(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-25
(45)【発行日】2022-05-09
(54)【発明の名称】金属ばね付複合防振体
(51)【国際特許分類】
F16F 3/12 20060101AFI20220426BHJP
F16F 15/04 20060101ALI20220426BHJP
F16F 7/00 20060101ALI20220426BHJP
F16F 3/08 20060101ALI20220426BHJP
F16F 3/093 20060101ALI20220426BHJP
B60J 5/10 20060101ALI20220426BHJP
B62D 25/12 20060101ALN20220426BHJP
【FI】
F16F3/12
F16F15/04 B
F16F7/00 H
F16F3/08
F16F3/093
B60J5/10 D
B62D25/12 M
(21)【出願番号】P 2018151956
(22)【出願日】2018-08-10
【審査請求日】2021-05-21
(73)【特許権者】
【識別番号】000219602
【氏名又は名称】住友理工株式会社
(74)【代理人】
【識別番号】110001966
【氏名又は名称】特許業務法人笠井中根国際特許事務所
(74)【代理人】
【識別番号】100103252
【氏名又は名称】笠井 美孝
(74)【代理人】
【識別番号】100147717
【氏名又は名称】中根 美枝
(72)【発明者】
【氏名】大路 章
【審査官】山田 康孝
(56)【参考文献】
【文献】特開2009-166525(JP,A)
【文献】特開昭62-113930(JP,A)
【文献】実開昭60-169010(JP,U)
【文献】特開2005-265158(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16F 1/00-6/00
F16F 15/00-15/08
F16F 7/00-7/14
B60J 5/10
B62D 25/12
(57)【特許請求の範囲】
【請求項1】
第一の弾性体と第二の弾性体が相互に重ね合わされており、該第一の弾性体が該第二の弾性体よりも高減衰の材料で形成されていると共に、荷重入力時のひずみが大きくなる歪集中部が該第一の弾性体に設定されており、更に該第一の弾性体と該第二の弾性体で構成された複合防振体に対して金属ばねが荷重入力方向で直列的に設けられて
おり、且つ、
該第一の弾性体における該第二の弾性体との重ね合わせ面に凹部が開口して、該凹部によって該歪集中部が設定されていると共に、該凹部に差し入れられる凸部が該第二の弾性体に設けられて、該凸部が該凹部の内面に当接していることを特徴とする金属ばね付複合防振体。
【請求項2】
第一の弾性体と第二の弾性体が相互に重ね合わされており、該第一の弾性体が該第二の弾性体よりも高減衰の材料で形成されていると共に、荷重入力時のひずみが大きくなる歪集中部が該第一の弾性体に設定されており、更に該第一の弾性体と該第二の弾性体で構成された複合防振体に対して金属ばねが荷重入力方向で直列的に設けられて
おり、且つ、
該第二の弾性体が、該第一の弾性体よりも圧縮永久ひずみの小さい材料で形成されていることを特徴とする金属ばね付複合防振体。
【請求項3】
前記第一の弾性体の損失正接(tanδ)が0.3以上とされていると共に、前記第二の弾性体の圧縮永久ひずみが、85℃の温度条件下で70時間に亘って圧縮した場合に25%以下とされており、更に該第一の弾性体が該第二の弾性体よりも硬くされている請求項
2に記載の金属ばね付複合防振体。
【請求項4】
前記金属ばねが防振対象部材への取付部を備えている請求項1
~3の何れか一項に記載の金属ばね付複合防振体。
【請求項5】
前記金属ばねが屈曲部で折り返された板ばねとされている請求項1
~4の何れか一項に記載の金属ばね付複合防振体。
【請求項6】
前記第一の弾性体と前記第二の弾性体が荷重の入力方向に重ね合わされている請求項1~
5の何れか一項に記載の金属ばね付複合防振体。
【請求項7】
前記第一の弾性体に対して前記金属ばねが取り付けられている請求項
6に記載の金属ばね付複合防振体。
【請求項8】
前記第一の弾性体における前記第二の弾性体との重ね合わせ面には該第二の弾性体に向けて突出する突出部が設けられていると共に、該突出部の外周に凹部が形成されて、該凹部によって前記歪集中部が設定されている請求項
6又は
7に記載の金属ばね付複合防振体。
【請求項9】
前記第二の弾性体は、前記第一の弾性体の先端側に直列的に配置された直列配置部と、該第一の弾性体に対して並列配置された並列配置部とを備えている請求項1~
8の何れか一項に記載の金属ばね付複合防振体。
【請求項10】
車両用開閉扉と車両のボデー骨格との何れか一方に前記金属ばねが取り付けられることで前記複合防振体がそれら車両用開閉扉とボデー骨格の間に配設されるようになっており、該車両用開閉扉を閉じた状態において該複合防振体が該車両用開閉扉と該ボデー骨格の間で圧縮状態とされる請求項1~
9の何れか一項に記載の金属ばね付複合防振体。
【請求項11】
前記第一の弾性体がスチレン系ゴム又はブチル系ゴムとされている請求項1~
10の何れか一項に記載の金属ばね付複合防振体。
【請求項12】
前記第二の弾性体が天然ゴム又はブタジエン系ゴムとされている請求項1~
11の何れか一項に記載の金属ばね付複合防振体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、振動伝達系の構成部材を防振連結状態で保持したり、振動伝達系の構成部材の相対変位量を制限したりする際に用いられる金属ばね付複合防振体に関するものである。
【背景技術】
【0002】
従来から、例えば、車両の開閉扉をボデー骨格に対して位置決めするドアストッパや、エンジンマウントなどの防振装置のストッパ機構に適用されるゴムストッパなどとして、複数の弾性体を重ね合わせた構造を有する複合防振体が提案されている。即ち、複合防振体は、例えば、特開2016-125528号公報(特許文献1)に示されたストッパーのように、ゴム状弾性体で形成された外装体と内装体が相互に重ね合わされた構造を有しており、それら外装体と内装体の硬度を相互に異ならせることにより、ばね特性の調節自由度を大きく得ることが可能とされている。
【0003】
ところで、荷重の入力時に弾性体の変形によって発揮される減衰作用は、弾性体により大きなひずみが生じることで大きく発揮されることから、優れた減衰性能を得るためには、荷重の入力時の弾性体のひずみが大きくなるようにすることが望ましい。
【0004】
しかしながら、特許文献1のストッパーでは、荷重の入力に際して、外装体と内装体が全体的に変形することでひずみが分散することから、発揮される減衰作用が比較的に小さく、防振性能が不十分な場合もあった。また、圧縮などの変形状態が長期に亘って持続する場合には、ストッパーの永久ひずみによる形状変化やそれに伴う防振特性の変化などが問題になりやすい。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上述の事情を背景に為されたものであって、その解決課題は、静的荷重が長期に亘って持続的に作用する場合にも永久変形を防ぐことができると共に、より優れた防振性能を実現することができる、新規な構造の金属ばね付複合防振体を提供することにある。
【課題を解決するための手段】
【0007】
以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。
【0008】
