IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 原子燃料工業株式会社の特許一覧

特許7060194ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法
<>
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図1
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図2
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図3
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図4
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図5
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図6
  • 特許-ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-18
(45)【発行日】2022-04-26
(54)【発明の名称】ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法
(51)【国際特許分類】
   G01T 7/00 20060101AFI20220419BHJP
   G01T 1/167 20060101ALI20220419BHJP
【FI】
G01T7/00 A
G01T1/167 C
【請求項の数】 7
(21)【出願番号】P 2017060139
(22)【出願日】2017-03-24
(65)【公開番号】P2018163028
(43)【公開日】2018-10-18
【審査請求日】2020-03-03
(73)【特許権者】
【識別番号】000165697
【氏名又は名称】原子燃料工業株式会社
(74)【代理人】
【識別番号】100144048
【弁理士】
【氏名又は名称】坂本 智弘
(74)【代理人】
【識別番号】100204881
【弁理士】
【氏名又は名称】土井 伸次
(74)【代理人】
【識別番号】100186679
【弁理士】
【氏名又は名称】矢田 歩
(74)【代理人】
【識別番号】100189186
【弁理士】
【氏名又は名称】大石 敏弘
(72)【発明者】
【氏名】小口 一成
(72)【発明者】
【氏名】松岡 正悟
(72)【発明者】
【氏名】板橋 兵庫
(72)【発明者】
【氏名】大内 孝徳
【審査官】藤本 加代子
(56)【参考文献】
【文献】特開2017-040521(JP,A)
【文献】特開2013-164330(JP,A)
【文献】特開平10-177094(JP,A)
【文献】特開平08-220238(JP,A)
【文献】米国特許出願公開第2002/0163988(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01T 1/00-1/16
G01T 1/167-7/12
G21F 9/34
G21F 9/36
G21F 5/005
(57)【特許請求の範囲】
【請求項1】
複数の測定対象物を内部空間に収納し、前記測定対象物から発せられるガンマ線を測定するために用いられるガンマ線測定用収納容器であって、
前記内部空間を鉛直方向に隣接する複数の領域に区分する区分手段と、
前記複数の領域それぞれに設けられ、前記測定対象物を収容する1又は複数の収容手段と、を有し、
前記収容手段は、前記区分手段とは別体の有底容器である
ことを特徴とするガンマ線測定用収納容器。
【請求項2】
複数の測定対象物を内部空間に収納し、前記測定対象物から発せられるガンマ線を測定するために用いられるガンマ線測定用収納容器であって、
前記内部空間を鉛直方向に隣接する複数の領域に区分する区分手段を有し、
前記区分手段は、鉛直方向に積み重ねられた複数の有底容器であり、
下側の前記有底容器の上部開口は、上側に積み重ねられた前記有底容器の底部で閉止される
ことを特徴とするガンマ線測定用収納容器。
【請求項3】
前記区分手段は、隔壁又は開口を有する
ことを特徴とする請求項1又は2に記載のガンマ線測定用収納容器。
【請求項4】
