面に照射される光の径であって、前記光拡散部の出射した光のエネルギーの1/2を取り込む光の径が前記補外した値以下の径となるよう構成されることを特徴とする。
【発明の効果】
【0009】
本発明によれば、画質のよい映像を効率よく表示する技術を提供することができる。
【0010】
上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0011】
【
図1】第1の実施形態における映像表示システムの構成例を示す図である。
【
図2】第1の実施形態におけるレーザー光源部の構成例を示す図である。
【
図3】第1の実施形態における位相付与部の構成例を示す図である。
【
図4】光拡散部、結像光学部、走査部及びスクリーンの設置条件を説明するための図である。
【
図5】第1の実施形態に係る映像表示装置の構成例を示す図である。
【
図6】第1の実施形態の変形例における光拡散部を説明するための図である。
【
図7】第2の実施形態における位相付与部の構成例を示す図である。
【
図8】第3の実施形態における位相付与部の構成例を示す図である。
【
図9】第4の実施形態における位相付与部の構成例を示す図である。
【発明を実施するための形態】
【0012】
従来のレーザー光を用いた映像表示装置において、スクリーンに対して出射された光は、スクリーン表面の凹凸に応じて位相が付与され、散乱する。スクリーンで散乱した光の一部は、利用者の網膜に到達する。レーザーは可干渉性を有するため、利用者の網膜に到達した光は、スクリーンで付与された位相に応じて、強めあったり、又は弱めあったりする。
【0013】
これにより、利用者はスクリーン上に、スペックルと呼ばれるランダムな斑点模様を視認する。スクリーンに投影される映像にスペックルが重畳されることで、利用者の視認する画質の低下を招く。
【0014】
<第1の実施形態>
【0015】
以下、図面に基づいて本発明の実施形態の例を説明する。
図1は、第1の実施形態における映像表示システム1の構成例を示す図である。映像表示システム1は、映像表示装置2と、スクリーン3と、を備える。
【0016】
映像表示装置2は、レーザー光を走査して、投影面であるスクリーン3上に映像11を表示する装置である。映像表示装置2は、レーザー光源部100と、位相付与部110と、走査部120と、を備える。詳細は後述するが、レーザー光源部100は、利用者に映像11を表示するための可視光を出射する。
【0017】
位相付与部110は、レーザー光源部100から入射した光に位相を付与し、走査部120へと出射する。走査部120は、走査素子121を用いて投影面に映像11を走査する。走査素子121は、ミラー面を備えており、ミラー面を用いて位相付与部110から入射したレーザー光を反射させ、スクリーン3へ走査する。
【0018】
ミラー面は、例えば2軸で回転し、レーザー光をスクリーン3上に走査する。より具体的には、ミラー面は、スクリーン3上でレーザー光を
図1に示すy方向(垂直方向)に走査する第1の回転軸と、レーザー光を
図1に示すx方向(水平方向)に走査する第2の回転軸とを中心として回転する。第1の回転軸と第2の回転軸とは直交している。
【0019】
本実施形態における映像表示装置2は、第1の回転軸及び第2の回転軸によるミラー面の回転と、レーザー光源部100による出力強度とを同期して駆動することで、スクリーン3上に映像11を表示することができる。
【0020】
なお、
図1に示す走査部120は1つの走査素子121を備えているが、これに限定されるものではない。例えば、走査部120は、各々がミラー面を有する2つの走査素子121を備えていてもよい。各走査素子121は、互いに異なる回転軸により回転する。走査部120は、各走査素子121の回転により、レーザー光をスクリーン3上のx方向及びy方向に走査できればよい。
【0021】
また、スクリーン3は、映像表示中に振動又は回転するものであってもよい。スクリーン3は、図示しない駆動機構により、水平方向(x方向)又は垂直方向(y方向)に振動する。又は、ある時点のスクリーン3を基準面とした場合に、基準面の法線を中心軸として、当該基準面に平行に回転する。
【0022】
これにより、利用者が視認するスペックルパターンが動的に変化する。即ち、スペックルパターンの時間積分によるスペックルパターンの低減効果を得ることができる。
【0023】
図2は、第1の実施形態におけるレーザー光源部100の構成例を示す図である。レーザー光源部100は、レーザー光源101a,101b,101cと、ダイクロイックミラー102a,102bを備えている。以下、レーザー光源101a,101b,101cを区別する必要のない場合は、レーザー光源101と記載する。
