(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-19
(45)【発行日】2022-04-27
(54)【発明の名称】内視鏡用システムの構成要素
(51)【国際特許分類】
A61B 34/35 20160101AFI20220420BHJP
A61B 34/37 20160101ALI20220420BHJP
【FI】
A61B34/35
A61B34/37
【外国語出願】
(21)【出願番号】P 2020147659
(22)【出願日】2020-09-02
(62)【分割の表示】P 2018562536の分割
【原出願日】2017-06-01
【審査請求日】2020-10-02
(32)【優先日】2016-06-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516281573
【氏名又は名称】エンドマスター・プライベート・リミテッド
【氏名又は名称原語表記】ENDOMASTER PTE LTD
【住所又は居所原語表記】2 Boon Leat Terrace #04-01 Harbourside Building 2 Singapore 119844 SINGAPORE
(74)【代理人】
【識別番号】100120891
【氏名又は名称】林 一好
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100205659
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100126000
【氏名又は名称】岩池 満
(74)【代理人】
【識別番号】100185269
【氏名又は名称】小菅 一弘
(72)【発明者】
【氏名】ペニー イザック デイヴィッド
(72)【発明者】
【氏名】ルウィン テ ザール
(72)【発明者】
【氏名】山本 智徳
【審査官】山口 賢一
(56)【参考文献】
【文献】特開平07-328016(JP,A)
【文献】国際公開第2015/142956(WO,A1)
【文献】特開2004-223128(JP,A)
【文献】特表2017-515523(JP,A)
【文献】特開2014-079653(JP,A)
【文献】国際公開第2015/142290(WO,A1)
【文献】特表2017-515615(JP,A)
【文献】特開2010-252837(JP,A)
【文献】米国特許出願公開第2015/0112141(US,A1)
【文献】特開2008-289902(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/35
A61B 34/37
(57)【特許請求の範囲】
【請求項1】
内視鏡用システムの内視鏡用外科用器具コントローラであって、前記内視鏡用システムは内視鏡用外科用器具を含み、前記内視鏡用外科用器具は、
駆動機構と、
前記駆動機構により作動させられる末端関節であって、前記内視鏡用外科用器具の遠位端に配置される、末端関節と、
を含み、前記内視鏡用システムは、
前記駆動機構と電気通信する入力デバイスであって、前記入力デバイスの動きが前記末端関節の前記作動を引き起こす、入力デバイス、
をさらに含み、前記内視鏡用外科用器具コントローラは、
少なくとも1つのプロセッサと、
コンピュータプログラムコードを含む少なくとも1つのメモリであって、前記少なくとも1つのメモリと前記コンピュータプログラムコードとは、前記少なくとも1つのプロセッサを用いて、前記内視鏡用外科用器具コントローラに少なくとも、
前記入力デバイスの動きに起因する信号を検出させ、前記信号は、前記入力デバイスが動かされている先のマスタ作業空間内の直交座標位置を提供し、前記マスタ作業空間は前記入力デバイスが中で動かされることができる境界を提供し、
受け取られた
前記マスタ作業空間内の直交座標位置を、前記マスタ作業空間の直交座標位置と、前記末端関節が中で作動させられることができる
スレーブ作業空間内の境界を提供するスレーブ作業空間の直交座標位置と、前記マスタ作業空間内の各直交座標位置を前記スレーブ作業空間内の少なくとも1つの直交座標位置にマッピングするマッピングテーブルとを含むデータベース
であって、前記スレーブ作業空間内の各直交座標位置について、前記マッピングテーブルは、前記マスタ作業空間内の複数の直交座標位置を、前記スレーブ作業空間内の当該直交座標位置にマッピングする、データベースに対して処理させ、
受け取られた直交座標位置に対する前記スレーブ作業空間内の一致する直交座標位置を決定させ、
前記末端関節を前記スレーブ作業空間内の前記一致する直交座標位置に作動させるよう前記駆動機構に指令させる、
ように構成される、少なくとも1つのメモリと、
を含む、内視鏡用外科用器具コントローラ。
【請求項2】
前記マスタ作業空間内の前記複数の前記直交座標位置がマッピングされる前記スレーブ作業空間内の前記直交座標位置は、前記マスタ作業空間内の前記複数の前記直交座標位置の各々に対して前記スレーブ作業空間内の最も良く一致する直交座標位置を提供する、請求項
1に記載の内視鏡用外科用器具コントローラ。
【請求項3】
前記内視鏡用システムは、
前記入力デバイスに連結されたフィードバック力モジュールであって、前記入力デバイスを前記スレーブ作業空間の前記境界の中に対応する前記マスタ作業空間の領域内に保つ抵抗力を生み出すように構成される、フィードバック力モジュール、
をさらに含み、前記内視鏡用外科用器具コントローラは、
前記入力デバイスが前記スレーブ作業空間の前記境界に対応する前記マスタ作業空間の前記領域の外へさらに動くほど前記抵抗力を増加させるために前記フィードバック力モジュールに信号を伝送する、
ようにさらに構成される、請求項1
または請求項2に記載の内視鏡用外科用器具コントローラ。
【請求項4】
前記内視鏡用外科用器具コントローラは、
前記フィードバック力モジュールにより生み出される前記抵抗力の前記増加の大きさを計算し、
前記抵抗力の前記増加の前記計算された大きさに応答して前記関節装備または前記末端関節を作動させるために印加されるトルク限界を調節するように前記駆動モータまたは前記駆動機構にコマンドを送る、
ようにさらに構成される、請求項
3に記載の内視鏡用外科用器具コントローラ。
【請求項5】
前記直交座標位置は、三次元空間における位置を提供する、請求項1~
4のいずれか一項に記載の内視鏡用外科用器具コントローラ。
【請求項6】
前記マスタ作業空間は、前記スレーブ作業空間よりも大きい容積を有する、請求項1~
5のいずれか一項に記載の内視鏡用外科用器具コントローラ。
【請求項7】
前記内視鏡用外科用器具は、前記末端関節に連結されたエフェクタをさらに含み、前記エフェクタは、アーム、グリッパまたは電気焼灼術プローブのいずれか1つである、請求項1~
6のいずれか一項に記載の内視鏡用外科用器具コントローラ。
【請求項8】
前記内視鏡用外科用器具コントローラは、
前記入力デバイスの向きの変化により前記関節装備または前記末端関節の対応する向きの変化がもたらされるように前記入力デバイスの向きを前記関節装備または前記末端関節の向きと同期させる、
ようにさらに構成される、請求項1~
7のいずれか一項に記載の内視鏡用外科用器具コントローラ。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書には、内視鏡用システムの様々な構成要素が開示される。
【背景技術】
【0002】
内視鏡用システムは、使用者が身体の中空器官または空洞の内部を検査することを可能にする。
【0003】
このような内視鏡用システムには多数の構成要素がある。内視鏡用システムが内視鏡用手技を適切に実行することを確保するためにこれらの構成要素が最適なパラメータの範囲内で機能することを確保するには多くの課題がある。
【0004】
例えば、内視鏡用システムは、内視鏡用手技を実行するために使用される外科用ツールを担持する内視鏡を有する。これらのツールは駆動機構により作動させられ、外科用ツールの腱(tendon)にたるみが存在しないように駆動機構が操作されなければならない。入力デバイスのいかなる動きも外科用ツールの相応の作動をもたらすはずであるという点で、ツールの動作を制御する入力デバイスの間の同期も存在しなければならない。
【0005】
内視鏡は、身体の中空器官または空洞への挿入の間に手持ちされる。内視鏡の回転の向きと外科用ツールの回転の向きとが揃えられなければならない。また、挿入後には、使用者は、内視鏡用手技を開始する前に外科用ツールの先端が正しい向きであることを確保しなければならない。
【0006】
上記した内視鏡用システムに関連する例として、例えば、特許文献1、2が挙げられる。
【0007】
以下は、上記の課題に対処することを目指した内視鏡用システムを開示する。
【先行技術文献】
【特許文献】
【0008】
【文献】国際公開第2015142290号公報
【文献】国際公開第2017048194号公報
【発明の概要】
【課題を解決するための手段】
【0009】
第1態様によれば、輸送内視鏡(transport endoscope)のシャフトへの挿入のための細長部材と、細長部材の遠位端に連結される外科用ツールであって、反対端にエフェクタを有する外科用ツールと、細長部材、外科用ツールまたはその両方の上に提供される可視特徴部であって、可視特徴部の位置は、使用中の可視特徴部の位置がエフェクタの回転の向きを指示するように、エフェクタの回転の向きに対して固定される、可視特徴部とを含む内視鏡用装置が提供される。第2態様によれば、内視鏡用外科用器具のための内視鏡用外科用器具コントローラが提供され、この内視鏡用外科用器具は、駆動モータと、追従モータと、関節装備と、駆動モータを関節装備に連結する引き腱と、追従モータを関節装備に連結する押し腱であって、関節装備は、駆動モータが引き腱を引き出し、追従モータが押し腱をリリースすることにより作動させられる、押し腱とを含み、この内視鏡用外科用器具コントローラは、少なくとも1つのプロセッサと、コンピュータプログラムコードを含む少なくとも1つのメモリであって、少なくとも1つのメモリとコンピュータプログラムコードとは、少なくとも1つのプロセッサを用いて、内視鏡用外科用器具コントローラに少なくとも、変位範囲内で引き腱が駆動モータにより引き出されることにより最大張力を受ける引き腱で生じる変位範囲を確立させ、関節装備を作動させるために受け取られるコマンドが駆動モータに変位範囲内に入る引き腱の長さを引き出させるか否かを判断させ、追従モータによりリリースされる押し腱の長さが変位範囲にわたり駆動モータにより引き出される引き腱の長さより小さく、その結果、引き腱の伸長により引き腱が受ける張力が引き起こされるように、コマンドが受け取られたときに押し腱のリリースを制限するよう追従モータに命令させるように構成される、少なくとも1つのメモリと、を含む。
【0010】
第3態様によれば、内視鏡用システムが提供され、この内視鏡用システムは、駆動モータと、追従モータと、関節装備と、駆動モータを関節装備に連結する引き腱と、追従モータを関節装備に連結する押し腱であって、関節装備は、駆動モータが引き腱を引き出し、追従モータが押し腱をリリースすることにより作動させられる、押し腱とを含む、内視鏡用外科用器具と、内視鏡用外科用器具に連結される内視鏡用外科用器具コントローラであって、変位範囲内で引き腱が駆動モータにより引き出されることにより最大張力を受ける引き腱で生じる変位範囲を確立し、関節装備を作動させるために受け取られるコマンドが駆動モータに変位範囲内に入る引き腱の長さを引き出させるか否かを判断し、追従モータによりリリースされる押し腱の長さが変位範囲にわたり駆動モータにより引き出される引き腱の長さより小さく、その結果、引き腱の伸長により引き腱が受ける張力が引き起こされるように、コマンドが受け取られたときに押し腱のリリースを制限するよう追従モータに命令するように構成される、内視鏡用外科用器具コントローラと、を含む。
【0011】
第4態様によれば、内視鏡用システムの内視鏡用外科用器具コントローラが提供され、この内視鏡用システムは内視鏡用外科用器具を含み、この内視鏡用外科用器具は、駆動機構と、駆動機構により作動させられる末端関節であって、内視鏡用外科用器具の遠位端に配置される、末端関節とを含み、この内視鏡用システムは、駆動機構と電気通信する入力デバイスであって、入力デバイスの動きが末端関節の作動を引き起こす、入力デバイスをさらに含み、この内視鏡用外科用器具コントローラは、少なくとも1つのプロセッサと、コンピュータプログラムコードを含む少なくとも1つのメモリであって、少なくとも1つのメモリとコンピュータプログラムコードとは、少なくとも1つのプロセッサを用いて、内視鏡用外科用器具コントローラに少なくとも、入力デバイスの動きに起因する信号を検出させ、この信号は、入力デバイスが動かされている先のマスタ作業空間内の直交座標位置を提供し、マスタ作業空間は入力デバイスが中で動かされることができる境界を提供し、受け取られた直交座標位置を、マスタ作業空間の直交座標位置と、末端関節が中で作動させられることができる境界を提供するスレーブ作業空間の直交座標位置と、マスタ作業空間内の各直交座標位置をスレーブ作業空間内の少なくとも1つの直交座標位置にマッピングするマッピングテーブルとを含むデータベースに対して処理させ、受け取られた直交座標位置に対するスレーブ作業空間内の一致する直交座標位置を決定させ、末端関節をスレーブ作業空間内の一致する直交座標位置に作動させるよう駆動機構に指令させるように構成される、少なくとも1つのメモリとを含む。
【0012】
第5態様によれば、内視鏡用システムの内視鏡用外科用器具コントローラが提供され、この内視鏡用システムは内視鏡用外科用器具を含み、この内視鏡用外科用器具は、駆動機構と、駆動機構により作動させられる末端関節であって、内視鏡用外科用器具の遠位端に配置される、末端関節とを含み、この内視鏡用システムは、駆動機構と電気通信する入力デバイスであって、入力デバイスの動きが末端関節の作動を引き起こす、入力デバイスをさらに含み、この内視鏡用外科用器具コントローラは、少なくとも1つのプロセッサと、コンピュータプログラムコードを含む少なくとも1つのメモリであって、少なくとも1つのメモリとコンピュータプログラムコードとは、少なくとも1つのプロセッサを用いて、内視鏡用外科用器具コントローラに少なくとも、末端関節が中で作動させられることができる境界を提供するスレーブ作業空間内の可動トレーサを作製させ、可動トレーサは、入力デバイスが動かされることに応答してスレーブ作業空間内でシフトすることにより入力デバイスを追跡するように構成され、入力デバイスの動きに起因する信号を検出させ、可動トレーサをスレーブ作業空間内のある直交座標位置にシフトさせ、シフトの距離は、入力デバイスの動きの前および後のマスタ作業空間内の入力デバイスの直交座標位置に依存し、マスタ作業空間は、入力デバイスが中で動かされることができる境界を提供し、シフト後のスレーブ作業空間内の可動トレーサの直交座標位置に末端関節を作動させるよう駆動機構に指令させるように構成される、少なくとも1つのメモリと、を含む。
