IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許7059247形状感知光ファイバを含むバルーンカテーテル
<>
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図1
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図2
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図3
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図4
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図5
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図6
  • 特許-形状感知光ファイバを含むバルーンカテーテル 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-15
(45)【発行日】2022-04-25
(54)【発明の名称】形状感知光ファイバを含むバルーンカテーテル
(51)【国際特許分類】
   A61M 25/10 20130101AFI20220418BHJP
   A61B 34/20 20160101ALI20220418BHJP
【FI】
A61M25/10
A61M25/10 550
A61B34/20
【請求項の数】 13
(21)【出願番号】P 2019501712
(86)(22)【出願日】2017-07-11
(65)【公表番号】
(43)【公表日】2019-09-05
(86)【国際出願番号】 EP2017067312
(87)【国際公開番号】W WO2018011158
(87)【国際公開日】2018-01-18
【審査請求日】2020-07-09
(31)【優先権主張番号】62/362,724
(32)【優先日】2016-07-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】110001690
【氏名又は名称】特許業務法人M&Sパートナーズ
(72)【発明者】
【氏名】フレックスマン モリー ララ
(72)【発明者】
【氏名】マレル ミラン ジャン ヘンリ
(72)【発明者】
【氏名】ティエンファラパ ポール
【審査官】上石 大
(56)【参考文献】
【文献】米国特許出願公開第2013/0310685(US,A1)
【文献】米国特許出願公開第2012/0271339(US,A1)
【文献】特表2016-500525(JP,A)
【文献】特表2013-517032(JP,A)
【文献】特表2015-522324(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 25/10
A61B 34/20
(57)【特許請求の範囲】
【請求項1】
少なくとも1つの管を含むフレキシブル機器と、
前記少なくとも1つの管内で、前記フレキシブル機器に組み込まれ、前記フレキシブル機器の長さに亘って延在する複数の形状又はひずみ感知光ファイバと、
を含み、
前記複数の形状又はひずみ感知光ファイバは、前記フレキシブル機器の再構成可能部分の状態を検出するために、前記複数の形状又はひずみ感知光ファイバ間の距離の変化を感知するように、光学インタロゲータ及び光学インタプリタによって、互いに対する移動を測定
前記複数の形状又はひずみ感知光ファイバは、前記フレキシブル機器の全長を測定する主ファイバと、前記フレキシブル機器の前記再構成可能部分を測定する少なくとも1つの補助光ファイバとを含む、センサデバイス。
【請求項2】
前記フレキシブル機器は、バルーンカテーテルを含み、前記再構成可能部分は、バルーンを含む、請求項1に記載のデバイス。
【請求項3】
前記少なくとも1つの管は、前記複数の形状又はひずみ感知光ファイバのそれぞれに関連付けられる管を含む、請求項1に記載のデバイス。
【請求項4】
前記複数の形状又はひずみ感知光ファイバは、位置合わせされた座標系を有し、前記複数の形状又はひずみ感知光ファイバのそれぞれは、別個の開始点位置を含む、請求項1に記載のデバイス。
【請求項5】
前記少なくとも1つの補助光ファイバは、複数の補助光ファイバを含み、前記フレキシブル機器の前記再構成可能部分において又は前記再構成可能部分の近くに、前記複数の補助光ファイバ用の第2の開始点位置を更に含む、請求項に記載のデバイス。
【請求項6】
前記第2の開始点位置は、画像内の前記第2の開始点位置の位置を決定するための形状を含む、請求項に記載のデバイス。
【請求項7】
前記少なくとも1つの補助光ファイバは、少なくとも1つのファイバブラッグ格子を含む、請求項に記載のデバイス。
【請求項8】
少なくとも1つの管を含むフレキシブル機器と、前記少なくとも1つの管内で、前記フレキシブル機器に組み込まれ、前記フレキシブル機器の長さに亘って延在する複数の形状又はひずみ感知光ファイバと、を含むデバイスの前記フレキシブル機器の再構成可能部分の屈曲を感知するシステムの作動方法であって