【0024】
レーザー光源101a,101b,101cは、例えばレーザーダイオードであって、各々異なる色のレーザー光を出射する。例えば、レーザー光源101aは「R(赤)」のレーザー光を出射し、レーザー光源101bは「G(緑)」のレーザー光を出射し、レーザー光源101cは「青」のレーザー光を出射する。
【0025】
ダイクロイックミラー102a,102bは、レーザー光源101が出射した光を合波する。レーザー光源部100において、レーザー光源101及びダイクロイックミラー102a,102bは、3色のレーザー光が略同一光軸で略同一方向に進行するように配置される。
【0026】
なお、レーザー光源部100の有するレーザー光源101の数はこれに限定されない。例えば、レーザー光源部100は、1つ又は2つのレーザー光源101を用いて、スクリーン3に映像11を投影してもよい。または、レーザー光源部100は、1色につき複数個のレーザー光源101を用い、光の出力強度を高めてもよい。
【0027】
図3は、第1の実施形態における位相付与部110の構成例を示す図である。位相付与部110は、集光光学部130と、光拡散部140と、結像光学部150と、を備える。集光光学部130は、集光レンズ131を備える。集光光学部130は、集光レンズ131を用いて、レーザー光源部100より出射された光を、光拡散部140上に集光する。
【0028】
光拡散部140は、少なくとも1つの透過型拡散部材141を備えており、入射した光を拡散する。透過型拡散部材141は、例えば入射した光の偏光を略乱さない透過型の拡散板である。換言すれば、透過型拡散部材141は、単一の偏光の光を入射した場合に、透過光の偏光が略単一となる。透過型拡散部材141は、例えば透過型表面拡散板である。
【0029】
透過型拡散部材141は、例えば透過型回折格子であってもよい。透過型回折格子には、特定のパターンが繰り返し配置されている。透過型回折格子に入射した光は回折により広がって、結像光学部150に向かって出射される。透過型回折格子には、例えば格子形状のパターンが配置されている。格子形状を最適化することで、光拡散部140は所望の回折パターン及び所望の回折強度分布を得ることができる。
【0030】
また、透過型拡散部材141は、例えば複数であってもよい。その場合、光拡散部140には各透過型拡散部材141が多段的に設置される。光拡散部140へ入射した光は透過型拡散部材141を通過するにつれて拡散し、結像光学部150に向けて出射される。これにより、拡散部材の選択度が増し、透過光の配光分布を所望の分布にすることができる。
【0031】
結像光学部150は、光拡散部140で拡散した光を用いて、投影面に結像する。結像光学部150は、レンズ151を備える。レンズ151は、集光性能のよい光学系又は光学部品から構成されることが好ましい。レンズ151は、例えば光拡散部140側が平となる平凸レンズ、光拡散部140側が凹となるメニスカスレンズ、又は非球面レンズである。
【0032】
本実施形態では、レーザー光源部100から位相付与部110に到達した光は、集光光学部130に入射する。集光光学部130に入射する光のプロファイルは、コリメート光でもよいし、拡散光、又は収束光であってもよい。
【0033】
集光光学部130は、入射した光を光拡散部140に対して出射する。光拡散部140の設置位置は、集光光学部130から出射した光が集光している範囲内である。なお、光が集光している範囲とは、例えば、光の半径がビームウェスト半径の√2倍以下となる範囲である。当該範囲はビームウェスト位置を中心として長さがレイリー長の2倍となる範囲に一致する。
【0034】
光拡散部140は、集光光学部130から入射した光を拡散し、結像光学部150へと出射する。結像光学部150は、入射した拡散光を絞り、走査部120へと出射する。走査部120は、結像光学部150により出射された光を投影面であるスクリーン3に走査する。
【0035】
なお、本実施形態における光拡散部140の備える透過型拡散部材141は、偏光を略乱さない。そのため、レーザー光源部100が略単一の偏光を有するレーザー光を出射し、集光光学部130と、結像光学部150と、走査部120とで偏光を略維持するように構成することで、映像表示装置2は略単一の偏光の光を出力することが可能となる。
【0036】