【0013】
第6態様によれば、内視鏡用外科用器具の腱を作動させるためのモータシャフトを連結するためのアダプタが提供され、このアダプタは、ハウジングと、腱が周りに巻回するドラムであって、ハウジングに回転可能に連結されるドラムと、ドラムにトルクを印加する(apply)ように設けられるエネルギ蓄積機構とを含む。
【0014】
第7態様によれば、輸送内視鏡を装着するための内視鏡取り付け面を有するベースであって、輸送内視鏡により担持されるロボット部材を作動させるための駆動機構を装着するための駆動機構取り付け面をさらに有するベースと、ベースが回転可能に連結されるプラットフォームとを含む、輸送内視鏡ドッキングステーションが提供される。
【0015】
本発明の例示的な実施形態は、以下に記載される説明から、単なる例として、図面と併せてより良く理解され、当業者に容易に明らかになるであろう。図面は必ずしも縮尺通りではなく、代わりに本発明の原理を例示することに概ね重点が置かれる。
【図面の簡単な説明】
【0016】
【
図1】内視鏡用システムの斜視図を提供する概略図である。
【
図2】
図1の内視鏡用システムのスレーブシステムの概略図である。
【
図3A】
図1の内視鏡用システムの内視鏡用外科用器具の一部分の概略図である。
【
図3B】
図1の内視鏡用システムの内視鏡用外科用器具の一部分の概略図である。
【
図4A】
図1の内視鏡用システムの駆動モータおよび追従モータを操作するためのステップを示すフローチャートである。
【
図5A】
図1の内視鏡用システムの駆動モータおよび追従モータの各々に対し、それらが関節装備を指令位置へ作動させるために操作されるときに適用される指令位置軌道である。
【
図5B】
図1の内視鏡用システムの駆動モータおよび追従モータの各々に対し、それらが関節装備を指令位置へ作動させるために操作されるときに適用される指令位置軌道である。
【
図6】
図1の内視鏡用システムのマスタセクションに位置する入力デバイスの斜視図である。
【
図7】入力デバイスでの動きを
図1の内視鏡用システムのロボット部材の特定の関節の動きに変換する際に内視鏡用外科用器具コントローラが通信する
図1の内視鏡用システムの構成要素の概略図である。
【
図8】入力デバイスでの動きを
図1の内視鏡用システムのロボット部材の特定の関節の動きに変換する際に内視鏡用外科用器具コントローラが通信する
図1の内視鏡用システムの構成要素の概略図である。
【
図9】
図1の内視鏡用システムの駆動機構の駆動モータ(単数または複数)のトルク限界の侵入深さに対するグラフである。
【
図10】
図1の内視鏡用システムの内視鏡用外科用器具の腱が周りに巻回するドラムである。
【
図11A】
図10のドラムのエネルギ蓄積機構が存在しない場合のドラムを使用したエフェクタの作動の実施態様の概略図である。
【
図11B】
図10のドラムのエネルギ蓄積機構が存在する場合のドラムを使用したエフェクタの作動の実施態様の概略図である。
【
図12】
図1の内視鏡用システムの輸送内視鏡ドッキングステーションの側面図である。
【
図13】
図1の内視鏡用システムの輸送内視鏡ドッキングステーションの斜視図である。
【
図14】可視位置インジケータ特徴部を有する2つの内視鏡用装置の斜視図である。
【発明を実施するための形態】
【0017】
以下の説明では、様々な実施形態が図面を参照して説明されるが、類似の参照符号は一般に異なる図面の全体を通して同じ部分を指す。
【0018】
図1は、内視鏡用システム10の斜視図を提供する概略図である。内視鏡用システム10は、マスタ側要素を有するマスタまたはマスタ側セクション100と、スレーブ側要素を有するスレーブまたはスレーブ側セクション200とを有する。
【0019】
図2は、
図1の内視鏡用システム10のスレーブシステム200の概略図である。スレーブシステム200は、少なくともいくつかのスレーブシステム要素を担持するために構成される患者側カート、スタンド、またはラック202を有する。患者側カート202はドッキングステーション500を有し、これに対して輸送内視鏡320が取り外し(例えば装着/ドッキングおよび解除/アンドック)されうる。患者側カート202は通常、スレーブシステム200の容易な可搬性およびポジショニングを促進するための車輪204を含む。
【0020】
図1および
図2を参照すると、マスタセクション100がスレーブシステム200にコマンドを発することができ、スレーブシステム200がマスタセクション100の入力に応答して(a)スレーブセクション200の輸送内視鏡320により担持または支持される一組のロボット部材410であって、輸送内視鏡320は可撓性細長シャフトを有する、ロボット部材410と、(b)輸送内視鏡320により担持または支持される撮像内視鏡または撮像プローブ部材と、(c)(電気焼灼術を用いた)電気焼灼または(レーザーを用いた)レージングのうちの1つ以上による外科手技、例えば切開、剥離および/または止血のためのプローブであって、プローブに接続する電気配線が輸送内視鏡320により担持または支持されるプローブと、を正確に制御すること、操ること、操縦すること、位置付けること、および/または操作することができるように、マスタセクション100およびスレーブセクション200は互いとの信号通信のために構成される。
【0021】
ロボット部材410は、組織をつかんで持ち上げることができるアームまたはグリッパのようなエフェクタを含む装置を指す。これらのエフェクタは、組織の剥離のためまたは止血のための電気焼灼術プローブも含む。アームまたはグリッパの作動は、うち2つが
図3Aおよび
図3Bに参照番号302および304を用いて示された腱によりもたらされる。
【0022】
図3Aおよび
図3Bはそれぞれ、内視鏡用外科用器具300の一部分の概略図を示す。内視鏡用外科用器具300は、駆動モータ308と、追従モータ310と、関節装備306と、腱対302および304とを含む。駆動モータ308および追従モータ310は内視鏡用外科用器具の近位端に配置され、関節装備306は内視鏡用外科用器具300の遠位端に位置する。駆動モータ308および追従モータ310は、内視鏡用外科用器具300から取り外し可能である。
【0023】
関節装備306は、関節セグメントのうちの1つの作動が他の関節セグメントのうちの1つ以上の作動につながるように互いに機械的に接合される関節セグメントの集合であってもよい。関節装備306が
図2のロボット部材410の関節を提供し、これにより各関節がロボット部材410に運動の自由度を与える。したがって、関節装備306の作動は、ロボット部材410のアーム、グリッパまたは電気焼灼術プローブ等のエフェクタの動きをもたらし、ロボット部材410が組織をつかむことおよび/または切開することを可能にする。
【0024】
腱対の各腱302および304は、可撓性細長シース312により囲まれる。腱対は、引き腱304および押し腱302を含む。引き腱304および押し腱302の各々は、駆動モータ308および追従モータ310を関節装備306に連結するのに適したケーブルまたは任意の他のラインにより実現されうる。引き腱304は、駆動モータ308を関節装備306に連結し、押し腱302は、追従モータ310を関節装備306に連結する。
【0025】
遠位端では、腱302および304の各々が関節装備306に留められる。例えば、押し腱302および引き腱304が単一の部品により実現される場合には、押し腱302および引き腱304の遠位端が関節装備306の周りに巻き付くことにより留められる。あるいは、押し腱302および引き腱304が別々の腱により実現される場合には、それらの遠位端が関節装備306に固着されることにより留められる。
【0026】
近位端では、駆動モータ308が引き腱304を引き出し、追従モータが押し腱302をリリースすることにより関節装備306が作動させられるように、腱302および304の各々が追従モータ310および駆動モータ308に接続される。これは、例えば駆動モータ308のシャフトがそれに対して接続されたドラムを回転させて、引き腱304をドラムの周りに巻回させることにより実現されうる。同様に、追従モータ310のシャフトはそれに対して接続されたドラムを回転させて、押し腱302をドラムの周りで巻き出す。
【0027】
駆動モータ308、追従モータ310、引き腱304、および押し腱302がこのように呼称されるのは、関節装備306を作動させる段階中のそれぞれの目的による。関節装備306の作動の各段階中に遠位端の関節装備306の動きを効率的に制御するために、モータ308、310の一方がその各自の連結された腱304、302に張力を与え、他方のモータがその各自の連結された腱をリリースすることにより張力を緩和する。張力を引き起こすモータが駆動モータと呼称され、張力を緩和するモータが追従モータと呼称される。駆動モータが腱を引くことにより腱の張力が生じるため、関節装備306を引く腱が引き腱と呼称される。他方で、追従モータが腱を押すことにより腱の張力の緩和が生じるため、関節装備306を押す腱は押し腱と呼称される。
【0028】
したがって、関節装備306の作動の様々な段階中にモータ308および310が交互に駆動モータおよび追従モータとなり、腱304および302が交互に引き腱および押し腱となることが理解されよう。例えば、
図3Aは関節装備306が反時計回りに回転される段階を示し、
図3Bは関節装備306が時計回りに回転される段階を示す。
図3Aの駆動モータ308は、
図3Bでは追従モータ310に切り替わり、
図3Aの追従モータ310は、
図3Bでは駆動モータ308に切り替わる。
図3Aの引き腱304は、
図3Bでは押し腱302に切り替わり、
図3Aの押し腱302は、
図3Bでは引き腱304に切り替わる。
【0029】
内視鏡用外科用器具コントローラ314が、駆動モータ308および追従モータ310の操作を制御するために提供される。内視鏡用外科用器具コントローラ314は、
図1の内視鏡用システム10と一体であっても別々であってもよい。内視鏡用外科用器具コントローラ314は、汎用コンピュータ、または内視鏡用外科用器具300を構成要素とする
図1の内視鏡用システム10と一体化された特別に設計されたワークステーションにより実現されうる。内視鏡用外科用器具コントローラ314は、少なくとも1つのプロセッサ316と少なくとも1つのメモリ318とを有し、メモリ318は、駆動モータ308および追従モータ310を操作するときにプロセッサ316が実行するコンピュータプログラムコードを格納する。内視鏡用外科用器具コントローラ314は、関節装備306が作動させられるべき先の位置を提供するコマンドを受け取るための入力ポート(図示せず)と、プロセッサ316が分析するために受け取られたコマンドを入力ポートから取得するためのレシーバモジュール(図示せず)とを含む。内視鏡用外科用器具コントローラ314は、関節装備306を指令位置に到達させるために駆動モータ308、追従モータ310またはその両方を操作する命令を送るためのトランスミッタモジュール(図示せず)と、これらの命令を駆動モータ308、追従モータ310またはその両方に中継するための出力ポート(図示せず)とをさらに含む。レシーバモジュールおよびトランスミッタモジュールは、ハードウェア構成要素であってもよいし、ソフトウェアにより実装されてもよい。
【0030】
内視鏡用外科用器具コントローラ314は、引き腱304、押し腱302、またはその両方の張力を維持するように駆動モータ308および追従モータ310の操作を制御する。関節装備306が作動させられるときには、引き腱304、押し腱302またはその両方の最適な張力が維持されなければならない。引き腱304の最適な張力は、押し腱302の最適な張力とは異なりうる。これには、駆動モータ308が引き腱304を引き出すことによりもたらされる張力が維持されるように、追従モータ310が押し腱302のリリースを阻害することを伴う。押し腱302のリリースを阻害することにより、押し腱302の過剰なリリースが腱のたるみを発生させる間に遠位の関節装備306が駆動モータ308の操作を通じて指令位置に作動させられることも抑止される。したがって、内視鏡用外科用器具コントローラ314により関節装備306を所望の位置または指令位置に作動させようとするときには、内視鏡用外科用器具コントローラ314は、駆動モータ308および追従モータ310の操作を制御する際に、駆動モータ308、追従モータ310またはその両方に命令するための最適な操作パラメータの組を特定しなければならない。
【0031】
1つの既存のアプローチは、内視鏡用外科用器具コントローラ314の観点からはモータが1つしかないかのように動作するように2つのモータ308および310を同期させることである。
図4Aは、この既存のアプローチのためのステップを描写したフローチャートを示す。
【0032】
ステップ402では、関節装備306を所望の位置に作動させるためにモータ(すなわち追従モータ310または駆動モータ308のいずれか)が実行する必要がある制御パラメータが、内視鏡用外科用器具コントローラ314により計算される。例えば、この制御パラメータは、関節装備306を10°回転させるために駆動モータ308のモータシャフトが10回転しなければならないというものでありうる。その後このパラメータが、例えばモータの動作を監視するエンコーダのエンコーダカウントによって表現される基準位置になり、エンコーダカウントは、関節装備306を所望の位置に作動させようとする関節空間または直交座標空間における位置コマンドに基づく。
【0033】
ステップ404では、内視鏡用外科用器具コントローラ314(
図3Aおよび
図3Bを参照)が、計算された基準位置を含む命令を、駆動モータ308および追従モータ310の両方に送る。しかし、駆動モータ308および追従モータ310が受け取られた基準位置を実行しようとするときには、引き腱304と押し腱302とで受ける原動力が異なるために完全な同期は生じない。すなわち、引くアクションはリリースするアクションよりも大きなモータトルクを必要とし、したがって駆動モータ308は追従モータ310よりもゆっくり動く。さらに、関節装備306に連結されたエフェクタが物体によりブロックされること、または関節装備306の関節が機械的限界に達することにより内視鏡用外科用器具300の遠位端が制約されると、駆動モータ308は、さらに引くために引き腱304を伸ばす必要があるため、一層ゆっくり動く。もう1つの欠点は、駆動モータ308がトルク限界に達し、指令された基準位置の前に停止したときにも、追従モータ310は指令された基準運動を継続し、押し腱302をリリースし続けることである。これらのファクターにより、不必要な腱のたるみが生まれる。
