(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-20
(45)【発行日】2022-04-28
(54)【発明の名称】蛍光体評価装置
(51)【国際特許分類】
G01N 21/64 20060101AFI20220421BHJP
【FI】
G01N21/64 Z
(21)【出願番号】P 2018105091
(22)【出願日】2018-05-31
【審査請求日】2021-04-16
(73)【特許権者】
【識別番号】503098724
【氏名又は名称】株式会社オキサイド
(74)【代理人】
【識別番号】110001357
【氏名又は名称】特許業務法人つばさ国際特許事務所
(72)【発明者】
【氏名】川部 英雄
(72)【発明者】
【氏名】久保田 重夫
(72)【発明者】
【氏名】大迫 純一
(72)【発明者】
【氏名】福本 敦
(72)【発明者】
【氏名】片桐 和彦
【審査官】今浦 陽恵
(56)【参考文献】
【文献】特開2000-186960(JP,A)
【文献】特開2002-062258(JP,A)
【文献】特開2003-215028(JP,A)
【文献】特開平10-073486(JP,A)
【文献】実開平03-104845(JP,U)
【文献】特開平02-135753(JP,A)
【文献】特開平07-311190(JP,A)
【文献】特開平11-061413(JP,A)
【文献】国際公開第2012/110967(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/01 - 21/03
G01N 21/15
G01N 21/64 - 21/65
H01L 21/66
(57)【特許請求の範囲】
【請求項1】
2つの積分球と、
前記2つの積分球の間に配置され、蛍光体の端部を保持した状態で前記蛍光体を加熱することの可能な接触式加熱装置と、
前記蛍光体が前記接触式加熱装置に保持されているときに、加熱したガスを前記蛍光体に吹き付けることの可能な非接触式加熱装置と、
前記蛍光体が前記接触式加熱装置に保持されているときに、励起光を前記蛍光体に照射することの可能な光源装置と
を備えた
蛍光体評価装置。
【請求項2】
前記接触式加熱装置は、前記蛍光体の端部を保持することの可能な機構と、前記機構の内部に設けられた流路と、前記機構を介して前記蛍光体を加熱することの可能なヒータとを有し、
前記非接触式加熱装置は、前記流路に連結される
請求項1に記載の蛍光体評価装置。
【請求項3】
前記機構は、前記蛍光体のうち前記励起光が照射されるターゲット領域と対向する箇所に開口部を有し、
前記流路は、前記開口部の側面に流出口を有するとともに、前記開口部を中心として放射状に延在する複数の第1流路を有する
請求項2に記載の蛍光体評価装置。
【請求項4】
前記開口部は、
一方の前記積分球寄りの第1側面がテーパー状となっている第1開口部と、
他方の前記積分球寄りの第2側面がテーパー状となっている第2開口部と
を含む
請求項3に記載の蛍光体評価装置。
【請求項5】
前記接触式加熱装置は、
前記第1側面を覆う第1反射膜と、
前記第2側面を覆う第2反射膜と
を更に有する
請求項4に記載の蛍光体評価装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蛍光体評価装置に関する。
【背景技術】
【0002】
近年、蛍光体を応用したデバイスの代表でもあるLEDは、発光パワーと効率が加速的に改良され、一昔前まで技術的な壁とされていた100ルーメン/ワットを超えるようになった。一方、LED以外の光源、例えば、映画館やプロジェクションマッピングで使用される高輝度プロジェクタ用の光源や、車載用ヘッドライトでは、レーザ励起型の高輝度蛍光光源が注目されている。
【0003】
これら高輝度LEDやレーザ励起型の高輝度蛍光光源では、入力および出力のパワーが非常に大きい。そのため、わずかなエネルギーロスであっても、そのエネルギーロスで発生した熱によって、蛍光体が発熱し、発光強度が著しく減少する、温度消光という現象が発生する。また、発熱は、蛍光体にとって寿命を縮める要因ともなる。従って、蛍光体開発において、蛍光体の特性評価を行う際に、蛍光体を故意的に加熱して特性を評価することが、極めて重要になってきている。蛍光体の測定については、例えば、特許文献1などに記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1では、二重積分球が用いられる。二重積分球では、蛍光体から放出される光を遮ることなく、蛍光体を加熱することが容易ではない。従って、蛍光体から放出される光を遮ることなく、蛍光体を加熱することの可能な蛍光体評価装置を提供することが望ましい。