また、光拡散部140で拡散した光の広がり角を半角でθとした場合に、光拡散部140から距離Lだけ離れた位置における拡散光の半径は、L×tanθとなる。光拡散部140で拡散した光は、結像光学部150によりスクリーン3上で集光するが、結像光学部150とスクリーン3との間に位置する走査部120の有効半径を考慮しなければ、結像光学部150から出射した光が走査部120の有効半径からはみ出してしまい、光の利用効率の低下を招く。
【0037】
また、結像光学部150は、光拡散部140を物面、スクリーン3を像面として、物面の像をスクリーン3に生成するが、光拡散部140におけるビーム径と、結像光学系の光学倍率を考慮しなければ、スクリーン3上のビーム半径が大きくなってしまい、映像11の解像度が低下してしまう。また、光拡散部140におけるビーム径と、光拡散部140の有するパターンの間隔とを考慮しなければ、画質のよい映像11を表示することができない。
【0038】
そのため、本実施形態では、画質のよい映像を効率よく表示させるために、位相付与部110の各構成要素を調整する。以下、位相付与部110の各構成要素の設置条件について説明する。
【0039】
図4は、光拡散部140、結像光学部150、走査部120及びスクリーン3の設置条件を説明するための図である。光拡散部140の出射側の光の半径をh、結像光学部150の半径をR、走査部120の有効半径をrとし、光拡散部140で拡散した光の広がり角を半角でθとする。結像光学部150の半径は、例えばレンズ151の半径と同義である。また、光拡散部140と結像光学部150との距離をa、結像光学部150とスクリーン3との距離をb、走査部120とスクリーン3との距離をcとする。なお、走査部120とスクリーン3との距離cは、映像表示装置2の投影距離に略等しい。
【0040】
光拡散部140により拡散した光は結像光学部150に入射し、走査部120に向かって出射される。結像光学部150から出射した光は、走査部120により走査され、スクリーン3まで到達する。位相付与部110は、光拡散部140を物面として、物面の像をスクリーン3に生成する。結像光学部150は、光拡散部140で拡散した光をより多く取り込むため、高開口数(numerical aperture:NA)の光学部品から構成されることが好ましい。
【0041】
例えば、結像光学部150は、略sinθかそれ以上の開口数を有するとよい。これにより、光拡散部140から出射された光が、結像光学部150の外へと漏れることを抑制することができる。
【0042】
なお、広がり角θは、光拡散部140の出射した光のエネルギーのうち、所定の割合の光を取り込むことが可能な最小の立体角に対応する角度である。例えば、所定の割合を1/2とすると、光拡散部140の出射した光のエネルギーの1/2を取り込むことが可能な角度をθに設定することで、結像光学部150の外へと漏れる光を1/2以下に抑えることができる。
【0043】
また、映像表示装置2がスクリーン3上に表示する映像11の、単位長さあたりに解像させる画素数をnとする。例えば、スクリーン3上の映像11のx方向及びy方向の長さがそれぞれLとL×gであって、表示する映像11のx方向及びy方向の画素数がmとm×gであるとする。映像11の1画素毎をそれぞれ解像させる場合、n=m/Lとなる。
【0044】
一般に、映像11のk画素毎をそれぞれ解像させる場合、n=m/(k×L)である。高解像度で映像11を表示するためには、k≦5となるように映像表示システム1を構成することが好ましい。
【0045】
また、単位長さあたりに解像する画素数がnであるため、映像表示装置2は、スクリーン3に投影される光の半径Hを1/2nと略等しくなるように構成する。H=1/2nとなることが好ましい。
【0046】
また、走査部120の有する走査素子121のミラー面は円形であって、該円形の半径をsとする。走査部120の有効半径がrであるため、結像光学部150から走査部120に入射する光の入射角がψである場合、r=s×cosψであるといえる。
【0047】
結像光学部150から出射した光が、有効半径rの走査部120の外に漏れることなく、スクリーン3上で半径Hの光を投影するために、映像表示装置2は以下の構成を有する。具体的には、結像光学部150は、投影面であるスクリーンにおけるビーム径及び走査部120における有効径を、投影面から走査部120までの距離及び投影面から結像光学部150までの距離を用いて補外した値以下の径の光を入射するよう構成される。
【0048】
即ち、スクリーン3における光の半径H及び走査部120における有効半径rを、スクリーンから走査部120までの距離c及びスクリーンから結像光学部150までの距離bを用いて補外した値以下の半径の光を、結像光学部150に入射する。換言すれば、結像光学部150に入射する光の半径Rが、以下の条件を満たす。