すなわち、本発明の第一の態様は、金属ばね付複合防振体であって、第一の弾性体と第二の弾性体が相互に重ね合わされており、該第一の弾性体が該第二の弾性体よりも高減衰の材料で形成されていると共に、荷重入力時のひずみが大きくなる歪集中部が該第一の弾性体に設定されており、更に該第一の弾性体と該第二の弾性体で構成された複合防振体に対して金属ばねが荷重入力方向で直列的に設けられており、且つ、該第一の弾性体における該第二の弾性体との重ね合わせ面に凹部が開口して、該凹部によって該歪集中部が設定されていると共に、該凹部に差し入れられる凸部が該第二の弾性体に設けられて、該凸部が該凹部の内面に当接していることを、特徴とする。
【0009】
このような第一の態様に従う構造とされた金属ばね付複合防振体によれば、荷重の入力によるひずみが、高減衰の材料で形成された第一の弾性体の歪集中部において集中的に生じることにより、減衰作用を大きく得ることができて、優れた防振性能を実現することができる。
【0010】
しかも、第一の弾性体に対して第二の弾性体が重ね合わされていることから、例えば、第一の弾性体とは異なる材料で形成されて特性の異なる第二の弾性体を組み合わせて採用すれば、防振特性や耐久性、緩衝性などの要求性能を、より高度に実現することができる。
【0011】
また、複合防振体に対して金属ばねが荷重入力方向で直列的に設けられていることから、長期に亘って静荷重が継続的に入力される場合に、金属ばねが弾性変形することで、複合防振体の永久ひずみ、特に減衰性能に優れた第一の弾性体の永久ひずみが低減されて、複合防振体の変形が抑えられる。その結果、複合防振体の耐久性の向上や、寸法変化の防止による防振性能の安定化などが図られる。加えて、第一の態様によれば、凸部が凹部に差し入れられて当接していることにより、例えば、第一の弾性体と第二の弾性体を凸部と凹部の係止によって連結することもできる。さらに、荷重の入力によって第一の弾性体が弾性変形する際に、凹部に入り込んだ凸部が第一の弾性体によって挟み込まれて弾性変形することにより、更なる減衰作用を得ることも可能となる。
本発明の第二の態様は、金属ばね付複合防振体であって、第一の弾性体と第二の弾性体が相互に重ね合わされており、該第一の弾性体が該第二の弾性体よりも高減衰の材料で形成されていると共に、荷重入力時のひずみが大きくなる歪集中部が該第一の弾性体に設定されており、更に該第一の弾性体と該第二の弾性体で構成された複合防振体に対して金属ばねが荷重入力方向で直列的に設けられており、且つ、該第二の弾性体が、該第一の弾性体よりも圧縮永久ひずみの小さい材料で形成されていることを、特徴とする。
第二の態様によれば、複合防振体が高減衰材料で形成された第一の弾性体と、永久変形し難い第二の弾性体とを備えることによって、優れた防振性能や緩衝性能、位置決め性能などを実現することができる。なお、圧縮永久ひずみは、同一条件での静的な圧縮荷重履歴によって残留する歪量とする。
本発明の第三の態様は、第二の態様に記載された金属ばね付複合防振体において、前記第一の弾性体の損失正接(tanδ)が0.3以上とされていると共に、前記第二の弾性体の圧縮永久ひずみが、85℃の温度条件下で70時間に亘って圧縮した場合に25%以下とされており、更に該第一の弾性体が該第二の弾性体よりも硬くされているものである。
第三の態様によれば、複合防振体が高減衰材料で形成された硬い第一の弾性体と永久変形し難く柔らかい第二の弾性体とを備えていることから、優れた防振性能や緩衝性能、位置決め性能などを実現することができる。すなわち、荷重に対する変形量が小さくされた硬い第一の弾性体によって、荷重入力に対する複合防振体の変形量が制限されて、防振対象部材の変位量を制限するストッパ作用を有効に得ることができる。さらに、第一の弾性体は、損失正接(tanδ)が0.3以上とされており、振動に対する優れた減衰作用を発揮することから、入力振動が有効に低減される。一方、荷重に対する変形量が大きくされた柔らかい第二の弾性体によって、例えば、防振対象部材の間で複合防振体が挟まれた状態で振動が入力される場合に、振動絶縁作用によって振動の伝達を抑えることができると共に、防振対象部材の複合防振体を介した防振連結状態が安定して維持される。さらに、第一の弾性体よりも柔らかい第二の弾性体は、入力に対する変形量が比較的に大きくなるが、圧縮永久ひずみが85℃の温度条件下で70時間に亘って圧縮した場合に25%以下とされていることから、長期に亘って圧縮状態とされたとしても、永久変形による性能の低下などが問題になり難く、優れた耐久性を実現できる。
【0012】
本発明の第四の態様は、第一~第三の何れか一つの態様に記載された金属ばね付複合防振体において、前記金属ばねが防振対象部材への取付部を備えているものである。
【0013】
第四の態様によれば、金属ばねによって複合防振体を振動伝達系の構成部材である防振対象部材に取り付けることができて、金属ばねとは別に取付用の部材を設ける場合に比して、部品点数を少なくすることができると共に、構造の簡略化も図られる。
【0014】
本発明の第五の態様は、第一~第四の何れか一つの態様に記載された金属ばね付複合防振体において、前記金属ばねが屈曲部で折り返された板ばねとされているものである。
【0015】
第五の態様によれば、金属ばねの屈曲部を挟んだ両側が成す角度を調節することで、複合防振体の向きを簡単に調節することができる。特に、ヒンジによってボデー骨格に対して開閉可能とされた車両用開閉扉のストッパとして金属ばね付複合防振体を採用する場合には、車両用開閉扉の変位の中心であるヒンジの位置と、金属ばねの変形中心の位置とが、互いに異なることから、車両用開閉扉の変位が進行するに従って複合防振体に対する車両用開閉扉の当接態様が変化して、第一の弾性体の歪集中部にひずみをより一層集中させることなども可能になる。
【0016】
本発明の第六の態様は、第一~第五の何れか一つの態様に記載された金属ばね付複合防振体において、前記第一の弾性体と前記第二の弾性体が荷重の入力方向に重ね合わされているものである。
【0017】
第六の態様によれば、例えば、高減衰の材料で形成された第一の弾性体によって優れた減衰性能を得ながら、緩衝性能に優れた材料で第二の弾性体を形成することにより、荷重入力時の衝撃や打音などを低減することができる。
【0018】
本発明の第七の態様は、第六の態様に記載された金属ばね付複合防振体において、前記第一の弾性体に対して前記金属ばねが取り付けられているものである。
【0019】
第七の態様によれば、第一の弾性体が高減衰を実現するために比較的に硬い場合にも、荷重入力方向で第一の弾性体の両側に第二の弾性体と金属ばねが配されることから、それら第二の弾性体と金属ばねの弾性変形によって緩衝作用を有効に得ることができる。しかも、金属ばねに取り付けられる第一の弾性体が比較的に硬くされていれば、複合防振体が金属ばねによって安定して支持されて、例えば複合防振体の車両用開閉扉などへの当接態様が安定することから、目的とする防振性能などを有効に得ることができる。
【0020】
本発明の第八の態様は、第六又は第七の態様に記載された金属ばね付複合防振体において、前記第一の弾性体における前記第二の弾性体との重ね合わせ面には該第二の弾性体に向けて突出する突出部が設けられていると共に、該突出部の外周に凹部が形成されて、該凹部によって前記歪集中部が設定されているものである。
【0021】
第八の態様によれば、荷重の入力によって突出部が圧縮されて、突出部がポアソン比に応じて外周へ膨らむように弾性変形することにより、突出部の外周に形成された凹部の歪集中部において大きなひずみを得ることができる。また、凹部が突出部の外周面に開口するように形成されている場合には、突出部が突出方向で圧縮されると、凹部において座屈の如き変形が生じ易く、凹部に設定された歪集中部において、第一の弾性体のひずみが集中的に大きくなることから、第一の弾性体による減衰性能を有利に得ることができる。
