(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-27
(45)【発行日】2022-05-11
(54)【発明の名称】内視鏡装置及び内視鏡装置の制御方法
(51)【国際特許分類】
A61B 1/06 20060101AFI20220428BHJP
A61B 1/045 20060101ALI20220428BHJP
【FI】
A61B1/06 611
A61B1/045 631
A61B1/045 618
(21)【出願番号】P 2020529884
(86)(22)【出願日】2018-07-10
(86)【国際出願番号】 JP2018026075
(87)【国際公開番号】W WO2020012563
(87)【国際公開日】2020-01-16
【審査請求日】2020-11-27
(73)【特許権者】
【識別番号】000000376
【氏名又は名称】オリンパス株式会社
(74)【代理人】
【識別番号】100104710
【氏名又は名称】竹腰 昇
(74)【代理人】
【識別番号】100124682
【氏名又は名称】黒田 泰
(74)【代理人】
【識別番号】100090479
【氏名又は名称】井上 一
(74)【代理人】
【識別番号】100166523
【氏名又は名称】西河 宏晃
(72)【発明者】
【氏名】伊藤 毅
(72)【発明者】
【氏名】足立 理
【審査官】北島 拓馬
(56)【参考文献】
【文献】特開2006-198032(JP,A)
【文献】特開2010-172673(JP,A)
【文献】国際公開第2005/104926(WO,A1)
【文献】国際公開第2017/057573(WO,A1)
【文献】特開2018-038675(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 1/00 - 1/32
G02B 23/24 -23/26
(57)【特許請求の範囲】
【請求項1】
青色及び緑色、赤色のカラーフィルタを有する撮像素子を備え、被写体を撮像する撮像部と、
前記被写体に対する照明光として、互いに色が異なる複数の光を射出する光源部と、
前記撮像部からの画像信号に基づいて画像を生成する第1処理回路と、
前記第1処理回路から入力された画像に基づいて、診断支援情報を生成する第2処理回路と、
を有し、
前記光源部は、
前記青色のカラーフィルタの透過波長帯域内にピーク波長を有する第1の光と、
前記緑色のカラーフィルタの透過波長帯域内にピーク波長を有する第2の光と、
前記赤色のカラーフィルタの透過波長帯域内にピーク波長を有する第3の光と、
前記青色のカラーフィルタの透過波長帯域内にピーク波長を有する第4の光と、
前記赤色のカラーフィルタの透過波長帯域内にピーク波長を有する第5の光と、
を射出可能であり、
前記第3の光を第1撮像フレームにおいて射出し、
前記第5の光を前記第1撮像フレームの次又は前記第1撮像フレームの前の第2撮像フレームにおいて射出し、
前記第1処理回路は、
少なくとも前記第3の光及び前記第5の光に対応する画像を含む第1画像群、又は、少なくとも前記第4の光に対応する画像を含む第2画像群、のうち、一方に基づいて表示画像を生成し、他方を
前記第2処理回路へ出力する、
ことを特徴とする内視鏡装置。
【請求項2】
請求項1において、
前記光源部は、
436~480nmの範囲内にピーク波長を有する前記第1の光を発生する第1光源と、
481~585nmの範囲内にピーク波長を有する前記第2の光を発生する第2光源と、
616~700nmの範囲内にピーク波長を有する前記第3の光を発生する第3光源と、
400~435nmの範囲内にピーク波長を有する前記第4の光を発生する第4光源と、
586~615nmの範囲内にピーク波長を有する前記第5の光を発生する第5光源と、
を含むことを特徴とする内視鏡装置。
【請求項3】
請求項2において、
前記光源部は、
前記第1撮像フレームにおいて、前記第1~第3光源を発光させ、
前記第2撮像フレームにおいて、前記第4及び第5光源を発光させる、
ことを特徴とする内視鏡装置。
【請求項4】
請求項3において、
前記第1の光に対応する画像は、第1の画像であって、
前記第2の光に対応する画像は、第2の画像であって、
前記第3の光に対応する画像は、第3の画像であって、
前記第4の光に対応する画像は、第4の画像であって、
前記第5の光に対応する画像は、第5の画像であって、
前記第1画像群は、前記第1、第2、第3、第5の画像を含み、
前記第2画像群は、前記第4、第2の画像を含む、
ことを特徴とする内視鏡装置。
【請求項5】
請求項4において、
前記第1処理回路は、
支援用画像群としての前記第2画像群を
前記第2処理回路へ出力し、
前記第2処理回路は、
前記第2画像群に基づいて
前記診断支援情報を出力し、
前記第1処理回路は、
表示画像群としての前記第1画像群に対して、前記診断支援情報に基づく画像処理を施して表示部へ出力する、
ことを特徴とする内視鏡装置。
【請求項6】
請求項5において、
前記診断支援情報は、前記被写体に含まれる注目部位の位置及び輪郭の少なくとも一方の情報を含み、
前記第1処理回路は、
前記診断支援情報に基づいて、前記注目部位の位置及び輪郭の少なくとも一方を示す表示情報を前記表示画像に加える画像処理を行い、
画像処理後の前記表示画像を前記表示部へ出力する、
ことを特徴とする内視鏡装置。
【請求項7】
請求項4において、
前記光源部は、さらに、
前記第2撮像フレームにおいて、前記第1撮像フレームにおける前記第2光源の発光量とは異なる発光量で前記第2光源を発光させることで、
第6の光を射出する、
ことを特徴とする内視鏡装置。
【請求項8】
請求項7において、
前記第6の光に対応する画像は、第6の画像であって、
前記第1処理回路は、
さらに、前記第4、第6の画像を含む第3画像群を生成する、
ことを特徴とする内視鏡装置。
【請求項9】
請求項8において、
前記第1処理回路は、
支援用画像群としての前記第2画像群を前記第2処理回路へ出力し、
第1表示モードが設定された場合において、
前記第1処理回路は、前記第1画像群に基づいて第1表示画像を生成し、
前記第2処理回路は、前記第2画像群に基づいて
前記診断支援情報を出力し、
前記第1処理回路は、前記第1表示画像に対して、前記診断支援情報に基づく画像処理を施して表示部へ出力し、
第2表示モードが設定された場合において、
前記第1処理回路は、前記第3画像群に基づいて第2表示画像を生成し、
前記第2処理回路は、前記第2画像群に基づいて
前記診断支援情報を出力し、
前記第1処理回路は、前記第2表示画像に対して、前記診断支援情報に基づく画像処理を施して前記表示部へ出力する、
ことを特徴とする内視鏡装置。
【請求項10】
青色及び緑色、赤色のカラーフィルタを有する撮像素子を備える撮像部と、光源部と、第1処理回路と、第2処理回路と、を含む内視鏡装置の制御方法であって、
前記光源部が、第1撮像フレームにおいて、前記青色のカラーフィルタの透過波長帯域内にピーク波長を有する第1の光、前記緑色のカラーフィルタの透過波長帯域内にピーク波長を有する第2の光、及び前記赤色のカラーフィルタの透過波長帯域内にピーク波長を有する第3の光を発光させ、
前記光源部が、第2撮像フレームにおいて、前記青色のカラーフィルタの透過波長帯域内にピーク波長を有する第4の光、及び前記赤色のカラーフィルタの透過波長帯域内にピーク波長を有する第5の光を発光させ、
前記第1処理回路が、前記第1、第2、第3、第5の光に対応する第1、第2、第3、第5の画像を含む第1画像群を生成し、
前記第1処理回路が、前記第2、第4の光に対応する前記第2の画像と第4の画像を含む第2画像群を前記第2処理回路へ出力し、
前記第2処理回路が、前記第2画像群に基づいて診断支援情報を出力し、
前記第1処理回路が、表示画像群としての前記第1画像群に対して、前記診断支援情報に基づく画像処理を施して表示部へ出力する、
ことを特徴とする内視鏡装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内視鏡装置及び内視鏡装置の制御方法等に関する。
【背景技術】
【0002】
診断支援機能を搭載した内視鏡装置が知られている。診断支援の一例として、AI(Artificial Intelligence)により画像から病変部を抽出し、その病変部を提示する機能が提案されている。例えば特許文献1には、観察対象物の血管情報に基づいた診断支援パラメータを算出する内視鏡用画像処理装置が提案されている。特許文献1では、特殊光画像から血管情報を抽出し、その特殊光画像を観察者に提示することで診断を支援する。また特許文献2には、特殊光画像から取得した血管パターンと、予め記憶しておいた血管パターンとをマッチングし、その結果に基づいて診断支援を行う手法が開示されている。特許文献2では、マッチングの結果が一致していた場合には、撮像又は観察のモード変更を促す表示をする。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-144626号公報
【文献】特開2012-152279号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来技術において、支援情報の抽出に用いる画像と、モニタに表示する画像とは共通である。即ち、AIに入力する画像と、人間が見る画像とが同じになっている。このため、精度の良い支援情報を提供できない場合がある。
【課題を解決するための手段】
【0005】