複数の測定対象物を内部空間に収納し、前記測定対象物から発せられるガンマ線を測定するために用いられるガンマ線測定用収納容器であって、
前記内部空間を鉛直方向に隣接する複数の領域に区分する区分手段と、
前記複数の領域それぞれに設けられ、前記測定対象物を収容する収容手段と、を有し、
前記区分手段は、複数のフックが鉛直方向に設けられた縦柱を有し、
前記収容手段は、前記フックに係止される被係止具を有する容器である
ことを特徴とするガンマ線測定用収納容器。
【請求項5】
請求項1から4までのいずれか1項に記載のガンマ線測定用収納容器と、
前記ガンマ線測定用収納容器を取り囲む筐体と、
ガンマ線を検出するガンマ線検出器と、を備える
ことを特徴とするガンマ線測定装置。
【請求項6】
請求項5に記載のガンマ線測定装置を用いて前記測定対象物から発せられるガンマ線を測定するガンマ線測定方法であって、
請求項5が請求項1から3までのいずれか1項を引用する場合、
前記測定対象物を、前記複数の領域それぞれの重量差が、平均値に対して±20%未満となるように前記有底容器に収容し、
請求項5が請求項4を引用する場合、
前記測定対象物を、前記複数の領域それぞれの重量差が、平均値に対して±20%未満となるように前記収容手段に収容する
ことを特徴とするガンマ線測定方法。
【請求項7】
3つ以上の前記ガンマ線検出器を用いて、前記ガンマ線検出器の個数以上に区分された前記複数の領域の前記測定対象物から発せられるガンマ線を測定する
ことを特徴とする請求項6に記載のガンマ線測定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法に関する。
【背景技術】
【0002】
現在、原子炉施設及び核燃料取扱施設の廃止措置や設備の補修などにともなって様々な種類の廃棄物が発生する。これらの廃棄物のうち核燃料によって汚染された可能性がある物は、「放射性廃棄物」として取り扱われている。この「放射性廃棄物」は、廃棄処分されるまでの間、工場や事業所ごとに廃棄物倉庫などに保管されており、最終的に埋設などの最終処分が行われている。
【0003】
ところが、「放射性廃棄物」は、実際には核燃料によって汚染されていない物や、放射性物質の放射能濃度が極めて低く、人への影響を無視することができる物も含まれている。本来、このような廃棄物は、選別や除染処理が適宜行われれば、放射性物質として取り扱う必要性が低くなる。
【0004】
例えば、非特許文献1の第2ページには、「ある放射線源に起因する人の健康に対するリスクが無視できることから、放射性物質として扱う必要がなく、当該放射線源を放射線防護に係る規制の体系から外してもよいとすること」と記載されている。そして、放射性物質によって汚染された可能性のある物のうち、放射能濃度が極めて低く、人の健康に対するリスクを無視できるものに対して、「核原料物質、核燃料物質及び原子炉の規制に関する法律」及び関係省令に規定された手続に基づき、選別や除染処理を行うことで、放射性物質として扱う必要がない物として取り扱えるようにすることが、クリアランスと称されている。
【0005】
そして、このような廃棄物に対してクリアランスを実施することにより、これらを一般廃棄物として処分を行うことができるから、放射性廃棄物の量が減るだけでなく、クリアランスを実施した後の廃棄物を新たな資源として利用できるようになる。
【0006】
そこで、原子炉施設や核燃料取扱施設で発生した廃棄物を、埋設処分又はクリアランスを実施する場合には、廃棄物の放射能の測定が必要となる。廃棄物の放射能を測定する方法としては、例えば、アルファ線を測定する方法又はガンマ線を測定する方法などがある。アルファ線を測定する方法の場合、アルファ線は紙一枚でも遮蔽されるため、単品毎にアルファ線を測定する必要があり、膨大な時間を必要とする。一方、ガンマ線を測定する方法の場合、ガンマ線は厚み10cm程度の鉛板でようやく遮蔽できるほどの高い透過能力を有するため、廃棄物をある程度の量でまとめて容器に詰め込み、容器の外側からガンマ線を測定することができる。そのため、ガンマ線を測定する方法は、アルファ線を測定する方法に比べて効率的に廃棄物の放射能を測定することができる。
【0007】
また、非特許文献1には、ガンマ線を測定するための容器として200Lのドラム缶を用い、これに大量の廃棄物を詰め込んで、専用のパッシブガンマ測定器でドラム缶の外側から廃棄物のガンマ線を測定する事例が開示されている。