【0022】
本発明の第九の態様は、第一~第八の何れか一つの態様に記載された金属ばね付複合防振体において、前記第二の弾性体は、前記第一の弾性体の先端側に直列的に配置された直列配置部と、該第一の弾性体に対して並列配置された並列配置部とを備えているものである。
【0023】
第九の態様によれば、荷重入力時に、第一の弾性体の先端側に直列的に配置された第二の弾性体の直列配置部が、第一の弾性体よりも優先的に圧縮変形される。それ故、例えば、第二の弾性体を第一の弾性体よりも動ばね定数の低い柔らかい材質とすることによって、変形初期の優れた緩衝性を実現することや、永久変形が生じ難い材料で形成することによって、複合防振体の永久変形を抑えることができる。
【0024】
また、複合防振体に大きな圧縮荷重が作用すると、第二の弾性体が直列配置部だけでなく並列配置部においても圧縮されることによって、より硬いばね特性が発現する。これにより、例えば、金属ばね付複合防振体が車両用開閉扉のドアストッパに適用される場合において、車両用開閉扉を閉じる際の衝撃的な大荷重が入力される際に、車両用開閉扉のボデー骨格に対する相対変位量が、複合防振体の硬いばね特性によって有効に制限されると共に、車両用開閉扉の閉状態において、車両用開閉扉を車両のボデー骨格に対して適切な相対位置に保持して、車両用開閉扉のがたつきを防止することができる。
【0027】
本発明の第十の態様は、第一~第九の何れか一つの態様に記載された金属ばね付複合防振体において、車両用開閉扉と車両のボデー骨格との何れか一方に前記金属ばねが取り付けられることで前記複合防振体がそれら車両用開閉扉とボデー骨格の間に配設されるようになっており、該車両用開閉扉を閉じた状態において該複合防振体が該車両用開閉扉と該ボデー骨格の間で圧縮状態とされるものである。
【0028】
第十の態様によれば、車両用開閉扉が閉じる際にボデー骨格に伝わる振動を、複合防振体の減衰作用などによって低減することができる。特に、高減衰材料で形成された第一の弾性体による減衰作用に基づいて、振動エネルギーを低減することで、ボデー骨格への振動伝達を有効に抑えることができる。
【0029】
さらに、車両用開閉扉が長期間に亘って閉じた状態に維持されたとしても、金属ばねが変形することで複合防振体に永久変形が生じ難く、複合防振体による防振性能の安定化が図られると共に、閉じた状態の車両用開閉扉がボデー骨格に対して安定して位置決めされて、車両用開閉扉のがたつきが防止される。
【0036】
本発明の第十一の態様は、第一~第十の何れか一つの態様に記載された金属ばね付複合防振体において、前記第一の弾性体がスチレン系ゴム又はブチル系ゴムとされているものである。
【0037】
第十一の態様によれば、スチレン系ゴム又はブチル系ゴムによって、損失正接が大きく減衰性能に優れた第一の弾性体を得ることができる。
【0038】
本発明の第十二の態様は、第一~第十一の何れか一つの態様に記載された金属ばね付複合防振体において、前記第二の弾性体が天然ゴム又はブタジエン系ゴムとされているものである。
【0039】
第十二の態様によれば、天然ゴム又はブタジエン系ゴムによって、永久変形し難い第二の弾性体を得ることができる。
【発明の効果】
【0040】
本発明によれば、荷重入力時のひずみが第一の弾性体の歪集中部に集中することで優れた減衰作用が発揮されて、エネルギー減衰による防振効果を有利に得ることができる。さらに、金属ばねが設けられていることによって、静的な荷重が長期に亘って作用する場合にも永久変形を生じ難く、優れた耐久性や安定した防振性能が実現される。
【図面の簡単な説明】
【0041】
【
図1】本発明の第一の実施形態としてのドアストッパを示す正面図。
【
図5】
図1に示すドアストッパを圧縮した際の第一の弾性体におけるひずみ分布のシミュレーション結果を示す図。
【
図6】
図1に示すドアストッパを圧縮した際の金属ばねにおけるひずみ分布のシミュレーション結果を示す図。
【
図7】本発明の第二の実施形態としてのストッパ部材が取り付けられた防振装置の正面図。
【発明を実施するための形態】
【0042】
以下、本発明の実施形態について、図面を参照しつつ説明する。
【0043】
図1~4には、本発明に従う構造とされた金属ばね付複合防振体の第一の実施形態として、車両用のドアストッパ10が示されている。ドアストッパ10は、複合防振体12が金属ばね14に固着された構造を有している。なお、以下の説明において、上下方向とは、原則として、
図3中の上下方向を言う。
【0044】
より詳細には、複合防振体12は、
図3,4に示すように、第一の弾性体16と第二の弾性体18が相互に重ね合わされて形成されている。第一の弾性体16は、全体として分銅のような形状を有しており、略長円柱形状とされた本体部20と、本体部20から上方へ突出する突出部22とを一体で備えている。さらに、第一の弾性体16における突出部22の下部には、外周面に開口する溝状の凹部24が形成されている。このような凹部24が形成されていることにより、本実施形態の突出部22は、凹部24を外れた上部が凹部24を備える下部よりも大径とされている。また、本実施形態の第一の弾性体16は、下端部において外周へ広がる固着部26が、全周に亘って連続的に設けられている。
【0045】
また、第一の弾性体16は、ゴムや熱可塑性の樹脂エラストマなどで形成されている。さらに、第一の弾性体16は、第二の弾性体18よりもエネルギー減衰性能に優れた高減衰の材料で形成されており、好適には、室温条件下において周波数25Hz且つ振幅±0.5mmの振動を入力した場合の損失正接(tanδ)が0.3以上とされて、運動エネルギーを熱エネルギーに変換する粘性に基づいたエネルギー減衰性能に優れている。なお、第一の弾性体16の損失正接を含む動的性質は、例えば、JIS K6394の「加硫ゴム及び熱可塑性ゴム-動的性質の求め方」に基づいて特定することができる。
【0046】
さらに、第一の弾性体16の形成材料は、特に限定されるものではないが、例えばスチレン系ゴムやブチル系ゴムが採用されて、例えば、スチレンブタジエンゴム(SBR)やイソブチレンイソプレンゴム(IIR)、エチレンプロピレンゴム(EPDM)などが好適に採用される。また、第一の弾性体16の形成材料は、熱可塑性エラストマであっても良く、例えば、合成ゴムとは重合法が異なるSBRなどが好適に採用され得る。
【0047】
第二の弾性体18は、全体として略長円錐台形状とされており、第一の弾性体16の先端側である上側に直列的に配されて第一の弾性体16の突出部22の上面に固着される直列配置部28と、第一の弾性体16の上部の外周を取り囲むように並列的に配されて、第一の弾性体16の外周面に固着される並列配置部30とを、一体的に備えている。
【0048】
また、第二の弾性体18には、直列配置部28を上底壁部とするとともに並列配置部30を周壁部とする凹陥部32が、下側に向けて開口するように形成されている。さらに、第二の弾性体18における凹陥部32の内周面には、凸部34が突出して設けられている。凸部34は、並列配置部30から内周へ向けて突出して、全周に亘って連続して設けられており、第一の弾性体16の凹部24と略対応する断面形状を有していると共に、凸部34の突出高さ寸法が凹部24の深さ寸法よりも小さくされている。
【0049】