前記システムのプロセッサが、前記フレキシブル機器の再構成可能部分の状態を検出するために、前記複数の形状又はひずみ感知光ファイバ間の距離の変化を感知するように、光学インタロゲータ及び光学インタプリタを用いて、前記複数の形状又はひずみ感知光ファイバの互いに対する移動を測定するステップを含み
前記複数の形状又はひずみ感知光ファイバは、前記フレキシブル機器の全長を測定する主ファイバと、前記フレキシブル機器の前記再構成可能部分を測定する少なくとも1つの補助光ファイバとを含む、システムの作動方法。
【請求項9】
前記フレキシブル機器は、バルーンカテーテルを含み、前記再構成可能部分は、バルーンを含み、前記移動を測定するステップは、前記プロセッサが、前記バルーンの膨張又は収縮を測定するステップを含む、請求項に記載のシステムの作動方法。
【請求項10】
前記プロセッサが、前記複数の形状又はひずみ感知光ファイバのそれぞれの座標系を位置合わせするステップを更に含む、請求項に記載のシステムの作動方法。
【請求項11】
前記少なくとも1つの補助光ファイバは、複数の補助光ファイバを含み、前記フレキシブル機器の前記再構成可能部分において又は前記再構成可能部分の近くに、前記複数の補助光ファイバ用の第2の開始点位置を更に含む、請求項に記載のシステムの作動方法。
【請求項12】
前記第2の開始点位置は、画像内の前記第2の開始点位置の位置を決定するための形状を含み、
前記プロセッサが、前記複数の補助光ファイバの冗長ひずみ/形状データを取り除くために、画像内の前記第2の開始点位置を見つけるステップを更に含む、請求項11に記載のシステムの作動方法。
【請求項13】
前記プロセッサが、前記複数の形状又はひずみ感知光ファイバからのひずみ又は形状データを使用して、前記フレキシブル機器の前記再構成可能部分を表示するステップを更に含む、請求項に記載のシステムの作動方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、光学形状感知に関し、より具体的には、複数のセンサの統合を用いた光学形状感知デバイス、システム及び方法に関する。
【背景技術】
【0002】
Fiber-Optic RealShape(商標)(FORS(商標))は、マルチコア光ファイバに沿った光を使用して、当該ファイバに沿った形状を再構成する。関与する1つの原理は、特性レイリー後方散乱又は被制御格子パターンを使用する光ファイバ内の分布ひずみ測定を使用する。光ファイバに沿った形状は、センサに沿った特定の位置(開始点位置又はゼロ点位置と知られている)から開始し、後続の形状位置及び向きは、当該点と相対的である。光ファイバは、通常、直径が200ミクロンであり、長さが最大で数メートルに及ぶ一方で、ミリメートルレベルの精度が維持される。
【0003】
FORS(商標)ファイバを様々な医療デバイスに組み込んで、ライブ誘導医療手順を提供することができる。一例として、光学形状感知測定結果を術前コンピュータ断層撮影(CT)画像上に重ね合わせて、ガイドワイヤ及びカテーテルを心臓のナビゲーションに使用することができる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
バルーン血管形成術は、主にプラーク又は収縮狭窄によって部分的に塞がれた血管の管直径を増加させるために行われる放射線及び造影剤集約的手順である。バルーンカテーテルが最初に、閉塞部位までナビゲートされる。ガイドワイヤを使用して、閉塞部を横断して、その後にバルーンカテーテルが続く。生理食塩水及び造影剤の混合物が、バルーンを膨らませるようにバルーン内に注入され、その間、体内でバルーンが破裂しないように、バルーン内圧が注意深くモニタリングされる。バルーンは、(数秒から数分の間)その膨張状態に保持され、また、再開通するために、複数回、再度膨張させられる。
【0005】
治療後、バルーンは収縮させられ、体内から取り除かれる。ガイドワイヤ及びカテーテルを正しい位置にナビゲートするために、また、膨張、加圧、除圧及び収縮時にバルーンをモニタリングするためにも蛍光透視法が使用される。蛍光透視法を使用してバルーンの表面形状を見て、潜在的に尖っている及び頑丈な石灰化部及び閉塞部上にバルーンが適切に膨張していることが確認される。蛍光透視法は、バルーンの破裂を検出する。更に、バルーンカテーテルは、弁形成術、エンドグラフトを定位置にシールするための当該エンドグラフトのバルーニング、血管への局所薬剤送達のためのバルーン展開、血管を開いたままにするためのステント配置(正常又は薬剤溶出)等を含む血管手術にも使用される。
【課題を解決するための手段】
【0006】
本原理によれば、センサデバイスが、管を含むフレキシブル機器を含む。複数の形状又はひずみ感知光ファイバが、管内で、フレキシブル機器に組み込まれ、フレキシブル機器の長さに亘って延在する。当該複数の光ファイバは、フレキシブル機器の再構成可能部分の状態を検出するために、当該複数の光ファイバ間の距離の変化を感知するように、互いに対する移動を測定する。
【0007】