【0008】
非特許文献1では、金属製の廃棄物をドラム缶に詰め込んでクリアランスを判断する場合には、ドラム缶での一回の測定で取り扱う測定単位を100kg程度として行うことが合理的であるとされている。
【0009】
さらに、ガンマ線の測定結果から対象核種の放射能濃度を算出する場合には、クリアランスを判断する対象物と同じ材質、密度を有し、放射能量が検定された校正用線源をドラム缶内に配置したもの(模擬クリアランス対象物)を用いて校正試験を行い、この校正試験の結果から放射能濃度を算出するか、あるいはモンテカルロ法などを用いてシミュレーションにより放射能濃度を算出する。このように、ドラム缶に詰め込む判断対象物の材質及び密度がいずれも同一であり、かつ、汚染分布及び形状がいずれも類似するものを、ドラム缶に均一に詰め込むことにより、ガンマ線の測定結果から対象核種の放射能量を正確に算出することができる。
【先行技術文献】
【非特許文献】
【0010】
【文献】ウラン取扱施設におけるクリアランスの判断方法:2010、一般社団法人日本原子力学会 標準委員会、2012年2月20日
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、200Lのドラム缶に100kgの鉄の廃棄物を詰め込むとすると、鉄の比重は7.7g/cmであることから、体積が約13000cm(13L)の鉄を、200Lのドラム缶に詰め込むことになる。鉄の廃棄物は、ドラム缶に詰め込み可能な大きさ(例えば、数百枚程度の板材)に切断されるため、これら大量の鉄を、200Lのドラム缶に均一に詰め込むのは非常に難しく、時間も浪費する。仮に、詰め込むことができたとしても、大量の鉄の一部が、ドラム缶を移動する際や測定中などに崩れ、ドラム缶の下部に廃棄物(測定対象物)が集まってしまう可能性もある。
【0012】
そこで、本発明は、以上の課題に鑑みてなされたものであり、測定対象物から発せられるガンマ線を正確にかつ効率良く測定できるガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
(1)本発明に係る1つの態様は、複数の測定対象物を内部空間に収納し、前記測定対象物から発せられるガンマ線を測定するために用いられるガンマ線測定用収納容器であって、前記内部空間を鉛直方向に複数の領域に区分する区分手段と、前記複数の領域それぞれに設けられ、前記測定対象物を収容する収容手段と、を有するものである。
(2)上記(1)の態様において、前記区分手段は、鉛直方向に隣接する前記区分手段と互いに連結されていてもよい。
(3)上記(1)又は(2)の態様において、前記区分手段は、隔壁又は開口を有する隔壁であってもよい。
(4)上記(1)から(3)までのいずれか1つの態様において、前記区分手段と前記収容手段とは、一体に形成されていてもよい。
(5)本発明に係る別の1つの態様は、上記(1)から(4)までのいずれか1つに記載のガンマ線測定用収納容器を備えるガンマ線測定装置であって、前記ガンマ線測定用収納容器を取り囲む筐体と、ガンマ線を検出するガンマ線検出器と、を備えている。
(6)本発明に係る更に別の1つの態様は、上記(5)に記載のガンマ線測定装置を用いて前記測定対象物から発せられるガンマ線を測定するガンマ線測定方法であって、前記測定対象物を、前記複数の領域それぞれの重量差が、平均値に対して±20%未満となるように前記収容手段に収容する。
(7)上記(6)の態様において、3つ以上の前記ガンマ線検出器を用いて、前記ガンマ線検出器の個数以上に区分された前記複数の領域の前記測定対象物から発せられるガンマ線を測定してもよい。
【発明の効果】
【0014】
本発明によれば、測定対象物から発せられるガンマ線を正確にかつ効率良く測定できるガンマ線測定用収納容器、ガンマ線測定装置及びガンマ線測定方法を提供することができる。
【図面の簡単な説明】
【0015】
図1】本発明の実施形態に係るガンマ線測定用収納容器を備えるガンマ線測定装置を示す概略断面図である。
図2】本発明の実施形態に係るガンマ線測定用収納容器の作業要領を示す説明図である。
図3】本発明の実施形態に係るガンマ線測定用収納容器の区分手段を示す平面図及び側面図である。
図4】区分手段の(a)変形例1、(b)変形例2を示す平面図及び断面図である。
図5】区分手段及び収容手段の変形例3を示す平面図及び断面図である。