【課題を解決するための手段】
【0006】
本発明の一実施の形態に係る蛍光体評価装置は、2つの積分球と、2つの積分球の間に配置され、蛍光体の端部を保持した状態で蛍光体を加熱することの可能な接触式加熱装置と、蛍光体が接触式加熱装置に保持されているときに、加熱したガスを蛍光体に吹き付けることの可能な非接触式加熱装置と、蛍光体が接触式加熱装置に保持されているときに、励起光を蛍光体に照射することの可能な光源装置とを備えている。
【発明の効果】
【0007】
本発明の一実施の形態に係る蛍光体評価装置によれば、蛍光体の端部を保持した状態で蛍光体を加熱することの可能な接触式加熱装置と、加熱したガスを蛍光体に吹き付けることの可能な非接触式加熱装置とを設けるようにしたので、蛍光体から放出される光を遮ることなく、蛍光体を加熱することが可能である。
【図面の簡単な説明】
【0008】
【
図1】本発明の一実施の形態に係る蛍光体評価装置の概略構成例を表す図である。
【
図2】
図1の接触式の加熱装置の断面構成の一例を表す図である。
【
図3】
図2の加熱装置を展開した様子を表す図である。
【
図4】
図2の加熱装置の一方のホールドの平面構成例を表す図である。
【
図5】
図2の加熱装置の他方のホールドの平面構成例を表す図である。
【
図6】
図2の加熱装置にガスが流入する様子を表す図である。
【
図7】
図2の加熱装置の一方のホールドにガスが流入する様子を表す図である。
【
図8】
図2の加熱装置の他方のホールドにガスが流入する様子を表す図である。
【
図9】ヒータからの距離と励起部の温度との関係の一例を表す図である。
【
図10】
図2の加熱装置の一変形例を拡大して表す図である。
【発明を実施するための形態】
【0009】
以下、発明を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本発明の一具体例であって、本発明は以下の態様に限定されるものではない。また、本発明は、各図に示す各構成要素の配置や寸法、寸法比などについても、それらに限定されるものではない。
<1.実施の形態>
[構成]
本技術の一実施の形態に係る蛍光体評価装置1について説明する。
図1は、蛍光体評価装置1の概略構成例を表したものである。蛍光体評価装置1は、評価対象であるサンプル100のうち、励起光Leを照射する領域(以下、「ターゲット領域」と称する。)を、均一な温度分布で加熱しながら、サンプル100の発光特性を評価する装置である。サンプル100は、例えば、粉末の蛍光体を、無機バインダを使って塊状に焼結させたものである。なお、サンプル100は、例えば、粉末の蛍光体を、樹脂などのバインダを使って塊状に焼結させたものであってもよい。
【0010】
蛍光体評価装置1は、二重積分球を用いた蛍光体の評価装置である。蛍光体評価装置1は、例えば、2つの積分球10,20、2つの分光測定機30,40、2つの加熱装置50,60、光源装置70、非接触温度計80および情報処理装置90を備えている。
【0011】
積分球10は、励起光Leの光路上に配置されている。積分球10は、励起光Leを積分球10の内部に入射させるための窓11を、励起光Leの光路上に有している。積分球10は、さらに、窓11を介して入射した励起光Leをサンプル100に照射させるための窓12を、励起光Leの光路上に有している。積分球20は、励起光Leの光路と平行な方向において、加熱装置50を介して積分球10と対向する位置に配置されている。積分球20は、非接触温度計80による、サンプル100の温度測定を行うための窓21を有している。積分球20は、さらに、積分球10の窓12と対向する位置に窓22を有している。
【0012】
積分球10,20は、加熱装置50を挟んで対称な位置に配置されている。積分球10,20は、それぞれ、加熱装置50と直接、接するか、または、所定の間隙を介して配置されている。積分球10は、加熱装置50の開口部122(後述)と対向する位置に窓12を有している。積分球20は、加熱装置50の開口部112(後述)と対向する位置に窓22を有している。積分球10,20は、例えば、高反射性と耐熱性とを両立可能な材料によって構成されている。積分球10,20に用いられる材料としては、例えば、テフロン(登録商標)(PEFE)系の材料が挙げられる。