別のセンサデバイスが、少なくとも1つの管を含むフレキシブル機器を含む。複数の形状又はひずみ感知光ファイバが、少なくとも1つの管内で、フレキシブル機器に組み込まれ、フレキシブル機器の長さに亘って延在する。当該複数の光ファイバは、フレキシブル機器の再構成可能部分の状態を検出するために、当該複数の光ファイバ間の距離の変化を感知するように、互いに対する移動を測定する。当該複数の光ファイバは、フレキシブル機器の全長に亘って延在して当該全長に沿って形状又はひずみの変化を測定する主ファイバと、フレキシブル機器の全長に亘って延在して、フレキシブル機器の再構成可能部分を測定するための形状又はひずみ感知を提供する少なくとも1つの補助光ファイバ16、18とを含む。
【0008】
フレキシブル機器の再構成可能部分における屈曲を感知する方法が、少なくとも1つの管内で、フレキシブル機器内に複数の形状又はひずみ感知光ファイバを構成するステップと、フレキシブル機器の再構成可能部分の状態を検出するために、複数の光ファイバ間の距離の変化を感知するように複数の光ファイバの互いに対する移動を測定するステップとを含み、当該複数の光ファイバは、フレキシブル機器の長さに亘って延在する。
【0009】
本開示のこれらの並びに他の目的、特徴及び利点は、本開示の例示的な実施形態の以下の詳細な説明から明らかとなり、当該詳細な説明は、添付図面と併せて読まれるべきである。
【図面の簡単な説明】
【0010】
本開示は、次の図面を参照して、以下の好適な実施形態の説明を詳細に提示する。
【0011】
図1図1は、一実施形態に従って、光ファイバがバルーンカテーテルに組み込まれたスリー光ファイバ形状感知システムを示す斜視図である。
図2図2は、一実施形態に従って、バルーンの一部に沿って通された主ファイバ及び補助ファイバを有し、第2の開始点位置を有するスリー光ファイバ形状感知システムを示す斜視図である。
図3図3は、一実施形態に従って、バルーンの一部に沿って通されたファイバブラッグ格子付き主ファイバ及び補助ファイバを有し、第2の開始点位置を有するスリー光ファイバ形状感知システムを示す斜視図である。
図4図4は、一実施形態に従って、解剖学的画像上のオーバーレイとして表示されるバルーンカテーテル内の形状感知システムを示す画像である。
図5図5は、例示的な実施形態に従って、形状又はひずみ感知データを使用してデバイスを表示する方法を示すフロー図である。
図6図6は、例示的な実施形態に従って、1つ以上のデバイスをモニタリングするために、複数の形状感知ファイバを組み込み及び使用するシステムを示すブロック図である。
図7図7は、例示的な実施形態に従って、1つ以上のデバイスをモニタリングするために、複数の形状感知ファイバを組み込み及び使用する方法を示すフロー図である。
【発明を実施するための形態】
【0012】
本原理によれば、複数の光学センサ(例えば光ファイバ)が、バルーンの表面、他の柔らかい表面又は薄膜を再構成するために組み込まれる。バルーンカテーテルは、当該デバイスの一例であるが、本原理は、例えばステント、エンドグラフト、バルブ、クリップ、プロテーゼ等といった任意の他のデバイスに適用することができる。一実施形態では、すべてのセンサが、デバイスの外側から(例えば固定された開始点位置から)デバイスの先端までのそれらの全長を再構成する。別の実施形態では、単一のファイバが、デバイスの全長を再構成する一方で、他のファイバが、バルーン又は他のフレキシブル機器を対象とするファイバの一部のみを再構成する。ファイバは、バルーン又は他のフレキシブル機器の近位にある領域内で共に位置合わせされている。
【0013】
バルーンカテーテル及び他の治療デバイス(例えばステント、エンドグラフト、クリップ等)は、多くの血管内手術に一般的に使用されている。これらのデバイスは、蛍光透視誘導下で定位置にナビゲートされ、展開される。光学形状感知(OSS)又はFiber-Optic RealShape(商標)(FORS(商標))をこれらのデバイスに組み込み、蛍光透視を必要とすることなく、デバイス全体(バルーン、グラフト等を含む)に沿った3D形状情報を提供することができる。これは、患者及び操作室スタッフによる放射線への被ばくを低減することができ、また、デバイスについて、2D蛍光透視撮像を介したものよりもより陰影のある3D情報を提供することができる。機械的検討事項によっては、単一の光学形状感知ファイバで3Dデバイスを感知することが難しい場合がある。複数のセンサをデバイスに組み込み、共に使用して、デバイスの3D表面を推定することができる。複数の全体形状感知ファイバを使用することは、デバイスに大部分に沿ってかなりの冗長情報を含む。本原理は、補助ファイバを単純化することができる、又は、主ファイバと賢く組み合わせることができる機構を提供する。これは、測定システムの複雑さを低減する(したがって、費用も削減する)。
【0014】
当然ながら、本原理は、医療機器に関して説明されるが、本発明の教示内容は、はるかに広義であり、任意の光ファイバ機器に適用可能である。幾つかの実施形態では、本原理は、複雑な生物系又は機械系の追跡又は分析に使用される。具体的には、本原理は、生物系の内部追跡手順、及び、心臓血管系、肺、胃腸管、排泄器等といった身体のあらゆる領域における手順に適用可能である。図面に示される要素は、ハードウェア及びソフトウェアの様々な組み合わせで実現されてよく、単一の要素又は複数の要素にまとめられる機能を提供する。本原理は、配管系統応用、自動車応用等といった機械系において使用されてよい。