【0034】
内視鏡用外科用器具コントローラ314は、
図4Bに示されたフローチャートによりもたらされるアプローチを採用することを通じて、
図4Aに示されたアプローチの欠点に対処する。
図4Bのフローチャートは、
図3Aおよび
図3Bを
図5Aおよび
図5Bとともに参照して説明される。
【0035】
内視鏡用外科用器具コントローラ314のプロセッサ316は、変位範囲内で引き腱304が駆動モータ308により引き出されることにより最大張力を受ける引き腱304で生じる変位範囲を内視鏡用外科用器具コントローラ314に確立させる、メモリ318に格納されたコンピュータプログラムコードを実行する。この変位範囲は、指令位置に作動させるために関節装備306を引く際に引き腱304が進む距離、または引き腱304が駆動モータ308により引き出される長さ内に入る。この変位範囲は、エンコーダカウントによって表現されることもできる。
【0036】
一実施態様では、変位範囲は、駆動モータ308が関節装備306を引く動作を開始したときに始まり、関節装備306がその指令位置に達したときに終わる。この変位範囲506が、0(ゼロ)と駆動モータ308により実行される指令位置軌道のピークとの間の範囲に対応するように
図5Bに示される。
【0037】
別の実施態様では、変位範囲は、追従モータ310の閾値に達するポイントのそばで始まり、関節装備306がその指令位置に達したときに終わる。この追従モータ310の閾値は、押し腱302に追従モータ310のシャフトに接続されたドラムの溝の間を飛び越えさせうる腱のたるみが生じる前に追従モータ310がリリースする押し腱302の算出量である。この変位範囲504は、Cすなわち追従モータ310による押し腱302のさらなるリリースが腱のたるみを引き起こす閾値と、駆動モータ308により実行される指令位置軌道のピークとの間の範囲に対応するように
図5Aに示される。
【0038】
変位範囲は、
図4Bのフローチャートのステップ408で、関節装備306を所望の位置に作動させるためにモータが実行する必要がある制御パラメータが計算されるのとともに、内視鏡用外科用器具コントローラ314により確立される。
図4Aのフローチャートのステップ402と同様に、その後このパラメータが、例えばモータの操作を監視するエンコーダのエンコーダカウントによって表現される基準位置になり、エンコーダカウントは、関節装備306を所望の位置に作動させようとする関節空間または直交座標空間における位置コマンドに基づく。
【0039】
図4Aのフローチャートのステップ402とは対照的に、
図4Bのフローチャートのステップ409では、基準位置が駆動モータ308だけに送られる。駆動モータ308は基準位置を受け取っているため、駆動モータ308は関節装備306を指令位置に作動させるために引き出すべき引き腱304の長さを知らされる。ステップ412では、基準位置を追従モータ310に送る代わりに、駆動モータ308の現在の位置のスケーリングされた程度が代わりに追従モータ310に送られる。これは、追従モータ310に駆動モータ308を少なくとも駆動モータ308の動作間隔について効果的に追跡させる。ステップ412のさらなる詳細は、以下の通りに提供される。
【0040】
追従モータ310による駆動モータ308の追跡は、駆動モータ308に変位範囲内に入る引き腱304の長さを引き出させるコマンドを内視鏡用外科用器具コントローラ314が受け取ったときに生じる(
図5Aの参照番号504および
図5Bの参照番号506を参照)。このようなコマンドが受け取られると、内視鏡用外科用器具コントローラ314は、押し腱302のリリースを制限するよう追従モータ310に命令する。追従モータ310によりリリースされる押し腱302の長さは、変位範囲にわたり駆動モータ308により引き出される引き腱304の長さより小さく、その結果、引き腱304で引き腱304の伸張により引き起こされる張力が経験される。
【0041】
追従モータ310によりリリースされる押し腱302の長さが駆動モータ308により引き出される引き腱304の長さよりも小さいことは、関節装備306がその指令位置に作動させられている動作時間中に生じる。すなわち、関節装備306をその指令位置に作動させるために駆動モータ308および追従モータ310を操作する持続期間全体にわたり、駆動モータ308は追従モータ310のエンコーダカウントよりも高いエンコーダカウントを受ける。これは、不必要な腱のたるみを防止するために、例えば駆動モータ308のモータシャフトが追従モータ310のモータシャフトよりも多く回ることを通じて駆動モータ308を追従モータ310よりもさらに進ませることにより実施される。
【0042】
しかし、この操作ウィンドウの間には、引き腱304の変位が押し腱302の変位とほぼ同じである、すなわちリリースとほぼ同じだけ引き出される期間が存在する。これは、
図5Aに示す実施態様で生じる。
【0043】
図5Aは、追従モータ310によりリリースされる押し腱302の長さを駆動モータ308により引き出される引き腱304の長さよりも小さくする第1実施態様による、関節装備306を指令位置に作動させるように操作されるときに駆動モータ308および追従モータ310のそれぞれに適用される指令位置軌道を示す。これらの軌道は、時間に対する指令モータ位置のグラフにプロットされる。
【0044】
曲線508、510のいずれが駆動モータ308または追従モータ310を表すかは、段階514、516に依存することが理解されよう。段階514の間には、曲線508が駆動モータ308への指令位置軌道を表し、曲線510が追従モータ310への指令位置軌道を表す。次の段階516の間には、曲線510が駆動モータ308への指令位置軌道を表し、曲線508が追従モータ310への指令位置軌道を表す。
【0045】
駆動モータ308および追従モータ310の操作の少なくとも一部分の間には、内視鏡用外科用器具コントローラ314が、リリースされている押し腱302の長さを駆動モータ308により引き出される引き腱304の長さと比較したときにあるスケーリング係数にしたがわせるよう追従モータ310に命令する。この部分は、参照番号512と示される。この部分512の間には、スケーリング係数が1であるように、駆動モータ308が追従モータ310と比較してほぼ等しい量を進む程度まで駆動モータ308と追従モータ310とが同期される。
【0046】
この部分512の間に内視鏡用外科用器具コントローラ314により受け取られる命令は、駆動モータ310に変位範囲504に入らない引き腱304の長さを引き出させるコマンドとして内視鏡用外科用器具コントローラ314により認識される。したがって、駆動モータ308に変位範囲504内に入る引き腱304の長さを引き出させるコマンドを内視鏡用外科用器具コントローラ314が受け取る前に、駆動モータ308および追従モータ310は、引き出される引き腱304の長さがリリースされる押し腱302の長さとほぼ同じになるように操作される。しかし、このコマンドが受け取られた後には、追従モータ310がその後押し腱302のリリースを阻止するよう命令され、これが
図5Aの変位範囲504にわたり生じ、曲線508および510の丸で囲まれた部分518を参照すると追従モータ310が停止することが示されている。
【0047】
変位範囲504にわたり押し腱302のリリースを制限するために内視鏡用外科用器具コントローラ314が追従モータ310に提供する命令により、腱のたるみが防止される。この制限がなければ、押し腱302の連続的リリースにより腱のたるみが引き起こされ、その結果、追従モータ310のシャフトに接続されたドラムの溝に巻き付いた押し腱302の近位端が溝の間を飛び越えうる。したがってこのような溝の間の飛び越えが、追従モータ310の運動範囲を限定し、追従モータ310が押し腱302をリリースするのを防止する程度にまでこの限定が及ぶ
図5Aの実施態様により防止される。
【0048】
追従モータ310が、押し腱302が周りに巻回するドラムに連結されたシャフトを有する実施態様において、リリース方向へのドラムの半回りの運動により腱にたるみを生じ始めた場合には、追従モータ310のシャフトのこの半回りに対応する閾値C、-C(
図5Aに示す)が算出される。この閾値C、-Cは、引き腱304が上述の飛び越える状況を防止するために追従モータ310の進みの長さを限定する役割を果たす。駆動モータ308により受け取られる指令位置軌道が閾値C、-Cを超えるときには、追従モータ310への指令位置軌道は閾値C、-Cに切り詰められる。
【0049】
図5Bは、追従モータ310によりリリースされる押し腱302の長さを駆動モータ308により引き出される引き腱304の長さよりも小さくする第2実施態様による、関節装備306を指令位置に作動させるように操作されるときに駆動モータ308および追従モータ310のそれぞれに適用される指令位置軌道を示す。これらの軌道は、時間に対する指令モータ位置のグラフにプロットされる。
【0050】
図5Aと同様に、
図5Bの曲線524、526のいずれが駆動モータ308または追従モータ310を表すかは、段階520、522に依存することが理解されよう。段階520の間には、曲線524が駆動モータ308への指令位置軌道を表し、曲線526が追従モータ310への指令位置軌道を表す。次の段階522の間には、曲線526が駆動モータ308への指令位置軌道を表し、曲線524が追従モータ310への指令位置軌道を表す。
【0051】
図5Aと同様に、駆動モータ308および追従モータ310の動作の少なくとも一部の間には、内視鏡用外科用器具コントローラ314が、リリースされている押し腱302の長さを駆動モータ308により引き出される引き腱304の長さと比較したときにあるスケーリング係数にしたがわせるよう追従モータ310に命令する。ただし、
図5Bでは、この部分が駆動モータ308および追従モータ310の動作の全期間をカバーする。スケーリング係数は、引き出される引き腱304の長さがリリースされる押し腱302の長さの1より大きい倍数であるように、駆動モータ308に対して代わりに適用されてもよい。
【0052】
したがって、
図5Bの実施態様では、駆動モータ308が引き腱304の引き出しを始めるときに変位範囲506が開始する。すなわち、内視鏡用外科用器具コントローラ314が
図5Bにしたがって操作されるときには、内視鏡用外科用器具コントローラ314は、関節装備306の作動が開始するときに駆動モータ308に変位範囲506内に入る引き腱304の長さを引き出させるコマンドを受け取る。これは、駆動モータ308が引き腱304を
図5Aに示される部分512に対応する長さだけ引き出した後にはじめてこのコマンドが受け取られる
図5Aの実施態様とは対照的である。
【0053】
追従モータ310によりリリースされる押し腱302の長さは、駆動モータ308により引き出される引き腱304の長さと比較してスケーリングされる。ただし、
図5Aとは対照的に、このスケーリングは駆動モータ308および追従モータ310の動作の全期間にわたり適用される。
【0054】
長い可撓性外科用器具では、関節装備306の遠位端に連結されたエンドエフェクタの正確な位置を推定することは、この遠位端にセンサがないときには困難である。さらに、遠位端の高い可搬重量のほうが高い正確さよりも重要である。これは、エンドエフェクタが使用者の望む通りに正確に動いたとしても、十分な可搬重量がなければ、使用者が組織をつかんで持ち上げることにより操縦するタスクを実行できないと考えられるためである。
【0055】
これらの課題を解決し最大の可搬重量を達成するために、
図5Bの実施態様は、たるみを生み出すことなく追従モータ310が押し腱302をリリースすることを通じて張力を緩和する間に駆動モータ308に引き腱304を可能な限り強く引かせる。
図5Bの実施態様はこれを、2つのモータに異なるスケーリング係数を、すなわち高可搬重量を達成するための駆動モータ308のより大きいスケーリング係数と、腱のたるみを避けるための追従モータ310のより小さいスケーリング係数とを適用することにより行う。より大きいスケーリング係数は、モータのトルク限界を考慮に入れて選択されうる。スケーリング係数を選択する1つの方法は、駆動モータ308への最も大きい基準位置が指令されたときに駆動モータ308がトルク限界にちょうど達することである。より小さいスケーリング係数は、追従モータ310への最も大きい基準位置が指令されたときに追従モータ310がCの位置閾値(または運動方向によっては-C)にちょうど達するように選択されうる。
【0056】
図5Aおよび
図5Bの両方の実施態様において、内視鏡用外科用器具コントローラ314は、駆動モータ308の停止を検出するようにさらに構成される。これは、曲線508、510、524および526のそれぞれが駆動モータ308を表す段階において生じる曲線508、510、524および526のピークで生じる。各ピークは、引き腱304により最大張力が経験される変位範囲504、506内のポイントを確立する。
【0057】
図6は、内視鏡用システム10のマスタセクション100(
図1を参照)に位置する入力デバイス602の斜視図を示す。入力デバイス602は、ロボット部材410の1つ以上の関節または関節装備の作動を制御することを通じてロボット部材410(
図2を参照)の動きの制御を可能にする。
図3Aおよび
図3Bを参照すると、これらのデバイス602は、動かされると、関節装備306を作動させるために駆動モータ308および追従モータ310を操作する内視鏡用外科用器具コントローラ314へのコマンド信号を提供する。
【0058】
入力デバイス602とロボット部材の関節とは、マスタスレーブ遠隔操作システムを形成する。運動学的に同一または等価のデバイスがマスタスレーブ遠隔操作システムのために使用されるときには、マスタマニピュレータの1つの関節からスレーブマニピュレータの対応する関節にマッピングする単純なコントローラが容易に実装される。ただし、入力デバイス602とロボット部材410の関節等、運動学的に類似しないデバイスが使用されるときには、マスタマニピュレータ(すなわち入力デバイス602)の作業空間とスレーブマニピュレータ(すなわちロボット部材410の関節)の作業空間とはサイズおよび形状が異なる。
【0059】