【0049】
R≦{(r-H)×b/c}+H
【0050】
また、光拡散部140とスクリーン3は物面と像面の関係にあることから、スクリーン3上の光の半径をHとするために、光拡散部140を出射する光の半径hが、Hを光学倍率(b/a)で除した値に略等しいか、それ以下となるように映像表示装置2を構成する。
【0051】
また、光拡散部140で拡散した光の広がり角は半角でθであるため、光拡散部140で拡散した光が結像光学部150まで到達したときの、結像光学部150における光の半径Rはh+a×tanθと表すことができる。そのため、映像表示装置2は以下の条件を満たすよう構成される。
【0052】
h+a×tanθ≦{(r-H)×b/c}+H
【0053】
また、光拡散部140の拡散パターンの代表長さを、光拡散部140によって光に付与される位相パターンの相関長と定義する。この場合、代表長さが、光拡散部140における光の半径h以下となるように、光拡散部140を構成する。
【0054】
なお、レーザー光源部100及び集光光学部130は、光拡散部140からの出射側の光の半径がhとなるよう構成する。そのため、レーザー光源部100は、図示しないレンズや曲面ミラー等の光学部品を備えていてもよい。
【0055】
図5は、第1の実施形態に係る映像表示装置2の構成例を示す図である。本実施形態において、投影距離に対し映像表示装置2自体の大きさが小さくなるよう構成するため、光学倍率(b/a)は大きくなる。そのため、光拡散部140における光の半径hは、スクリーン3上での光の半径Hより小さくなる。
【0056】
図5に示す構成例2では、構成例1と比べて走査部120の有効半径rが小さいため、結像光学部150での光の半径Rを構成例1と比べて小さくする。そのために、構成例2では、光拡散部140から結像光学部150までの距離aを構成例1と比べて小さくなるよう構成している。即ち、構成例2の光学倍率(b/a)は構成例1より大きくなる。そのため、光拡散部140での光の半径hが構成例1より小さくなるよう構成している。
【0057】
本実施形態によれば、光拡散部140で拡散した光が、結像光学部150及び走査部120の有効半径から漏れ出ることを抑止しつつ、スクリーン3に到達する。そのため、光の利用効率が向上する。また、拡散した光を絞ることができるため、スクリーン3に高画質の映像11を表示することが可能である。
【0058】
また、レーザー光源部100から出射した光は、位相付与部110によって位相が付与され、走査部120によりスクリーン3上を走査する。そのため、スクリーン3上に表示される映像11に対するスペックルを低減することができる。
【0059】
<変形例>
【0060】
次に、第1の実施形態の変形例について説明する。
図6は、第1の実施形態の変形例における光拡散部140を説明するための図である。以下、上述の実施形態と異なる点について説明する。変形例における光拡散部140は、偏光を乱すよう構成される。
【0061】
図6(a)は、変形例における光拡散部140の一例を示す図である。光拡散部140は、透過型拡散部材141に代えて、又は透過型拡散部材141に加えて、偏光を乱す透過型の拡散板142を備える。拡散板142は、例えば透過型の体積拡散板である。拡散板142は、入射した光を拡散するとともに、単一の偏光の光を入射した場合であっても、拡散した光の偏光をランダムにするという性質を有する。
【0062】
従って、レーザー光源部100が略単一の偏光を有する光を出力し、集光光学部130と、結像光学部150と、走査部120とが偏光を略維持するよう構成された場合であっても、拡散板142を用いることにより、映像表示装置2が出力する光の偏光は単一でないものとなる。これにより、偏光の多重によるスペックル低減効果を得ることができる。
【0063】
図6(b)は、変形例における光拡散部140の他の例を示す図である。光拡散部140は、透過型拡散部材141に代えて、又は透過型拡散部材141に加えて、透過型の複合波長板143を備えている。複合波長板143は、偏光軸の異なる波長板が二次元上(同一平面上)に複数配置されている波長板である。
【0064】
図6(c)は、複合波長板143による偏光を説明するための図である。複合波長板143には、
図6(c)に示すように、偏光軸が45度ずれている2種類の波長板が格子形状に配置されている。偏光軸の異なる波長板が二次元上に複数配置されていることにより、光が回折して広がって出力される。これにより、複合波長板143は光を拡散する機能を発揮する。