【0015】
図面に示される様々な要素の機能は、専用ハードウェアだけでなく、適切なソフトウェアに関連付けられてソフトウェアを実行可能であるハードウェアを使用することによって提供可能である。当該機能は、プロセッサによって提供される場合、単一の専用プロセッサによって、単一の共有プロセッサによって、又は、複数の個別のプロセッサによって提供可能であり、個別のプロセッサのうちの幾つかは共有されてよい。更に、「プロセッサ」又は「コントローラ」との用語の明示的な使用は、ソフトウェアを実行可能なハードウェアを排他的に指すと解釈されるべきではなく、デジタル信号プロセッサ(「DSP」)ハードウェア、ソフトウェアを記憶する読み出し専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、不揮発性記憶装置等を暗に含むが、これらに限定されない。
【0016】
更に、本発明の原理、態様及び実施形態だけでなく、これらの具体例を列挙する本明細書におけるすべての記述は、これらの構造上の等価物及び機能上の等価物の両方を包含することを意図している。更に、このような等価物は、現在知られている等価物だけでなく、将来開発される等価物(例えば構造に関係なく、同じ機能を行うように開発される任意の要素)の両方も含むことを意図している。したがって、例えば当業者であれば理解されるように、本明細書に提示されるブロック図は、本発明の原理を具現化する例示的なシステムコンポーネント及び/又は回路の概念図を提示する。同様に、当然ながら、任意のフローチャート、フロー図等は、コンピュータ可読記憶媒体内に実質的に表現される様々な処理を表し、コンピュータ又はプロセッサによって、当該コンピュータ又はプロセッサが明示的に示されているか否かに関わらず、実行される。
【0017】
更に、本発明の実施形態は、例えばコンピュータ若しくは任意の命令実行システムによる又は当該コンピュータ若しくはシステムに関連して使用されるプログラムコードを提供するコンピュータ使用可能又はコンピュータ可読記憶媒体からアクセス可能であるコンピュータプログラムプロダクトの形を取ることができる。本説明のために、コンピュータ使用可能又はコンピュータ可読記憶媒体は、命令実行システム、装置若しくはデバイスによる又は当該システム、装置若しくはデバイスに関連して使用されるプログラムを、含む、記憶する、通信する、伝搬する又は運搬する任意の装置であってよい。媒体は、電子媒体、磁気媒体、光学媒体、電磁媒体、赤外線媒体若しくは半導体システム(若しくは装置若しくはデバイス)又は伝搬媒体であってよい。コンピュータ可読媒体の例には、半導体若しくは固体メモリ、磁気テープ、取り外し可能なコンピュータディスケット、ランダムアクセスメモリ(RAM)、読み出し専用メモリ(ROM)、剛性磁気ディスク及び光学ディスクが含まれる。光学ディスクの現在の例には、コンパクトディスク-読み出し専用メモリ(CD-ROM)、コンパクトディスク-読み出し/書き込み(CD-R/W)、ブルーレイ(登録商標)及びDVDが含まれる。
【0018】
明細書における本原理の「一実施形態(one embodiment又はan embodiment)」だけでなくその他の変形例への参照は、実施形態に関連して説明される特定の特徴、構造、特性等が、本原理の少なくとも1つの実施形態に含まれることを意味する。したがって、明細書全体を通して様々な場所における「一実施形態において」との表現だけでなく任意の他の変形例の出現は、必ずしもすべて同じ実施形態を指しているわけではない。
【0019】
当然ながら、次の「/」、「及び/又は」及び「少なくとも1つの」、例えば「A/B」、「A及び/又はB」及び「A及びBの少なくとも1つ」のうちの何れか1つの使用は、第1のオプションだけの選択(A)、第2のオプションだけの選択(B)、又は、両方のオプションの選択(A及びB)を包含することを意図している。更なる例として、「A、B及び/又はC」及び「A、B及びCの少なくとも1つ」の場合、このような表現は、第1のオプションだけの選択(A)、第2のオプションだけの選択(B)、第3のオプションだけの選択(C)、第1及び第2のオプションだけの選択(A及びB)、第1及び第3のオプションだけの選択(A及びC)、第2及び第3のオプションだけの選択(B及びC)、又は、すべてのオプションの選択(A、B及びC)を包含することを意図している。これは、当技術分野及び関連の技術分野における当業者には容易に理解されるように、列挙されるアイテムの数だけ拡大適用される。
【0020】
更に、当然ながら、要素、領域又は材料といった要素が、別の要素の「上(on又はover)」にあると言及される場合、当該要素は、当該他の要素の上に直接あっても、介在要素が存在していてもよい。対照的に、要素が、別の要素の「上に直接ある」と言及される場合、介在要素は存在しない。当然ながら、要素が、他の要素に「接続」又は「結合」されると言及される場合、当該要素は、当該他の要素に直接的に接続又は結合されていても、介在要素が存在していてもよい。対照的に、要素が、別の要素に「直接的に接続される」又は「直接的に結合される」場合、介在要素は存在しない。