図6】領域間の重量差とガンマ線測定結果に与える影響度との関係を示すグラフである。
図7】領域の個数と測定感度の平坦化の度合いとの関係を示すグラフである。
【発明を実施するための形態】
【0016】
以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。なお、実施形態の説明の全体を通じて同じ要素には同じ符号を付して説明する。
【0017】
図1は、本発明の実施形態に係るガンマ線測定用収納容器10を備えるガンマ線測定装置100を示す概略断面図である。
図1に示すように、ガンマ線測定装置100は、ガンマ線測定用収納容器10を取り囲む筐体2と、ガンマ線を検出するガンマ線検出器3と、ガンマ線測定用収納容器10を載置する回転テーブル4と、を備えている。
【0018】
筐体2は、ガンマ線測定装置100の外部から飛来してくる放射線を遮蔽するものであり、ガンマ線測定用収納容器10を取り囲むように設けられている。つまり、この筐体2は、ガンマ線検出器3が、測定対象物Tから発せられるガンマ線を効率よく検出できるように、バックグラウンド放射線の影響を排除している。
【0019】
また、筐体2は、前面などの一面に開閉扉が形成された角箱形状をしているが、ガンマ線測定用収納容器10を取り囲むことができれば、特に限定されず、筒箱形状などであってもよい。そして、筐体2の天面、底面及び側壁2aは、放射線が遮蔽可能な、例えば、タングステン、鉛、及び鉄などの材料を用いて、所望の厚みに形成されている。
【0020】
ガンマ線検出器3は、ガンマ線測定用収納容器10に収納された測定対象物Tが発するガンマ線を測定するものであり、ガンマ線を検出する有感部3aが筐体2の内部に位置している。このガンマ線検出器3としては、Ge半導体検出器又はNaIシンチレーション検出器を採用することができるが、分解能が高く、核種別に低濃度の定量測定ができる点で、Ge半導体検出器の方が好ましい。なお、Ge半導体検出器に採用する場合、測定時にガンマ線検出器3を冷却できるように、筐体2の外側などに液体窒素を貯蔵するタンクを設置するとよい。
【0021】
そして、ガンマ線検出器3は、筐体2の1つの側壁2aの鉛直方向に3つ配置されており、また、ガンマ線検出器3の有感部3aが筐体2の内部に露出するように、筐体2の側壁2aを貫通して設けられている。
【0022】
回転テーブル4は、ガンマ線測定用収納容器10を載置し、また、ガンマ線検出器3によるガンマ線の測定時に、ガンマ線測定用収納容器10を所定の角速度(回転速度)で回転させるものである。ガンマ線測定用収納容器10を回転させながらガンマ線を測定することにより、ガンマ線測定用収納容器10の周方向の測定対象物Tの均一化及び放射線源の均一化を図ることができる。これにより、測定したガンマ線から放射能濃度をより正確に算出することができる。また、X軸方向及びY軸方向に複数のガンマ線検出器3を設置することなく、鉛直方向に3つのガンマ線検出器3を設置するだけで、ガンマ線測定用収納容器10の周方向の測定対象物Tの均一化及び放射線源の均一化を想定した測定ができる。
【0023】
ここで、ガンマ線測定装置100で測定する測定対象物Tについて説明すると、測定対象物Tは、放射性物質により汚染された可能性のあるもの、通常は固体である。この測定対象物Tとしては、例えば、発電用原子炉、実験炉及び研究炉などの原子炉施設や、核燃料転換施設、核燃料濃縮施設及び核燃料加工施設などの核燃料取扱施設における、運転、修理、改造及び廃止措置にともなって発生する機器類及び建築物などの廃材が挙げられる。
【0024】
この測定対象物Tは、放射性物質として取り扱われる高い放射能濃度を有していてもよいし、放射性物質としての取り扱いから外される放射能濃度であるクリアランスレベル以下の放射能濃度を有していてもよい。
【0025】
測定対象物Tの材質としては、炭素鋼、ステンレス鋼、銅及びアルミニウムなどの金属が挙げられるが、特に限定されず、コンクリート、プラスチックなどでもよい。また、これらのうちでも、例えば金属のような密度が高い材料ほど、ガンマ線測定用収納容器10に収納する体積が小さくなるため、崩れないように均一に詰め込むのが難しいが、本発明の実施形態に係るガンマ線測定用収納容器10では、簡単に取り扱うことができる。
【0026】