【0065】
また、複合波長板143に単一の偏光を有する光を入射すると、偏光軸の異なる波長板により、偏光の異なる複数の光が出力される。従って、偏光の多重によるスペックル低減効果を得ることができる。
【0066】
<第2の実施形態>
【0067】
図7は、第2の実施形態における位相付与部110の構成例を示す図である。第2の実施形態における位相付与部110は、第1の実施形態における位相付与部110と一部において共通し、一部において異なる。以下、第1の実施形態と異なる点について説明する。第2の実施形態における位相付与部110は、光拡散部駆動部200を備える。また、第2の実施形態における位相付与部110は、光拡散部140に代わって、可動式光拡散部140Aを備える。光拡散部駆動部200は、可動式光拡散部140Aを駆動する。
【0068】
光拡散部駆動部200は、モーター等の図示しない駆動素子を備え、可動式光拡散部140Aを駆動する。光拡散部駆動部200は、例えば可動式光拡散部140Aを振動又は回転させる。可動式光拡散部140Aは、第1の実施形態における拡散部と同様に、透過型拡散部材141を備えている。透過型拡散部材141は、入射された光の偏光を乱さないものであってもよいし、偏光を乱すものであってもよい。可動式光拡散部140Aは、光拡散部駆動部200によって駆動する点においてのみ、光拡散部140と異なる。
【0069】
可動式光拡散部140Aの駆動は、可動式光拡散部140Aに入射する光に略垂直な面内で行われることが好ましい。具体的には、可動式光拡散部140Aは、入射する光に垂直な状態を保ったまま、即ち入射する光を法線とする状態のまま、上下左右に駆動することが好ましい。また、可動式光拡散部140Aは、入射する光に平行する線を中心軸として回転することが好ましい。
【0070】
これにより、集光光学部130から可動式光拡散部140Aまでの距離、及び可動式光拡散部140Aから結像光学部150までの距離を保ったまま、可動式光拡散部140Aを通過する光に、時間的に変化する位相を付与することができる。なお、集光光学部130から可動式光拡散部140Aまでの距離、及び可動式光拡散部140Aから結像光学部150までの距離を保つということは、表示する映像11の解像度を保つことができることを意味する。
【0071】
なお、可動式光拡散部140Aの駆動の周波数は、走査部120における
図1に示すy方向の走査周波数の略整数倍又は略半整数倍とならないよう構成することが好ましい。これにより、可動式光拡散部140Aの駆動と、走査部120による光の走査とのビートによる明るさムラなどの映像11の乱れを視認しにくくすることが可能である。
【0072】
また、可動式光拡散部140Aは、複数の透過型拡散部材141を備えていてもよい点は、第1の実施形態と同様である。この場合、光拡散部駆動部200は、1つの透過型拡散部材141を駆動してもよいし、複数の透過型拡散部材141を駆動してもよい。また、複数の透過型拡散部材141を駆動する場合、各駆動の位相や軌跡が異なるように駆動すれば、駆動の振幅や周波数を低減することが可能となる。
【0073】
本実施形態により、可動式光拡散部140Aを通過する光に時間変化する位相を付与することができる。これにより、利用者の網膜上で生成されるスペックルパターンが時間変化するため、スペックルパターンの時間積分により、スペックルの発生を抑制することができる。
【0074】
<第3の実施形態>
【0075】
図8は、第3の実施形態における位相付与部110の構成例を示す図である。第3の実施形態における位相付与部110は、第1,第2の実施形態における位相付与部110と一部において共通し、一部において異なる。以下、第1,第2の実施形態と異なる点を説明する。
【0076】
第3の実施形態における位相付与部110は、光分岐部210と、対物光学部220と、光拡散部230と、結像光学部240と、を備える。光分岐部210は、レーザー光源部100から後述の光拡散部230に向かって進行する光路と、光拡散部230からスクリーン3に向かって進行する光路とを分離する。光分岐部210は、例えば入射した光の有する偏光により光を分岐する。また、光分岐部210は、光拡散部230から対物光学部220を経由して入射した光を分岐し、後述の結像光学部240へと導く。
【0077】