本発明の一態様は、被写体を撮像する撮像部と、前記被写体に対する照明光として、互いに色が異なる第1~第mの光(mは2以上の整数)を射出する光源部と、前記撮像部からの画像信号に基づいて第1~第nの画像(nは2以上の整数)を生成する第1処理回路と、を含み、前記第1~第nの画像の各々は、前記第1~第mの光のうちいずれかの光に対応した画像であり、前記第1処理回路は、前記第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成し、前記表示画像とは異なる支援用画像、又は前記表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路へ出力し、前記支援用画像又は前記支援用画像群に基づいて前記第2処理回路が出力した診断支援情報を、取得する内視鏡装置に関係する。
【0006】
また本発明の他の態様は、第1~第nの画像(nは2以上の整数)を記憶する記憶装置と、前記記憶装置から前記第1~第nの画像を取得する第1処理回路と、を含み、前記第1~第nの画像の各々は、互いに色が異なる第1~第mの光(mは2以上の整数)のうちいずれかの光に対応した画像であり、前記第1処理回路は、前記第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成することを特徴とする処理装置に関係する。
【0007】
また本発明の他の態様は、第1処理回路が、各々の画像が、互いに色が異なる第1~第mの光(mは2以上の整数)のうちいずれかの光に対応した画像である第1~第nの画像(nは2以上の整数)を生成し、前記第1処理回路が、前記第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成し、前記第1処理回路が、前記表示画像とは異なる支援用画像、又は前記表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路へ出力し、前記第1処理回路が、前記支援用画像又は前記支援用画像群に基づいて前記第2処理回路が出力した診断支援情報を、取得することを特徴とする処理方法に関係する。
【図面の簡単な説明】
【0008】
【
図2】第1構成例において、光源が射出するレーザ光の例。
【
図5】第1実施形態における照明光の発光シーケンス。
【
図7】第2構成例において、光源が射出するレーザ光の例。
【
図8】第2実施形態における照明光の発光シーケンス。
【発明を実施するための形態】
【0009】
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
【0010】
1.内視鏡装置
図1は、内視鏡装置10の第1構成例である。以下では消化器用の医療用内視鏡を例に説明するが、本発明の適用対象はこれに限定されない。即ち、本明細書で言う内視鏡とは、様々な観察対象物の凹部内面を観察するための挿入部を備える機器一般を言うものとする。例えば、内視鏡とは、生体の診察に用いる医療用内視鏡、又は工業用内視鏡である。
【0011】
図1の内視鏡装置10は、制御装置100とスコープ部200と表示部300と入力部600とを含む。なお、制御装置100を本体部とも呼ぶ。またスコープ部200をスコープ、撮像部、撮像装置とも呼ぶ。また表示部300をディスプレイ、表示装置とも呼ぶ。また入力部600を入力装置、操作装置とも呼ぶ。
【0012】
まず、内視鏡装置10の構成について説明する。
【0013】
スコープ部200は、挿入部210と操作部220と接続ケーブル230とコネクタ240とにより構成されている。挿入部210は、可撓性を有しており、生体の体腔内に挿入可能である。生体の体腔は、本実施形態における被写体である。被写体は観察対象又は観察対象物とも呼ぶ。なお
図1では被写体の図示を省略している。医師等の作業者は、操作部220を把持すると共に、操作部220を用いて内視鏡装置10を操作する。接続ケーブル230は、制御装置100とスコープ部200を接続するケーブルであり、可撓性を有する。コネクタ240は、接続ケーブル230の一端に設けられており、制御装置100とスコープ部200を着脱可能にする。
【0014】
挿入部210の先端には、照明光を被写体に向けて射出する2個の照明レンズ211、212と、被写体の表面から反射又は散乱された照明光を受光することで画像を撮像する撮像ユニット213と、が配置されている。
【0015】
スコープ部200には導光路214が設けられている。制御装置100に光源部140が設けられており、導光路214は、光源部140から射出される照明光を照明レンズ211、212まで導光する。導光路214は光ファイバ束であり、その光ファイバ束は、コネクタ240から、接続ケーブル230、操作部220内を経由して、照明レンズ211、212まで延びている。導光路214は、コネクタ240側では一本に束ねられており、挿入部210内で二股に分岐して、2つの照明レンズ211、212と光学的に接続されている。
【0016】
照明レンズ211、212は、光ファイバ束により導光された照明光を所望の放射角となるように広げる。照明レンズ211、212の各々は、単数または複数のレンズにより構成された照明光学系である。
【0017】
撮像ユニット213は、撮像光学系と撮像素子を有している。本実施形態では、撮像素子はCMOS型イメージャであり、そのイメージャには、ベイヤ型に配列されたRGBカラーフィルタが搭載されている。即ち、撮像素子はR画素、G画素、B画素を有する原色フィルタ型の撮像素子である。
【0018】
また、スコープ部200には画像信号線215が設けられており、撮像ユニット213が撮像した画像の画像信号を制御装置100まで伝送する。画像信号線215は、挿入部210、操作部220、接続ケーブル230内に配置されており、コネクタ240を介して制御装置100へ電気的に接続されている。画像信号線215は、画像信号を伝送可能な信号線であれば、どのような信号線であってもよい。例えば、画像信号線215は、電気配線、又は光通信用の光ファイバ等である。画像信号線215は、
図1では1本の線で示したが、画像信号の量や伝送速度などに応じて、複数の信号線を併設してもよい。
【0019】
なお、本実施形態における挿入部210には、図示を省略した種々の機能又は機構を搭載できる。例えば、挿入部210には、先端部を湾曲させるための湾曲機構、又は、種々の処置を行うための鉗子等を挿入可能な鉗子孔、又は、送気送水管等を搭載できる。送気送水管は、液体又は気体を噴出及び吸引可能にするための管である。
【0020】
制御装置100は、照明光を射出する光源部140と、照明光の光量及び発光タイミング等を制御する照明光制御回路150と、撮像ユニット213からの画像信号に対して画像処理を行う第1処理回路110と、第1処理回路110が出力する画像に基づいて診断支援情報を生成する第2処理回路120と、を含む。なお、光源部140を光源装置とも呼ぶ。また第1処理回路110を画像処理回路とも呼ぶ。
【0021】
例えば、第1処理回路110と第2処理回路120の各々は、個別の集積回路装置により実現される。第1処理回路110は例えばプロセッサー或いはASIC(Application Specific Integrated Circuit)等である。また第2処理回路120は例えばプロセッサー或いはASIC等である。或いは、第1処理回路110と第2処理回路120が1つの集積回路装置に集積されてもよい。或いは、第1処理回路110は、複数の集積回路装置により構成されてもよい。例えば、第1処理回路110は、第1~第nの画像を生成する画像処理回路と、表示用画像群及び支援用画像群を出力する画像群出力回路と、を含んでもよい。このとき、画像処理回路と画像群出力回路とが、それぞれ個別の回路として構成されてもよい。例えば、画像処理回路と画像群出力回路とが、それぞれ集積回路装置により構成されてもよい。
【0022】
光源部140は、複数の光源LDa~LDeと、光源LDa~LDeを駆動する駆動回路DRa~DReと、光源LDa~LDeが射出する光を合波する光合波光学系141と、を含む。
【0023】
光源LDa~LDeの各々は、半導体レーザ素子(LASER Diode)である。この場合、照明光はレーザ光である。或いは、光源LDa~LDeの各々は、LED(Light Emitting Diode)であってもよい。例えば、波長帯域が数10nm程度の狭帯域光を射出するLEDを採用できる。但し、照明光は狭帯域光に限定されず、例えば表示画像の視認性、或いは支援情報の抽出手法に合わせて適切な帯域の照明光を採用すればよい。なお、以下では光源LDa~LDeの各々が半導体レーザ素子である場合を例に説明する。
【0024】
図2は、光源LDa~LDeが射出するレーザ光の例である。
図2に示すように、光源LDaは、波長λa=405nmの青紫レーザ光を射出する。光源LDbは、波長λb=445nmの青色レーザ光を射出する。光源LDcは、波長λc=532nmの緑色レーザ光を射出する。光源LDdは、波長λd=600nmのオレンジ色レーザ光を射出する。光源LDeは、波長λe=635nmの赤色レーザ光を射出する。
図2では、各光源が射出する光量が同程度となっているが、各光源が射出する光量はこれに限定されない。例えば表示画像の視認性、或いは支援情報の抽出手法に合わせて適切な光量を採用すればよい。
【0025】
駆動回路DRa~DReは、それぞれ対応する光源LDa~LDeと電気的に接続されている。すなわち
図1に示すように、駆動回路DRaは光源LDaと、駆動回路DRbは光源LDbと、駆動回路DRcは光源LDcと、駆動回路DRdは光源LDdと、駆動回路DReは光源LDeと、それぞれ電気的に接続されている。光源LDa~LDeは、駆動回路DRa~DReから供給される電力によりレーザ光を発振する。