また、第二の弾性体18は、ゴムや熱可塑性の樹脂エラストマなどで形成されており、好適には、第一の弾性体16よりも圧縮永久ひずみが小さい材料で形成されている。更に、第二の弾性体18は、85℃の温度条件下で70時間に亘って連続的に上下方向で圧縮した場合の圧縮永久ひずみが、25%以下とされていることが望ましい。なお、第二の弾性体18の圧縮永久ひずみの測定方法は、ISO 815やそれに基づくJIS K6262に規定された「加硫ゴム及び熱可塑性ゴム-常温,高温及び低温における圧縮永久ひずみの求め方」に準ずる。
【0050】
さらに、第二の弾性体18の形成材料は、特に限定されるものではないが、例えば、天然ゴム(NR)やブタジエン系ゴム(BRなど)が好適に用いられる。さらに、第二の弾性体18の形成材料としては、アクリロニトリルブタジエンゴム(NBR)やエチレンプロピレンゴム(EPM,EPDM)なども好適に採用され得る。なお、第一の弾性体16の動ばね定数が第二の弾性体18よりも大きくされており、第一の弾性体16が第二の弾性体18よりも硬くされている。
【0051】
そして、第二の弾性体18は、第一の弾性体16の上部の表面を覆うように重ね合わされており、第一の弾性体16の突出部22が第二の弾性体18の凹陥部32に差し入れられている。これにより、第二の弾性体18の直列配置部28が、第一の弾性体16に対して上下方向で重ね合わされて、荷重入力方向において第一の弾性体16と直列的に配されていると共に、第二の弾性体18の並列配置部30が、第一の弾性体16に対して上下方向と直交する方向で重ね合わされて、荷重入力方向に対して第一の弾性体16と並列的に配されている。また、第一の弾性体16の突出部22は、第二の弾性体18の直列配置部28との重ね合わせ面に突出して設けられて、突出方向である軸方向の全長に亘って凹陥部32の内周に差し入れられており、突出部22の外周が軸方向の全長に亘って第二の弾性体18で囲まれている。
【0052】
このように、第一の弾性体16の上部の表面が第二の弾性体18で覆われて、突出部22が凹陥部32に差し入れられていることにより、第一の弾性体16の凹部24が第二の弾性体18との重ね合わせ面に開口していると共に、第二の弾性体18の凸部34が第一の弾性体16との重ね合わせ面に突出しており、凸部34が凹部24に差し入れられている。
【0053】
さらに、凹部24に差し入れられた凸部34は、凹部24の上下側壁面に当接状態で重ね合わされていると共に、凹部24の内周底壁面に対して外周側に離れて配されている。これにより、凸部34の先端面と凹部24の内周底壁面との間には、周方向に延びる空所36が形成されている。本実施形態の空所36は、環状とされていることによって、外部空間から隔てられた閉空間とされている。
【0054】
なお、第二の弾性体18は、第一の弾性体16の突出部22における凹部24の内周底壁面を外れた部分に当接状態で重ね合わされて固着されていると共に、第一の弾性体16の本体部20の上端部にも固着されて本体部20よりも外周まで突出している。また、本実施形態のドアストッパ10では、第一の弾性体16と第二の弾性体18の直列配置部28が、軸方向で直列的に配されていると共に、第一の弾性体16と第二の弾性体18の並列配置部30が、同軸的に並列配置されている。
【0055】
かくの如き構造の複合防振体12は、第一の弾性体16の下端部が金属ばね14に固着されている。金属ばね14は、金属素板が屈曲部38において折り返された構造を有する金属製の板ばねであって、
図3に示すように、湾曲板形状の屈曲部38に対して、一方側に略平板形状の第一の板状部40が設けられていると共に、他方側に略平板形状の第二の板状部42が設けられた構造とされている。さらに、第二の板状部42には、屈曲部38と反対側の端部において左右両外側へ延び出す取付部44,44が一体形成されており、それら取付部44,44にボルト孔46がそれぞれ貫通形成されている。
【0056】
金属ばね14は、上下に向かい合わせに配された第一の板状部40と第二の板状部42が、屈曲部38の弾性変形によって、相対的な角度変化を伴って相対変位することで、ばねとして機能するようになっている。本実施形態では、第一の板状部40と第二の板状部42が0°<θ<90°を満たす所定の傾斜角度θだけ相対的に傾斜して配されており、金属ばね14は荷重の入力によってθが0°に近づくように変形する。なお、荷重が入力されていない初期状態の金属ばね14において、第一の板状部40と第二の板状部42の相対的な傾斜角度θは、30°以下であることが望ましい。
【0057】
そして、金属ばね14の第一の板状部40の上面に対して、複合防振体12の第一の弾性体16が固着されており、金属ばね14が複合防振体12の下方に直列的に設けられている。本実施形態では、第一の弾性体16の下端部に固着部26が一体形成されていることから、第一の弾性体16の金属ばね14に対する固着面積が大きく確保されて、固着強度の向上が図られている。なお、第一の弾性体16と金属ばね14の固着方法は、特に限定されるものではなく、接着や溶着などの各種公知の方法が採用され得る。さらに、本実施形態では、第一の弾性体16と第二の弾性体18を組み合わせて複合防振体12を形成した後で、第一の弾性体16を金属ばね14に固着しているが、例えば、第一の弾性体16を単体状態で金属ばね14に固着した後で、第一の弾性体16に第二の弾性体18を組み合わせて、金属ばね14上で複合防振体12を形成するようにしてもよい。
【0058】
このような構造とされた本実施形態に係るドアストッパ10は、
図3に示すように、金属ばね14の第二の板状部42が、金属ばね14のボルト孔46,46に挿通される図示しないボルトによって、防振対象部材である車両のボデー骨格48に取り付けられる。これにより、ドアストッパ10が振動伝達系の構成部材であるボデー骨格48と車両用開閉扉としてのドア50との間に配設されて、ドア50が閉じる際にドア50が複合防振体12に当接して、ドア50が閉じた状態において、ドアストッパ10がボデー骨格48とドア50の間で圧縮状態とされるようになっている。なお、車両用開閉扉は、必ずしも自動車のサイドドアに限定されず、例えばエンジンフード(ボンネット)やトランクリッド、バックドア(バックハッチ)などを含む。また、自動車以外の鉄道用車両などの開閉扉に対しても、本発明は適用され得る。
【0059】
そして、ドアストッパ10が車両に装着された状態でドア50が閉じられると、ドア50が複合防振体12に当接することで、複合防振体12に略上下方向の荷重が入力されて、第一の弾性体16の振動減衰作用に基づく防振効果が発揮される。特に、高減衰材料で形成されて、凹部24の壁部に歪集中部52が設定された第一の弾性体16によって、減衰作用が効果的に発揮される。
【0060】
すなわち、荷重の入力に際して、第一の弾性体16の突出部22が略上下方向に圧縮されることから、凹部24における上下の内面が上下方向で相互に接近するように突出部22の基端部が変形して、凹部24の壁部が座屈するように変形する。これにより、荷重の入力時にひずみが集中する歪集中部52が、第一の弾性体16における凹部24の壁部に設定されており、歪集中部52において第一の弾性体16のひずみが局所的に大きくなることで、優れた振動減衰作用が発揮される。
【0061】
なお、本実施形態の歪集中部52は、例えば、
図3に示す縦断面において凹部24の壁面の変曲点となる部分に設定される。要するに、本実施形態において歪集中部52は、凹部24の深さ寸法が最大となる位置で、凹部24の内周底壁部に設定されている。
【0062】