光分岐部210は、偏光分岐素子211と、λ/4波長板213とを備える。偏光分岐素子211は、所定の偏光の光を通過させ、所定の偏光と異なる偏光の光を反射する面212を有する。偏光分岐素子211は、例えば偏光ビームスプリッターである。偏光分岐素子211の面212は、例えばP偏光の光を透過させ、S偏光の光を反射する。λ/4波長板213は、直線偏光と円偏光とを互いに変換する。偏光分岐素子211は、レーザー光源部100側に位置する第1の面211aと、第1の面211aに対向し対物光学部220側に位置する第2の面211bと、第1の面211a及び第2の面211bと直交する第3の面211cとを有する。
【0078】
対物光学部220は、光分岐部210から入射した光を集光する。また、対物光学部220は、後述の光拡散部230から入射した光を光分岐部210へ導く。対物光学部220は、例えば主軸が光拡散部230の法線と平行であって、かつ光分岐部210から入射した光の光軸と該主軸とが略等しい。また、対物光学部220は、光拡散部230から入射した光を光分岐部210へと出射する際、略平行光(コリメート光)の光を出射する。
【0079】
光拡散部230は、少なくとも1つの反射型拡散部材231を備えており、入射した光を拡散する。反射型拡散部材231は、例えば入射した光の偏光を略乱さない反射型の拡散板である。換言すれば、反射型拡散部材231は、単一の偏光の光を入射した場合に、反射光の偏光が略単一となる。例えば、反射型拡散部材231に右回り円偏光の光を入射すると、反射光の偏光は略左回り円偏光になる。
【0080】
例えば光拡散部230の備える反射型拡散部材231は、反射型表面拡散板又は反射型の回折素子である。また、光拡散部230は、複数の反射型拡散部材231を備えていてもよい。なお、光拡散部230の設置位置は、対物光学部220から出射した光が集光している範囲内である。
【0081】
結像光学部240は、光拡散部230で拡散した光を用いて、スクリーン3上に映像を結像する。結像光学部240は、光分岐部210により分岐された光を入射するレンズ241を備える。
【0082】
本実施形態において、レーザー光源部100は、略単一の偏光の光を出射する。以下、レーザー光源部100が、略P偏光のみの光を出射するものとして説明する。レーザー光源部100の出射した光は、位相付与部110に到達し、光分岐部210の備える偏光分岐素子211の第1の面211aに入射する。本実施形態において、偏光分岐素子211の有する面212は、P偏光の光を透過し、S偏光の光を反射する。
【0083】
レーザー光源部100から偏光分岐素子211に入射した光は略P偏光であるため、面212を通過し、偏光分岐素子211の有する第2の面211bから出射される。出射された光は、λ/4波長板213に入射する。λ/4波長板213は、入射した略P偏光の光を円偏光の光に変換する。λ/4波長板213は、例えば略右回り円偏光の光を、入射した面と反対側の面から対物光学部220へと出射する。
【0084】
出射した光は対物光学部220により光拡散部230上に集光される。光拡散部230は、入射した光を拡散して出射する。光拡散部230には略右回り円偏光の光が入射されたため、光拡散部230は略左回り円偏光の光を出射する。対物光学部220は、光拡散部230からの光を入射する。
【0085】
なお、対物光学部220は、第1の実施形態における結像光学部150と同様に、光拡散部230で拡散した光をより多く取り込むため、高開口数の光学部品から構成されることが好ましい。例えば、対物光学部220は、光拡散部230で拡散した光の広がり角を半角でθとした場合に、略sinθかそれ以上の開口数を有することが好ましい。これにより、光拡散部230から出射された光が、対物光学部220の外へと漏れることを抑制し、光の利用効率を高めることができる。
【0086】
また、対物光学部220は、スクリーン3上に高画質の映像11を生成するために、集光性能の良い光学系又は光学部品から構成されることが好ましい。例えば、対物光学部220に用いられるレンズ221は、光拡散部230側が平となる平凸レンズ、光拡散部230側が凹となるメニスカスレンズ、又は非球面レンズである。
【0087】
対物光学部220の出射した光は、位相付与部110に到達し、λ/4波長板213に入射される。対物光学部220は偏光を維持するため、λ/4波長板213の入射する光の偏光は、光拡散部230から出射された略左回り円偏光である。λ/4波長板213は、入射した略左回り円偏光の光を直線偏光、例えば略S偏光に変換して出射する。
【0088】