【0026】
駆動回路DRa~DReは、照明光制御回路150と電気的に接続されている。照明光制御回路150は、駆動回路DRa~DReのそれぞれにレーザ光の光量及び発光タイミング等の制御信号を送信することで、光源LDa~LDeを制御する。これにより光源LDa~LDeは、互いに独立したレーザ光量や発光タイミングでレーザ光を射出することが出来る。すなわち、後述する観察モードや表示モード等に基づいて、光源LDa~LDeの各々を独立に、発振及び消灯できる。
【0027】
光源LDa~LDeから射出されたレーザ光は、光合波光学系141に入射する。
図1では光合波光学系141の詳細は省略したが、一般的に用いられている合波光学技術を光合波光学系141に適用できる。例えば、光合波光学系141は、複数のダイクロイックミラーを組み合わせた空間光学系、又は、複数の光ファイバの端面を一本の光ファイバの端面と対峙するように接続した光コンバイナ等である。以下では光合波光学系141が空間光学系である場合を例に説明する。
【0028】
光源LDa~LDeから射出されたレーザ光は、図示しないレンズ系、ダイクロイックミラー等を経由してコネクタ240に向けて射出される。即ち、光源LDa~LDeから射出されたレーザ光は、光合波光学系141で合波され、その合波されたレーザ光は、ひとつの射出端から、コネクタ240に設けられた導光路214の入射端に向けて射出される。光導波路の入射端に入射したレーザ光は、導光路214により挿入部210先端の照明レンズ211、212まで導光され、照明レンズ211、212により所望の放射角へ広げられ、被写体に向けて照射される。
【0029】
光源LDa~LDeから射出させるレーザ光量を安定化させるため、制御装置100内には図示しないレーザ光量モニタが設けられている。駆動回路DRa~DReは、レーザ光量モニタの出力値に応じて、半導体レーザに供給する電流量を調整することで、所望のレーザ光量を出力させる。なお、レーザ光量の調整は、光量モニタを用いる方法に限定されない。例えば、不図示のメモリが、電流と光量の関係を示すテーブルをあらかじめ記憶しておき、駆動回路DRa~DReが、このテーブルを参照して供給電流を調整してもよい。その他さまざまな光量調整方法が知られており、用途に応じて光量調整方法を選択することが出来る。
【0030】
また、レーザ光源は、半導体レーザ素子の温度を制御する温度安定化部を有する。駆動回路DRa~DReは、温度安定化部を制御するための制御信号を出力する。半導体レーザ素子は一般に、素子の温度が変化すると発振するレーザ光の光量及び波長が変化することが知られている。このため、安定した光量及び波長のレーザ光を得るため、レーザ光源に温度安定化部が設けられている。温度安定化部は、たとえば半導体レーザ素子と熱的に接続されたペルチェ素子である。駆動回路DRa~DReは、ペルチェ素子を制御し、半導体レーザが適切な温度となるように制御信号及び電力を供給する。適切な温度は例えば摂氏25度である。なお、半導体レーザの温度を安定化する方法は、ペルチェ素子を用いる方法に限定されない。例えば、十分な熱容量のヒートシンクを用いる方法や、強制空冷手段を用いる方法など、さまざまな方法が知られている。用途に応じてこれらの方法から選択することが可能である。さらに、温度センサにより半導体レーザの温度を測定し、測定された温度に基づいて供給電流と出射光量、波長を予測し、これらが所望の値となるよう半導体レーザ素子に供給する電流量を調整する方法を用いることも出来る。温度安定化機構は、光源LDa~LDeのそれぞれに独立に搭載することも可能であり、またひとつの温度安定化機構に複数の光源LDa~LDeを搭載することも可能である。
【0031】
照明光制御回路150は、駆動回路DRa~DReと電気的に接続されている。照明光制御回路150は、駆動回路DRa~DReを経由して光源LDa~LDeを独立に、或いは光源LDa~LDeを連動させて、光量を制御する。本実施形態における各レーザ光の発光タイミングは後述する。
【0032】
第1処理回路110は、撮像ユニット213から画像信号線215を経由して伝送された画像信号を、表示部300が表示可能な信号に変換する画像処理を行う。
【0033】
コネクタ240は、画像信号線215と、導光路214と、撮像ユニット213に電力を供給する図示しない電力線とを、電気的又は光学的に制御装置100へ着脱可能にする。その他、コネクタ240は、内視鏡を機能させるのに必要な電気配線又は光配線を、電気的又は光学的に制御装置100へ着脱可能にする。また、コネクタ240は、チューブ配管などを制御装置100へ着脱可能にする。チューブ配管は、内視鏡を用いた観察又は治療等の作業に必要な気体又は液体などを送るものである。
【0034】
なお、本実施形態では、光源LDa~LDeは、それぞれひとつの半導体レーザを有する例を示したが、これに限らない。波長の略等しい複数のレーザ素子を組み合わせたものをひとつのレーザ光源として取り扱ってもよい。この場合、レーザ光源内に図示しない光合波部を設け、複数のレーザ光源からのレーザ光をひとつの射出端から出力する。或いは、
図1の光合波光学系141の入力端をレーザ素子の数に合わせて増やしてもよい。
【0035】
ひとつのレーザ光源に複数のレーザ素子を搭載することで、例えば、目的の波長のレーザ素子が十分な光量のものが調達できない場合にも十分な光量を得ることができる。また、低コストな低出力レーザを複数組み合わせることで、低コスト化を実現することが可能となる。一方、ひとつのレーザ光源にひとつのレーザ素子を用いることで、本体部を小型化することが可能となる。また、制御系をシンプルにしたり、消費電力を小さく抑えることが出来る。
【0036】
次に、観察モードについて説明する。ここでは各観察モードにおいて表示用の画像を取得するために、各観察モードにおいて発光させるレーザ光源が異なっている。但し、後述するように、本実施形態では観察モードに関わらず表示用の画像と支援情報抽出用の画像とを取得するので、実際には、観察モードに関わらず発光させるレーザ光源は同じである。また、観察モードに応じて表示用の画像は異なっているが、観察モードが異なっていても支援情報抽出用の画像は同じである。
【0037】
内視鏡装置10は、白色照明による通常光観察モードと、NBI(Narrow Band Imaging)照明によるNBI観察モードを有している。NBI観察モードは、広義には特殊光観察モードとも呼ぶ。通常光観察モードは白色光観察モードとも呼ぶ。
【0038】
通常光観察モードは、内視鏡で一般に用いられている白色光による観察画像を取得し、その観察画像を表示部300に表示するモードである。NBI観察モードは、ヘモグロビンの吸収特性に応じた狭帯域光を照明として用いることで、特に粘膜表層から粘膜中層の血管をコントラスト良く表示するモードである。例えば、作業者が操作部220又は入力部600を用いて観察モードを設定する。入力部600は、作業者から内視鏡装置10への操作入力を受け付ける入力装置であり、制御装置100に接続されている。
【0039】
図3に示すように、通常光観察モードでは、光源部140は4本の線スペクトルの照明光を発光させる。即ち、光源部140は、光源LDb~LDeの4個のレーザ光源を発光させる。このとき、4つのレーザ光の光量比は、照明光が白色となる光量比に調整されている。例えば、色温度が6000ケルビンとなるように光量比が決められている。
【0040】
図4に示すように、NBI観察モードでは、光源部140は405nm、532nmの2本のスペクトルの照明光を射出する。これらのスペクトルは、血液中のヘモグロビンの吸収スペクトルに基づいて選定されたものである。即ち、光源部140は、光源LDaと光源LDcの2個のレーザ光源を発光させる。このとき、2つのレーザ光の光量比は、NBI観察モードとして適切な光量比に設定されている。この光量比は予め設定されたものである。例えば、光源LDaの発光量:光源LDcの発光量=3:1に設定されている。
【0041】
2.第1実施形態
内視鏡装置10は、通常光観察モードとNBI観察モードの2つの観察モードによる画像を同時に取得可能となっている。このための手順を次に説明する。
【0042】
内視鏡装置10は、通常光観察モードの画像とNBI観察モードの画像とを略同時に取得する。
【0043】
具体的には、通常光観察モードの画像を構築するためには、B、G、A、Rの4色の照明光による画像4枚を取得する必要がある。また、NBI観察モードの画像を構築するためにはV、Gの2色の照明光による画像2枚を取得する必要がある。V、B、G、A、Rの5色は、それぞれ、
図2の波長405nm、445nm、532nm、600nm、635nmに対応している。
【0044】
AとRの2色は、一般にはどちらも赤色領域に含まれている。即ち、2色とも、撮像素子の赤色フィルタが透過する波長帯域に含まれている。このため、2色の照明光を同時に発光させた場合、1枚のR画像として取得される。本実施形態の内視鏡装置10は、A色のレーザ光とR色のレーザ光を別のタイミングで発光させることで、A画像とR画像を個別に取得する。また、
図3、
図4に示すように、白色光画像のG色とNBI画像のG色では光量が異なっている。本実施形態の内視鏡装置10は、これらも独立に取得する。以下では、白色光画像を取得するためのG色の光量を光量1と呼び、NBI画像を取得するためのG色の光量を光量2と呼ぶ。本実施形態の内視鏡装置10は、B画像と、光量1におけるG画像と、A画像と、R画像と、V画像と、光量2におけるG画像との7枚の画像を略同時に取得する。そして、内視鏡装置10は、後述する画像処理シーケンスにより、白色光画像とNBI画像とを構築し表示する。このために照明光制御回路150は、