運動学的に単純なデバイス、すなわち自由度(DOF;degrees of freedom)が低いマニピュレータでは、2つの作業空間の間でマッピングすることが容易である。自由度がより高いマニピュレータでは、マッピングは簡単ではない。遠隔操作スケーリングの有無にかかわらず、スレーブマニピュレータの同じ位置および向きを再構築するために三次元(3D)空間内のマスタマニピュレータの所望の位置および向きが逆計算される必要がある逆運動学が用いられるときには、複雑さが増す。
【0060】
内視鏡用外科用器具コントローラ314は、以下の
図7および
図8を参照して以下に説明されるように指令された姿勢がスレーブマニピュレータの作業空間内にあることを確保することによって、このような逆運動学の問題を解決する。
【0061】
図7および
図8の各々は、入力デバイス602での動きをロボット部材410の各々の特定の関節の動きに変換する際に内視鏡用外科用器具コントローラ314が通信する
図1の内視鏡用システム10の構成要素の概略図である。これらの構成要素は、駆動機構708と、駆動機構708により作動させられる末端関節706とを有する内視鏡用外科用器具700と、入力デバイス602とである。
【0062】
駆動機構708は、内視鏡用外科用器具700の近位端に取り外し可能に連結され、末端関節706は内視鏡用外科用器具700の遠位端に配置される。駆動機構708は、腱を通じて末端関節706に連結された1つ以上のモータまたはアクチュエータと、末端関節706が属する関節装備の他の関節のそれぞれを作動させるための1つ以上のモータまたはアクチュエータとを含む。したがって、この駆動機構708は、
図3Aおよび
図3Bのモータ308、310および腱302、304を含みうる。別の実施態様では、駆動機構708は、各末端関節706を作動させるために1つのモータのみを使用しうる。末端関節706は、エフェクタが連結されるロボット部材410の関節であり、このエフェクタは、アーム、グリッパまたは電気焼灼術プローブのいずれか1つ等の外科用ツールである。
【0063】
入力デバイス602は、駆動機構708と電気通信し、これにより入力デバイス602の動きが末端関節の作動を引き起こす。上述のように、入力デバイス602は、内視鏡用システム10のマスタセクション100に位置する。
【0064】
図7の実施態様では、マスタ作業空間がスレーブ作業空間上に投影される。これは、以下のように達成される。
【0065】
内視鏡用外科用器具コントローラ314のメモリ318およびプロセッサ316は、入力デバイス602の動きに起因する信号730を内視鏡用外科用器具コントローラ314に検出させるように構成される。信号730は、入力デバイスが動かされている先のマスタ作業空間750内の直交座標位置を提供する。このマスタ作業空間750は、入力デバイス602が中で動かされることができる境界を提供する、すなわちマスタ作業空間は入力デバイス602の全ての考えられる位置を格納する。
【0066】
内視鏡用外科用器具コントローラ314により信号730から抽出される受け取られた直交座標位置は、マスタ作業空間750の直交座標位置と、末端関節706が中で作動させられることができる境界を提供するスレーブ作業空間752の直交座標位置と、マスタ作業空間750内の各直交座標位置をスレーブ作業空間752内の少なくとも1つの直交座標位置にマッピングする(参照番号756を参照)マッピングテーブル(図示せず)とを含むデータベース(図示せず)に対して処理される。
【0067】
データベースに対する処理は、末端関節706を入力デバイス602の検出された動きに対応して作動させるように内視鏡用外科用器具コントローラ314が駆動機構708にコマンドを送るためである。マスタ作業空間750内の各直交座標位置のスレーブ作業空間752内の少なくとも1つの直交座標位置へのマッピングが、入力デバイス602の各位置に対する末端関節706の位置を提供する役割を果たすため、マッピングテーブルにより末端関節706の対応する動きの程度が提供される。したがって、マスタ作業空間750からスレーブ作業空間752への一意のマッピングが確立される。
【0068】
このように、入力デバイス602の受け取られた直交座標位置がデータベースに対して処理された後、受け取られた直交座標位置に対するスレーブ作業空間752内の一致する直交座標位置が決定される。次に、内視鏡用外科用器具コントローラ314が、末端関節706をスレーブ作業空間752内の一致する直交座標位置に作動させるよう駆動機構708に指令する。
【0069】
マスタ作業空間750はスレーブ作業空間752の容積よりも大きい容積を有するため、マスタ作業空間750からスレーブ作業空間752へのマッピングは全射的であり、マスタ作業空間750内の各ポイントは、スレーブ作業空間752内の少なくとも1つのポイントの値である。すなわち、マスタ作業空間750内の複数の直交座標位置がスレーブ作業空間752内の直交座標位置にマッピングされる。
【0070】
マスタ作業空間750内の複数の直交座標位置がマッピングされるスレーブ作業空間752内の直交座標位置は、マスタ作業空間750内の複数の直交座標位置の各々に対してスレーブ作業空間752内の最も良く一致する直交座標位置を提供する。これにより、入力デバイス602が位置するマスタ作業空間750内の任意のポイントに対してスレーブ作業空間752上の最も近いポイントを見つけることができ、これにより入力デバイス602が位置するマスタ作業空間750内のポイントがこのスレーブ作業空間752上の最も近いポイントに投影されることとなる。このような投影は、式
【数1】
にしたがう。ここで、pおよびqはマスタおよびスレーブ作業空間750、752内の位置であり、PおよびQはそれぞれマスタおよびスレーブ作業空間750、752であり、fは、pとqとの間の最小距離の条件下で集合Pから集合Qにポイントをマッピングする関数である。
【0071】
このように、マスタ作業空間750内のポイントをスレーブ作業空間752内のポイントにマッピングする際には、マスタ作業空間750内の位置pとスレーブ作業空間752内の位置qとの間の距離が考慮される。一実施態様では、マスタ作業空間750内の直交座標位置がマッピングされるのは、マスタ作業空間750内のその直交座標位置に最も近いスレーブ作業空間752内の直交座標位置である。すなわち、マスタ作業空間750内の直交座標位置は、スレーブ作業空間750がマスタ作業空間750内にフィッティングされたときに最も近いスレーブ作業空間752内の直交座標位置に一致される。
【0072】
図8の実施態様では、入力デバイス602の操作は、常にスレーブ作業空間内で動くプロキシに結び付けられる。これは、以下のように達成される。
【0073】
内視鏡用外科用器具コントローラ314のメモリ318およびプロセッサ316は、末端関節706が中で作動させられることができる境界を提供するスレーブ作業空間762内の可動トレーサ770を内視鏡用外科用器具コントローラ314に作製させるように構成される。可動トレーサ770は、入力デバイス602が動かされることに応答してスレーブ作業空間762内でシフトすることにより入力デバイス602を追跡するように構成される。
図7と同様に、スレーブ作業空間762は、末端関節706の全ての可能な位置を格納する。
【0074】
次に、内視鏡用外科用器具コントローラ314は、入力デバイス602の動きに起因する信号を検出する。入力デバイス602の動きが検出されると、可動トレーサ770は、スレーブ作業空間762内のある直交座標位置にシフトされ、このシフトの距離は、入力デバイス602の動きの前および後のマスタ作業空間760内の入力デバイス602の直交座標位置に依存する。
図7と同様に、マスタ作業空間760は入力デバイス602が中で動かされることができる境界を提供する、すなわちマスタ作業空間760は、入力デバイス602の全ての考えられる位置を格納する。
【0075】
可動トレーサ770がシフトする距離は、可動トレーサ770の直交座標位置に対する入力デバイス602の直交座標位置に依存する。
【0076】
例えば、シナリオ850は、マスタマニピュレータ(すなわち入力デバイス602)がスレーブ作業空間762内で移動する場合に起こり、それにより、可動トレーサ770の位置および向きは、可動トレーサ770の直交座標位置と一致する入力デバイス602の直交座標位置によって示される、マスタマニピュレータの位置および向きと一致する。すなわち、入力デバイス602がスレーブ作業空間762内で動いたときに、可動トレーサ770はいかなる障害物にもブロックされずにマスタ位置に追従し、このようにして入力デバイス602とほぼ同じ距離を動く。
【0077】
シナリオ880は、入力デバイス602がスレーブ作業空間762から出るときに生じる。可動トレーサ770は入力デバイス602を追跡するため、可動トレーサ770は入力デバイス602によりドラッグされるが、スレーブ作業空間762内にとどまる。このシナリオでは、可動トレーサ770は入力デバイス602と比較して少なくシフトする。
【0078】
このように可動トレーサ770は常にスレーブ作業空間762内に閉じ込められ、マスタ作業空間760における入力デバイス602のいかなる運動にも末端関節706の少なくともある程度の作動が常に存在することとなる。
【0079】
内視鏡用外科用器具コントローラ314は、シフト後のスレーブ作業空間内の可動トレーサの直交座標位置に末端関節706を作動させるよう駆動機構708に指令する。
【0080】
高自由度のシステムでは、末端関節706の遠位端(または
図3Aおよび
図3Bのシナリオでは関節装備306)に連結されたエンドエフェクタの向きが、解かれなければならないもう1つの逆運動学的パラメータである。内視鏡用外科用器具コントローラ314は、入力デバイス602の向きの変化により関節装備306または末端関節706の対応する向きの変化がもたらされるように入力デバイス602の向きを関節装備306または末端関節706の向きと同期させるように構成されることにより、このパラメータを解く。このアプローチは、入力デバイス602と関節装備306または末端関節との間で向きを固定する直接的マッピングである。
【0081】
同期は、
図7を参照して説明された投影技術が実行される前に、または
図8を参照して説明されたプロキシ技術が実行される前に行われうる。
【0082】
図7の場合には、末端関節706の向きがまず入力デバイス602の向きに固定される。次いでスレーブ作業空間752が、入力デバイス602の指令向きに基づいて計算される。入力デバイス602の特定の向きに対してスレーブ作業空間752が計算できない場合を除き、入力デバイス602の全ての向きの位置に対してスレーブ作業空間752が計算される。
【0083】
図8の場合には、スレーブ作業空間752が入力デバイス602の指令向きに基づいて計算される。入力デバイス602がスレーブ作業空間752内で動くときには、可動トレーサ770の位置および向きは入力デバイス602の位置および向きと一致する。入力デバイス602がスレーブ作業空間752から出ると、可動トレーサ770は入力デバイス602によりドラッグされるが、スレーブ作業空間752内にとどまる。
【0084】
内視鏡用外科用器具コントローラ314は、可動トレーサ770を作製する際にスレーブ作業空間762とマスタ作業空間760とが格納されたデータベースに問い合わせるようにさらに構成される。また、内視鏡用外科用器具コントローラ314は、入力デバイス602を追跡するように可動トレーサ770を構成するときに入力デバイス602を可動トレーサ770にリンクし、このリンクのために可動トレーサ770が入力デバイス602の動きによりドラッグされる。入力デバイス602がスレーブ作業空間762の外であるマスタ作業空間760の領域内で動くとき、可動トレーサ770はスレーブ作業空間762の外周に隣接してまたは沿って動く。
【0085】
図7および
図8のいずれについても、マスタ作業空間750、760の直交座標位置およびスレーブ作業空間752、762の直交座標位置が三次元空間における位置を提供する。マスタ作業空間750、760は、スレーブ作業空間752、762の容積よりも大きい容積を有する。
【0086】
物理的制約が一切なければ、使用者はスレーブ作業空間752、762の境界を認識しないと考えられ、スレーブ作業空間752、762から遠く離れたマスタ作業空間750、760の領域内で入力デバイス602を操作するかもしれない。これにより、使用者が入力デバイス602の運動方向を変更してスレーブ作業空間752、762の外からスレーブ作業空間752、762の中に戻ろうとしても入力デバイス602の運動によりロボット部材410の運動が全くもたらされない、反動的効果が引き起こされる。
【0087】
仮想治具を使用して、マスタ作業空間750、760内の入力デバイス602の直交座標位置とスレーブ作業空間752、762内の末端関節706の直交座標位置との間の距離に比例しうる抵抗力の印加を通じて物理的制約を作り出すことができる。このような力は、単純なバネモデルまたはダンパバネモデルに基づきうる。この仮想治具は、内視鏡用システム10(
図1を参照)の構成要素であるフィードバック力モジュールにより実現されうる。フィードバック力モジュールは、末端関節706がスレーブ作業空間752、762の境界の付近のまたは境界を越えた直交座標位置にあるという指示を提供する。フィードバック力モジュールは、入力デバイス602に連結される。フィードバック力モジュールは、入力デバイス602をスレーブ作業空間752、762の境界の中に対応するマスタ作業空間750、760の領域内に保つ抵抗力を生み出すように構成されることにより、物理的拘束を作り出す役割を果たす。内視鏡用外科用器具コントローラ314は、入力デバイス602がスレーブ作業空間752、762の境界に対応するマスタ作業空間750、760の領域の外へさらに動くほど抵抗力を増加させるためにフィードバック力モジュールに信号を伝送するようにさらに構成される。
【0088】
入力デバイス602を通じて伝達される抵抗力は、使用者が容易に気付くものである。抵抗力が増すときには、使用者は行われているアクションについての非常に具体的な意志を有しうる。例えば、使用者が輸送内視鏡320(
図2を参照)からくるビデオ画像を表示するモニタ604(
図6を参照)を通してロボット部材401の運動を見ながら入力デバイス602を操作するときに、末端関節706の限定された可搬重量のためにモニタ604内の末端関節706の動きが予想よりも小さくなりうる。末端関節706の動きを増やしたいと考えれば、使用者は抵抗力の増加にかかわらず入力デバイス602をより多く動かす傾向がある。
【0089】