そして、第一の弾性体16は、略上下方向の荷重の入力に対して、凹部24の開口寸法が上下方向で小さくなるように変形する。即ち、本実施形態において、第一の弾性体16は、荷重の入力時に、凹部24における歪集中部52を挟んだ上下両側の内面が相互に接近するように変形する。これにより、凹部24によって形成される空所36は、略上下方向の荷重入力による第一の弾性体16の変形に際して、空間が実質的に小さくなるように変形する。なお、第一の弾性体16は、略上下方向の入力に対して、凹部24の内面の開口角度が小さくなるように変形すると共に、凹部24の内面の開口角度の変化が、特に歪集中部52で最も大きくなるようにされている。
【0063】
また、凹部24の底壁面と凸部34の突出先端面が互いに離れており、それら凹部24と凸部34の間に空所36が設けられていることから、凹部24の壁面が少なくとも底部において凸部34で拘束されることなく変形を許容されている。それ故、凹部24の底部に設定された歪集中部52において、軸方向荷重の入力に対するひずみが大きくなって、目的とする減衰作用をより有利に得ることができる。
【0064】
また、本実施形態では、第一の弾性体16の凹部24に第二の弾性体18の凸部34が差し入れられていると共に、凸部34の基端部分の上下側面が凹部24の壁面に当接状態で重ね合わされていることにより、凹部24の壁部の過大な変形が凸部34の圧縮ばねによって防止されている。それ故、軸方向荷重の入力時に、凹部24の変形による減衰作用を有効に得ながら、凹部24の壁部が過大な変形によって損傷するのを防ぐことができる。
【0065】
加えて、軸方向の荷重入力時に、凹部24の上側壁部が第二の弾性体18の直列配置部28と凸部34の間で上下に圧縮されると共に、凸部34が凹部24の壁部によって上下に圧縮されることにより、更なる減衰作用を得ることも期待できる。
【0066】
ところで、上下方向の荷重入力時に、凹部24の壁部の隅部に設定された歪集中部52においてひずみが大きくなることは、
図5に示すシミュレーションの結果によっても確認されている。なお、出力された解析結果はカラー表示されているが、
図5(
図6)ではグレースケールとされており、応力レベルの差異を識別し難いことから、以下に簡単な説明を加える。すなわち、
図5のシミュレーション結果によれば、図中左側の凹部24の最深部の壁部においてひずみが大きくなることが確認できた。なお、
図5と後述する
図6のシミュレーションの結果を示す図では、ひずみの大きさが色相によって示されており、ひずみが小さいほど青に近く且つひずみが大きいほど赤に近い色相で示されている。また、
図5,6のひずみ分布は、金属ばね14における第一の板状部40と第二の板状部42の相対的な傾斜角度が4°小さくなるまで圧縮した場合のシミュレーション結果を示す。
【0067】
また、ドア50を閉じる際などに、ドアストッパ10に大きな圧縮荷重が入力されると、第二の弾性体18の直列配置部28と第一の弾性体16に加えて、第二の弾性体18の並列配置部30がボデー骨格48とドア50の間で挟まれて圧縮される。これにより、ドアストッパ10においてより硬いばねを得ることができて、ボデー骨格48に対するドア50の変位が効果的に制限される。要するに、本実施形態のドアストッパ10では、ばね特性が入力の大きさに応じて段階的に変化するようになっており、入力が大きい場合には、ボデー骨格48とドア50の相対的な変位を規制するストッパ作用をより有利に得ることができる。なお、直列配置部28と並列配置部30は、
図3からも分かるように、ドア50の閉作動時に、直列配置部28が並列配置部30よりも先に圧縮されるように配置されている。
【0068】
また、ドアストッパ10に対する主たる荷重の入力方向が略上下方向とされていることから、複合防振体12と金属ばね14は、荷重の入力方向で直列的に配されている。これにより、荷重の入力に際して、第一の板状部40と第二の板状部42の角度変化を伴う金属ばね14の弾性変形が生じる。それ故、例えば、ドア50が閉じられた状態に保持されて、ドアストッパ10に静荷重が継続的に作用する場合に、金属ばね14が優先的に弾性変形することによって複合防振体12の永久変形が防止されて、複合防振体12の耐久性の向上や防振特性の安定化などが図られる。
【0069】
なお、荷重の入力に際して、金属ばね14が弾性変形することは、
図6に示すシミュレーションの結果によっても確認されている。すなわち、
図6によれば、荷重の入力時に、金属ばね14は屈曲部38にひずみが集中しており、金属ばね14が屈曲部38において弾性変形していることが分かった。このように、本実施形態のドアストッパ10では、複合防振体12だけでなく、金属ばね14によっても荷重が支持されている。
【0070】
さらに、金属ばね14のばね定数は、変形量が大きくなるに従って線形的に大きくなることから、ドア50が閉じる際などに作用する大荷重の入力時には、金属ばね14がある程度まで変形した状態から複合防振体12の弾性変形が生じて、複合防振体12の防振効果が有効に発揮される。
【0071】
更にまた、金属ばね14における第一の板状部40と第二の板状部42の角度変化は、ボデー骨格48とドア50をつなぐ図示しないヒンジとは異なる位置を中心として生じることから、ドア50が複合防振体12に当接した状態からヒンジを中心として閉方向に移動するに従って、ドア50の複合防振体12に対する当接位置や当接による荷重の作用方向が変化する。そして、例えば、複合防振体12における上端の角部にドア50が当接することにより、ドア50から及ぼされる荷重による複合防振体12のひずみが、より歪集中部52に集中し易くなって、第一の弾性体16の減衰作用がより効果的に発揮される。
【0072】
特に本実施形態では、金属ばね14が弾性変形して荷重入力方向が変化することにより、荷重が複合防振体12の先端の外周角部に入力されると、突出部22の上部の外周端部が下向きに押されて、突出部22の外周面に開口する凹部24の内面において座屈の如き変形がより生じ易くなる。その結果、凹部24の内面に設定された歪集中部52において、周方向で部分的により大きなひずみが生じて、第一の弾性体16の減衰作用がより大きく発揮される。
【0073】
加えて、金属ばね14が複合防振体12に対して荷重の入力方向で直列的に設けられていることにより、ドアストッパ10の荷重入力方向でのサイズを、金属ばね14によって簡単に調節することも可能になる。即ち、第一,第二の弾性体16,18によってドアストッパ10のサイズを調節しようとすると、ばね特性や減衰性能、圧縮永久ひずみなどに対する影響が何れも大きく、要求される特性を実現するために高度な調節が求められるが、金属ばね14は、減衰と永久変形を考慮する必要がなく、サイズの変更に際して特性を調節し易い。それ故、金属ばね14のサイズや形状を調節することによって、要求特性を実現しながらサイズの調節を行うことが容易である。従って、ボデー骨格48とドア50の隙間(クリアランス)が大きい場合にも、第一,第二の弾性体16,18をドア50に近い位置で金属ばね14によって支持すれば、ドア50が閉じた状態でドアストッパ10からドア50に及ぼされる当接反力などを有効に得ることができる。これにより、クリアランスの異なるドア構造に対して、共通の複合防振体12を採用することも可能になる。
【0074】
図7には、本発明に従う構造とされた金属ばね付複合防振体の第二の実施形態としてのストッパ部材60が、防振装置62に取り付けられた状態で示されている。以下の説明において、上下方向とは、原則として、主たる荷重の入力方向である
図7中の上下方向を言う。
【0075】
ストッパ部材60は、金属ばね64を備えている。金属ばね64は、金属素板を屈曲部66で折り返した構造を有する板ばねであって、湾曲板形状とされた屈曲部66に対して、一方側に第一の板状部68が設けられていると共に、他方側に第二の板状部70が設けられている。
【0076】