図3に示すような発光シーケンスに従って光源LDa~LDeLD1~LD5を発光させる。このシーケンスを、
図5を用いて詳しく説明する。
【0045】
図5において、横軸は時間である。縦方向において上から順に光源LDa、LDb、LDc、LDd、LDeの順に発光及び消灯のタイミングを記載している。T1、T2等はタイミングを示す。以下、「タイミング」を省略してT1、T2等と記載する。
【0046】
T1からT1’までを1周期として白色及びNBIの両画像を取得する。このとき、撮像素子は、撮像動作を2回行う。即ち、1周期に撮像フレームが2フレーム含まれる。
【0047】
T1からT2までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDb、LDc、LDeを発光させる。このとき、照明光制御回路150は、通常光観察モードにおけるG色の光量1で光源LDcを発光させる。撮像素子は、原色型フィルタを有するRGB撮像素子である。このため、光源LDbからの青色光はB画素により検出され、その結果、B画像として出力される。同様に、光源LDcからの緑色光によりG画像が出力され、光源LDeからの赤色光によりR画像が出力される。ここでのG画像は、光量1によるG画像である。これらの画像情報は、全ての光源LDa~LDeが消灯している読み出し期間において撮像素子から出力される。
【0048】
次にT2からT1’の間には、照明光制御回路150は光源LDa、LDc、LDdを発光させる。このとき、照明光制御回路150は、NBI観察モードにおけるG色の光量2で光源LDcを発光させる。光源LDaからの紫色光によりV画像が出力され、光源LDcからの光量2の緑色光によりG画像が出力され、光源LDdからのオレンジ色光によりA画像が出力される。これらの画像情報は、読み出し期間において撮像素子から出力される。
【0049】
照明光制御回路150は、1周期における上記の動作を連続的に繰り返す。この結果、1周期において、白色光画像を構築するために必要な4枚の画像と、NBI画像を構築するために必要な2枚の画像とを取得できる。
【0050】
次に、第1処理回路110が行う動作を説明する。
【0051】
第1処理回路110は、上記のシーケンスにより取得された6枚の画像から、白色光画像とNBI画像を構築する。また、第1処理回路110は、6枚の画像のうち1又は複数の画像を第2処理回路120の診断支援部121へ出力する。
【0052】
具体的には、第1処理回路110は、B画像と、光量1によるG画像と、A画像と、R画像とから、表示用のRGB画像信号を構築し、そのRGB画像信号を表示部300へ出力する。
【0053】
また第1処理回路110は、V画像と、光量2によるG画像とから、表示用のRGB画像信号を構築し、そのRGB画像信号を表示部300へ出力する。このようにして、NBI観察モードにおけるカラー画像であるNBI画像がモニタに表示可能となる。
【0054】
次に、表示部300について説明する。
【0055】
表示部300は、第1処理回路110により画像処理された被写体の画像を表示する。表示部300は、一般に用いられている種々の表示デバイスであり、例えば液晶モニタ等である。
【0056】
表示部300と制御装置100とは電気配線により電気的に接続されている。第1処理回路110が出力した画像信号は、この電気配線により表示部300に伝送される。表示部300は、受信した画像情報を表示する。
【0057】
なお
図1では、表示部300と制御装置100とを接続している電気配線を1本の線で記載したが、これに限らない。必要に応じて2本以上の電気配線を用いても良い。また、
図1では表示部300の動作に必要な電力を供給する電源線等、当然必要となるものの図示を省略した。また画像信号の伝送手法は電気配線に限定されず、例えば無線通信又は光通信等、通常用いられるさまざまな信号伝送技術を用いてもよい。
【0058】
本実施形態の内視鏡装置10は、上述の通り白色光画像とNBI画像とを表示できる。本実施形態の内視鏡装置10は、この2枚の画像を並列して同時に表示することも可能であるし、或いは、作業者が選択した観察モードに応じて一方の画像を表示することも可能である。そのほか、複数の観察モードを有する従来の内視鏡が有するさまざまな表示形態を実施することが可能である。
【0059】
次に、第2処理回路120について説明する。
【0060】
第2処理回路120は診断支援部121を含む。診断支援部121は例えばAIである。即ち、診断支援部121は、入力された画像からAI処理により診断支援情報を抽出する。AI処理としては、種々の画像認識手法又は機械学習手法を採用できる。機械学習は、学習結果に基づいて種々の推論を行う処理である。代表的なAIとしてニューラルネットワークがあるが、これに限定されず、本実施形態におけるAIとして既知の様々な機械学習の手法を採用できる。
【0061】
診断支援部121は、撮像ユニット213が取得した画像信号に基づいて診断支援情報を生成する。具体的には、診断支援部121は、上述した6画像のうち第1処理回路110により選択された1又は複数の画像に基づいて診断支援情報を生成する。診断支援情報とは、作業者による診断を支援するための情報である。即ち、診断支援情報とは、画像の中に存在する部位であり且つ観察の目的である注目部位に関する情報である。例えば、内視鏡検診の場合、癌や病変部が注目部位に相当する。診断支援情報は、注目部位が存在する位置、又は注目部位の大きさ、注目部位の形状、注目部位の輪郭などの情報である。或いは診断支援情報は、注目部位が癌である場合において、その癌の進行度又はステージレベルに関する情報である。また、診断支援情報は、これらの情報のうち複数を組み合わせたものであってもよい。
【0062】
これらの診断支援情報を医師へ提供することで、医師による診断を支援することが可能になる。診断支援部121は、撮像ユニット213が略同時に取得した6枚の画像のうち、一部の画像を用いて診断支援情報を抽出する。支援情報を抽出する手順については後述する。
【0063】
診断支援部121は、抽出した診断支援情報を第1処理回路110へ送信する。第1処理回路110は、診断支援情報に対応した表示情報を表示画像へ付加し、その表示画像を表示部300へ送信する。この表示画像に付加された表示情報を、以下では支援表示情報と呼ぶ。通常光観察モードにおいては、白色光画像と共に支援表示情報が表示され、NBI観察モードにおいては、NBI画像と共に支援表示情報が表示される。このとき、いずれの観察モードにおいても、同じ画像に基づいて診断支援情報が生成される。これにより、作業者は違和感なく診断支援情報を確認及び享受できる。
【0064】
次に、内視鏡装置10の基本的な動作について説明する。
【0065】
はじめに作業者により内視鏡装置10の電源が投入される。電源が投入されると、内視鏡装置10は、通常の内視鏡と同様にセルフチェック回路等により装置が正常か否かを確認する。正常であることが確認されると、駆動回路DRa~DReから光源LDa~LDeへ所定の電流が印加され、レーザ光源が安定化するように温める作業が行われる。
【0066】
作業者は制御装置100と別体として保管されていたスコープ部200を取り出し、スコープ部200のコネクタ240を制御装置100へ接続する。制御装置100は、通常の内視鏡と同様に、スコープ接続の状態、及び接続されたスコープ部200の種類等を確認する。
【0067】
スコープ部200の接続が確認されると、照明光制御回路150は、
図5に示す発光シーケンスに従って駆動回路DRa~DReへ制御信号を送信することで、光源LDa~LDeを発光させる。制御装置100は、図示しないメモリを含み、そのメモリは、光源LDa~LDeの基本的な特性及び個体差などの情報を記憶している。駆動回路DRa~DReは、その情報を参照することで光源LDa~LDeを制御する。この情報は、例えば各レーザ光源における駆動電流と発光光量の関係に関する情報、及び、駆動電流と発振波長の関係などである。照明光制御回路150は、光源LDa~LDeへ制御信号を順次に送信する。駆動回路DRa~DReは、制御装置100が有する図示しないタイミング回路等を参照することで、光源LDa~LDeを互いに同期させ、
図5に示すタイミング及び光量で光源LDa~LDeを発光させる。
【0068】
光源LDa~LDeは、駆動回路DRa~DReから印加される駆動電流に応じてレーザ発振し、所定の波長のレーザ光を射出する。光源LDa~LDeから射出されたレーザ光は、光合波光学系141により合波され、その合波されたレーザ光が光ファイバ束の入射端に入射する。光ファイバ束に入射されたレーザ光は照明レンズ211、212まで導光され、照明レンズ211、212から被写体へ向けて射出される。撮像ユニット213は、この照明光によって照明された被写体を撮像する。
【0069】
第1処理回路110は、撮像ユニット213から画像信号線215により伝送された画像信号を受信し、その画像信号に対して適切な画像処理を施す。画像処理は観察モードに応じて異なっている。観察モードと、施すべき画像処理との関係は、たとえば第1処理回路110内に設けられた、図示しないメモリに記憶されている。または、その関係は、制御装置100内の図示しないメモリに記憶されている。第1処理回路110は、画像信号に対して画像処理を行うことで、V画像、及びB画像、光量1におけるG画像、光量2におけるG画像、A画像、R画像を生成する。