末端関節706の可搬重量は、駆動機構708のモータにより生成されるトルクの量と直接結び付いている。したがって、末端関節706の直交座標位置とスレーブ作業空間752、762の境界に対応するマスタ作業空間750、760の領域の境界との間の距離の尺度である感知される抵抗力または侵入深さが、モータトルク限界を調節するために用いられうる。
【0090】
図9は、侵入深さに対する駆動モータ308または駆動機構708のモータのトルク限界のグラフを示す。駆動モータ308または駆動機構708のモータのトルク限界は、関節装備306または末端関節706の可搬重量を反映する。関節装備306または末端関節706がスレーブ作業空間752、762内の任意の場所にうまく達するかまたは必要なタスクを実行するのに十分な可搬重量を示す通常の条件下では初期設定トルクが出力される。
図3A、3Bおよび7を参照すると、モータ308、310または駆動機構708が生成できる最大トルク、腱302、304の破壊強度をとりわけ考慮に入れて最大許容トルク限界が設定されうる。
【0091】
トルク限界を臨機応変に調節することには、いくつかの利点がある。第1に、関節装備306または末端関節706での最大可搬重量を引き起こすトルク限界よりも小さいトルク限界を用いることにより、腱302、304等の外科用器具300の構成要素が摩損しにくくなる。これは、関節装備306または末端関節706が使用者の期待通りに動く限り、外科用器具300の遠位端に最大可搬重量があるという要件がないためである。第2に、遠位端の関節装備306または末端関節706でのより大きな可搬重量のためには、駆動モータ308または駆動機構708が可能な限り強く引く必要がある。これにより引き腱304が引き伸ばされ、駆動モータ308または末端関節706が運動方向を変更するときにより大きな反動的効果がもたらされる。したがって、関節装備306または駆動機構708の遠位の運動および可搬重量がタスクを実行するために十分である通常の操作下では、反動的効果および外科用器具300の構成要素に対する摩損が少ないほうが好ましい。しかし、モータ308、310または駆動機構708のトルク限界が恒久的に固定されれば、遠位の可搬重量が低くなるであろう。したがって、反動的効果を減少させることと遠位の可搬重量を増加させることとは相互に対立する。内視鏡用外科用器具コントローラ314が、関節装備306または末端関節706をそれぞれ作動させるために駆動モータ308または駆動機構708により印加されるトルク限界を、フィードバック力モジュールにより生み出される抵抗力の増加の計算された大きさに応答して調節するように構成されることにより、遠位の可搬重量が最大許容可能トルク限界まで増加されるときに受ける反動的効果の程度を制御する際にうまく均衡をとることができる。フィードバック力モジュールのために仮想バネを使用するときには、抵抗力は以下のように計算されうる。まず、入力デバイス602の直交座標位置とスレーブ作業空間752、762の境界との間の距離の侵入深さxが計算される。次に、抵抗力Fが、F=-k*xにより計算され、式中、kは仮想バネのバネ係数である。
【0092】
図9は線形モデルが使用されることを示すが、多項式モデルが実施されてもよいことが理解されよう。モデルは、仮想治具に押し込み始めると、距離に基づいて最大許容可能トルク限界に達するまでトルク限界を増加させ続ける。
【0093】
図10は、
図1の内視鏡用システム10の内視鏡用外科用器具の腱1002が周りに巻回するドラム1000を示す。例えば、
図3Aおよび
図3Bに示された引き腱304または押し腱302のいずれかがドラム1000の周りに巻回することができ、ドラム1000は駆動モータ308および追従モータ310のうちの1つにより作動させられる。したがってドラム1000は、
図3Aおよび
図3Bを参照して記載された内視鏡用外科用器具300の構成要素であってもよく、または別の内視鏡用システムの内視鏡用外科用器具とともに使用されてもよい。
【0094】
ドラム1000は、ハウジングに回転可能に連結される。ハウジングは、簡略化のために図示されていない。ドラム1000は、ドラム1000の各端に位置するベアリング1006を通じてハウジングに回転可能に連結される。このハウジングは、アダプタの一部である。アダプタも、簡略化のために図示されていない。アダプタは、
図3Aおよび
図3Bの内視鏡用外科用器具300では駆動モータ308と追従モータ310とを含むモータボックスから取り外し可能である。したがってこのアダプタは、内視鏡用外科用器具(または短縮形の「器具」)の腱を作動させるためのモータシャフトを連結するためのものである。
【0095】
ロボット内視鏡用システムでは、アダプタが帰属する内視鏡用外科用器具が再使用可能である場合にはアダプタがクリーニングおよび再処理のために内視鏡用システムの残部から操作可能に取り外し可能であること、または一回使用の内視鏡用外科用器具の場合には処分可能であることが有利である。内視鏡用システムの残部より耐用年数が短い器具の設計では、器具部分のコストを低く抑えるために駆動アクチュエータを内視鏡用システムの残部内に保持することも有利である。
【0096】
図3Aおよび
図3Bを参照して記載されたように、反作用する一対の腱が、アクチュエータから内視鏡用外科用器具の遠位先端に力および運動を伝達する。アダプタがシステムのアクチュエータから取り外された後に、腱にあるレベルの張力が維持されなければならない。自由度あたり1つより多いアクチュエータを有する器具の設計では、器具がアクチュエータから取り外されると腱の張力が失われる。腱の張力が失われると、腱が器具の中で絡まって腱の損傷がもたらされうる。
【0097】
特許文献1では、取り外しの時点で存在する一切の張力が維持されるように、自動的に係合してアクチュエータからの器具の取り外し時に腱の位置を固定するロック要素を実施することにより、このような腱の損傷に対処する。前記ロック要素は、摩擦特徴部またはラチェット特徴部を含む。次いで、前記ロック要素は、アクチュエータ上への器具の再取り付け時に自動的に機械的に引っ込められる。
【0098】
このようなロック要素は、2つの主な欠点を有する。
第1の欠点は、取り外しの時点で腱の位置を固定することにより、器具の遠位先端が取り外し時にその現在の位置にロックされることである。器具は、医療部位に達するために管腔を通り抜けなければならない。器具の遠位先端が取り外しの時点でまっすぐでなかった場合、または把持ジョー等の遠位先端の作動可能要素が管腔の直径を越えて突出する場合には、器具を管腔から取り除くことが困難または不可能にさえなる。
【0099】
第2の欠点は、アクチュエータ上への器具の設置前に、使用者が器具を取り扱っている間に意図せずにロック要素をリリースして、腱の張力の損失およびその後の腱の損傷がもたらされうることである。
【0100】
図10を参照すると、自由度あたり1つより多いアクチュエータを有する取り外し可能な器具の設計において生じる腱の損傷を最小化または排除するために、内視鏡用外科用器具の腱1002を作動させるためのモータシャフトを連結するためのアダプタは、ドラム1000にトルクを印加するように設けられるエネルギ蓄積機構1004を含む。これはまた、エンドエフェクタ等の器具の遠位先端の作動要素を、器具のその管腔を通した挿入および抜き出しをし易くするために弛緩したままにさせることにより、現在の技術水準の欠点を排除しようとする。
【0101】
エネルギ蓄積機構1004は、アダプタをそのアクチュエータから取り外すことにより引き起こされる腱1002の張力のリリースによりドラム1000が回転するときにエネルギを蓄積する任意のデバイスを含みうる。エネルギ蓄積機構1004はその後、エネルギ蓄積機構1004にエネルギを蓄積させているのとは反対の方向に力を及ぼすことによりエネルギを消散させようとする。
【0102】
したがって、腱1002の張力のリリースはドラム1000を回転させて腱1002を巻き出させるが、エネルギ蓄積機構1004が腱1002の巻き出しを阻止するトルクを印加する。すなわち、エネルギ蓄積機構1004は、腱1002をドラム1000の周りに巻回する方向にトルクを印加するように置かれまたは設けられる。
【0103】
図11Aは、エネルギ蓄積機構1004が存在しない実施態様の概略図を示す。アダプタハウジングドラム1100がそのアクチュエータから取り外されたときには、これらのドラム1100には張力のリリースを阻止するデバイスがないことから、張力のリリースにより腱1002がたるむ。
【0104】
他方で、
図11Bは、エネルギ蓄積機構1004が存在する実施態様の概略図を示す。アダプタハウジングドラム1000A、1000Bがそのアクチュエータから取り外されたときには、腱1002は、ドラム1000A、1000Bの各々の上のエネルギ蓄積機構1004により提供されるトルクにより十分に張力を与えられたままである。したがって、腱1002は緊張したままである。腱1002に効果的に予張力を与えるために、エネルギ蓄積機構1004は、ドラム1000Aに印加されるトルクがドラム1000Bに印加されるトルクとは反対方向であるようにドラム1000Aの各々に設けられまたは置かれることが理解されよう。したがって、エネルギ蓄積機構1004の追加により、内視鏡用外科用器具内の腱1002の絡まりが軽減される。
【0105】
図10に戻ると、エネルギ蓄積機構1004がドラム1000およびアダプタのハウジングに留められるいくつかのやり方がある。例えば、エネルギ蓄積機構1004の一端1004Dはドラム1000に連結され、エネルギ蓄積機構1004の反対端1004Hはハウジングに連結される。
【0106】
同様に、エネルギ蓄積機構1004のいくつかの可能な位置がある。例えば、エネルギ蓄積機構1004は、ドラム1000の一部分の周りに配置される。あるいは、エネルギ蓄積機構1004は、ドラム1000のいずれかの端に配置される。
【0107】
一実施態様(図示せず)では、エネルギ蓄積機構1004は液圧デバイスであり、これにより、アダプタの取り外しによる腱1002の巻き出しが液圧デバイス内の液圧を加圧する。次いで、液圧デバイスは、液圧を加圧しているのとは反対方向の力を印加することによりこの圧力を緩和しようとする。
【0108】
別の実施態様では、エネルギ蓄積機構1004は弾性的可撓性部材であり、これにより、アダプタの取り外しによる腱1002の巻き出しが弾性的可撓性部材を変形させる。次いで、弾性的可撓性部材は、変形を引き起こしているのとは反対方向の力を印加することにより元の形状に戻ろうとする。
【0109】
図10に示された実施態様では、エネルギ蓄積機構1004は、弾性的可撓性部材すなわち捻りバネの一実現例である。さらに、
図10において使用される捻りバネは、コイル構成である。ただし、ぜんまい構成、コイル構成または軸方向に捩れた構成等、他の構成が可能である。
【0110】
ドラム1000上の捻りバネは、内視鏡用外科用器具がモータボックス内に位置するアクチュエータから外されたときにドラム1000の周りに巻き付いた整った腱1002を維持するために最小限の腱の張力を提供するように設計される。これは、自由度あたり2つのモータのシステムにおいて器具がモータボックスから外されたときに絡まりを引き起こしうる腱1002のドラム1000からの飛び出しを防止するためである。
【0111】
実験データから、捻りバネにより腱1002に印加される最適なトルクは約0.5N~3Nであると決定された。捻りバネにより印加されるトルクが高すぎる予張力をもたらせば、例えば
図3Aおよび
図3Bの駆動モータ308または追従モータ310によるドラム1000の回転を妨げるであろう。
【0112】
さらに、捻りバネは、腱1002の進みおよびドラム1000の直径に応じてドラム1000の0.25~2.0回りでありうる内視鏡用外科用器具の運動範囲にわたり可能な限り一定の予張力を有するように設計される。低い捻り定数を達成するために、捻りバネは、高い縦横比につながるいくつかのコイルを有するように製造される。縦横比(参照番号1010を参照)は少なくとも14であることが、ドラム1000の運動範囲にわたり低い捻り定数を生み出すことが分かった。
【0113】
整った腱1000がドラム1000の周りに巻き付くのをさらに促進するために、ドラム1000は、腱1002が係合する少なくとも1つの溝1012を有する。溝1012は、ドラム1000の一部分の上に提供される。任意に、溝1012はドラム1000の直径に沿って延在する。
図10に示す場合等、複数の溝1012がある場合には、ネジ山1014がドラム1000上に形成される。ネジ山1014は、腱1002が係合する複数の溝1012を提供する。
【0114】
通常の内視鏡手技では、輸送内視鏡(
図2に示す輸送内視鏡320を参照)が挿入段階の間に手持ちされ、輸送内視鏡(または短縮形「内視鏡」)が内視鏡手技の間にその細長軸に沿ってロールされて、その遠位に配置されたカメラの視界およびその隣接するエンドエフェクタが医療部位に対して好ましい向きに向けられる。例えば、内視鏡粘膜下層剥離術手技では、手技を始める前に切除されるべき組織がカメラ画像で6時の位置に並ぶまで内視鏡320をその細長軸の周りに回転させることが一般的に行われる。このような手持ち段階の間は、内視鏡を所望の回転の向きに操縦することは簡単である。
【0115】
しかし、所望の医療部位に達した後、および内視鏡を好ましい回転の向きにポジショニングした後には、内視鏡の近位端およびロボット部材をドッキングステーションに取り付けるときに手持ちの内視鏡とその支持されたロボット部材(
図2に示すロボット部材410を参照)とを揃えるために時間が必要である。ロボット部材が自らを内視鏡の回転の向きに揃えるための回転の向きの自由度を有しない場合には、ロボット部材の固定された回転の向きに一致するように内視鏡がロールされなければならない。このような内視鏡の回転により、内視鏡の好ましい遠位の回転の向きが失われる。換言すれば、内視鏡およびロボット部材をドッキングステーションに取り付けた後に、内視鏡とロボット部材とが回転の向きにおいてさらに揃えられなければならない。
【0116】
上記の問題を解決するために、現在のロボット内視鏡用システムは、クランプを利用するか、または助手が内視鏡部材の可撓性細長シャフトを細長部材に沿った中ほどの身体に入る付近で好ましい向きに保持する。その後、内視鏡の近位の回転の向きをロボット部材の固定された回転の向きに揃えるために、使用者が可撓性細長シャフトの近位端を捩りうる。
【0117】
しかし、このような技術は2つの主要な欠点を有する。第1に、内視鏡の可撓性細長シャフトは、ロール運動およびロールトルクがその近位端からその遠位端に正確に伝達されうるように、その軸の周りで捻り剛性であるように設計される。したがって、細長シャフトにロール捩りを発生させると細長部材にかなりの応力が加わり、それによりエフェクタ、腱等の中に収容された構成要素が損傷されうる。第2に、このような技術は臨床的リスクももたらす。この技術は、捩られた細長シャフトにかなりの蓄積エネルギを残す。細長シャフトの回転の向きがクランプによりまたは助手により適切に留められないと、回転の向きに激しくスリップして、内視鏡遠位端の突然の無制御のロールの急動をもたらしうる。この運動は、急動の時点での手技および行為の種類によっては患者に危険でありうる。