【0013】
分光測定機30は、励起光Leの照射によってサンプル100から積分球10側に発せられた蛍光Lfの、積分球10の内壁面上の分光強度を測定し、測定により得られたデータを情報処理装置90に出力する。分光測定機40は、励起光Leの照射によってサンプル100から積分球20側に発せられた蛍光Lrの、積分球20の内壁面上の分光強度を測定し、測定により得られたデータを情報処理装置90に出力する。非接触温度計80は、加熱装置50によって固定されたサンプル100の温度を非接触で測定し、測定により得られたデータを情報処理装置90に出力する。非接触温度計80は、例えば、遠赤外放射温度計である。
【0014】
光源装置70は、サンプル100が加熱装置50に保持されているときに、励起光Leをサンプル100に照射することの可能な光源装置である。光源装置70は、励起光Leを、窓11,12を介してサンプル100に照射する。光源装置70は、例えば、光源71、モノクロメータ72、ハーフミラー73およびディテクタ74を有している。光源71は、サンプル100の励起に適用可能な波長の光を含む光L1を発することの可能な光源であり、例えば、キセノンランプを含んで構成されている。モノクロメータ72は、光源71から入力された光L1から、特定の波長(例えば、サンプル100の励起に適用可能な波長)の光を抽出(選択)する装置である。ハーフミラー73は、モノクロメータ72によって抽出(選択)された光L2の一部を透過するとともに、光L2の一部を反射してディテクタ74に入力する。光源装置70は、ハーフミラー73を透過した光を、励起光Leとして外部に出力する。ディテクタ74は、入力された光を検出し、検出した光の強度に応じた検出信号を情報処理装置90に出力する。光源装置70は、ハーフミラー73を透過した光を所望のビーム経に集光するレンズを有していてもよい。この場合には、光源装置70は、レンズによって集光された光を、励起光Leとして外部に出力する。
【0015】
情報処理装置90は、例えば、演算装置91および記憶装置92を有している。演算装置91は、分光測定機30,40で得られたデータを記憶装置92に記憶させる。演算装置91は、分光測定機30,40で得られたデータに基づいて、サンプル100の発光特性を評価する。演算装置91は、非接触温度計80で得られたデータを記憶装置92に記憶させる。演算装置91は、非接触温度計80で得られたデータに基づいて、サンプル100の温度が所望の温度となるよう、加熱装置50および加熱装置60の少なくとも一方を制御する。なお、演算装置91がガス流量を制御することが可能な場合には、演算装置91は、非接触温度計80で得られたデータに基づいて、サンプル100の温度が所望の温度となるよう、ガス流量を制御してもよい。加熱装置60がガス流量を制御する機構を有している場合には、演算装置91は、非接触温度計80で得られたデータに基づいて、ガス流量が所望の大きさとなるよう、加熱装置60を制御してもよい。
【0016】
演算装置91は、加熱装置50(具体的には、後述のヒータ113,123)の温度がヒータ113,123による自発光が生じる閾値を超えないよう、加熱装置50を制御する。演算装置91は、ディテクタ74から入力された検出信号に基づいて、光源装置70から発せられる励起光Leの光強度を推定する。演算装置91は、励起光Leの光強度が所望の光強度となるように、ディテクタ74から入力された検出信号に基づいて、光源71の光出力を制御する。演算装置91は、推定により得られた光強度に基づいて、励起光Leの光強度が所望の大きさとなるよう、光源71の光出力を制御する。
【0017】
加熱装置50は、サンプル100の端部を保持した状態でサンプル100を加熱することの可能な接触式の加熱装置である。加熱装置50は、2つの積分球10,20の間に配置されている。
図2は、加熱装置50の断面構成の一例を表したものである。
図2には、サンプル100が加熱装置50に固定されている様子が例示されている。
図3は、加熱装置50を展開した様子を表したものである。加熱装置50は、サンプル100を保持することの可能な機構を有している。加熱装置50は、そのような機構として、例えば、2つのホールド110,120(より具体的には、後述のプレート111,121)を有している。加熱装置50は、例えば、2つのホールド110,120でサンプル100を挟み込むことにより、サンプル100を保持する。ホールド110は、例えば、積分球20側に配置されており、ホールド120は、例えば、積分球10側に配置されている。