【0070】
診断支援部121は、血管をコントラスト良く表示できるV画像及びG画像に基づいて、AI処理により診断支援情報を生成する。ここでのG画像は光量1におけるG画像である。NBI観察モードにおける表示画像は、V画像、及び光量2におけるG画像を合成したものであるが、これとは異なった組み合わせの画像が診断支援部121へ入力される。本実施形態では、ヘモグロビン、すなわち血管をコントラスト良く検出できる波長の画像を選定しているので、血管のパターン又は分布などに基づいて診断支援情報が生成される。例えば、注目部位として癌を想定できる。
【0071】
AI処理には、V画像とG画像が、合成画像ではなく個々の画像として入力される。即ち、診断支援部121は、V画像とG画像のそれぞれから注目部位を抽出し、注目部位が存在していた場合には、その注目部位についての診断支援情報を生成する。診断支援部121は、注目部位が抽出された場合、その位置及び輪郭などを図示しないメモリに記憶させる。診断支援部121は、V画像とG画像のそれぞれについて、この情報をメモリに記憶させる。診断支援部121は、抽出された注目部位が癌か否かを推定し、注目部位が癌である場合には、その癌の進行度又はステージレベルなどを推定する。診断支援部121は、これらの推定結果を診断支援情報として出力する。診断支援情報の生成手法としては、一般に利用されている、または利用可能なAI技術を用いることができる。機械学習を用いる場合の教師データの準備や選定などについては、公知となっているさまざまな技術を利用することが可能である。
【0072】
診断支援情報としては、例えば以下の情報を想定できる。以下に説明する情報のうち1つの情報、又は複数の情報を組み合わせたものを、診断支援情報として採用できる。
(1)場所に関する情報:注目部位の位置、及び形状、輪郭。輪郭は、癌と正常細胞を分けるデマルケーションラインなどである。
(2)形態に関する情報:注目部位が凸型であるか、平坦であるか、凹型であるか。又は、注目部位が有茎型か否かなど。
(3)状態に関する情報:注目部位が分散しているか、一箇所であるか。注目部位が分散している場合には、注目部位の密集度又は、個々の注目部位が有するサイズなど
(4)その他の情報:出血の有無、又は治療の痕、手術の痕、ピロリ菌除去の有無など。
【0073】
以上(1)~(4)の情報そのものを診断支援情報としてもよいし、それらを総合的に評価して判断した情報を診断支援情報としてもよい。例えば(5)、(6)を診断支援情報としてもよい。
(5)医学的特徴に関する情報:注目部位が癌か否か。注目部位が癌である場合には、癌が良性であるか悪性であるか、又は癌がステージI~IVのいずれに属するか。
(6)処置に関する情報:注目部位に適した処置手法、又は注目部位に適した手術手法、注目部位に適した投薬に関する情報など。又は、推奨される追加検査、又は病理に関する情報など。
【0074】
例えば、上記(1)~(6)の情報と画像情報とを対応付けたデータを教師データとして用いることで、AI処理のアウトプットとして上記(1)~(6)の情報を得ることができる。
【0075】
或いは、診断支援部121がAI処理を第1処理として行い、その後段の第2処理を更に行ってもよい。この場合、AI処理には、上記(1)~(4)の情報と画像情報とを対応付けたデータを教師データとして用いる。AI処理は、アウトプットとして上記(1)~(4)の情報を出力する。第2処理は、AI処理が出力する上記(1)~(4)の情報に基づいて、上記(5)、(6)の情報を生成する。例えば、(1)~(4)の情報に基づいてドクターが実施する方法に倣って第2処理が作成される。第2処理は、例えばAI、或いはAIを用いない情報処理等により実現される。
【0076】
V画像とG画像のそれぞれから診断支援情報が抽出されるので、V画像とG画像から抽出された診断支援情報が一致しない場合がある。例えば、一方の画像のみにおいて注目部位が抽出される場合である。或いは、両方の画像において注目領域が抽出された場合であっても、その注目領域の輪郭又は位置が画像間で異なっている場合である。この場合、それぞれの診断支援情報を別々に作業者に提示し、作業者に判断させてもよい。或いは、これらの情報をAI処理への新たなインプットとして用い、そのAI処理が、総合的な診断支援情報を最終的なアウトプットとして生成してもよい。
【0077】
次に、診断支援情報を作業者へ提示する手法について説明する。
【0078】
内視鏡装置10は、作業者が希望した表示画像、又はデフォルトにおいて設定されている画像に支援表示情報を表示させる。即ち、診断支援情報を、その抽出に用いた元画像と共に提示する必要はない。内視鏡装置10は、白色観察モードの場合は白色光画像と共に支援表示情報を表示し、NBI観察モードの場合はNBI画像と共に支援表示情報を表示する。
【0079】
例えば、第1処理回路110は、位置又は輪郭に関する診断支援情報に基づいて、その位置又は輪郭を示す支援表示情報を表示画像にスーパーインポーズする。本実施形態では、上述した6枚の画像を略同時に取得しているため、各画像は略同一の位置及びアングルの画像となっている。このため、ある画像から抽出した注目部位の位置及び輪郭の情報は、それ以外の画像においても略同一の位置及び輪郭を示す。従って、各画像の位置関係を計算し、注目部位の位置が同じになるように演算するなどの手法は省くことができる。もちろん、一般に知られている技術により画像間の位置情報を演算することで、位置及び輪郭が同一部位を示すように位置決めしてもよい。
【0080】
位置及び輪郭以外の情報は、表示部300の画面において、被写体画像が表示される領域の領域に表示されてもよい。或いは、その情報は被写体画像にスーパーインポーズされてもよい。その他、一般に知られているさまざまな表意方式を採用できる。
【0081】
ここで、本実施形態では、撮像した画像のうち一部の画像がAI処理にインプットされる。これにより、6枚の画像の全てを用いた場合と比べて、短時間に診断支援情報を生成させることが可能となっている。
【0082】
また、注目部位を抽出するために用いた画像と、表示画像に用いた画像とは少なくとも一枚が異なっている。本実施形態では、V画像と、光量1におけるG画像とから診断支援情報が抽出されている。また、通常光観察モードにおいて、B画像と、光量1におけるG画像と、A画像と、R画像とから表示画像が生成されている。即ち、表示画像にはV画像が用いられていない。NBI観察モードにおいて、V画像と、光量2におけるG画像とから表示画像が生成されている。即ち、表示画像には光量1におけるG画像が用いられていない。言い換えると、AI処理が診断支援情報を抽出するために適した画像がAI処理へ入力されている。一方、人間が画像を見るために適した画像は表示画像を生成するために用いられている。
【0083】
なお、表示部300は、入力部600から入力された観察モードの情報、又は観察対象物の情報、観察日時、観察に要した時間など、様々な情報を表示可能である。これらの情報は、スコープ部200または制御装置100に設けられた図示しないメモリ又は図示しない時計、図示しないタイマから供給される。或いは、これらの情報は、入力部600から入力された情報である。
【0084】
例えば、AIが支援情報を抽出する際に適切な画像と、人間が診断又は診察する際に適切な画像とは、必ずしも一致しない。このため、人間が見やすい画像を表示することと、支援情報の抽出にとって適切な画像をAIに入力することの、いずれかを優先する必要がある。例えば、診断するのは人間であるため、一般的には、人間が見やすい画像を表示することが優先される。この場合、その人間が見やすい画像からAIが支援情報を抽出することになる。
【0085】
或いは、特許文献1、2のように特殊光画像から支援情報を抽出する場合、支援情報を得るためには観察モードを特殊光モードに切り替える必要がある。また、仮に白色光モードにおいて白色光画像から支援情報を抽出したとしても、モード毎にAIに入力される画像が異なってしまう。このため、通常観察モードと特殊光モードとでは提供される支援情報が異なってしまう恐れがある。一方、支援情報は様々な場面で求められており、例えばスクリーニングにおいては白色光画像に支援情報を表示し、病変部を拡大観察する際には特殊光画像に支援情報を表示する必要がある。
【0086】
以上の実施形態によれば、内視鏡装置10は撮像部と光源部140と第1処理回路110とを含む。撮像部は、被写体を撮像する。光源部140は、被写体に対する照明光として、互いに色が異なる第1~第mの光(mは2以上の整数)を射出する。第1処理回路110は、撮像部からの画像信号に基づいて第1~第nの画像(nは2以上の整数)を生成する。第1~第nの画像の各々は、第1~第mの光のうちいずれかの光に対応した画像である。第1処理回路110は、第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成する。また第1処理回路110は、表示画像とは異なる支援用画像、又は表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路120へ出力する。そして第1処理回路110は診断支援情報を取得する。診断支援情報は、第2処理回路120が支援用画像又は支援用画像群に基づいて出力したものである。
【0087】