また、測定対象物Tの形状としては、板状物が挙げられるが、特に限定されず、棒状、角状、球状などの単純形状でも、突起部及び曲面などを有する複雑形状でもよい。なお、ガンマ線測定用収納容器10に収納できない大きな測定対象物Tは、必要に応じて切断・細断することで、同程度の大きさ及び形状にされるとよい。
【0027】
つぎに、ガンマ線測定用収納容器10について説明する。図2は、本発明の実施形態に係るガンマ線測定用収納容器10の作業要領を示す説明図である。図3は、本発明の実施形態に係るガンマ線測定用収納容器10の区分手段20を示す平面図及び側面図である。
【0028】
図2に示すように、ガンマ線測定用収納容器10の容器本体11は、内部空間に複数の測定対象物Tを収納するもので、例えば、合計100kg程度の測定対象物Tを収納可能な強度を有している。この容器本体11は、有底円筒状で、上部開口に円板状の蓋体12がリング閉めされた筒箱型のものがよく、例えば、200Lのドラム缶を採用することができる。ドラム缶は、安価で所望の強度を有するとともに、搬送治具が充実しており、空荷状態では転がして移動できるなど操作性・搬送性が良好である。
【0029】
容器本体11は、内部空間を鉛直方向に複数の領域Dnに区分(段分け)する区分手段20を有する。ただし、nは1及び2以上の任意の整数であるが、ガンマ線検出器3の個数以上が好ましい。本実施形態では8つの領域D1,D2・・・D8が上から順に形成されている。なお、区分手段20は、4段のものを2つ積み重ねて、8段の区分手段20としてもよい。
【0030】
区分手段20は、図3に示されるように、複数の領域Dnを区分する円板状の隔壁21と、各隔壁21を連結する連結部材22とを有している。隔壁21は、容器本体11の内径よりも若干小さい外径を有している。つまり、複数の領域Dnは、容器本体11に収納された状態では、互いに連通する状態となっている(図1参照)。なお、隔壁21は、例えば、開口を有するものでも、メッシュ状のものでもよい。逆に、複数の領域Dnが互いにほぼ連通しない状態に区分するために、隔壁21は、容器本体11の内径と等しい外径を有するものであってもよい。
【0031】
これらの隔壁21及び連結部材22(区分手段20)は、材料強度やガンマ線の透過性などを考慮した適切な材料を用いて形成されるが、コストを重視すると木材でもよいが、ガンマ線測定用収納容器10を繰り返し使用することもあるため、耐候性、耐腐食性などの耐久性や、傷つき難さ、汚染のし難さや汚染時の除染のし易さを踏まえると、表面が滑らかな材料がよく、さらに、ガンマ線測定時に遮蔽による影響を少なくすること(逆に言うと、ガンマ線の透過性を確保すること)を考慮すると、薄い又は網状の金属やプラスチックが好ましい。
【0032】
区分手段20で区分された複数の領域Dnには、測定対象物Tを領域Dnごとに収容する収容手段30が設けられている(図1及び2参照)。本実施形態では、1つの領域Dnに対して、1つの収容手段30だけが設けられているが、1つの領域Dnに対して、複数の収容手段30が設けられてもよい。
【0033】
収容手段30は、図2に示されるように、有底角筒状の容器31であるが、これに限られず、円筒状や皿又は椀状などであってもよい。また、収容手段30は、容器31の上部開口を閉止する蓋体34を有していてもよい。というのも、測定対象物Tは、放射性物質として取り扱われる高い放射能濃度を有している可能性もあるため、安全を考慮すると、収容手段30は、密閉空間である方がよいといえる。ただし、容器31の底部及び側壁は、区分手段20と同様に、開口を有したり、メッシュ状であったりしてもよい。
【0034】
そして、これらの容器31及び蓋体34(収容手段30)は、金属、プラスチック、木材などの材料を用いて形成されるが、コストを重視すると木材でもよいが、ガンマ線測定用収納容器10を繰り返し使用することもあるため、耐候性、耐腐食性などの耐久性や、傷つき難さ、汚染のし難さや汚染時の除染のし易さを踏まえると、表面が滑らかな材料がよく、さらに、ガンマ線測定時に遮蔽による影響を少なくすること(逆に言うと、ガンマ線の透過性を確保すること)を考慮すると、薄い又は網状の金属やプラスチックが好ましい。
【0035】
つづいて、区分手段20及び収容手段30の変形例1から3について説明する。図4は、区分手段120,220の(a)変形例1、(b)変形例2を示す平面図及び断面図である。