第一の板状部68は、略平板形状とされており、屈曲部66の上端部から防振装置62の内周側へ向けて延び出していると共に、防振装置62の内周側へ行くに従って上傾している。第二の板状部70は、略平板形状とされており、屈曲部66の下端部から防振装置62の内周側へ向けて延び出していると共に、上下方向に対して略直交して広がっている。さらに、第二の板状部70には、幅方向(
図7中の紙面直交方向)の両側へ突出する取付部としてのかしめ片72が一体形成されており、このかしめ片72が第二の取付部材92にかしめ固定されることで、金属ばね64が第二の取付部材92に固定されるようになっている。
【0077】
また、金属ばね64には、第一の弾性体74が固着されている。第一の弾性体74は、金属ばね64の第一の板状部68の上下両面に固着されていると共に、第一の板状部68の下面に固着された第一の弾性体74が屈曲部66および第二の板状部70の一方の面まで延び出して固着されている。さらに、第一の板状部68の上面に固着された第一の弾性体74には、凹部としての2つの凹溝76,76が並列的に形成されている。この凹溝76,76は、上面に開口しながら第一の板状部68の幅方向(
図7中の紙面直交方向)に直線的に延びており、何れも溝長さ方向(
図7中の紙面直交方向)と直交する断面の形状が略矩形とされている。また、第一の弾性体74における凹溝76,76の間には、それら凹溝76,76を隔てる突出部78が設けられており、凹溝76,76の隅部である突出部78の基端部分が、本実施形態における歪集中部52とされている。なお、突出部78と反対側の凹溝76,76の側壁部は、それぞれ突出部78と略同じ高さで突出する嵌合突部80,80とされている。
【0078】
また、第一の弾性体74には、第二の弾性体82が取り付けられている。第二の弾性体82は、矩形板状のゴム弾性体であって、上面が略平坦とされている一方、下面が第一の弾性体74の凹溝76,76に対応する凸部84,84を備えている。凸部84,84は、第一の板状部68の幅方向(
図7中の紙面直交方向)に延びており、凸部84,84間の距離が第一の弾性体74の突出部78の幅寸法よりも大きくされている。
【0079】
そして、第二の弾性体82は、金属ばね64の第一の板状部68の上面に固着された第一の弾性体74に対して上側から重ね合わされており、凸部84,84が第一の弾性体74の凹溝76,76の各一方に差し入れられている。本実施形態では、凸部84,84間の対向側の面が、第一の弾性体74の突出部78の両側面に対して離れており、第一の弾性体74の突出部78の両側面と、第二の弾性体82の凸部84,84の対向する側面との間に空所86が形成されている。これにより、第一の弾性体74における空所86の壁部において、歪集中部52が構成されている。なお、第一の弾性体74における第二の弾性体82との重ね合わせ面に突出する突出部78は、第二の弾性体82の凸部84,84の間に差し入れられており、突出先端面が第二の弾性体82に重ね合わされている。
【0080】
一方、凸部84,84の他方の側面が、第一の弾性体74の嵌合突部80,80の側面に押し当てられており、凸部84,84が嵌合突部80,80の間に嵌め入れられることで、第一の弾性体74と第二の弾性体82が固定されている。さらに、本実施形態では、凸部84の外側に嵌合凹部87が形成されており、この嵌合凹部87に嵌合突部80が嵌め入れられることによっても、第一の弾性体74と第二の弾性体82が固定されている。
【0081】
本実施形態の複合防振体88は、第一の板状部68の上面に固着された第一の弾性体74と、それに取り付けられた第二の弾性体82とによって構成されている。また、第一の弾性体74は、第二の弾性体82よりも高減衰の材料で形成されていると共に、第二の弾性体82よりもばね定数の大きい硬い材料で形成されている。なお、第一の弾性体74と第二の弾性体82の形成材料としては、例えば、第一の実施形態と同様のものが好適に採用される。
【0082】
かくの如き構造とされたストッパ部材60は、防振装置62に取り付けられている。防振装置62は、所謂、お椀形の防振装置であって、第一の取付部材90と第二の取付部材92が、本体ゴム弾性体94によって弾性連結された構造を有している。さらに、第一の取付部材90には、
図7中の左方へ突出するインナブラケット96が図示しないボルトなどで取り付けられていると共に、第二の取付部材92には、門形のアウタブラケット98が取り付けられており、アウタブラケット98が第一の取付部材90の上側を跨いで配されている。また、第二の取付部材92には、上端部分に外周へ突出するフランジ状部100が全周に亘って設けられていると共に、フランジ状部100の周方向の一部には、外周への突出寸法が部分的に大きくされたストッパ受部102が設けられている。なお、
図7において、アウタブラケット98は、
図7中の紙面直交方向の略中央で切断した断面で示されている。また、防振装置62の具体的な構造は、特に限定されるものではなく、各種公知の構造が採用可能であり、例えば、内部に非圧縮性流体を封入した流体室を備える流体封入式防振装置であってもよい。
【0083】
そして、ストッパ部材60を構成する金属ばね64の第二の板状部70が、防振装置62における第二の取付部材92に設けられたストッパ受部102に上側から重ね合わされて、第二の板状部70のかしめ片72がストッパ受部102に巻き付けられるようにかしめ固定されることで、ストッパ部材60の金属ばね64が防振装置62の第二の取付部材92に固定されている。尤も、ストッパ部材60の防振装置62への装着態様は、あくまでも一例であって、特に限定されるものではない。具体的には、例えば、金属ばね64の第二の板状部70と第二の取付部材92のストッパ受部102との間に係止構造が設けられており、それら金属ばね64と第二の取付部材92が係止によって固定されるようになっている他、接着や溶接などの手段で固着してもよいし、第二の取付部材92の一部によって金属ばね64が一体形成されていてもよい。加えて、ストッパ部材60は、インナブラケット96側に設けることも可能である。
【0084】
かかるストッパ部材60の防振装置62への装着状態において、第二の弾性体82で構成されたストッパ部材60の上端部分は、インナブラケット96の下方に所定の距離(ストッパクリアランス)を隔てて配置されている。要するに、ストッパ部材60は、防振装置62への装着状態において、金属ばね64における第一の板状部68および第二の板状部70と、金属ばね64に取り付けられた複合防振体88とが、インナブラケット96と第二の取付部材92のストッパ受部102との上下方向間に配されている。
【0085】
そして、防振装置62の第一の取付部材90と第二の取付部材92の間に上下方向の振動が入力されて、第一の取付部材90と第二の取付部材92が上下方向で相互に接近する方向へ大きく変位すると、第一の取付部材90に取り付けられたインナブラケット96が第二の取付部材92に取り付けられたストッパ部材60に当接する。これにより、第一の取付部材90と第二の取付部材92の上下方向の相対変位量が、インナブラケット96とストッパ部材60の当接によって制限されて、本体ゴム弾性体94の過大な変形が防止されることによる耐久性の向上などが図られる。
【0086】
さらに、ストッパ部材60は、第一の弾性体74が高減衰の材料で形成されていることから、第一の弾性体74の減衰作用によって、振動を有効に低減することができる。しかも、凹溝76,76の隅部に設定された歪集中部52,52に対して、荷重入力によるひずみが集中することから、第一の弾性体74の変形によって発揮される減衰作用をより効率的に得ることができる。
【0087】