【0021】
次に、図面を参照する。図面中、同じ参照符号が同じ又は同様の要素を示す。最初に、図1を参照するに、バルーンカテーテル10は、その上に複数の光学形状感知ファイバ14、16、18が配置されているバルーン又はバルーン部24を含む。複数の形状感知ファイバ14、16、18は、(バルーン24を含む)デバイス10に組み込まれる。デバイス10に組み込まれるとは、デバイス10内の管を通されること、及び/又は、デバイス10内に製造されたものとして永久的に固定されることを含む。一実施形態では、N個(Nは、1よりも大きい)の形状感知ファイバ14、16、18のデバイス10への組み込みは、デバイス10及びバルーン24の材料内(例えば管内)にファイバを通すことを含む。ファイバ14、16、18は、バルーン24の膨張を可能とするために、部分26にたるみを入れる必要がある。又は、たるみは、デバイス10のカテーテル部20の管22内でファイバ14、16、18が緩んでいる近位端部から展開されてもよい。
【0022】
1つの構成では、デバイス10に、N>1個のファイバ14、16、18が組み込まれる。デバイス10の近位部において、各ファイバは、それぞれの開始点位置、即ち、開始点12a、12b、12c(0、0、0とも呼ぶ)に戻る。これらの開始点12a~12cはすべて、室内の同じ固定具又は位置に物理的に置かれていてよい。様々なファイバ14、16、18の開始点位置12a~12c間の関係は、(例えば機械的位置合わせ、形状対形状の位置合わせ等を含む当技術分野において知られている技術を介して)位置合わせされている。カテーテル20のシャフト内で、各ファイバは、それぞれの管を有しても、ファイバは、共通管22を使用してもよい。バルーン24内で、ファイバ14、16、18は、それぞれの管若しくは経路内で又は共通の管若しくは経路内で、それぞれ表面全体に分布する。管又は経路は、好適にはバルーン24の壁内に設けられる。
【0023】
開始点位置12a~12cから先端(部分26)までの各ファイバ14、16、18の全長は、FORS(商標)を使用して再構成されるので、形状は既知である。結果として、カテーテル20のシャフトに沿って冗長情報がある。この冗長性は、ファイバ位置を利用することによって、又は、形状確実性の測定基準(捩じりに関するノイズ、捩じり量、屈曲の量等)に基づく加重平均を取ることによって、精度を向上させるために使用することができる。
【0024】
別の実施形態では、ファイバの組み込みには、1つの主形状感知ファイバ14と、N個の支持ファイバ(Nは1以上)が含まれる。これは、形状感知測定における大量の冗長性を排除するのに役立つ。カテーテル20の長さは、例えば1~2mである一方で、バルーンの長さは、約1cm約4cmである。単一主ファイバアプローチでは、単一の形状感知ファイバ14を使用して、カテーテル20の全長が感知される。この単一の形状感知ファイバ14は、室内の固定位置にある開始点12aを有する。例えばファイバ16、18であるN個の補助ファイバは、カテーテル本体20の全長に及ぶが、バルーン部24しかアクティブに形状感知しない。ファイバ14、16、18の座標系を共に位置合わせする必要がある。
【0025】
図2を参照するに、単一主ファイバアプローチについて、バルーン部24の直前のカテーテルシャフト内に、副開始点領域32の一例が使用されている。副開始点領域32は、光学測定において当該領域が正確に特定可能であるように、その光反射において十分な独自性を提供する。例えば副開始点領域32におけるファイバ遷移特徴又は幾何学的特徴が、正確な特定位置を提供することができる。副開始点領域32は更に、当該領域内のN+1個のファイバ(14、16、18)間の既知の関係も提供する。これは、機械的に既知の関係であっても、製造工程中又は使用直前に較正された関係であってもよい。副開始点領域32の位置が分かっていることにより、補助ファイバからの追加又は冗長データをフィルタリングするか、又は、測定から単に除外することができる。
【0026】
一実施形態では、画像ベースの位置合わせ用の放射線不透過性又は同様のマーカが使用される。これは、デバイスがカテーテル本体に機械的に結合していないデバイスデザイン(例えばエンドグラフト)に特に適切である。このような場合、(エンドグラフトに組み込まれている)支持ファイバと、(展開デバイスシャフトに組み込まれている)主ファイバとの位置合わせを、デバイス展開前の介入又は手術の間に行うことができる。一実施形態では、開始点領域32は、画像内で認識可能である特定の形態を含んでよい。この特定の形状には、例えば直線セクション又は湾曲セクションである2D又は3D特徴が含まれていてよい。特定の形態は、開始点領域32以外の領域に配置されてもよい。
【0027】
バルーン24だけを感知するN個の補助ファイバを使用することによって、当該ファイバは、主ファイバとは異なるやり方で測定されてよい。これらの補助ファイバは、それらのデザインを単純化することができる多くの技術仕様がある。例えば補助ファイバは、長さが大幅に短くてもよく、場合によっては、より低い(又はより高い)分解能測定を提供する。追加の技術的実施態様は、補助ファイバが、コア又は主測定ファイバの外側である測定周波数範囲内に入り込むことが可能であることを含んでよい。この場合、すべてのファイバを、光の複数の周波数/波長を使用して同じインタロゲータ(光源)を用いて測定することができる。