図4は、ホールド110の平面構成例を表したものである。
図5は、ホールド120の平面構成例を表したものである。
【0018】
(ホールド110)
ホールド110は、開口部112および収容部116が設けられたプレート111を有している。プレート111は、例えば、円環形状となっており、中央部分に開口部112および収容部116を有している。プレート111は、熱伝導性の高い材料によって構成されている。開口部112は、ホールド110のうち、ホールド120とは反対側(例えば、積分球20側)の面に設けられており、テーパー状の側面112Aを有している。側面112Aがテーパー状となっていることにより、蛍光Lrの放射角が側面112Aの傾斜角によって規定される。従って、側面112Aの傾斜角は、できるだけ大きくなっていることが好ましい。開口部112の底は抜けており、収容部116に連通している。収容部116は、ホールド110のうち、ホールド120側(例えば、積分球10側)の面に設けられており、サンプル100の形状と同じ形状の窪みとなっている。収容部116の底面の一部は開口しており、開口部112と連通している。従って、収容部116にサンプル100が収容されたとき、開口部112の底面には、サンプル100のうち、ターゲット領域と対向する部分の表面が露出している。つまり、プレート111は、サンプル100のうち励起光Leが照射されるターゲット領域と対向する箇所に開口部112を有している。収容部116にサンプル100が収容されたとき、ホールド110(プレート111)は、サンプル100の端部に接しており、サンプル100のうち、ターゲット領域と対向する箇所には接していない。
【0019】
ホールド110は、さらに、内径が少なくとも開口部112の直径よりも大きな円環状のヒータ113を有している。ヒータ113は、プレート111の内部またはプレート111に接して設けられており、開口部112および収容部116の周囲に近接して配置されている。ヒータ113は、プレート111を介してサンプル100に接することが可能となっており、プレート111を介してサンプル100を加熱することの可能な接触式ヒータである。ヒータ113は、特に限定されるものではないが、例えば、セラミックヒータ、ラバーヒータ、カートリッジヒータ、シーズヒータなどによって構成されている。
【0020】
ホールド110は、さらに、プレート111の内部に複数の流路114を有している。
図4には、4つの流路114が設けられている場合が例示されている。各流路114は、ガスが流入する流入口114Aと、ガスが噴出する流出口114Bとを有している。各流路114の流入口114Aは、例えば、プレート111の周面に設けられている。各流路114の流出口114Bは、例えば、開口部112の側面112Aに設けられている。各流路114の流出口114Bは、例えば、開口部112の側面112Aのうち、開口部112の底面に最も近い箇所に設けられている。
【0021】
各流路114は、加熱装置60を介して外部から流入してきたガスをサンプル100に供給する(もしくは吹き付ける)ための流路である。複数の流路114は、例えば、
図4に示したように、開口部112を中心として放射状に延在して配置されている。複数の流路114が開口部112を中心として放射状に配置されている場合には、例えば、
図6、
図7に示したように、各流出口114Bから噴出するガス流Fa1~Fa4は、サンプル100の表面を沿いながら開口部112の中心に向かって流れ、開口部112の中心でぶつかって、サンプル100の法線方向に放散される。
【0022】
上述したように、各流路114は、プレート111の内部に形成されている。そのため、プレート111は、ヒータ113によってプレート111が加熱されているときに、プレート111の熱を、流路114を流れるガスに伝達する役割を有している。従って、ガスは、各流路114を流れているときに、プレート111の熱によって加熱されるので、加熱装置60のノズルからサンプル100までの経路で、ガスが急冷されるおそれがない。
【0023】
ホールド110は、さらに、プレート111の内部に、プレート111の法線方向に延在する複数の流路115を有している。各流路115は、ホールド110,120同士が互いに重ね合わされたときに、各流路114と、ホールド120内の各流路124とを互いに連結する。
【0024】
(ホールド120)