また、ストッパ部材60においてインナブラケット96に直接当接する部分が、第一の弾性体74よりも柔らかい第二の弾性体82で構成されていることから、インナブラケット96とストッパ部材60の当接初期において緩衝性を有利に得ることができて、衝撃や打音などが防止される。さらに、インナブラケット96がより強く押し当てられると、第二の弾性体82よりも硬い第一の弾性体74によって、第一の取付部材90と第二の取付部材92の相対変位量が制限されることから、目的とするストッパ機能が有効に発揮される。
【0088】
しかも、インナブラケット96とストッパ部材60の当接初期には、金属ばね64のばね定数が比較的に小さく、金属ばね64が小さな力で弾性変形することから、金属ばね64の弾性によっても緩衝性を有利に得ることができる。さらに、金属ばね64のばね定数は、変形量が増すに従って線形的に大きくなることから、入力が大きい場合には、第一の取付部材90と第二の取付部材92の相対変位量が、金属ばね64の弾性によっても有効に制限される。
【0089】
さらに、荷重が入力されていない初期形状の金属ばね64は、複合防振体88を支持する第一の板状部68が内周側へ向けて上傾しており、複合防振体88の上面も第一の板状部68と同じ方向に傾斜していることから、上下方向に対して略直交して広がるインナブラケット96の下面が複合防振体88に当接する際に、金属ばね64の変形に伴って当接面積が徐々に大きくなる。それ故、当接初期には小さな当接面積による緩衝作用が有効に発揮される一方、金属ばね64の変形が大きくなると、大きな面積で当接することによって、第一の取付部材90と第二の取付部材92の相対変位を効果的に制限することができる。
【0090】
以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、複合防振体の具体的な形状は、前記実施形態の例示によって限定的に解釈されない。具体的には、例えば、略円板形状乃至は円柱形状の第一の弾性体と、略円板形状乃至は円柱形状の第二の弾性体とを、軸方向で重ね合わせて複合防振体を構成することもできるし、略円柱形状の第一の弾性体と、その外周面に重ね合わされて同軸的に並列配置される略円筒形状の第二の弾性体とによって、複合防振体を構成することもできる。
【0091】
また、前記実施形態では、荷重の入力時に、歪集中部における凹部の内面の開口角度が小さくなるように、第一の弾性体が変形する例を示したが、例えば、荷重の入力時に、歪集中部における凹部の内面の開口角度が大きくなるように第一の弾性体が変形することで、第一の弾性体のひずみが歪集中部において大きくなるようにもできる。
【0092】
また、前記実施形態では、複合防振体12の基端部が第一の弾性体16で構成されていると共に、複合防振体12の先端部が第二の弾性体18で構成されている構造を例示したが、例えば、複合防振体の先端部が第一の弾性体で構成されていると共に、複合防振体の基端部が第二の弾性体で構成されている構造を採用することもできる。なお、第一の弾性体と第二の弾性体が同軸的に並列配置される場合には、第一の弾性体は内周に配されてもよいし、外周に配されてもよい。
【0093】
また、第一の実施形態に係る複合防振体12は、軸方向視で略長円形とされているが、例えば、軸方向視で円形や多角形、異形などであっても同様の構造を実現することができる。
【0094】
歪集中部は、必ずしも空所の壁部に設定されるものに限定されず、例えば、第一の弾性体における第二の弾性体との当接面などにも設定され得る。従って、本発明において空所は必須ではない。
【0095】
金属ばねの具体的な構造は、特に限定されるものではなく、例えば、折り返されていない板ばねなどであってもよい。さらに、金属ばねは、ボデー骨格48などへの取付構造(前記実施形態ではボルト孔46を備えた取付部44)を備えている必要はなく、取付構造を金属ばねとは別に設けることもできる。
【0096】
第二の弾性体18の特性は、第一の弾性体16に比して減衰が低くされている他は適宜に設定されるものであって、低動ばね特性による緩衝性や永久変形の生じ難さ、製造の容易さ、第一の弾性体16との接着性など、各種の要求性能に応じて第二の弾性体18の特性が設定される。
【0097】
さらに、金属ばね付複合防振体は、必ずしも車両の開閉扉部分に適用されるドアストッパやエンジンマウントなどの防振装置のストッパ部材としてのみならず、例えば、建築物など車両以外の開閉扉のストッパなどにも適用され得る。また、金属ばね付複合防振体は、車両用開閉扉に適用される場合に、例えば、金属ばねが車両用開閉扉に取り付けられて、車両用開閉扉の閉状態で複合防振体がボデー骨格に押し当てられるようにしてもよい。
また、本発明は、もともと以下(i)~(xiii)に記載の各発明を何れも含むものであり、その構成および作用効果に関して、付記しておく。
本発明は、
(i) 第一の弾性体と第二の弾性体が相互に重ね合わされており、該第一の弾性体が該第二の弾性体よりも高減衰の材料で形成されていると共に、荷重入力時のひずみが大きくなる歪集中部が該第一の弾性体に設定されており、更に該第一の弾性体と該第二の弾性体で構成された複合防振体に対して金属ばねが荷重入力方向で直列的に設けられていることを特徴とする金属ばね付複合防振体、
(ii) 前記金属ばねが防振対象部材への取付部を備えている(i)に記載の金属ばね付複合防振体、
(iii) 前記金属ばねが屈曲部で折り返された板ばねとされている(i)又は(ii)に記載の金属ばね付複合防振体、
(iv) 前記第一の弾性体と前記第二の弾性体が荷重の入力方向に重ね合わされている(i)~(iii)の何れか一項に記載の金属ばね付複合防振体、
(v) 前記第一の弾性体に対して前記金属ばねが取り付けられている(iv)に記載の金属ばね付複合防振体、
(vi) 前記第一の弾性体における前記第二の弾性体との重ね合わせ面には該第二の弾性体に向けて突出する突出部が設けられていると共に、該突出部の外周に凹部が形成されて、該凹部によって前記歪集中部が設定されている(iv)又は(v)に記載の金属ばね付複合防振体、
(vii) 前記第二の弾性体は、前記第一の弾性体の先端側に直列的に配置された直列配置部と、該第一の弾性体に対して並列配置された並列配置部とを備えている(i)~(vi)の何れか一項に記載の金属ばね付複合防振体、
(viii) 前記第一の弾性体における前記第二の弾性体との重ね合わせ面に凹部が開口して、該凹部によって前記歪集中部が設定されていると共に、該凹部に差し入れられる凸部が該第二の弾性体に設けられて、該凸部が該凹部の内面に当接している(i)~(vii)の何れか一項に記載の金属ばね付複合防振体、
(ix) 車両用開閉扉と車両のボデー骨格との何れか一方に前記金属ばねが取り付けられることで前記複合防振体がそれら車両用開閉扉とボデー骨格の間に配設されるようになっており、該車両用開閉扉を閉じた状態において該複合防振体が該車両用開閉扉と該ボデー骨格の間で圧縮状態とされる(i)~(viii)の何れか一項に記載の金属ばね付複合防振体、
(x) 前記第二の弾性体が、前記第一の弾性体よりも圧縮永久ひずみの小さい材料で形成されている(i)~(ix)の何れか一項に記載の金属ばね付複合防振体、
(xi) 前記第一の弾性体の損失正接(tanδ)が0.3以上とされていると共に、前記第二の弾性体の圧縮永久ひずみが、85℃の温度条件下で70時間に亘って圧縮した場合に25%以下とされており、更に該第一の弾性体が該第二の弾性体よりも硬くされている(x)に記載の金属ばね付複合防振体、
(xii) 前記第一の弾性体がスチレン系ゴム又はブチル系ゴムとされている(i)~(xi)の何れか一項に記載の金属ばね付複合防振体、
(xiii) 前記第二の弾性体が天然ゴム又はブタジエン系ゴムとされている(i)~(xii)の何れか一項に記載の金属ばね付複合防振体、