図1において、撮像部は撮像ユニット213に対応する。第1実施形態ではm=5であるが、本発明の適用対象はm=5に限定されない。また第1実施形態において、n=6であり、第1~第nの画像は、V画像及びB画像、光量1におけるG画像、光量2におけるG画像、A画像、R画像である。なお、本発明の適用対象はn=6に限定されない。またn≠mに限定されずn=mであってもよい。例えば各光源を1周期において1回ずつ発光させる場合にはn=mである。第1実施形態のように同じ光源を光量を変えて2回発光させる場合にはn≠mとなる。また第1実施形態において表示用画像群はB画像、及び光量1におけるG画像、R画像であり、支援用画像群はV画像及び光量1におけるG画像である。この支援用画像群は表示画像を含まない。なお、後述する第2実施形態では、支援用画像はIR画像であり、この支援用画像は表示画像とは異なる。支援用画像群は、表示画像とは少なくとも一部が異なっていればよい。即ち、支援用画像群は、表示画像を含まない画像群、又は、表示画像と第1~第nの画像のうち1又は複数の画像とを含む画像群である。なお、
図1では内視鏡装置10が第2処理回路120を含む場合を例に説明したが、
図10において後述するように、内視鏡装置10の外部に第2処理回路120を設けてもよい。即ち、内視鏡装置10が第2処理回路120を内蔵しない場合にも本発明を適用できる。
【0088】
本実施形態によれば、表示画像とは異なる支援用画像、又は、表示画像とは少なくとも一部が異なる支援用画像群が第2処理回路120へ入力され、第2処理回路が支援用画像又は支援用画像群から診断支援情報を抽出する。これにより、AI技術による診断支援情報の生成に用いる画像情報と、観察作業のための観察画像を形成するための画像情報とを、それぞれ最適な画像とすることができる。診断支援情報の生成では、最小限で最適な画像を選定できる。これにより、より高速でより効率的、かつ高精度で診断支援情報を生成することが期待できる。また、作業者に向けた観察画像の生成及び表示では、観察モード毎に最適な画像情報を選定している。このため、色再現性、及び画質、解像度、病変部のコントラストなどの、作業者が望む品質の画像を構築することが可能である。
【0089】
なお、第1実施形態では表示用画像群と支援用画像群が異なるが、これに限定されず、支援用画像群は表示用画像群と同じであってもよい。表示画像は表示用画像群を合成したものなので、表示画像は表示用画像群の各画像とは異なったものである。このため、支援用画像群は表示用画像群と同じであっても、支援用画像群は表示画像そのものを含んでいない。例えば、後述する第3実施形態では、光量1におけるG画像、及びA画像、R画像が表示用画像群であり、それらを合成することで、RBI画像を表示画像として生成する。この場合、支援用画像群として、G画像、及びA画像、R画像を採用し、3画像の各々を分離した状態でAI処理へ入力する。即ち、3画像が合成されたRBI画像と、それらが分離した状態の支援用画像群とは異なるものである。
【0090】
また本実施形態では、第1処理回路110は、第1表示モードが設定された場合において、第1表示用画像群に基づいて第1表示画像を生成し、第2表示モードが設定された場合において、第2表示用画像群に基づいて第2表示画像を生成する。第1、第2表示用画像群は、それぞれ、第1~第nの画像から選択された画像群である。第2表示用画像群は第1表示用画像群とは異なる。第1処理回路110は、第1表示画像及び第2表示画像とは異なる支援用画像、又は第1表示画像及び第2表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路120へ出力する。
【0091】
第1実施形態において、第1表示モードは通常光観察モードであり、第2表示モードはNBI観察モードである。即ち、第1表示画像は白色光画像であり、第2表示画像はNBI画像であり、第1表示用画像群は、B画像、及び光量1におけるG画像、A画像、R画像であり、第2表示用画像群は、V画像及び光量2におけるG画像である。支援用画像群は、V画像及び光量1におけるG画像であり、白色光画像及びNBI画像とは異なっている。なお、支援用画像群は、第1表示画像及び第2表示画像とは少なくとも一部が異なっていればよい。
【0092】
本実施形態によれば、複数の表示モードが設定可能である場合に、そのいずれの表示モードにおける表示画像とも異なる支援用画像又は支援用画像群が第2処理回路120へ入力される。このとき、いずれの表示モードにおいても支援用画像又は支援用画像群は同じである。これにより、表示モードに関わらず同じ画像又は画像群から診断支援情報を抽出し、それに基づく支援表示情報を表示部300へ表示させることができる。即ち、表示モードによらずに支援表示情報の抽出に最適な画像又は画像群から診断支援情報を抽出できる。また、作業者が設定した表示モードに左右されずに、いつも同じ画像又は画像群から診断支援を行うことができる。なお、第1処理回路110は、第1表示モードが設定された場合において、第1表示画像とは異なる支援用画像、又は第1表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路120へ出力してもよい。即ち、第1表示モードにおいて、支援用画像が第2表示画像であってもよいし、支援用画像群が第2表示画像を含んでいてもよい。また第1処理回路110は、第2表示モードが設定された場合において、第2表示画像とは異なる支援用画像、又は第2表示画像とは少なくとも一部が異なる支援用画像群を、第2処理回路120へ出力してもよい。即ち、第2表示モードにおいて、支援用画像が第1表示画像であってもよいし、支援用画像群が第1表示画像を含んでいてもよい。このような場合であっても、上記と同様な作用効果が得られる。
【0093】
また本実施形態では、支援用画像は、第1~第nの画像のうちの1つの画像、又は第1~第nの画像の一部に基づいて合成された画像、又は第1~第nの画像に基づいて合成された画像である。支援用画像群は、第1~第nの画像から選択された画像群である。
【0094】
後述する第2実施形態では、IR画像が支援用画像である。この場合、支援用画像は、第1~第nの画像のうちの1つの画像である。また、第1実施形態の変形例として、V画像、及び光量1におけるG画像を合成し、その合成画像を支援用画像としてもよい。この場合、支援用画像は、第1~第nの画像のうち一部に基づいて合成された画像である。支援用画像は、第1~第nの画像のうち全部に基づいて合成された画像であってもよい。また、第1実施形態では、V画像、及び光量1におけるG画像が支援用画像群である。この場合、支援用画像群は、第1~第nの画像から選択された画像群である。また、後述する第3実施形態では、光量1におけるG画像、及びA画像、R画像が表示用画像群であり、支援用画像群も同一である。この場合も、支援用画像群は、第1~第nの画像から選択された画像群である。
【0095】
本実施形態によれば、AI技術による診断支援情報の生成に最適な画像又は画像群をAI処理へ入力できる。また、観察画像を形成するために最適な画像群から表示画像を生成できる。
【0096】
また本実施形態では、撮像部は、青色及び緑色、赤色のカラーフィルタを有する撮像素子を含む。mは4以上である。第1の光は、青色のカラーフィルタの透過波長帯域内にピーク波長を有し、第2の光は、緑色のカラーフィルタの透過波長帯域内にピーク波長を有し、第3の光は、赤色のカラーフィルタの透過波長帯域内にピーク波長を有する。第4の光は、青色のカラーフィルタ又は緑色のカラーフィルタ又は赤色のカラーフィルタの透過波長帯域内にピーク波長を有する。光源部140は、第1~第4の光のうち同色のカラーフィルタを通過する光を、異なる撮像フレームにおいて射出する。
【0097】
第1実施形態では、第1の光は波長λb=445nmの青色レーザ光であり、第2の光は波長λc=532nmの緑色レーザ光であり、第3の光は波長λe=635nmの赤色レーザ光である。第4の光は、例えば波長λa=405nmの紫色レーザ光である。或いは、第4の光は、波長λd=600nmのオレンジ色レーザ光であってもよい。或いは、第4の光は、波長λc=532nmの緑色レーザ光であり且つ第2の光とは光量が異なる光であってもよい。第1実施形態では、光源部140は、第1~第3の光をT1とT2の間の撮像フレームにおいて射出し、第4の光をT2とT1’の間の撮像フレームにおいて射出する。
【0098】
本実施形態によれば、撮像素子のRGBフィルタによって分離可能な光が同時に射出され、同一のカラーフィルタを通過する光が異なる撮像フレームにおいて射出される。これにより、例えばベイヤ型等のRGBフィルタを有するカラー撮像素子を用いて、第1~第nの画像を出来るだけ短時間に撮像することが可能となる。即ち、第1~第4の光を順次に発光させた場合には4つの撮像フレームが必要であるが、本実施形態では2つの撮像フレームでよくなる。このように、AI技術及び表示に用いる全ての画像を略同時に取得できる。これにより、診断支援情報で抽出した注目部位の位置及び輪郭は、略そのまま表示画像上での位置及び輪郭と対応している。従って複雑な位置合わせ技術等を用いることなく、診断支援情報を観察画像にスーパーインポーズするなど、重ね合わせ表示することができる。
【0099】
また本実施形態では、光源部140は、第1の光と第2の光と第3の光とを、第1撮像フレームにおいて射出する。また光源部140は、第4の光を第2撮像フレームにおいて射出する。第2撮像フレームは、第1撮像フレームの次又は第1撮像フレームの前の撮像フレームである。即ち、第2撮像フレームは第1撮像フレームの直後又は直前において隣り合う撮像フレームである。
【0100】