ホールド120は、開口部122が設けられたプレート121を有している。プレート121は、例えば、円環形状となっており、中央部分に開口部122を有している。プレート121は、熱伝導性の高い材料によって形成されている。開口部122は、プレート121を貫通して設けられており、プレート121をホールド110とは反対側から見たときにテーパー状となっている側面122Aを有している。側面122Aがテーパー状となっていることにより、蛍光Lfの放射角が側面122Aの傾斜角によって規定される。従って、側面122Aの傾斜角は、できるだけ大きくなっていることが好ましい。ホールド110,120同士が互いに重ね合わされたときに、開口部122は、収容部116と連通する。従って、収容部116にサンプル100が収容された状態で、ホールド110,120同士が互いに重ね合わされたときに、開口部122の底面には、サンプル100の表面(ターゲット領域)が露出する。つまり、プレート121は、サンプル100のうち励起光Leが照射されるターゲット領域と対向する箇所に開口部122を有している。
【0025】
互いに重ね合わされたプレート111,121からなる積層体において、開口部112、収容部116および開口部122からなる空隙は、積層体を貫通する開口部を構成する。このとき、積層体を貫通する開口部は、ターゲット領域と対向する箇所に設けられている。積層体を貫通する開口部は、積分球10寄りの側面122Aがテーパー状となっている開口部122と、積分球20寄りの側面112Aがテーパー状となっている開口部112と、開口部122と開口部112とを連通させるとともにサンプル100を収容可能な収容部116とを含んで構成されている。
【0026】
収容部116にサンプル100が収容された状態で、ホールド110,120同士が互いに重ね合わされたときに、ホールド120(プレート121)は、サンプル100の端部に接しており、サンプル100のうち、ターゲット領域と対向する箇所には接していない。従って、加熱装置50(プレート111,121)は、収容部116にサンプル100が収容された状態で、ホールド110,120同士が互いに重ね合わされたときに、サンプル100の端部を保持することにより、サンプル100を固定する。
【0027】
ホールド120は、さらに、内径が少なくとも開口部122の直径よりも大きな円環状のヒータ123を有している。ヒータ123は、プレート121の内部またはプレート121に接して設けられており、開口部122の周囲に近接して配置されている。ヒータ123は、プレート121を介してサンプル100に接することが可能となっており、プレート121を介してサンプル100を加熱することの可能な接触式ヒータである。ヒータ123は、特に限定されるものではないが、例えば、セラミックヒータ、ラバーヒータ、カートリッジヒータ、シーズヒータなどによって構成されている。
【0028】
ホールド120は、さらに、プレート121の内部に複数の流路124を有している。ホールド120には、例えば、流路114の数と同数の流路124が設けられている。
図5には、4つの流路124が設けられている場合が例示されている。各流路124は、ガスが流入する流入口124Aと、ガスが噴出する流出口124Bとを有している。各流路124の流入口124Aは、例えば、プレート121の、プレート111側の表面に設けられており、プレート111,121同士が互いに重ね合わされたときに各流路115と連結される。各流路124の流出口124Bは、例えば、開口部122の側面122Aに設けられている。各流路124の流出口124Bは、例えば、開口部122の側面122Aのうち、開口部122の底面に最も近い箇所に設けられている。
【0029】
各流路124は、加熱装置60を介して外部から流入してきたガスをサンプル100に供給する(もしくは吹き付ける)ための流路である。複数の流路124は、例えば、
図5に示したように、開口部122を中心として放射状に配置されている。複数の流路124が開口部122を中心として放射状に配置されている場合には、例えば、
図6、
図8に示したように、各流出口124Bから噴出するガス流Fb1~Fb4は、サンプル100の表面を沿いながら開口部122の中心に向かって流れ、開口部122の中心でぶつかって、サンプル100の法線方向に放散される。
【0030】