に関する発明を含む。
上記(i)に記載の発明では、荷重の入力によるひずみが、高減衰の材料で形成された第一の弾性体の歪集中部において集中的に生じることにより、減衰作用を大きく得ることができて、優れた防振性能を実現することができる。しかも、第一の弾性体に対して第二の弾性体が重ね合わされていることから、例えば、第一の弾性体とは異なる材料で形成されて特性の異なる第二の弾性体を組み合わせて採用すれば、防振特性や耐久性、緩衝性などの要求性能を、より高度に実現することができる。また、複合防振体に対して金属ばねが荷重入力方向で直列的に設けられていることから、長期に亘って静荷重が継続的に入力される場合に、金属ばねが弾性変形することで、複合防振体の永久ひずみ、特に減衰性能に優れた第一の弾性体の永久ひずみが低減されて、複合防振体の変形が抑えられる。その結果、複合防振体の耐久性の向上や、寸法変化の防止による防振性能の安定化などが図られる。
上記(ii)に記載の発明では、金属ばねによって複合防振体を振動伝達系の構成部材である防振対象部材に取り付けることができて、金属ばねとは別に取付用の部材を設ける場合に比して、部品点数を少なくすることができると共に、構造の簡略化も図られる。
上記(iii)に記載の発明では、金属ばねの屈曲部を挟んだ両側が成す角度を調節することで、複合防振体の向きを簡単に調節することができる。特に、ヒンジによってボデー骨格に対して開閉可能とされた車両用開閉扉のストッパとして金属ばね付複合防振体を採用する場合には、車両用開閉扉の変位の中心であるヒンジの位置と、金属ばねの変形中心の位置とが、互いに異なることから、車両用開閉扉の変位が進行するに従って複合防振体に対する車両用開閉扉の当接態様が変化して、第一の弾性体の歪集中部にひずみをより一層集中させることなども可能になる。
上記(iv)に記載の発明では、例えば、高減衰の材料で形成された第一の弾性体によって優れた減衰性能を得ながら、緩衝性能に優れた材料で第二の弾性体を形成することにより、荷重入力時の衝撃や打音などを低減することができる。
上記(v)に記載の発明では、第一の弾性体が高減衰を実現するために比較的に硬い場合にも、荷重入力方向で第一の弾性体の両側に第二の弾性体と金属ばねが配されることから、それら第二の弾性体と金属ばねの弾性変形によって緩衝作用を有効に得ることができる。しかも、金属ばねに取り付けられる第一の弾性体が比較的に硬くされていれば、複合防振体が金属ばねによって安定して支持されて、例えば複合防振体の車両用開閉扉などへの当接態様が安定することから、目的とする防振性能などを有効に得ることができる。
上記(vi)に記載の発明では、荷重の入力によって突出部が圧縮されて、突出部がポアソン比に応じて外周へ膨らむように弾性変形することにより、突出部の外周に形成された凹部の歪集中部において大きなひずみを得ることができる。また、凹部が突出部の外周面に開口するように形成されている場合には、突出部が突出方向で圧縮されると、凹部において座屈の如き変形が生じ易く、凹部に設定された歪集中部において、第一の弾性体のひずみが集中的に大きくなることから、第一の弾性体による減衰性能を有利に得ることができる。
上記(vii)に記載の発明では、荷重入力時に、第一の弾性体の先端側に直列的に配置された第二の弾性体の直列配置部が、第一の弾性体よりも優先的に圧縮変形される。それ故、例えば、第二の弾性体を第一の弾性体よりも動ばね定数の低い柔らかい材質とすることによって、変形初期の優れた緩衝性を実現することや、永久変形が生じ難い材料で形成することによって、複合防振体の永久変形を抑えることができる。また、複合防振体に大きな圧縮荷重が作用すると、第二の弾性体が直列配置部だけでなく並列配置部においても圧縮されることによって、より硬いばね特性が発現する。これにより、例えば、金属ばね付複合防振体が車両用開閉扉のドアストッパに適用される場合において、車両用開閉扉を閉じる際の衝撃的な大荷重が入力される際に、車両用開閉扉のボデー骨格に対する相対変位量が、複合防振体の硬いばね特性によって有効に制限されると共に、車両用開閉扉の閉状態において、車両用開閉扉を車両のボデー骨格に対して適切な相対位置に保持して、車両用開閉扉のがたつきを防止することができる。
上記(viii)に記載の発明では、凸部が凹部に差し入れられて当接していることにより、例えば、第一の弾性体と第二の弾性体を凸部と凹部の係止によって連結することもできる。さらに、荷重の入力によって第一の弾性体が弾性変形する際に、凹部に入り込んだ凸部が第一の弾性体によって挟み込まれて弾性変形することにより、更なる減衰作用を得ることも可能となる。
上記(ix)に記載の発明では、車両用開閉扉が閉じる際にボデー骨格に伝わる振動を、複合防振体の減衰作用などによって低減することができる。特に、高減衰材料で形成された第一の弾性体による減衰作用に基づいて、振動エネルギーを低減することで、ボデー骨格への振動伝達を有効に抑えることができる。さらに、車両用開閉扉が長期間に亘って閉じた状態に維持されたとしても、金属ばねが変形することで複合防振体に永久変形が生じ難く、複合防振体による防振性能の安定化が図られると共に、閉じた状態の車両用開閉扉がボデー骨格に対して安定して位置決めされて、車両用開閉扉のがたつきが防止される。
上記(x)に記載の発明では、複合防振体が高減衰材料で形成された第一の弾性体と、永久変形し難い第二の弾性体とを備えることによって、優れた防振性能や緩衝性能、位置決め性能などを実現することができる。なお、圧縮永久ひずみは、同一条件での静的な圧縮荷重履歴によって残留する歪量とする。
上記(xi)に記載の発明では、複合防振体が高減衰材料で形成された硬い第一の弾性体と永久変形し難く柔らかい第二の弾性体とを備えていることから、優れた防振性能や緩衝性能、位置決め性能などを実現することができる。すなわち、荷重に対する変形量が小さくされた硬い第一の弾性体によって、荷重入力に対する複合防振体の変形量が制限されて、防振対象部材の変位量を制限するストッパ作用を有効に得ることができる。さらに、第一の弾性体は、損失正接(tanδ)が0.3以上とされており、振動に対する優れた減衰作用を発揮することから、入力振動が有効に低減される。一方、荷重に対する変形量が大きくされた柔らかい第二の弾性体によって、例えば、防振対象部材の間で複合防振体が挟まれた状態で振動が入力される場合に、振動絶縁作用によって振動の伝達を抑えることができると共に、防振対象部材の複合防振体を介した防振連結状態が安定して維持される。さらに、第一の弾性体よりも柔らかい第二の弾性体は、入力に対する変形量が比較的に大きくなるが、圧縮永久ひずみが85℃の温度条件下で70時間に亘って圧縮した場合に25%以下とされていることから、長期に亘って圧縮状態とされたとしても、永久変形による性能の低下などが問題になり難く、優れた耐久性を実現できる。
上記(xii)に記載の発明では、スチレン系ゴム又はブチル系ゴムによって、損失正接が大きく減衰性能に優れた第一の弾性体を得ることができる。
上記(xiii)に記載の発明では、天然ゴム又はブタジエン系ゴムによって、永久変形し難い第二の弾性体を得ることができる。
【符号の説明】
【0098】
10:ドアストッパ(金属ばね付複合防振体)、12,88:複合防振体、14,64:金属ばね、16,74:第一の弾性体、18,82:第二の弾性体、22,78:突出部、24:凹部、28:直列配置部、30:並列配置部、34,84:凸部、38,66:屈曲部、44:取付部、48:ボデー骨格(防振対象部材)、50:ドア(車両用開閉扉)、52:歪集中部、60:ストッパ部材(金属ばね付複合防振体)、72:かしめ片(取付部)、76:凹溝(凹部)