上記実施形態では、区分手段20と収容手段30とは別体であったが、変形例1の区分手段120及び変形例2の区分手段220では、区分手段120,220と、収容手段30とが一体に(一体成形で)形成されている。
【0036】
区分手段120は、図4(a)に示すように、有底円筒状の容器121である。言い換えると、この容器121自体が収容手段30となっている。そして、この容器121は、寿司桶、蕎麦桶のように上下に積み重ねることができるものであり、上下の容器121同士がズレたりしないように、段付きの底部122となっている。なお、最上段の容器121には、図示されない蓋体が取り付けられてもよい。
【0037】
一方、区分手段220は、図4(b)に示すように、有底角筒状の容器221であり、底部222が円板状に形成されている。言い換えると、この容器221自体が収容手段30となっている。この容器221も、上下の容器221同士がズレたりしないように、段付きの底部222となっている。また、最上段の容器221には、図示されない蓋体が取り付けられてもよい。
【0038】
そして、複数の容器121,221が積み重ねられた区分手段120,220は、全体が荷崩れしないように、番線などの連結治具で全体を一体(一纏め)にしてもよい。なお、これらの区分手段120,220の及び底部122,222及び側壁123,223は、区分手段20と同様に、開口を有したり、メッシュ状であったりしてもよい。
【0039】
つぎに、変形例3の区分手段320及び収容手段330について説明する。図5は、区分手段320及び収容手段330の変形例3を示す平面図及び断面図である。
区分手段320は、図5に示すように、円板状の底板321と、底板321に立設された縦柱322と、縦柱322に等間隔に設けられた複数のフック323とを有している。一方、収容手段330は、容器331と、容器331に設けられ、区分手段320のフック323に係止される被係止具332と、を有している。
【0040】
この場合、区分手段320は、ガンマ線測定用収納容器10の内部空間を、明確には複数の領域Dnに区分していないが、等間隔に設けられた複数のフック323によって、複数の収容手段330が、鉛直方向に等間隔に配置されており、水平方向に並ぶ状態ではないことから、区分手段320は鉛直方向に複数の領域Dnに区分するものであり、また、収容手段330は、複数の領域Dnそれぞれに設けられている。
【0041】
更に他の変形例としては、上記実施形態の区分手段20と、収容手段30とを、接着剤やボルトなどの固着手段で接続し、一体化したものであってもよい。
【0042】
最後に、ガンマ線測定装置100を用いて、測定対象物Tから発せられるガンマ線を測定する測定方法の一例について説明する。
【0043】
まず、複数の測定対象物Tの準備作業は、原子炉施設又は核燃料取扱施設で発生する、放射性物質によって汚染された可能性のある廃棄物を、収容手段30に収納できる程度の大きさに切断し、材質及び形状など種類別に選別し、合計で約100kgの測定単位となるように行う。仮に、測定対象物Tを収容手段30に収容できない場合でも、収容手段30を設置した区分手段20の領域Dnから他の区分手段20の領域Dnに干渉(侵入)しない程度の大きさであれば問題はない。
【0044】
つぎに、図2に示すように、複数の測定対象物Tを、複数の収容手段30それぞれに収容する。例えば、測定対象物Tの形状がいずれも短冊状である場合には、図1に示すように、短冊状の測定対象物Tの向きを適宜変更して、隣接する測定対象物Tの重なりの程度が大きく異ならないように、測定対象物Tを収容手段30に詰め込む作業を行う。
【0045】
そして、測定対象物Tを収容した収容手段30を、区分手段20の段数に応じて準備する。このとき、複数の収容手段30同士で、重量の差が大きくならないように測定対象物Tを詰め込むとよい。このとき、複数の領域Dnそれぞれの収容手段30の重量差は、無いことが望ましいが、重量差があっても、平均値に対して±20%未満であれば、ガンマ線の測定結果に有意な影響を与えないことがわかっている(詳細は後述する)。
【0046】
その後、これら複数の収容手段30を、区分手段20のすべての隔壁21上に載置する。さらに、この後、この区分手段20を、容器本体11の内部空間に収納し、蓋体12を閉止し、ガンマ線測定用収納容器10とする。
【0047】