図5において、T1とT2の間の撮像フレームを第1撮像フレームとした場合、T2とT1’の間の撮像フレームが、第1撮像フレームの次の第2撮像フレームとなる。なお、第1実施形態では1周期に2つの撮像フレームを含むが、1周期に3以上の撮像フレームを含んでもよい。この場合、第1撮像フレームの次に第2撮像フレームがあってもよいし、第1撮像フレームの前に第2撮像フレームがあってもよい。例えば、後述する
図8の発光シーケンスにおいて、T3からT1’の間の撮像フレームを第2撮像フレームとした場合、T1’とT2’の間の第1撮像フレームの前に第2撮像フレームが存在する。
【0101】
本実施形態によれば、第1撮像フレームと、その第1撮像フレームの直後又は直前において隣り合う第2撮像フレームとにおいて、第1~第nの画像が取得される。これにより、略同時に第1~第nの画像を取得することができる。
【0102】
また本実施形態では、第4の光は、青色のカラーフィルタ又は緑色のカラーフィルタ又は赤色のカラーフィルタの透過波長帯域よりも狭い波長帯域を有する狭帯域光である。また本実施形態では、nは4以上であり、表示用画像群は、第1~第3の光に対応する第1~第3の画像を含む。第1処理回路110が支援用画像を出力する場合、支援用画像は、第4の光に対応する第4の画像である。第1処理回路110が支援用画像群を出力する場合、支援用画像は、第4の光に対応する第4の画像を含む。
【0103】
本実施形態によれば、狭帯域光によって撮像された第4の画像を第2処理回路120へ入力できる。狭帯域光は、その狭い波長帯域における被写体の情報のみを含んでいる。例えば、生体表面からどの程度の深さまで光が届くかは、光の波長に依存している。即ち、狭帯域光を用いることで、特定の深さの被写体像を得ることができる。取得しようとする診断支援情報の内容に応じて、狭帯域光の波長を選択することで、診断支援情報の抽出にとって適切な画像をAI処理へ入力できる。
【0104】
また本実施形態では、光源部140は、第1~第4光源を含む。第1光源は第1の光を発生し、第1の光は、436~480nmの範囲内にピーク波長を有する。第2光源は第2の光を発生し、第2の光は、481~585nmの範囲内にピーク波長を有する。第3光源は第3の光を発生し、第3の光は、616~700nmの範囲内にピーク波長を有する。第4光源は第4の光を発生し、第4の光は、400~435nmの範囲内にピーク波長を有する。また光源部140は、第1~第3光源を第1撮像フレームにおいて発光させ、第4光源を第2撮像フレームにおいて発光させる。
【0105】
図1及び
図5において、第1光源は光源LDbであり、第2光源は光源LDcであり、第3光源は光源LDeであり、第4光源は光源LDaである。
【0106】
本実施形態によれば、光源部140に第1~第4光源を設けたことで、青色カラーフィルタの波長帯域内にピーク波長を有する第1の光と、緑色カラーフィルタの波長帯域内にピーク波長を有する第2の光と、赤色カラーフィルタの波長帯域内にピーク波長を有する第3の光と、青色カラーフィルタの波長帯域内にピーク波長を有する第4の光と、を射出できる。また、各光を独立した光源から射出することで、光源のオンオフ制御によって発光シーケンスを実現できる。例えばレーザ光源又はLED等を用いた場合、光源をオフすることで、その光源の発光量をゼロにできる。即ち、オンした光源が射出する光のみの純度の高い光を照明光にできる。
【0107】
また、紫色レーザ光を発生する第4光源を設けたことで、緑色レーザ光と合わせてNBI観察モードを実現できる。NBI観察モードでは、粘膜表層の血管を高コントラストで観察できる。また、紫色レーザ光及び緑色レーザ光により撮像した画像群を支援用画像群とすることで、粘膜表層の血管が高コントラストで撮像された画像から診断支援情報を抽出できる。
【0108】
また本実施形態では、光源部140は、第2撮像フレームにおいて、第1撮像フレームにおける第2光源の発光量とは異なる発光量で第2光源を発光させることで、第5の光を射出する。第1表示用画像群は、第1~第3の光に対応する第1~第3の画像を含む。第2表示用画像群は、第4の画像、及び、第5の光に対応する第5の画像を含む。支援用画像群は、第2の画像、及び、第4の光に対応する第4の画像像を含む。第1処理回路110は、第1表示モードが設定された場合において、第1表示用画像群に基づいて第1表示画像を生成し、支援用画像群を第2処理回路120へ出力する。また第1処理回路110は、第2表示モードが設定された場合において、第2表示用画像群に基づいて第2表示画像を生成し、支援用画像群を第2処理回路120へ出力する。
【0109】
第1実施形態において、光源部140は、第1撮像フレームでは光量1で光源LDcを発光させ、第2撮像フレームでは光量2で光源LDcを発光させる。第2の光は、光量1における緑色レーザ光であり、第5の光は、光量2における緑色レーザ光である。第1処理回路110は、V画像、及び光量1におけるG画像を支援用画像群として第2処理回路120へ出力する。第1表示用画像群は、B画像、及び光量1におけるG画像、R画像である。第2表示用画像群は、V画像、及び光量2におけるG画像である。
【0110】
本実施形態によれば、支援用画像群は、第1、第2表示用画像群のいずれとも一部が異なっている。即ち、表示画像を生成するために用いられる画像群とは少なくとも一部の画像が異なる支援用画像群がAI処理へ入力され、その支援用画像群から診断支援情報が抽出される。
【0111】
また本実施形態では、内視鏡装置10は第2処理回路120を含む。第2処理回路120は、支援用画像群の各画像から診断支援情報を抽出する。
【0112】
例えば、第2処理回路120は、各画像に関する診断支援情報を第1処理回路110へ出力できる。或いは、第2処理回路120は、各画像に関する診断支援情報に基づいて更に診断支援情報を抽出し、その診断支援情報を第1処理回路110へ出力できる。表示画像としては、人間にとって観察しやすくするために、例えばRGB画像を合成する必要がある。一方、AI処理においては、必ずしも合成画像を入力する必要はない。本実施形態によれば、各波長において撮影された個々の画像から診断支援情報を抽出できる。
【0113】
また本実施形態では、内視鏡装置10は、表示画像を表示する表示部300を含む。診断支援情報は、被写体に含まれる注目部位の位置及び輪郭の少なくとも一方の情報を含む。第1処理回路110は、診断支援情報に基づいて、注目部位の位置及び輪郭の少なくとも一方を示す表示情報を表示画像に加える画像処理を行い、その表示画像を表示部300へ出力する。表示情報は、上述した支援表示情報に相当する。
【0114】
本実施形態によれば、注目部位の位置及び輪郭の少なくとも一方の情報を診断支援情報として抽出できる。そして、注目部位の位置及び輪郭の少なくとも一方を示す表示情報を作業者に提示することができる。このようにして、診断支援を実現できる。
【0115】
また本実施形態では、第2処理回路120は、画像を含む診断支援情報を出力してもよい。即ち、第2処理回路120は、注目部位を抽出した場合に、その注目部位の位置情報と、その注目部位の画像とを診断支援情報として出力する。第1処理回路110は、その位置情報に基づいて、表示画像における注目部位の位置に、診断支援情報に含まれる注目部位の画像をスーパーインポーズする。
【0116】
また本実施形態では、第2処理回路120は、支援用画像群の各画像から抽出された診断支援情報を比較し、その抽出状況に基づいて診断支援情報を分類し、その分類結果を診断支援情報として第1処理回路110へ出力してもよい。抽出状況は、例えば、同一の注目部位がすべての画像において抽出されたか、同一の注目部位が1枚の画像のみにおいて抽出されたか、注目部位が抽出された画像はどの波長の照明光により撮影されたものであるか、等である。分類は、例えば癌などの可能性の高低、又は、癌の浸潤度、癌のステージなどである。
【0117】
また本実施形態では、第2処理回路120は、現在活用されている医学分類を用いて注目部位を分類し、その注目部位と分類結果と対応付けた情報を診断支援情報として抽出してもよい。医学分類は、一般に用いられている分類であり、例えばTNM分類、又はピットパターン分類、JNET分類などである。TNM分類は癌の進行度分類として広く遣われており、癌の深さ、リンパ節転移の有無とその範囲、遠隔転移の有無により、IA、IB、IIA、IIB、IIIA、IIIB、IIIC、IVの8段階に分類するものである。また、ピットパターン分類は、組織の表面微細構造をパターンとして認識し、分類したものであり、I型、II型、IIIS型、IIIL型、IV型、V型の6パターンに分類するものである。JNET分類は、大腸腫瘍に対する組織、深達度などの質的診断を目的としたNBI拡大内視鏡所見統一分類で、Type1、2A、2B、3の4カテゴリーの分類である。これらの分類では、他臓器への転移の有無など画像だけでは判断できない分類も含まれているが、例えば、機械学習において、教師データとして画像と上記医学分類を対応付けて教育するなどにより、診断支援部が分類を行うか、または分類に属する可能性を診断支援情報として提供できる可能性がある。分類には、機械学習のほか、AIによる既存のさまざまな手法が利用可能である。
【0118】
3.第2実施形態
次に、第2実施形態について説明する。なお、第1実施形態と同じ内容についてはその説明を省略する。
【0119】
図6は、内視鏡装置10の第2構成例である。
図6では、光源部140が、光源LDa~LDfと駆動回路DRa~DRfと光合波光学系141とを含む。第2実施形態は、光源部140が、赤外レーザ光を射出する光源LDfを備える点において第1実施形態と異なっている。
【0120】