上述したように、各流路124は、プレート121の内部に形成されている。そのため、プレート121は、ヒータ123によってプレート121が加熱されているときに、プレート121の熱を、流路124を流れるガスに伝達する役割を有している。従って、ガスは、各流路124を流れているときに、プレート121の熱によって加熱されるので、加熱装置60のノズルからサンプル100までの経路で、ガスが急冷されるおそれがない。
【0031】
加熱装置50は、サンプル100を予備加熱するために用いられる。「予備加熱」とは、サンプル100のうち、励起光Leが照射される領域(ターゲット領域)を所望の温度に加熱する際に、加熱装置50による加熱によりターゲット領域を所望の温度よりも少し低い温度で加熱することを指している。例えば、ターゲット領域を350℃に加熱したいときに、加熱装置50は、ターゲット領域が300℃程度になるようにサンプル100を加熱する。加熱装置50は、例えば、プレート111,121での温度勾配を考慮して、ヒータ113,123を350℃程度で発熱させ、ターゲット領域を300℃程度で加熱する。加熱装置50は、予備加熱を行うことにより、ヒータ113,123自身が自発光することのない温度(例えば350℃程度)でヒータ113,123を発熱させ、それによって、ターゲット領域を所望の温度よりも少し低い温度で加熱する。
【0032】
加熱装置50は、さらに、各流路114,124を流れるガスを加熱(もしくは保温)するために用いられる。加熱装置50は、予備加熱を行っている最中に、各流路114,124にガスを流通させることにより、各流路114,124を流れるガスを加熱(もしくは保温)する。加熱装置50は、積分球10,20と接するか、または近接する箇所に、加熱装置50の熱が積分球10,20に直接、伝わるのを防ぐための熱絶縁体を有していてもよい。
【0033】
加熱装置60は、サンプル100が加熱装置50に保持されているときに、加熱したガスをサンプル100に吹き付けることの可能な非接触式の加熱装置である。加熱装置60は、加熱装置50に供給するガスを加熱するガスヒータを有している。ガスは、例えば、空気または窒素である。加熱装置60(具体的には加熱装置60のノズル)は、流入口114Aに連結される。加熱装置60は、ノズルの出口から5mm程度の位置にある物体を900℃程度まで非接触で加熱することが可能となっている。加熱装置60は、例えば、抵抗加熱、電磁加熱または高周波加熱によってガスを加熱する。なお、光成分が問題にならない場合には、加熱装置60は、例えば、赤外線加熱またはレーザ加熱によってガスを加熱してもよい。加熱装置60は、加熱装置50によって予備加熱されているサンプル100のターゲット領域を所望の温度に加熱するために用いられる。加熱装置60は、加熱装置50が予備加熱を行っている最中に、サンプル100のターゲット領域を所望の温度に加熱する。
【0034】
[効果]
次に、本実施の形態に係る蛍光体評価装置1の効果について説明する。
【0035】
近年、蛍光体を応用したデバイスの代表でもあるLEDは、発光パワーと効率が加速的に改良され、一昔前まで技術的な壁とされていた100ルーメン/ワットを超えるようになった。一方、LED以外の光源、例えば、映画館やプロジェクションマッピングで使用される高輝度プロジェクタ用の光源や、車載用ヘッドライトでは、レーザ励起型の高輝度蛍光光源が注目されている。
【0036】
これら高輝度LEDやレーザ励起型の高輝度蛍光光源では、入力および出力のパワーが非常に大きい。そのため、わずかなエネルギーロスであっても、そのエネルギーロスで発生した熱によって、蛍光体が発熱し、発光強度が著しく減少する、温度消光という現象が発生する。また、発熱は、蛍光体にとって寿命を縮める要因ともなる。従って、蛍光体開発において、蛍光体の特性評価を行う際に、蛍光体を故意的に加熱して特性を評価することが、極めて重要になってきている。
【0037】
従来、蛍光体材料やLEDのような蛍光体デバイスの評価装置としては、例えば、以下に述べるような装置が用いられている。すなわち、従来の評価装置では、積分球と呼ばれる光学機器を用いて蛍光体から放射された蛍光を集め、空間的に積分することで放射された蛍光を均一化する。均一化された光は分光測定機に取り込まれ、異なる光の波長ごとに、その強度が測定される。
【0038】
入力エネルギーがLEDのときのような電気ではなく、励起光である場合には、励起光源が必要となる。励起光源には、波長が固定されたレーザ光源や、ランプとモノクロメータを組み合わせて、励起光の光波長を変化させながら蛍光体に照射できるようになっているものとがある。蛍光体の使用温度による特性評価を行う為には、蛍光体を故意的に加熱し、蛍光体の実温度を正確に把握しながら測定を行うことが求められる。例えば、積分球のポートにサンプル加熱装置を取り付け、加熱装置内にセットされた蛍光体を、励起光照射面の裏側から直接ヒータで接触加熱する。