最後に、ガンマ線測定用収納容器10の軸線がガンマ線測定装置100の回転テーブル4の中心に一致するように、ガンマ線測定用収納容器10を回転テーブル4上に載置する。そして、ガンマ線測定用収納容器10を筐体2で包囲した状態で、回転テーブル4を所定の角速度で回転させつつ、ガンマ線検出器3で測定対象物Tから発せられるガンマ線を測定する。
【0048】
このようにして、ガンマ線測定用収納容器10を備えたガンマ線測定装置100を用いて、複数の測定対象物Tをまとめて、ガンマ線の測定を行う。
【0049】
ここで、複数の領域Dnに収容した測定対象物Tの重量差Xが、ガンマ線測定結果に与える影響について説明する。図6は、領域Dnの重量差Xとガンマ線測定結果に与える影響度Fとの関係を示すグラフである。
影響度Fは、8つの領域Dnに区分されたガンマ線測定用収納容器10を用いたもので、中央の4つの領域D3からD6には、測定対象物Tの総重量を領域Dnの個数で除した平均値Aよりも、重量差X(%)だけ多く収納し、上下の4つの領域D1,D2及びD3,D6には、重量差Xだけ少なく収納するとともに、重量差Xを0%から99%まで変化させて、鉛直方向に設けられた3つのガンマ線検出器3でガンマ線を測定し、ガンマ線測定値の平均値を演算し、重量差Xが0%のときのガンマ線測定値の平均値と比較して求めた。
【0050】
図6に示すように、領域Dn間の重量差Xが、平均値Aに対して±20%未満であれば、ガンマ線の測定結果がほとんど変化しないことがわかる。なお、重量差Xが20%、40%、60%のとき、それぞれの影響度Fは-0.1%、-1.6%、-5.7%であった。
【0051】
以上説明したとおり、本発明の実施形態に係るガンマ線測定用収納容器10は、複数の測定対象物Tを内部空間に収納し、測定対象物Tから発せられるガンマ線を測定するために用いられるガンマ線測定用収納容器10であって、内部空間を鉛直方向に複数の領域Dnに区分する区分手段20,120,220,320と、複数の領域Dnそれぞれに設けられ、測定対象物Tを収容する収容手段30,330と、を有するものである。これにより、ガンマ線測定用収納容器10は、内部空間を鉛直方向に区分された複数の領域Dnそれぞれに、複数の測定対象物Tを収納することができるため、軸方向の偏在が減り均一性が高まるので、測定感度が平坦化しガンマ線を正確にかつ効率良く測定することができる。
【0052】
測定対象物Tは、複数の収容手段30,330それぞれに収容されているため、荷崩れを起こしたとしても、収容手段30,330の限られた空間であるため、大きく崩れることはなく、つまり、測定対象物Tがガンマ線測定用収納容器10の最下部に多く偏在するようなことがなく、また、領域Dnそれぞれの重量差に影響を与えることもない。このため、軸方向の偏在が減り均一性が高まるので、測定感度が平坦化しガンマ線を正確に測定することができる。
【0053】
くわえて、ガンマ線測定用収納容器10は、複数の測定対象物Tの総体積が小さい場合でも、均一に収納することができるため、測定対象物Tの種類・寸法・形状などに応じて、ガンマ線測定用収納容器10の設計を変更する必要がない。また、クリアランスレベル以下の低い放射能濃度を有する測定対象物Tであっても、遮蔽による減衰効果の影響を少なくすることができるため、ガンマ線を正確に測定することができる。
【0054】
実施形態では、区分手段20,120,220は、鉛直方向に隣接する区分手段20,120,220と互いに連結されている。これにより、複数の測定対象物Tは、少ない回数でガンマ線測定用収納容器10の容器本体11に収納されるため、測定作業の効率を上げることができる。
【0055】
実施形態では、区分手段20は、隔壁21又は開口を有する隔壁21である。これにより、区分手段20が隔壁21であれば、密閉空間を形成することができ、区分手段20が開口を有する隔壁21であれば、ガンマ線測定用収納容器10を軽量化することができ、測定作業の効率を上げることができる。
【0056】
実施形態では、区分手段120,220と収容手段30とは、一体に形成されている。これにより、複数の収容手段30を区分手段120,220に積み替える必要がなくなるため、測定作業の効率を上げることができる。
【0057】
実施形態のガンマ線測定装置100は、ガンマ線測定用収納容器10と、ガンマ線測定用収納容器10を取り囲む筐体2と、ガンマ線を検出するガンマ線検出器3と、を備えている。これにより、ガンマ線測定用収納容器10に、複数の測定対象物Tをまとめて収納することができ、ガンマ線の測定をまとめて(一度に)行うこができる。また、ガンマ線測定用収納容器10を、ガンマ線測定装置100の筐体2で取り囲んで、ガンマ線を測定するため、バックグラウンド放射線の影響を排除することができる。