【0028】
図3を参照するに、別の実施形態において、全体形状感知ファイバを使用するのではなく、単一コアファイバブラッグ(Bragg)格子(FBG)ベースのひずみセンサ40が使用される。単一のFBGは、そのままでは形状情報を与えないが、FBG40からの情報は、バルーン又は他のデバイスの機械的特性の知識と組み合わされて、バルーン表面に沿った変形の近似が提供される。
【0029】
光ファイバブラッグ格子(FBG)は、特定の光の波長を反射し、すべての他の波長を透過させる光ファイバの短いセグメントである。これは、ファイバコア内に屈折率の周期的変化を追加することによって達成され、これにより、波長固有の誘電体反射鏡が生成される。したがって、ファイバブラッグ格子を、幾つかの波長を遮断するインライン光学フィルタか又は波長固有リフレクタとして使用することができる。
【0030】
ファイバブラッグ格子の動作原理は、屈折率が変化する各界面におけるフレネル(Fresnel)反射である。幾つかの波長について、様々な周期の反射光の位相が一致するので、反射について、建設的干渉が存在し、したがって、透過については、相殺的干渉が存在する。ブラッグ波長は、ひずみだけでなく、温度にも敏感である。これは、ブラッグ格子が光ファイバセンサにおける感知要素として使用可能であることを意味する。FBGセンサにおいて、ひずみは、ブラッグ波長にずれをもたらす。
【0031】
この技術の1つの利点は、様々なセンサ要素40をファイバの長さに亘って分布することができる点である。ファイバの長さに沿って、様々な位置において、複数のFBGセンサを置くことができる。有用な実施態様では、FBG40は、センサに沿った複数の位置に連続的に置かれる(FBG40は連結されている)。他の実施態様では、FBG40は、複数の離散位置に置かれる(精度が下がる)。各FBG40のひずみ測定結果から、当該位置における構造の屈曲を推測することができる。複数の測定位置から全体の3次元形態を決定することができる。
【0032】
FBG40は、主ファイバ14によって使用される波長範囲の外側にずらされている支持ファイバにも使用することができる。支持ファイバ16、18において低分解能測定を使用することによって、システムによって測定される全波長範囲は少量だけしか増加しない。
【0033】
更にFBG40の使用の組み合わせが使用されてもよい。例えばエンドグラフトといったより複雑なデバイスにおいて、ハイブリッドアプローチ(例えばFBGあり及びなしのファイバ)を使用することが有利である。ハイブリッドアプローチは、FBG40からのフィードバックを使用して、変形を近似し、波長をシフトしてより少ないデータ(より低い波長範囲)を可能にすることを含んでよい。ハイブリッドアプローチは更に、所望の精度レベルを達成するために、複雑さと、冗長性と、費用とのバランスを取るために使用されてもよい。
【0034】
他の実施形態では、複数のファイバの機能を、時間及び/又は空間において信号を多重化することによって、単一の物理的なファイバを用いてシミュレートすることができる。一実施形態では、バルーンセクションを既に横切っているファイバは、バルーンセクションから引き抜かれ、N個の管のうちの別の管に切り替えられ、別の管内でバルーンの中を再挿入されて、バルーンの違う側面の形状をたどる。この処理は何回か繰り返されて、1つ以上の他の利用可能な管を介して形状データが取得される。このアプローチは、ファイバが横断する管を切り替えるための挿入/格納機構を使用しても、手動で行われてもよい。例えば形状感知データを使用して、システムディスプレイ上の視覚的オーバーレイを介して、必要な挿入/格納の程度が伝えられてよい。施術者とタスク負担を共有するように、処理のコンピュータ化を伴う挿入/格納機構による機械的作動を実施することができる。
【0035】
図4を参照するに、本原理に従って、ユーザは、血管54の解剖学的モデル又は画像50上に重ね合わされたデバイス24の3D表現を見ることができる。形状データ52の表現は、デバイス展開、材料特性等に関する先験情報から及び/又は術中撮像から、ユーザによって提供される追加情報と共に、センサ測定結果から構成することができる。
【0036】
図5を参照するに、フロー図が、1つの例示的な実施形態に従って、センサ測定結果から形状データの視覚表現の構成を示す。ステップ60において、主ファイバが、その全長に沿って、デバイスの形状又はひずみを測定する。ステップ62において、追加又は補助ファイバが、副開始点を使用して、主ファイバと位置合わせされる。これらの補助ファイバは、デバイスの全長よりも短い長さに亘って形状データを捕捉し、デバイスの一部に沿った特定の領域又は向きにおいて使用されてよい。ステップ64において、主ファイバ及び補助ファイバを使用して、デバイス又はデバイスの特定の領域の測定(ひずみ又は形状)が行われる。一実施形態では、補助ファイバは、バルーン部を対象とする一方で、主ファイバは、バルーン部を有するカテーテルデバイス全体を対象とする。