λ/4波長板213から出射した光を、偏光分岐素子211が入射する。入射した光は略S偏光であるため、面212に反射され、第2の面211bに垂直な第3の面211cから出射される。換言すれば、偏光分岐素子211は、λ/4波長板213から入射した光を分岐して結像光学部240へと導く。偏光分岐素子211から出射した光は、結像光学部240に入射し、結像光学部240から走査部120に出射される。結像光学部240は、出射した光を用いてスクリーン3上に映像を結像する。
【0089】
次に、本実施形態における映像表示装置2の設置条件について、第1の実施形態における映像表示装置2と設置条件が一部共通するため、
図4を用いて説明する。本実施形態において、レーザー光源部100から出射した光は、対物光学部220によって光拡散部230上で集光する。これは、第1の実施形態において、レーザー光源部100から出射した光が、集光光学部130によって光拡散部230上で集光する点と同様である。
【0090】
また、本実施形態において、対物光学部220及び結像光学部240は、光拡散部230を物面として、物面の像をスクリーン3上に生成する。これは、第1の実施形態において、結像光学部240が、光拡散部230を物面として、物面の像をスクリーン3上に生成することに対応している。
【0091】
対物光学部220と結像光学部240とを構成する光学素子、及びその間の光学的な間隔から定まる光学系を、合成結像光学部150Aと定義する。即ち、合成結像光学部150Aは、対物光学部220と、結像光学部240とを含む。本実施形態において、
図4は、合成結像光学部150Aが光拡散部230を物面として、物面の像をスクリーン3上に生成する光学系を示す。
図4において、aは光拡散部230から合成結像光学部150Aの前側(光拡散部230側)主平面までの距離、bは合成結像光学部150Aの後側(走査部120側)主平面からスクリーン3までの距離、Rは対物光学部220と結像光学部240とを合成結像光学部150Aで置き換えた場合における合成結像光学部150Aの光の半径である。
【0092】
合成結像光学部150Aは、投影面であるスクリーン3上におけるビーム径及び走査部120における有効半径を、距離c及び距離bを用いて補外した値以下の径の光を入射するよう構成される。即ち、スクリーン3における光の半径H及び走査部120における有効半径rを、スクリーンから走査部120までの距離c及びスクリーンから合成結像光学部150Aの主平面までの距離bを用いて補外した値以下の半径の光を、合成結像光学部150Aに入射する。換言すれば、合成結像光学部150Aに入射する光の半径Rが、以下の条件を満たす。
【0093】
R≦{(r-H)×b/c}+H
【0094】
また、第1の実施形態と同様に、スクリーン3上の光の半径をHとするために、光拡散部230を出射する光の半径hが、Hを光学倍率(b/a)で除した値に略等しいか、それ以下となるように映像表示装置2を構成する。
【0095】
また、光拡散部230で拡散した光の広がり角は半角でθであって、光拡散部230で拡散した光が合成結像光学部150Aまで到達したときの、合成結像光学部150Aにおける光の半径Rはh+a×tanθと表すことができる。そのため、映像表示装置2は以下の条件を満たすよう構成される。
【0096】
h+a×tanθ≦{(r-H)×b/c}+H
【0097】
なお、レーザー光源部100及び集光光学部130は、光拡散部230からの出射側の光の半径がhとなるよう構成する。そのため、レーザー光源部100は、図示しないレンズや曲面ミラー等の光学部品を備えていてもよい。
【0098】
本実施形態によれば、光利用効率がよく、かつスペックル低減により画質の高い映像表示装置2を提供することができる。また、レーザー光源部100からスクリーン3に到達するまでの光路の一部を共通化しているため、映像表示装置2を小型にすることが可能である。また、光拡散部230への集光や拡散光の入射を対物光学部220で行うことから、多くの光学部品を使用する場合に比べて設置難易度を低減することができる。
【0099】
付言すれば、対物光学部220は光分岐部210に対して略平行光を出射し、光分岐部210は当該略平行光を結像光学部240に導くため、光路長に不敏感な合成結像光学部150Aを構成することができ、設置難易度の低減に寄与しうる。
【0100】
<第4の実施形態>
【0101】
図9は、第4の実施形態における位相付与部110の構成例を示す図である。以下、第1・第2・第3の実施形態と異なる点を説明する。本実施形態における位相付与部110は、光拡散部230への入射光と光拡散部230からの出射光とが異なる光軸を有する。
【0102】