【0118】
図2を参照すると、ドッキングステーション500は、ドッキングの間に好ましい遠位先端の向きが失われることを防止し、現在のシステムにおける前述の捩り技術の欠点もない。内視鏡ドッキングステーション500は、ドッキングの間にロボット部材410の回転の向きが内視鏡320の回転の向きに一致することを可能にする。
【0119】
図12は輸送内視鏡ドッキングステーション500の側面図を示し、
図13は例示的実施形態による
図12の輸送内視鏡ドッキングステーション500の斜視図を示す。
【0120】
輸送内視鏡ドッキングステーション500は、回転可能ベース1204を有するプラットフォーム1210を含む、すなわちベース1204は、プラットフォーム1210に回転可能に連結される。
【0121】
ベース1204は、輸送内視鏡320を装着するための内視鏡取り付け面1208を有する。輸送内視鏡320は、シャフト1200とアダプタ1201とを含む少なくとも1つのロボット部材410を担持するためのものである。ベース1204は、輸送内視鏡320により担持されるロボット部材410を作動させるための駆動機構1260を装着するための駆動機構取り付け面1207も有する。内視鏡取り付け面1208が平面である場合には、ベース1204の内視鏡取り付け面1208の平面に直角な軸1212の周りにベース1204が回転可能に連結される。
【0122】
ベース1204は、駆動機構1260のアクチュエータアセンブリが連結されるスタンド1262を含む。
図12では、アクチュエータアセンブリは、少なくとも1つのロボット部材410を作動させるように構成された複数のアクチュエータ1203を含むアクチュエータハウジング1202により実現される。
図12および
図13では、アクチュエータハウジング1202とアクチュエータハウジング1202のアダプタ取り付け面1206に連結するアダプタ1201とが、駆動機構1260の一部を形成する。アダプタ1201は、アクチュエータ1203の少なくとも1つをロボット部材410に連結するためのものである。駆動機構1260の一部分(アクチュエータハウジング1202等)は、ベース1204と一体であってもよく、駆動機構1260の残り(アダプタ1201等)は駆動機構1260の一体化された部分に取り外し可能に取り付け可能である。
【0123】
輸送内視鏡320が内視鏡取り付け面1208に取り付けられた後、ロボット部材410が内視鏡320に導入されて作業部位に達しうる。ロボット部材のシャフト1200を内視鏡320に挿入後、ロボット部材のアダプタ1201がアダプタ取り付け面1206に取り付けられる。取り付け後には、ロボット部材410と内視鏡320とがベース1204と一体化されたユニットとして一緒に回転する。換言すれば、後の手技の間のベース1204の回転は、ロボット部材410と内視鏡320との間の相対運動を一切もたらさない。ロボット部材410と内視鏡320とは、医療部位に対して所望の回転アライメントに1つのユニットとして一緒に回転させられうる。
【0124】
輸送内視鏡ドッキングステーション500は、プラットフォーム1210に対するベース1204の回転を促進するように設けられるロータリ機構1252をさらに含みうる。ロータリ機構1252は、ベース1204がプラットフォーム1210に対して円滑に回転できるようにすることにより回転を容易にする。ロータリ機構1252は、ボールベアリング装備、ローラベアリング装備、および潤滑ワッシャ装備のうちのいずれか1つ以上等の摩擦低減要素を使用して実現されうる。
図12に示される実施形態では、ロータリ機構1252は、ベース1204の回転を促進するためのボールベアリング機構により実現される。
【0125】
ロータリ機構1252は、ベース1204とプラットフォーム1210との間に配置される。
図12に示される実施形態では、ロータリ機構1252は、二組のボールベアリング装備により実現される。ボールベアリング装備の一方は、ベース1204と、ベース1204の駆動機構取り付け面1206にベース1204が連結する箇所に隣接するプラットフォーム1210の一部分との間に配置される。ボールベアリング装備のもう一方は、ベース1204と、ベース1204の内視鏡取り付け面1208にベース1204が連結する箇所に隣接するプラットフォーム1210の一部分との間に配置される。ただし、ロータリ機構1252は、ベース1204がプラットフォーム1210に連結する箇所までの部分に沿った1つだけのボールベアリング、ローラベアリングまたは潤滑ワッシャ装備により実現されてもよいことが理解されよう。したがって、ロータリ機構1252は、ベース1204とベース1204の駆動機構取り付け面に隣接するプラットフォーム1210との間、ベース1204とベース1204の内視鏡取り付け面に隣接するプラットフォーム1210との間、またはその両方に配置されうる。
【0126】
輸送内視鏡ドッキングステーション500は、ベース1204のプラットフォーム1210に対する回転をロックするように設けられるロック機構1218を含みうる。ロック機構1218は、摩擦係合を通じてベース1204をロックするように構成されるブレーキパッド、クランプならびにラッチおよびボールト装備等の電気的に稼働するデバイスを含むことができ、これによりベース1204の回転が防止される。
【0127】
ロック機構1218は、ロック機構1218が電気的に作動していないときにベース1204をロックするように構成されてもよい。一実施態様では、ロック機構1218は、初期設定でベース1204の回転を防止するように設計される。この初期設定状態は、ロック機構1218がベース1204を回転のためにリリースするように操作されていないときに生じる。ベース1204のリリースは、ロック機構1218を制御するインタフェースを適切に操作することにより達成され、それによりロック機構1218がその後電気的に作動する。インタフェースは、ロック機構1218が一定期間休止状態のままである場合にベース1204をロックするようにさらに構成されうる。ベース1204の回転は内視鏡手技のほんのわずかな時間にわたり生じるため、これによりベース1204の回転の向きが内視鏡手技の間に意図せずにシフトされることを防止することにより臨床的リスクの観点から安全が確保される。
【0128】
使用者は、回転の向きのアライメントが完了した後に、ロック機構1218を稼働させてベース1204をロックしうる。内視鏡320の回転の向きをロボット部材410と揃えた後(
図2を参照)、内視鏡用システム10から電力が取り除かれてもベース1204のさらなる回転が生じないように、ロック機構1218がベース1204を自動的にロックするように構成されうる(
図1を参照)。
【0129】
輸送内視鏡ドッキングステーション500は、ロック機構1218をベース1204に連結するコネクタ1216を含む。コネクタは、タイミングベルト装備、ギア装備、またはアームリンケージのうちのいずれか1つでありうる。
図12に示される実施形態では、コネクタ1216は、ベルトおよびプーリ装備を含むタイミングベルト装備により実現される。プーリ装備は、周りにベルトが装着される少なくとも2つのタイミングプーリを含む。加えて、コネクタ1216は、ロック機構1218に連結されるシャフト1220を有するギア1214を含み、ベルトがロック機構1218をベース1204に連結する。
【0130】
内視鏡用手技の間には、ロボット部材が所望の位置になるように回転される。輸送内視鏡320が、ベース1204の駆動機構取り付け面1206に接続されるアダプタ1201と一緒にベース1204の内視鏡取り付け面1208に接続されると、ロータリ機構が輸送内視鏡320のロールをロボット部材の回転の向きと揃えられるように調節する役割を果たす。
【0131】
輸送内視鏡320およびアダプタのドッキングの後には、ロック機構1218のデフォルト状態が係合してベース1204をロックする前に輸送内視鏡ドッキングステーション500の意図しない回転運動がありうる。輸送内視鏡ドッキングステーション500の意図しない回転運動は、使用者が外科手技の後に輸送内視鏡320とアダプタ1201とをロック解除状態にロック解除する必要があるときにも生じうる。このような意図しない回転を限定するために、ロータリ機構は、ベース1204の回転を容認可能な速度に減衰させるための減衰機構1222を含みうる。減衰機構1222は流体ロータリダンパを含むことができ、これは一実施態様では、
図12に示すように、ロック機構1218をベース1204に連結するコネクタ1216に連結される。流体ロータリダンパは流体を含むことができ、これにより流体粘性によってコネクタ1216の回転が制御および/または減衰される。このようにして、ベース2014の回転が使用者により意図せずにロック解除された場合に、輸送内視鏡ドッキングステーション500の回転が適切に制御されうる。
【0132】
他の実施形態では、減衰機構1222は、輸送内視鏡ドッキングステーション500の回転を制御しうる他のタイプのロータリダンパを含んでもよい。他のロータリダンパの例は、ロータリ摩擦ディスク装備、ロータリ摩擦ギアラック装備、空気式ロータリダンパおよび/または粘弾性ロータリダンパのいずれか1つを含みうる。さらに、ベース1204の回転慣性が輸送内視鏡ドッキングステーション500の回転を減衰させるのに十分でありうるため、減衰メカニズムが必要ないこともありうることが理解されよう。
【0133】
加えて、輸送内視鏡ドッキングステーション500は、
図12に示すように、内視鏡のドッキングの間にアクチュエータハウジング1202に取り付けられうるハンドル1222を含みうる。輸送内視鏡ドッキングステーション500上に使用者に近接してハンドル1222を有することにより、輸送内視鏡ドッキングステーション500のロック解除状態におけるより良好な手動制御が可能になりうる。
【0134】
アダプタ1201の近位端の中心を通って走る軸が、ベース1204の回転軸1212と揃えられうる。この垂直のアライメントは、輸送内視鏡ドッキングステーション500の軸外質量中心による軸1212の周りの回転モーメントを防止する。すなわち、輸送内視鏡ドッキングステーション500の質量中心が軸1212上にない場合には、軸1212が垂直でなければ軸1212の周りの質量中心の回転モーメントが生み出される。このような回転モーメントは、ベース1204の意図しない回転を引き起こす。加えて、垂直に揃えられた軸1212は、ベース1204を意図せずに垂直軸1212の周りで回転させない。
【0135】
あるいは、輸送内視鏡ドッキングステーション500の質量中心は、残るロールモーメントによりロック解除状態での輸送内視鏡ドッキングステーション500の容認できない急動運動が一切もたらされないように、軸1212にかなり近くてもよい。
【0136】
身体の中で医療目的を達成するために使用されるロボット医療ツールが、輸送内視鏡320の中に担持される。ロボット医療ツールは、近位端と遠位端とを有するシャフトと呼称されることもある細長部材を有する(
図12のシャフト1200と比較されたい)。ロボット部材(
図2のロボット部材410を参照)が細長部材の遠位端に提供され、切開部を通して、自然開口部を通して、または補助ガイド管腔を通して身体の中に挿入されて医療部位に達するツールの部分である。シャフト1200は、剛直性でも可撓性でもよい。
【0137】
切開部を通した、自然開口部を通した、または補助ガイド管腔を通した挿入のため、ロボット医療ツールは通常、少なくとも回転自由度と並進自由度とを有する。回転自由度は、細長部材の長手方向軸の周りのツールの回転として定義される。並進自由度は、細長部材の長手方向軸に沿ったツールの動きとして定義される。
【0138】
切開部のサイズを最小化するため、または小さな自然開口部を利用するために、ロボット医療ツールを制御するためのロボットアクチュエータ(
図12のアクチュエータ1203と比較されたい)は患者の外部に位置することが多い。外部アクチュエータが使用される場合には、近位端のロール位置および並進位置を調節することにより、細長部材の遠位端の回転位置および並進位置が制御される。細長部材は回転自由度において完全に捻り剛性であることはできないため、細長部材の長手方向軸の周りの捩れによる遠位端のロール位置の誤差を生じさせる。同様に、細長部材は並進自由度において完全に剛性であることはできないため、細長部材の長手方向軸に沿った圧縮または伸びによる遠位端の並進位置の誤差を生じさせる。
【0139】
これらの遠位端の位置誤差は、以下の条件下で特に重大である:細長部材が長いかまたは可撓性であるとき、細長部材が医療部位に達するために通り抜ける切開部に対して、自然開口部に対して、または補助管腔に対して動いているときに摩擦を受けるとき、およびツールが医療目的を達成するために相互作用する組織により大きな力を及ぼされるとき。
【0140】
遠位端の位置誤差は、1つの自由度がある長さの時間にわたり固定された所定の位置に保持されるべき場合に、使用者にとって特に好ましくない。この状況の1つのそのような例は、ロボットツールの動きの方向がツール操作者により指令された動きの方向に対応するように遠位端の回転の向きの位置を制御することを含む。例えば、ツール操作者がロボットツールの遠位先端の上方方向への関節屈曲を指令した場合に、遠位端の回転の向きに誤差があれば、遠位端の関節屈曲の方向は上方およびやや左または上方およびやや右でありうる。これらの誤差は、使用者にとって気が散り苛立たしいものである。
【0141】
遠位部分の誤差が重要であるもう1つの状況は、補助ガイド管腔を通して医療部位に導入される器具に関する。このような装備では、ツール操作者が使用前に基準並進位置を設定できることが望ましい。ツールが基準並進位置でガイド管腔から完全に出ないと、ガイド管腔がツールの操作を妨害するか、またはツールの操作によりガイド管腔が損傷されうる。一体型補助ガイド管腔を有する胃腸内視鏡の場合には、ガイド管腔の遠位端は一体型カメラの視野の外に置かれる。これらの場合には、ツール操作者が基準並進位置を設定する際に遠位先端の並進誤差を手動で補償することは困難である。
【0142】