【0058】
さらに、ガンマ線測定装置100が、回転テーブル4を備えている場合は、ガンマ線測定用収納容器10を、軸線を中心にして回転させつつガンマ線を測定することにより、周方向の測定対象物Tの均一化及び放射線源の均一化を図ることができる。
【0059】
実施形態のガンマ線測定方法では、測定対象物Tを、複数の領域Dnそれぞれの重量差が、平均値に対して±20%未満となるように収容手段30,330に収容する。これにより、測定対象物Tを収納した領域Dnそれぞれの重量を考慮して、測定対象物Tがガンマ線測定用収納容器10の内部空間に均一に配置されるため、ガンマ線を正確に測定することができる。
【0060】
(変形形態)
上記実施形態では、ガンマ線検出器3の個数は、3つであったが、これに限定されない。軸方向に亘る測定を行うために、少なくとも2つ以上のガンマ線検出器3が設けられていることが好ましい。ただし、例えば軸方向の広範囲に亘って有感部3aを有するNaIシンチレーション検出器などについては、1つであっても軸方向に亘る測定が可能となるため、必ずしも2つ以上である必要はない。また、ガンマ線測定装置100が回転テーブル4を有さないもので、ガンマ線測定用収納容器10を回転させることなく固定した状態でガンマ線を測定する場合、ガンマ線検出器3は、ガンマ線測定用収納容器10を中心にしてX軸方向に一対及びY軸方向に一対の合計二対設けられているとよい(なお、ガンマ線測定用収納容器10の軸線方向をZ軸方向とする)。
【0061】
ところで、ガンマ線検出器3の個数は、多いほどガンマ線測定感度を平坦化することができ、測定精度が高まるが、一方でコストが高くなり、メンテナンスが煩雑になる。そのため、ガンマ線検出器3の個数及び配置は、放射能濃度の精度、コストなどを考慮して決定するとよい。例えば、上記実施形態のように3つのガンマ線検出器3を備えるガンマ線測定装置100を用いて、高さ80cm程度のドラム缶などで形成されたガンマ線測定用収納容器10を測定する場合は、軸方向における上中下の3か所の測定を行う上で好適な装置体系例と言える。
【0062】
また、領域Dnについては、測定感度を平坦化させる観点では、領域Dnの数は多い方が好ましい。一方、詰め込み作業やメンテナンスなどの運用面では、領域Dnの数は少ない方が好ましい。ただし、領域Dnの数が軸方向のガンマ線検出器3の個数よりも少ない場合には、測定感度の平坦化は期待できない。
【0063】
そこで、一例として3つのガンマ線検出器3を有するガンマ線測定装置100について、領域Dnの数を変化させて、領域Dnの数が、ガンマ線の測定感度に与える影響について評価した。測定感度の平坦化の度合いRは、複数の領域Dnのそれぞれについて、測定対象物Tが領域Dn内に平均的に広がって収納されている場合のガンマ線測定値の平均値と、複数の領域Dnのそれぞれについて、測定対象物Tが下方に偏在して収納されている場合のガンマ線測定値の平均値との差を用いて求めた。その評価結果を図7に示す。図7から、領域Dnの数がガンマ線検出器3の個数よりも少ないとき、すなわち3つ未満のときには、測定感度の平坦化の度合いRが悪いことがわかる。つまり、ガンマ線検出器3の個数以上で、ガンマ線測定用収納容器10を複数の領域Dnに区分することで、測定感度の平坦化を期待できる。
【0064】
以上、本発明の好ましい実施形態について詳述したが、本発明は上述した実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。
【符号の説明】
【0065】
2 筐体、2a 側壁
3 ガンマ線検出器、3a 有感部
4 回転テーブル
10 ガンマ線測定用収納容器、11 容器本体、12 蓋体
20 区分手段、21 隔壁、22 連結部材
30 収容手段、31 容器、34 蓋体
100 ガンマ線測定装置
120 区分手段、121 容器、122 底部、123 側壁
220 区分手段、221 容器、222 底部、223 側壁
320 区分手段、321 底板、322 縦柱、323 フック
330 収容手段、331 容器、332 被係止具
Dn 領域
T 測定対象物
図1
図2
図3
図4
図5
図6
図7