【0037】
ステップ66において、形状/ひずみ測定結果は、既知のデバイス(例えばバルーン)特性と統合されるか、又は、当該特性によって修正される。これらの特性は、ステップ70から入力され、バルーンの寸法又は特徴に関する情報を含んでよい。例えば膨張/収縮の様々な段階におけるバルーン形状及び寸法を有するルックアップテーブルを使用してもよい。他の情報には、バルーン材料の機械的特性、ユーザ入力、術中撮像(X線、超音波、MRI等)からのデータが含まれる。
【0038】
ステップ68において、バルーン、その位置及び膨張/収縮の状態をユーザに表示することができる。表示は、表示デバイスを含んでよく、また、術前又は術中画像に関する形状/ひずみデータのオーバーレイを含んでよい。表示は、必要に応じて更新されてよい。表示は、FORS(商標)対応デバイス又は2つ以上の形状感知若しくはひずみ感知ファイバが組み込まれた各デバイス内の個々のファイバのうちの1つ又は各々から検出されたデータを示す。
【0039】
当然ながら、説明される実施形態は、デバイスの表面を感知するために複数のファイバを使用することを含み、レイリー散乱(増強及び正常)だけでなく他の種類の散乱、形状感知ファイバのファイバブラッグ格子実施態様等にも当てはまる。実施形態は、デバイスの手動及びロボットによる展開に当てはまる。本原理は、バルーンのコンテキストにおいて説明されているが、例えばエンドグラフト、バルブ等といった他のデバイスに適用可能である。
【0040】
図6を参照するに、一実施形態に従って、1つ以上のデバイスをモニタリングするために複数の形状感知ファイバを組み込み、使用するシステム100が例示的に示される。システム100は、手順がそこから監視及び/又は管理されるワークステーション又はコンソール112を含む。ワークステーション112は、好適には、1つ以上のプロセッサ114と、プログラム及びアプリケーションを記憶するメモリ116とを含む。メモリ116は、1つ以上の形状又はひずみ感知光ファイバ104からの光フィードバック信号を解釈する光学感知モジュール又はインタプリタ115を記憶してよい。光学感知モジュール115は、光信号フィードバック(及び任意の他のフィードバック)を使用して、医療デバイス若しくは機器102及び/又はその周囲領域に関連付けられる変形、偏向及び他の変化を再構成する。医療デバイス102は、カテーテル、ガイドワイヤ、プローブ、内視鏡、ロボット、電極、フィルタデバイス、バルーンデバイス又は他の医療コンポーネント等を含んでよい。
【0041】
デバイス102上のファイバ104は、ファイバ104用の光学インタロゲータ又はデータ取得ボックス122を介して、1つ以上のセットパターンでデバイス102に結合される1つ以上の光ファイバを含む。光学インタロゲータ122は、ファイバ104へ及びファイバ104からの光学信号を含むあらゆる種類の信号を生成し、デジタル化する。光学インタロゲータ122は、ワークステーション112に接続されている。ワークステーションは、光学感知モジュール115を使用して、デジタル化された信号を処理する。開始点位置108は、光ファイバ104に沿って置かれ、基準位置を提供する。
【0042】
ファイバ104は、光ファイバブラッグ格子センサ、レイリー散乱又はこれらの組み合わせを使用してよい。幾つかの実施形態では、レイリー、ラマン、ブリルアン又は蛍光散乱が使用されてよい。標準の単一モード通信ファイバにおけるレイリー散乱が使用されてよい。レイリー散乱は、ファイバコア内の屈折率の不規則変動の結果生じる。この不規則変動は、格子の長さに沿って振幅及び位相の不規則変動を有するブラッグ格子としてモデル化することができる。マルチコアファイバの長さにおけるこの作用を利用することによって、関心の表面の3D形状及び動態をたどることができる。
【0043】
一実施形態では、ワークステーション112は、ファイバ104からフィードバックを受信し、ボリューム131内のどこに1つ以上のファイバ104があるかに関する形状又はひずみデータを記録する画像生成モジュール148を含む。空間又はボリューム131内の1つ以上のファイバ104の画像134を、表示デバイス118上に表示することができる。1つ以上の画像134は、撮像システム110を使用して捕捉される。撮像システム110は、超音波システム、X線システム、MRIシステム、CTシステム等を含んでよい。
【0044】
ワークステーション112は、被験体(患者)又はボリューム131の内部画像を見るためのディスプレイ118を含み、ファイバ104及びデバイス102のオーバーレイ又は他のレンダリングとして、画像134を含んでよい。ディスプレイ118は更に、ユーザがワークステーション112並びにそのコンポーネント及び機能、又は、システム100内の任意の他の要素とインタラクトすることを可能にしてもよい。これは、キーボード、マウス、ジョイスティック、触覚デバイス、又は、ワークステーション112からのユーザフィードバック及びワークステーション112とのインタラクションを可能にする任意の他の周辺機器若しくは制御機器を含んでもよいインターフェース120によって更に容易にされる。