現在、遠位先端の位置誤差を最小化するための2つの主なアプローチが存在する。遠位端の位置誤差を最小化するための第1の既知の戦略は、細長部材を可能な限り剛性にして、細長部材のロール方向の捩れを最小化し、細長部材の並進方向の圧縮および伸びを最小化することからなる。しかし、このような戦略にはいくつかの欠点がある。細長部材が医療部位への非直線的経路をたどるために可撓性を維持しなければならないときには、細長部材をより剛性にすることが不可能でありうる。これは、敏感な解剖学的組織の周辺に達するロボットツール、または静脈系、尿管、気道管もしくは胃腸管のような身体の自然の管腔をたどるロボットツールに当てはまることが多い。さらに、より剛性の細長部材はより大きな外径を要することが多く、これにより医療部位へのアクセスがより侵襲的または困難になりうる。加えて、より剛性の細長部材は、経済的に実行不可能な特殊な材料または特殊な製造方法の使用を要しうる。
【0143】
第2の既知の戦略は、遠位端の位置を測定し、細長部材の近位端の運動により遠位端の位置誤差を自動的に補償するための少なくとも1つのセンサを含む制御システムを使用することからなる(特許文献2に開示される通り)。このようなアプローチには、いくつかの欠点がある。第1に、ツールの制御されない運動につながる位置の過剰補償または過少補償を回避するために、センサが器具の遠位端の位置を高い正確度で検出しなければならない。器具の制御されない運動は、器具の機能および状況次第で患者にとって非常に危険でありうる。第2に、センサが有用であるためには器具の遠位端の位置を確実に検出しなければならない。ほんの少しの時間であっても位置を誤って感知するセンサは、使用者にとって苛立たしいものとなる。確実な位置感知を困難にする多くの問題がある。光学感知方法の場合には、追跡される位置標的が体液または固形物を含む医療環境中の材料により見えなくなりうる。磁気および電磁位置感知方法は、電磁的にノイズの多い環境による誤差を排除しなければならない。特に高電圧電気焼灼術ツールは、これらの方法による確実な感知を困難にする。最後に、ツールにセンサまたはセンサ標的を追加すると、内視鏡用システムのコストが増加する。
【0144】
上記の短所は、細長部材上に配置された可視性の高い位置インジケータ特徴部を有する内視鏡用装置を有することにより対処される。これらの可視位置インジケータ特徴部は、内視鏡用装置の遠位端に十分に隣接して位置する。これらの可視位置インジケータ特徴部は、ツールを回転自由度および並進自由度のうちの少なくとも1つにおける所定の位置に揃えるために使用者を視覚的に導く。
【0145】
図14は、例示的な実施形態による、これらの可視位置インジケータ特徴部を有する2つの内視鏡用装置1400の斜視図を示す。各内視鏡用装置1400は、輸送内視鏡(
図12および
図13に示される輸送内視鏡320を参照)のシャフトへの挿入のための細長部材(図示せず)と、細長部材の遠位端に連結された外科用ツール1402、1402aとを含む。外科用ツール1402、1402aは、外科用ツール1402、1402aの反対端、すなわち外科用ツール1402、1402aが細長部材に連結する箇所と反対の端にエフェクタ1404、1404aを有する。
【0146】
可視特徴部1406、1406aが、細長部材、外科用ツール1402、1402a、またはその両方の上に提供される。可視特徴部1406、1406aの位置は、使用中の可視特徴部1406、1406aの位置がエフェクタ1404、1404aの回転の向きを指示するように、エフェクタ1404、1404aの回転の向きに対して固定される。
【0147】
可視特徴部1406、1406aは、可視特徴部1406、1406aが上に位置する構造体の残りから視覚的に区別可能な任意のアイテムである。可視特徴部1406、1406aが視覚的に区別可能であるために、一実施態様では、可視特徴部1406、1406aが細長部材の外面のエリアの一部分のみ、または外科用ツール1402、1402aの外面のエリアの一部分のみを占有する。この趣旨で、可視特徴部1406、1406aは、細長部材もしくは外科用ツール1402またはその両方の長さに沿った一部分にわたって延在しうる。可視特徴部1406は、細長部材もしくは外科用ツール1402またはその両方の断面の周囲に沿った一部分にわたって延在してもよい。細長部材の外面および外科用ツール1402、1402aの外面の残りは不変のままであり、可視特徴部1406、1406aの識別性と比較して特徴がない。
【0148】
細長部材または外科用ツール1402、1402aの外面の上に提供される可視特徴部1406、1406aは、例えばレーザーマーキング、エンボス加工または表面テクスチャ加工を通じて、細長部材の外面または外科用ツール1402、1402aの外面の材料の上に形成されうる。あるいは、可視特徴部1406、1406aは、消えない着色剤等の添加剤、または、細長部材の外面もしくは外科用ツール1402、1402aの外面の上に留められた視覚的に区別される特徴部を各々有する1つ以上の層の施用により実現されてもよい。
【0149】
製造の間には、可視特徴部1406、1406aおよびエフェクタ1404、1404aは、可視特徴部1406、1406aの位置がエフェクタ1404、1404aの回転の向きに対して固定されるように、所定のアライメントになるように設けられる。例えば、エフェクタ1404は2つのアームを有するグリッパであり、各アームが180°離間される。可視特徴部1406は、2つのアームのいずれかから90°で外科用ツール1402の外面に沿って位置する長手方向ラインである。この長手方向ラインは操作中に見えた場合にはエフェクタ1404の向きの指示を提供する。エフェクタ1404、1404aは、可視特徴部1406、1406aと一緒に回転する。
【0150】
可視特徴部1406、1406aがエフェクタ1404、1404aの回転の向きのインジケータである場合、可視特徴部1406、1406aは、エフェクタ1404、1404aに隣接して、細長部材が外科用ツール1402、1402aに連結する箇所に隣接して、またはその両方に配置されうる。これは、エフェクタ1404、1404aが並進可能である一方で、エフェクタ1404、1404aを監視するために使用されるカメラの位置が固定されるためである。エフェクタ1404、1404aがカメラから離れるように並進した場合、エフェクタ1404、1404aがカメラにより供給される画像からはっきり見えなくなりうる。このシナリオでは、今度は細長部材がカメラの視界に入り、これにより、細長部材が外科用ツール1402、1402aに連結する箇所に隣接して提供される可視特徴部1406、1406aの位置が今度はエフェクタ1404、1404aの向きの指示を提供する。同様に、可視特徴部1406、1406aをエフェクタ1404、1404aに隣接して置くことにより、エフェクタ1404、1404aの先端がどこに面するかが重要であるシナリオにおいてエフェクタ1404、1404aの向きの指示が提供される。エフェクタ1404、1404aが電気焼灼術プローブであるときには、電気焼灼術プローブがカメラの視界に入っていてもその先端がカメラからはっきりと見えない可能性がある。したがって、この場合はエフェクタ1404、1404aに隣接して提供される可視特徴部1406、1406aの位置がエフェクタ1404、1404aの向きの指示を提供する。
【0151】
上述したカメラは、使用者が細長部材および/または外科用ツール1402、1402aの可視特徴部1406、1406aを観察することができるように、外科用ツール1402、1402aの遠位端に十分に隣接して配置された使用者の視野が明確な使用者の視点を提供する。一実施形態では、カメラは、補助ガイド管腔に取り付けられてもよく、ガイド管腔の遠位端からオフセットされた固定された位置および向きを有する。使用者の視野は、使用者に近接して配置されたコンピュータスクリーン等の表示デバイスでありうる。
【0152】
外科用ツール1402、1402aおよびエフェクタ1404、1404aが細長部材の近位端から遠位端に通されるときには、外科用ツール1402、1402aおよびエフェクタ1404、1404aが細長部材に対して10°外れるようにロールされうる。換言すれば、外科用ツール1402、1402aおよびエフェクタ1404、1404aの可撓性のため、手動挿入の間に外科用ツールおよびエフェクタが確実にロールしたり捩れたりしないようにすることは困難である。外科用ツール1402、1402aおよびエフェクタ1404、1404aが細長部材の遠位端から出るときに、細長部材、外科用ツール1402、1402aまたはその両方の上に提供された可視特徴部1406、1406aの位置が、細長部材に対する外科用ツール1402、1402aおよびエフェクタ1404、1404aのロール度を提供する役割を果たす。
【0153】
可視特徴部1406、1406aは、内視鏡用手技を有効に遂行するためにエフェクタ1404、1404aが医療部位で正しい向きにあることを使用者に指示する役割も果たしうる。例えば、エフェクタ1404は、3つのグリッパアームからなってもよく、可視特徴部1406は、3つのグリッパアームのうちの1つに隣接する赤色のマークであってもよい。使用者が、内視鏡用手技を遂行する前にその特定のグリッパアームが使用者の視野内で90°に揃えられることを要求する。細長部材を通してグリッパアームを延在させた後には、使用者はグリッパアームを見ることはできるが、可視特徴部1406(すなわち赤いマーク)は使用者の視野において視認できない(すなわちグリッパアームは理想的位置を過ぎて回転される)。次いで使用者は、赤いマークが使用者の視野において90°に揃えられるようにエフェクタ1404を回転させる。加えて、可視特徴部1406は、エフェクタ器具パネルでの使用者の入力にしたがって正しい方向にグリッパアームが回転することを指示する役割も果たしうる。
【0154】
一実施形態では、可視特徴部1406、1406aがエフェクタ1404、1404aから予め定められた長さに位置し、その結果可視特徴部1406、1406aがエフェクタ1404、1404aの並進の尺度を提供するように、可視特徴部1406、1406aが細長部材または外科用ツール1402のいずれかまたはその両方の上に提供されうる。エフェクタ1404、1404aおよび細長部材の製造公差のため、エフェクタ1404、1404aの並進の向き付けが必要でありうる。
【0155】
さらに、可視特徴部1406、1406aは、内視鏡用手技を有効に遂行するためにエフェクタ1404、1404aが医療部位で正しい並進長さにあることを使用者に指示する役割も果たしうる。例えば、エフェクタは電気焼灼術プローブからなってもよく、内視鏡用手技を遂行する前に細長部材から離れるように2メートル延在させられることが要求される。この場合には、可視特徴部は、外科用ツールの2メートルのマークのところに位置する赤色のマークとしうる。電気焼灼術プローブが細長部材を通して延在させられた後には、使用者は細長部材および電気焼灼術プローブを見ることができるが、可視特徴部(すなわち赤いマーク)は使用者の視野に入らない(すなわち電気焼灼術プローブは理想的位置にはない)。次いで使用者が、赤いマークが使用者の視野において視認できるように電気焼灼術プローブを調節する。加えて、可視特徴部は、エフェクタ器具パネルでの使用者の入力にしたがって正しい方向に電気焼灼術プローブが並進することを指示する役割も果たしうる。
【0156】
エフェクタ1404、1404aの回転の向きを指示する可視特徴部1406、1406aと、エフェクタ1404、1404aの並進の尺度を指示する可視特徴部とは、互いに視覚的に区別可能な別々の可視特徴部であってもよい。エフェクタ1404、1404aの並進およびロールを指示する可視特徴部1406、1406aは、消えない着色剤、レーザーマーキング、エンボス加工または表面テクスチャ加工のいずれか1つ以上により形成されうる。消えない着色剤により形成される可視特徴部1406、1406aは、細長部材および/または外科用ツール1402、1402aとは異なる色であってもよい。さらに、可視特徴部1406、1406aは、形、記号またはテキストのいずれか1つ以上であってもよく、細長部材および/または外科用ツール上に提供されるパターンの一部であってもよい。このパターンも、細長部材の外面および外科用ツール1402、1402aの外面の残りから視覚的に区別可能である。このようなパターンは、一組以上のそのような可視特徴部1406、1406aを含み、それにより一組がエフェクタ1404、1404aの回転の向きのインジケータとして使用され、別の組がエフェクタ1404、1014aの並進の尺度のインジケータとして使用される。
【0157】
可視特徴部1406、1406aは、色、明るさ、テクスチャ、鏡面性または反射性等の周囲の外観に対する特徴部の可視性を最大化するように作られてもよい。可視特徴部1406、1406aは、化学的浸食または機械的磨耗に対して耐久性とすることもでき、医療手技の実行が可視特徴部から材料を遊離させるリスクを含む場合には移植グレードの生体適合性材料からなることが好ましい。
【0158】
例えば、エフェクタ1404、1404aの回転の向きを指示する可視特徴部1406、1406aは、青でレーザーマーキングおよびエンボス加工された文字「A」とすることができ、エフェクタ1404、1404aの並進の尺度を指示する可視特徴部は、消えない着色剤を使用して赤で突出した記号「Ω」とすることができる。可視特徴部がパターンである実施形態では、パターンは、細長部材に沿って外科用ツール1402、1402aおよびエフェクタ1404、1404a内へと延在する一連の連続した突出部であってもよい。さらに、エフェクタ1404、1404aの並進およびロールを指示する可視特徴部1406、1406aはエフェクタ1404、1404aにより部分的に遮られうるが、エフェクタ1404、1404aのロールまたは並進の向きの指示をなお提供しうる。例えば可視特徴部は、エフェクタ1404、1404a上にレーザーマーキングされた文字「A」とすることができる。文字「A」の下部が覆われても、文字の上部がエフェクタ1404、1404aの向きの方向をなお指示しうる。
【0159】
エフェクタ1404、1404aの並進およびロールを指示する可視特徴部1406、1406aは、エフェクタ1404、1404aの正しい並進および回転を指示するために使用者の視野において視認できる二次的特徴部を含みうる。二次的特徴部は、一次的可視特徴部の一部であってもよく、または別個の特徴部であってもよい。二次的特徴部の存在は、使用者が正しいアライメントを指示するために特徴部の1つの重要部分だけまたは1つの可視特徴部だけに依存しないために有利でありうる。
【0160】