光分岐部210は、第3の実施形態における偏光分岐素子211及びλ/4波長板213に代えて、反射ミラー214を備える。反射ミラー214は、レーザー光源部100から入射した光と、対物光学部220から入射した光とのいずれか一方を反射する。反射ミラー214は、対物光学部220から入射した光を反射する場合、反射した光を結像光学部240へと導く。
【0103】
また、対物光学部220はレンズ221を備えており、レーザー光源部100から光分岐部210を経由して対物光学部220へと入射する光の光軸と、レンズ221の主軸との位置が異なる。なお、レーザー光源部100から対物光学部220の入射する光の光軸と、レンズ221の主軸と、光拡散部230の有する反射型拡散部材231の法線とは、平行であることが好ましい。
【0104】
即ち、第4の実施形態における位相付与部110は、レーザー光源部100から対物光学部220へと入射する光の光軸と、対物光学部220から光分岐部210へと入射する光の光軸との位置が異なるよう構成されている。
【0105】
本実施形態において、レーザー光源部100の出射した光は光分岐部210を通過して対物光学部220に入射する。対物光学部220の出射した光が光拡散部230に反射し、拡散して再度対物光学部220に入射する。対物光学部220を出射した光は、反射ミラー214において反射し、走査部120へと入射し、スクリーン3上を走査する。
【0106】
なお、光拡散部230は、偏光を略乱さない反射型拡散装置を備えるものであってもよいし、偏光を乱す反射型拡散部材231を備えるものであってもよい。偏光を乱す反射型拡散部材231を備える光拡散部230を用いることで、偏光の多重によるスペックル低減効果を得ることができる。
【0107】
また、対物光学部220の出射した光が反射ミラー214に反射し、結像光学部240へ入射するものと説明したが、本実施形態はこれに限定されない。例えば、レーザー光源部100から位相付与部110へと出射した光が反射ミラー214に反射し、対物光学部220へと入射してもよい。その後対物光学部220の出射した光が光拡散部230に反射し、対物光学部220へと再度入射した後、反射ミラー214に反射されずに結像光学部240へと入射されるよう構成してもよい。
【0108】
又は、光分岐部210は、複数の反射ミラー214を備え、レーザー光源部の出射した光と、対物光学部220の出射した光との各々を反射してもよい。
【0109】
本実施形態によれば、偏光分岐素子211や波長板を用いる場合に比べて、映像表示装置2をより簡素化することができる。また、光拡散部230によるスペックル低減効果により、高画質な映像11を表示する映像表示装置2を提供することができる。また、合成結像光学部150Aを適切に設置することにより、光の利用効率を向上させることができる。
【0110】
以上、本発明に係る各実施形態及び変形例の説明を行ってきたが、本発明は、上記した実施形態の一例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態の一例は、本発明を分かり易くするために詳細に説明したものであり、本発明は、ここで説明した全ての構成を備えるものに限定されない。また、ある実施形態の一例の構成の一部を他の一例の構成に置き換えることが可能である。また、ある実施形態の一例の構成に他の一例の構成を加えることも可能である。また、各実施形態の一例の構成の一部について、他の構成の追加・削除・置換をすることもできる。また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、図中の制御線や情報線は、説明上必要と考えられるものを示しており、全てを示しているとは限らない。ほとんど全ての構成が相互に接続されていると考えてもよい。
【0111】
また、上記の映像表示装置の構成は、処理内容に応じて、さらに多くの構成要素に分類することもできる。また、1つの構成要素がさらに多くの処理を実行するように分類することもできる。
【符号の説明】
【0112】
1:映像表示システム、2:映像表示装置、3:スクリーン、11:映像、100:レーザー光源部、101:レーザー光源、110:位相付与部、120:走査部、121:走査素子、130:集光光学部、131:集光レンズ、140・230:光拡散部、140A:可動式光拡散部、141:透過型拡散部材、142:拡散板、143:複合波長板、150・240:結像光学部、150A:合成結像光学部、151・221・241:レンズ、200:光拡散部駆動部、210:光分岐部、211:偏光分岐素子、212:面、213:λ/4波長板、214:反射ミラー、220:対物光学部、231:反射型拡散部材