【0045】
ファイバ104は、デバイス102のバルーン又は他の部分105の表面を再構成するために、デバイス102に組み込まれる複数のセンサ(ファイバ)を含んでよい。一実施形態では、すべてのセンサ104が、デバイス102の先端109までのデバイス102の全長(固定開始点位置108から、又は、共通の座標系138に対して)を再構成する。代替実施形態では、主ファイバ104が、デバイス102の全長を再構成する一方で、他のファイバが、バルーン又は他の部分105を対象とするファイバの一部のみを再構成する。ファイバは、バルーン又は他の部分105の近位にある領域、例えばバルーン又は他の部分105における又はその付近の第2の開始点位置111(オプション)において、共通の座標系138に対して共に位置合わせされる。
【0046】
図7を参照するに、フレキシブル機器の再構成可能部分における屈曲を感知する方法が例示的に示される。ステップ202において、複数の形状又はひずみ感知光ファイバが、少なくとも1つの管内でフレキシブル機器内に構成される又は組み込まれる。複数の光ファイバは、フレキシブル機器の長さに沿って延在する。一実施形態では、複数のファイバは同じ管内に供給される。別の実施形態では、別々の管が各ファイバについて設けられる。ファイバの構成は、最初は、ファイバ間の既知の相対的な開始位置を確実とするように行われる(例えば展開前又は展開中に機器のサイズ又は構成を設定する)。ファイバは、製造業者によって、デバイス内に組み込まれても、ユーザによって、必要に応じて再構成されて組み込まれてもよい。
【0047】
一実施形態では、複数の光ファイバは、フレキシブル機器の全長を測定する主ファイバと、フレキシブル機器の再構成可能部分を測定する少なくとも1つの補助光ファイバとを含む。当該少なくとも1つの補助光ファイバは、複数の補助光ファイバを含み、フレキシブル機器の再構成可能部分において又はその付近に、当該複数の補助光ファイバ用の第2の開始点位置を有する。第2の開始点位置は、画像内の第2の開始点位置の位置を決定するための形状を含んでよい。ステップ204において、第2の開始点位置は、使用される場合、画像内で見つけられて、当該複数の補助光ファイバの冗長的なひずみ/形状データが取り除かれる。ステップ206において、当該少なくとも1つの補助光ファイバは、少なくとも1つのFBGを含んでよい。
【0048】
ステップ208において、当該複数の光ファイバのそれぞれの座標系が位置合わせされてよい。これは、異なる開始点位置を有するファイバについて特に有用である。位置合わせは既知の技術を使用して行われてよい。
【0049】
幾つかの実施形態では、ステップ202、204、206及び208が、機器の製造中に製造業者によって行われることが想定され、また、それが好適である。しかし、ステップ202、204、206及び208のこれらの活動の一部又はすべてが、ユーザによって行われてもよい。
【0050】
ステップ210において、複数の光ファイバについて、互いに対する移動が測定され、複数の光ファイバ間の距離の変化が感知され、フレキシブル機器の再構成可能部分の状態が検出される。フレキシブル機器は、バルーンカテーテルを含み、再構成可能部分は、バルーン又はバルーン部を含んでよい。ステップ212において、移動測定には、バルーンの膨張又は収縮、ステント若しくはエンドグラフトの拡大/縮小等の測定が含まれる。他のデバイスタイプが使用されてもよい。ステップ214において、画像内の第2の開始点位置の位置を決定するための形状を含む当該第2の開始点位置が使用されてよい。第2の開始点位置は、画像内で見つけられて、複数の補助光ファイバの冗長的なひずみ/形状データが取り除かれる。
【0051】
ステップ216において、フレキシブル機器の再構成可能部分が、複数の光ファイバからのひずみ又は形状データを使用して表示されてよい。この手順は、応用に従って、続けられるか又は完了する。
【0052】
添付の請求項を解釈する際に、次の通りに理解されるべきである。
a)「含む」との用語は、所与の請求項に列挙される要素又は行為以外の要素又は行為の存在を排除しない。
b)要素に先行する「a」又は「an」との用語は、当該要素が複数存在することを排除しない。
c)請求項における任意の参照符号は、その範囲を限定しない。
d)幾つかの「手段」は、同じアイテム、ハードウェア若しくはソフトウェアによって実現される構造体又は機能によって表される。
e)特に明記されない限り、行為の特定の順番を必要とすることを意図していない。
【0053】
(例示的であって限定を意図していない)治療デバイスへのマルチセンサ統合のための好適な実施形態が説明されたが、上記教示内容に鑑みて、当業者によって修正及び変更がなされうることに留意されたい。したがって、開示された開示内容の特定の実施形態に変更を行ってもよく、これらの変更は、添付の請求項によって概説される本明細書に開示される実施形態の範囲内であることは理解されるべきである。したがって、特許法によって義務付けられているように、詳細及び特殊性を説明することによって、特許証によって請求され、保護を望むものは、添付の請求項に記載される。
図1
図2
図3
図4
図5
図6
図7