一例では、エフェクタが正しい回転の向きにあることを指示するための一次的可視特徴部は文字「A」である。エフェクタが既に所望の位置に揃えられているが、文字「A」が周囲の組織または他の外科用器具により完全に見えなくなっている場合には、文字「A」に隣接して位置する二次的特徴部(例えばエンボス加工された星の記号)が、エフェクタが正しく揃えられたことを指示する役割を果たしうる。
【0161】
一実施形態では、内視鏡用システムは、上述の内視鏡用装置1400を含むことができ、内視鏡用装置1400を操作するために連結された駆動機構をさらに含むことができる。内視鏡用システムは、駆動機構を制御するための内視鏡用外科用器具コントローラも含むことができ、内視鏡用外科用器具コントローラは、エフェクタ1404、1404aの回転の向きのアライメントが実行されることを促す信号を送り、アライメントが完了しているという応答を受け取り、内視鏡用装置1400のエフェクタ1404、1404aへの操作アクセスを許可するように構成されうる。
【0162】
エフェクタ1404、1404aへのアクセスは、外科用ツール1402、1402aのアライメントが申し分ないと判断された後にはじめて許されうる。これは、不十分な位置にあるときにエフェクタ1404、1404aが作動および使用されて患者に害を及ぼしかねないことにならないよう、安全機構として働く。
【0163】
当業者であれば、広く説明された本発明の精神または範囲から逸脱することなく実施形態に示される本発明に対して多数の変形および/または修正が行われうることを理解されよう。したがって、実施形態は全ての点において例示的であって、限定的でないとみなされなければならない。
なお、本発明の実施の態様は、つぎのとおりである。
[1]
内視鏡用システムの内視鏡用外科用器具コントローラであって、前記内視鏡用システムは内視鏡用外科用器具を含み、前記内視鏡用外科用器具は、
駆動機構と、
前記駆動機構により作動させられる末端関節であって、前記内視鏡用外科用器具の遠位端に配置される、末端関節と、
を含み、前記内視鏡用システムは、
前記駆動機構と電気通信する入力デバイスであって、前記入力デバイスの動きが前記末端関節の前記作動を引き起こす、入力デバイス、
をさらに含み、前記内視鏡用外科用器具コントローラは、
少なくとも1つのプロセッサと、
コンピュータプログラムコードを含む少なくとも1つのメモリであって、前記少なくとも1つのメモリと前記コンピュータプログラムコードとは、前記少なくとも1つのプロセッサを用いて、前記内視鏡用外科用器具コントローラに少なくとも、
前記入力デバイスの動きに起因する信号を検出させ、前記信号は、前記入力デバイスが動かされている先のマスタ作業空間内の直交座標位置を提供し、前記マスタ作業空間は前記入力デバイスが中で動かされることができる境界を提供し、
受け取られた直交座標位置を、前記マスタ作業空間の直交座標位置と、前記末端関節が中で作動させられることができる境界を提供するスレーブ作業空間の直交座標位置と、前記マスタ作業空間内の各直交座標位置を前記スレーブ作業空間内の少なくとも1つの直交座標位置にマッピングするマッピングテーブルとを含むデータベースに対して処理させ、
受け取られた直交座標位置に対する前記スレーブ作業空間内の一致する直交座標位置を決定させ、
前記末端関節を前記スレーブ作業空間内の前記一致する直交座標位置に作動させるよう前記駆動機構に指令させる、
ように構成される、少なくとも1つのメモリと、
を含む、内視鏡用外科用器具コントローラ。
[2]
前記マスタ作業空間内の複数の前記直交座標位置が前記スレーブ作業空間内の直交座標位置にマッピングされる、[1]に記載の内視鏡用外科用器具コントローラ。
[3]
前記マスタ作業空間内の前記複数の前記直交座標位置がマッピングされる前記スレーブ作業空間内の前記直交座標位置は、前記マスタ作業空間内の前記複数の前記直交座標位置の各々に対して前記スレーブ作業空間内の最も良く一致する直交座標位置を提供する、[2]に記載の内視鏡用外科用器具コントローラ。
[4]
内視鏡用システムの内視鏡用外科用器具コントローラであって、前記内視鏡用システムは内視鏡用外科用器具を含み、前記内視鏡用外科用器具は、
駆動機構と、
前記駆動機構により作動させられる末端関節であって、前記内視鏡用外科用器具の遠位端に配置される、末端関節と、
を含み、前記内視鏡用システムは、
前記駆動機構と電気通信する入力デバイスであって、前記入力デバイスの動きが前記末端関節の前記作動を引き起こす、入力デバイス、
をさらに含み、前記内視鏡用外科用器具コントローラは、
少なくとも1つのプロセッサと、
コンピュータプログラムコードを含む少なくとも1つのメモリであって、前記少なくとも1つのメモリと前記コンピュータプログラムコードとは、前記少なくとも1つのプロセッサを用いて、前記内視鏡用外科用器具コントローラに少なくとも、
前記末端関節が中で作動させられることができる境界を提供するスレーブ作業空間内の可動トレーサを作製させ、前記可動トレーサは、前記入力デバイスが動かされることに応答して前記スレーブ作業空間内でシフトすることにより前記入力デバイスを追跡するように構成され、
前記入力デバイスの動きに起因する信号を検出させ、
前記可動トレーサを前記スレーブ作業空間内のある直交座標位置にシフトさせ、前記シフトの距離は、前記入力デバイスの前記動きの前および後のマスタ作業空間内の前記入力デバイスの直交座標位置に依存し、前記マスタ作業空間は、前記入力デバイスが中で動かされることができる境界を提供し、
前記シフト後の前記スレーブ作業空間内の前記可動トレーサの前記直交座標位置に前記末端関節を作動させるよう前記駆動機構に指令させる、
ように構成される、少なくとも1つのメモリと、
を含む、内視鏡用外科用器具コントローラ。
[5]
前記内視鏡用外科用器具コントローラは、前記可動トレーサを作製する際に前記スレーブ作業空間と前記マスタ作業空間とが格納されたデータベースに問い合わせるようにさらに構成される、[4]に記載の内視鏡用外科用器具コントローラ。
[6]
前記内視鏡用外科用器具コントローラは、
前記入力デバイスを追跡するように前記可動トレーサを構成するときに前記入力デバイスを前記可動トレーサにリンクする、
ようにさらに構成される、[4]または[5]に記載の内視鏡用外科用器具コントローラ。
[7]
前記入力デバイスが前記スレーブ作業空間の外である前記マスタ作業空間の領域内で動くとき、前記可動トレーサは前記スレーブ作業空間の外周に隣接してまたは沿って動く、[6]に記載の内視鏡用外科用器具コントローラ。
[8]
前記内視鏡用システムは、
前記入力デバイスに連結されたフィードバック力モジュールであって、前記入力デバイスを前記スレーブ作業空間の前記境界の中に対応する前記マスタ作業空間の領域内に保つ抵抗力を生み出すように構成される、フィードバック力モジュール、
をさらに含み、前記内視鏡用外科用器具コントローラは、
前記入力デバイスが前記スレーブ作業空間の前記境界に対応する前記マスタ作業空間の前記領域の外へさらに動くほど前記抵抗力を増加させるために前記フィードバック力モジュールに信号を伝送する、
ようにさらに構成される、[1]~[7]のいずれか一つに記載の内視鏡用外科用器具コントローラ。
[9]
前記内視鏡用外科用器具コントローラは、
前記フィードバック力モジュールにより生み出される前記抵抗力の前記増加の大きさを計算し、
前記抵抗力の前記増加の前記計算された大きさに応答して前記関節装備または前記末端関節を作動させるために印加されるトルク限界を調節するように前記駆動モータまたは前記駆動機構にコマンドを送る、
ようにさらに構成される、[8]に記載の内視鏡用外科用器具コントローラ。
[10]
前記直交座標位置は、三次元空間における位置を提供する、[1]~[9]のいずれか一つに記載の内視鏡用外科用器具コントローラ。
[11]
前記マスタ作業空間は、前記スレーブ作業空間よりも大きい容積を有する、[1]~[10]のいずれか一つに記載の内視鏡用外科用器具コントローラ。
[12]
前記内視鏡用外科用器具は、前記末端関節に連結されたエフェクタをさらに含み、前記エフェクタは、アーム、グリッパまたは電気焼灼術プローブのいずれか1つである、[1]~[11]のいずれか一つに記載の内視鏡用外科用器具コントローラ。
[13]
前記内視鏡用外科用器具コントローラは、
前記入力デバイスの向きの変化により前記関節装備または前記末端関節の対応する向きの変化がもたらされるように前記入力デバイスの向きを前記関節装備または前記末端関節の向きと同期させる、
ようにさらに構成される、[1]~[12]のいずれか一つに記載の内視鏡用外科用器具コントローラ。
[14]
内視鏡用外科用器具の腱を作動させるためのモータシャフトを連結するためのアダプタであって、
ハウジングと、
前記腱が周りに巻回するドラムであって、前記ハウジングに回転可能に連結されるドラムと、
前記ドラムにトルクを印加するように設けられるエネルギ蓄積機構と、
を含む、アダプタ。
[15]
前記エネルギ蓄積機構は、前記腱を前記ドラムの周りに巻回する方向に前記トルクを印加するように置かれる、[14]に記載のアダプタ。
[16]
前記エネルギ蓄積機構の一端は前記ドラムに連結され、前記エネルギ蓄積機構の反対端は前記ハウジングに連結される、[14]または[15]に記載のアダプタ。
[17]
前記エネルギ蓄積機構は、前記ドラムの一部分の周りに配置される、[1]~[16]のいずれか一つに記載のアダプタ。
[18]
前記エネルギ蓄積機構は、前記ドラムのいずれかの端に配置される、[14]~[16]のいずれか一つに記載のアダプタ。
[19]
前記エネルギ蓄積機構は、前記印加されるトルクが前記腱に約0.5~3Nの張力を引き起こすように設計される、[14]~[18]のいずれか一つに記載のアダプタ。
[20]
前記エネルギ蓄積機構は、弾性的可撓性部材または液圧デバイスを含む、[14]~[19]のいずれか一つに記載のアダプタ。
[21]
前記弾性的可撓性部材は、捻りバネである、[20]に記載のアダプタ。
[22]
前記捻りバネは、ぜんまい構成、コイル構成または軸方向に捩れた構成のいずれか1つを有する、[21]に記載のアダプタ。
[23]
前記コイル構成の前記捻りバネは、少なくとも14の縦横比を有する、[22]に記載のアダプタ。
[24]
前記腱が係合する少なくとも1つの溝をさらに含み、前記少なくとも1つの溝は、前記ドラムの一部分の上に提供される、[14]~[23]のいずれか一つに記載のアダプタ。
[25]
前記溝は前記ドラムの直径に沿って延在する、[24]に記載のアダプタ。
[26]
前記ドラム上に形成されるネジ山をさらに含み、前記ネジ山は、前記腱が係合する複数の前記溝を提供する、[24]または[25]に記載のアダプタ。
[27]
輸送内視鏡を装着するための内視鏡取り付け面を有するベースであって、前記輸送内視鏡により担持されるロボット部材を作動させるための駆動機構を装着するための駆動機構取り付け面をさらに有するベースと、
前記ベースが回転可能に連結されるプラットフォームと、
を含む、輸送内視鏡ドッキングステーション。
[28]
前記プラットフォームに対する前記ベースの回転を促進するように設けられるロータリ機構をさらに含む、[27]に記載の輸送内視鏡ドッキングステーション。
[29]
前記ロータリ機構は、前記ベースと前記プラットフォームとの間に配置される、[28]に記載の輸送内視鏡ドッキングステーション。
[30]
前記ロータリ機構は、前記ベースと前記ベースの前記駆動機構取り付け面に隣接する前記プラットフォームの一部分との間、前記ベースと前記ベースの前記内視鏡取り付け面に隣接する前記プラットフォームの一部分との間、またはその両方に配置される、[29]に記載の輸送内視鏡ドッキングステーション。
[31]
前記ロータリ機構は、ボールベアリング装備、ローラベアリング装備、および潤滑ワッシャ装備のうちのいずれか1つ以上である、[28]~[30]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[32]
前記プラットフォームに対する前記ベースの前記回転をロックするように配置されるロック機構をさらに含む、[27]~[31]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[33]
前記ロック機構を前記ベースに連結するコネクタをさらに含む、[32]に記載の輸送内視鏡ドッキングステーション。
[34]
前記コネクタは、タイミングベルト装備、ギア装備、またはアームリンケージのうちのいずれか1つを含む、[33]に記載の輸送内視鏡ドッキングステーション。
[35]
前記ロック機構は、摩擦係合を通じて前記ベースをロックするように構成される電気的に作動するデバイスを含む、[31]に記載の輸送内視鏡ドッキングステーション。
[36]
前記ロック機構は、初期設定で前記ベースをロックするように構成される、[35]に記載の輸送内視鏡ドッキングステーション。
[37]
前記ロック機構は、ブレーキパッド、クランプならびにラッチおよびボールト装備のいずれか1つ以上を含む、[32]~[36]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[38]
前記ベースの回転を減衰させるための減衰機構をさらに含む、[33]~[37]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[39]
前記減衰機構は、ロータリ摩擦ディスク構成、ロータリ摩擦ギアラック構成、空気式ロータリダンパ構成または粘弾性構成のいずれか1つを有するロータリダンパを含む、[38]に記載の輸送内視鏡ドッキングステーション。
[40]
前記ロータリダンパは、前記ロック機構を前記ベースに連結する前記コネクタに連結される、[39]に記載の輸送内視鏡ドッキングステーション。
[41]
前記ベースに取り外し可能に取り付けられる前記アダプタの一端の中心を通って走る軸が、前記ベースの前記回転の軸と揃えられる、[27]~[40]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[42]
前記ベースは、前記駆動機構のアクチュエータアセンブリが連結されるスタンドをさらに含み、前記アクチュエータアセンブリは、前記ロボット部材を作動させるための少なくとも1つのアクチュエータを含む、[27]~[41]のいずれか一つに記載の輸送内視鏡ドッキングステーション。
[43]
前記アクチュエータアセンブリは、アダプタが連結されるアダプタ取り付け面を含み、前記アダプタは、前記アクチュエータを前記ロボット部材に連結するためのものである、[42]に記載の輸送内視鏡ドッキングステーション。
[44]
前記駆動機構の少なくとも一部分は前記ベースと一体であり、前記駆動機構の残りは前記駆動機構の前記一体化された部分に取り外し可能に取り付け可能である、[27]~[43]のいずれか一つに記載の輸送内視鏡ドッキングステーション。