【0039】
上述の評価装置は、蛍光体の表面から放出される蛍光量を測定するものである。評価対象がLEDの場合、発光素子の裏面方向に放出される光は、裏面に設けられている反射膜によって反射される。このとき、LEDは、素子表面から光を放射するデバイス構造を持っている。このような構造を持った蛍光体デバイスの評価には、上述の評価装置が適合する。しかしながら、上述の評価装置は、蛍光体そのものの特性を測定しているのではなく、あくまでも発光素子と反射膜で構築された構造体、つまりデバイスとしての特性評価を行っているに過ぎない。一方、蛍光材料そのものの特性を測ることが、蛍光材料の開発にとっては重要であり、この場合には、二重積分球を用いた評価装置を使用する。
【0040】
この装置においては、各々の積分球に搭載された2台の分光測定機を用いて、蛍光体の表面から放射された蛍光と、裏面から放射された蛍光を別々に各々の積分球を用いて同時に測定する。しかし、ここで問題となるのが蛍光体の加熱方法である。蛍光体の裏から放出される光を遮ることができないので、ヒータを蛍光体の裏面に接触させて加熱することが難しくなる。従って、加熱手段としては、励起部の周辺近傍にヒータを接触させ、周囲から加熱する方法が用いられる。しかし、励起部は外気によって冷やされるため、加熱部から励起光の照射部に至るまでの間に温度勾配が発生し、目標の加熱温度を正確にコントロールすることが難しい。
【0041】
図9に、厚さtの違う蛍光体プレートを励起部の周囲から加熱した場合の励起部の温度をシミュレーションにより導出した結果を示す。蛍光体はその使用方法により、様々な熱伝導率のものがある。一般に、蛍光体材料は粉末であるため、使用する際は、蛍光体よりも2桁程度熱伝導率の低い樹脂などの結合剤(バインダ)を使って塊状に焼結される。このため、熱伝導率が悪くなる。そこで、熱伝導率を上げるために無機バインダを用いる例も存在する。本シミュレーションでは、無機バインダの場合を想定し、蛍光体材料の熱伝導率が石英と同等(1.35W/mK)であるとして計算した。
【0042】
シミュレーションの結果から、例えば厚みtが0.2mmのプレート状蛍光体を励起部中心から5mm離れた位置で350℃に加熱しても、励起部中心に到達するまでに、外気によって冷却され200℃以下に下がってしまうことがわかる。蛍光体の温度特性を調べる際には、温度消光の発生を考慮し、300℃以上の加熱温度で評価することが望ましいと言われている。前述のシミュレーション結果から、励起部を300℃にするためには、温度低下を考慮して、周囲温度を500℃前後まで加熱しなければならないことになる。
【0043】
しかしながら、400℃以上の高温では、ヒータを構成する部品自体が自己発光を起こしてしまい、ヒータから発せられる光は、蛍光体からの蛍光量を測定する上で、外乱となってしまう。別な加熱手段としては、ガラスヒータと呼ばれる透明なプレート型ヒータに蛍光体を接触させ加熱する方法を用いる例もある。ガラスヒータは、透明導電膜を石英ガラスに蒸着させたものであり、通電すると500℃程度まで加熱することができる。この方法では、ガラスヒータに接触する側(裏面)から放出される蛍光が、すべて透明なガラスプレートを透過し積分球内に放射されることが望ましい。しかしながら、現状では、裏面から放出された光の一部がガラスプレートの表裏面で内面反射を繰り返し、ガラスプレートの端部に逃げてしまう。端部から逃げた光は、積分球内に放射させることができず損失光となってしまう。従って正確な蛍光量の測定が困難である。
【0044】
一方、本実施の形態では、サンプル100の端部を保持した状態でサンプル100を加熱することの可能な接触式の加熱装置50と、加熱したガスをサンプル100に吹き付けることの可能な非接触式の加熱装置60とが設けられている。これにより、サンプル100から放出される蛍光Lf,Lrを遮ることなく、サンプル100のターゲット領域を加熱することが可能である。
【0045】
また、本実施の形態では、サンプル100の端部を保持することの可能なプレート111,121と、プレート111,121の内部に設けられた流路114,124と、プレート111,121を介してサンプル100を加熱することの可能なヒータ113,123とが設けられており、加熱装置60のノズルが流路114に連結されている。これにより、ヒータ113,123によってプレート111,121が加熱されているときに、プレート111,121の熱が、流路114,124を流れるガスに伝達されるので、ガスは、各流路114,124を流れているときに、プレート111の熱によって加熱(もしくは保温)される。その結果、加熱装置60のノズルからサンプル100までの経路で、ガスが急冷されるおそれがない。従って、サンプル100から放出される蛍光Lf,Lrを遮ることなく、サンプル100のターゲット領域を効果的に加熱することができる。
【0046】
また、本実施の形態では、ターゲット領域と対向する箇所に開口部112,122が設けられている。各流路114,124は、開口部112,122の側面112A,122Aに流出口114B,124Bを有しており、開口部112,122を中心として放射状に延在している。これにより、各流路114,124にガスが供給されたときに、ガス流Fa1~Fa4,Fb1~Fb4は、サンプル100の表面を沿いながら開口部112,122の中心に向かって流れ、開口部112,122の中心でぶつかって、サンプル100の法線方向に放散される。その結果、サンプル100の表面がガス流Fa1~Fa4,Fb1~Fb4で覆われ、ガス流Fa1~Fa4,Fb1~Fb4によって外気から遮断される。また、サンプル100の表面は、ガス流Fa1~Fa4,Fb1~Fb4によって効率よく加熱される。また、加熱装置50によって予備加熱がなされているので、ガス流Fa1~Fa4,Fb1~Fb4による加熱の効率は非常に良い。従って、サンプル100から放出される蛍光Lf,Lrを遮ることなく、サンプル100のターゲット領域を効果的に加熱することができる。
【0047】
また、本実施の形態では、積分球10寄りの側面122Aがテーパー状となっている開口部122と、積分球20寄りの側面112Aがテーパー状となっている開口部112とがプレート111,121に設けられている。これにより、サンプル100から放出される蛍光Lf,Lrを効率よく積分球10,30の内壁に放射させることができる。
【0048】
また、本実施の形態では、側面112Aを覆う反射膜117と、側面122Aを覆う反射膜127とが加熱装置50に設けられている。これにより、側面112A,121Aでの光ロスを抑えることができる。
【0049】
<2.変形例>
以下に、上記実施の形態の蛍光体評価装置1の変形例について説明する。なお、以下では、上記実施の形態と共通の構成要素に対しては、上記実施の形態で付されていた符号と同一の符号が付される。また、上記実施の形態と異なる構成要素の説明を主に行い、上記実施の形態と共通の構成要素の説明については、適宜、省略するものとする。
【0050】
図10は、変形例に係る加熱装置50の一部を拡大して表したものである。上記実施の形態では、開口部122の側面122Aが積分球10の内部に露出し、開口部112の側面112Aが積分球20の内部に露出している。そのため、開口部112,122の側面112A,122Aの反射率が積分球10,20の内壁の反射率よりも小さい場合には、開口部112,122の側面112A,122Aでの光ロスが無視できなくなる。
【0051】
そこで、本変形例では、加熱装置50は、側面112Aを覆う反射膜117を有するとともに、側面122Aを覆う反射膜127を有している。これにより、側面112A,122Aでの光ロスを低減することができる。反射膜117,127は、プレート111,121の熱膨張や熱収縮に耐え得る強固な被膜となっていることが好ましく、例えば、誘電体多層膜、セラミック溶射膜、耐熱アルマイト、または、メッキ膜によって構成されていることが好ましい。
【符号の説明】
【0052】
1…蛍光体評価装置、10,20…積分球、11,12,21,22…窓、30,40…分光測定機、50,60…加熱装置、70…光源装置、71…光源、72…モノクロメータ、73…ハーフミラー、74…ディテクタ、80…非接触温度計、90…情報処理装置、91…演算装置、92…記憶装置、100…サンプル、110,120…ホールド、111,121…プレート、112,122…開口部、112A,122A…側面、113,123…ヒータ、114,115,124…流路、114A,124A…流入口、114B,124B…流出口、116…収容部、117,127…反射膜、Fa1,Fa2,Fa3,Fa4,Fb1,Fb2,Fb3,Fb4…ガス流、L1,L2,L3…光、Le…励起光、Lf,Lr…蛍光。