駆動回路DRfは光源LDfを駆動する。光合波光学系141は、光源LDa~LDfが射出するレーザ光を合波し、その合波した光を導光路214へ入射させる。駆動回路DRa~DReの詳細は、第1実施形態における駆動回路DRa~DReと同様である。駆動回路DRfについても、第1実施形態における駆動回路DRa~DReの各々と同様の機能を有する。第1実施形態において光合波光学系141は5つのレーザ光を合波するが、第2実施形態では光合波光学系141は6つのレーザ光を合波する。合波方法は、第1実施形態における合波方法と同様である。
【0121】
図7は、光源LDa~LDfが射出するレーザ光の例である。光源LDa~LDeが射出するレーザ光の波長は、
図2と同じである。光源LDfは、波長λf=780nmの赤外レーザ光を射出する。波長780nmの赤外レーザ光は、蛍光観察に用いられる。例えば、蛍光色素であるインドシアニングリーン(ICG)は、780nm付近の赤外光を吸収し、805nm付近の蛍光を発する。インドシアニングリーンは、体内散布又は静脈注射等による蛍光観察用の薬剤として用いられている。
【0122】
撮像ユニット213に含まれる撮像素子は、赤外に感度を有する画素を含む。即ち、撮像素子がR画素及びG画素、B画素を有し、そのR画素のフィルタが赤外を透過する。なお、後述するように、赤外に感度を有する画素、及び発光シーケンスとして種々の変形実施が考えられる。
【0123】
次に第2実施形態における内視鏡装置10の動作について説明する。
図8は、第2実施形態における照明光の発光シーケンスである。
図8においてT1等はタイミングを示す。以下、「タイミング」を省略してT1等と記載する。
【0124】
図8に示すように、T1からT1’までの1周期において撮像動作を3回行う。即ち、1周期に撮像フレームが3フレーム含まれる。T1からT2までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDb、LDc、LDeを発光させる。T2からT3までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDa、LDdを発光させる。T3からT1’までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDfを発光させる。以降、同様の発光シーケンスを繰り返す。これにより、略同時に6枚の画像を取得できる。即ち、略同時にV画像、B画像、G画像、A画像、R画像、IR画像を取得できる。
【0125】
第1処理回路110は、診断支援用の画像としてIR画像を選択し、そのIR画像を診断支援部121へ出力する。診断支援部121は、IR画像に基づいて診断支援情報を抽出する。診断支援情報は、ICGによる蛍光発光の領域、又はその領域の輪郭、蛍光の明るさ、蛍光の分布に関する情報である。また、診断支援情報は、蛍光発光の領域と、その領域に隣接する領域との間のコントラストに関する情報である。これらの情報のうち1つの情報、又は複数の情報を組み合わせたものを診断支援情報として採用できる。
【0126】
本実施形態において、診断支援部121は、IR画像のみに基づいて診断支援情報を抽出し、IR画像以外の5つの画像を用いない。通常光観察モード及びNBI観察モードのいずれにおいても、表示画像を合成するための画像とは異なる画像から診断支援情報が抽出される。
【0127】
第1処理回路110は、V画像、B画像、G画像、A画像、R画像を用いて表示画像を生成する。第1実施形態と異なり、第2実施形態では白色光画像にV画像が用いられる。V、B、G、A、Rにおけるレーザ光の光量比は、表示画像が白色光画像となるホワイトバランスに設定されている。
【0128】
V画像はB画像と比較して、表層の毛細血管をコントラスト良く表示する特性を有している。従って本実施形態による白色光画像は、第1実施形態によるB、G、A、Rの4色による白色光画像と比較して、表層の毛細血管のコントラストが高い。第1処理回路110は、V画像+B画像を合成して表示画像のBチャンネルとし、G画像を表示画像のGチャンネルとし、A画像+R画像を合成して表示画像のRチャンネルとする。そして、第1処理回路110は、上記のRGBチャンネルから構成される表示画像を表示部300へ出力する。
【0129】
表示部300は、上記の白色光画像に対してIR画像を重畳した画像を表示してもよい。例えば、作業者が入力部600によりIR重畳画像を選択した場合に、白色光画像に対してIR画像を重畳した画像が表示部300へ表示される。なお、蛍光画像の重畳の方法については、一般に知られているさまざまな画像重畳技術を用いることが可能である。
【0130】
これにより、作業者は、蛍光の画像を視覚的に確認することができる。また、蛍光画像に基づく支援表示情報を表示画像に付加することができる。例えば、第1処理回路110は、第2処理回路120から診断支援情報を受信し、その診断支援情報に基づいて支援表示情報を表示画像に付加する。この場合、支援表示情報は、例えば蛍光領域の境界線、又は蛍光領域に重畳した視認性の高い色などである。第1処理回路110は、これらの支援表示情報を表示画像にスーパーインポーズする。
【0131】
なお、上記ではRGBカラーフィルタを有する撮像素子を用いる場合を例に説明したが、例えば撮像素子がR画素及びG画素、B画素に加えてIR画素を有してもよい。IR画素にはIRフィルタが設けられ、IRフィルタは、780nmのレーザ光をほとんど透過せず、805nm付近の光を透過する。この場合、紫色レーザ光及びオレンジ色レーザ光と共に赤外レーザ光を発光させる。即ち、発光シーケンスの1周期において撮像動作を2回行う。T1からT2までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDb、LDc、LDeを発光させる。T2からT1’までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDa、LDd、LDfを発光させる。
【0132】
以上の実施形態によれば、mは4以上である。光源部140は、第1~第4光源を含む。第1光源は第1の光を発生し、第1の光は、436~480nmの範囲内にピーク波長を有する。第2光源は第2の光を発生し、第2の光は、481~585nmの範囲内にピーク波長を有する。第3光源は第3の光を発生し、第3の光は、616~700nmの範囲内にピーク波長を有する。第4光源は第4の光を発生し、第6の光は、701~999nmの範囲内にピーク波長を有する。
【0133】
図6及び
図8において、第1光源は光源LDbであり、第2光源は光源LDcであり、第3光源は光源LDeであり、第6光源は光源LDfである。
【0134】
本実施形態によれば、赤外レーザ光を発生する第4光源を設けたことで、被写体の蛍光画像を撮影できる。ICG等の薬剤に基づく蛍光画像を撮影できる。そして、その蛍光画像が第2処理回路120へ入力されることで、蛍光画像から診断支援情報を抽出できる。
【0135】
また本実施形態では、光源部140は、第1光源及び第2光源、第3光源を、第1撮像フレームにおいて発光させ、第6光源を第2撮像フレームにおいて発光させる。nは4以上である。表示用画像群は、第1~第3の光に対応する第1~第3の画像を含む。支援用画像は、第6の光に対応する第6の画像である。
【0136】
図8では、T1’とT2’の間の撮像フレームが第1撮像フレームであり、T3とT1’の間の撮像フレームが第2撮像フレームである。この場合、第2撮像フレームは第1撮像フレームの前である。なお、第1撮像フレームの次に第2撮像フレームがあってもよい。例えば、
図8において、T2とT3の間に光源LDfが発光し、T3とT1’の間に光源LDa、LDdが発光してもよい。
【0137】
本実施形態によれば、AI処理へ入力される支援用画像はIR画像となる。1種類の画像のみをAI処理のインプットにした場合、複数種類の画像から診断支援情報を抽出する場合に比べてAI処理の負荷が小さくなる。
【0138】
4.第3実施形態
次に、第3実施形態について説明する。なお、第1実施形態又は第2実施形態と同じ内容についてはその説明を省略する。
【0139】
内視鏡装置10の構成は
図1と同じである。光源LDa~LDeが射出するレーザ光の特性は
図2に示す通りである。第3実施形態では、
図5に示す発光シーケンスのうち、光量2における光源LDcの発光を行わない。即ち、T1からT1’までの1周期において撮像動作を2回行う。T1からT2までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDb、LDc、LDeを発光させる。T2からT1’までのうち、撮像素子の読み出し期間を除いた期間において、照明光制御回路150は光源LDa、LDdを発光させる。以降、同様の発光シーケンスを繰り返す。これにより、略同時に5枚の画像を取得できる。即ち、略同時にV画像、B画像、光量1におけるG画像、A画像、R画像を取得できる。
【0140】
第1処理回路110は、G画像及びA画像、R画像の3枚を診断支援部121へ出力する。通常光観察モードにおける表示画像の生成手法は第1実施形態又は第2実施形態と同様である。RBI観察モードにおいて、第1処理回路110は、G画像及びA画像、R画像を合成してRBI(Red Band Imaging)画像を生成し、そのRBI画像を表示画像として表示部300へ出力する。RBIは、深部血管又は出血点を視認しやすい画像を提供する手法である。
【0141】
診断支援部121は、G画像及びA画像、R画像の各々をAI処理のインプットとして、診断支援情報を抽出する。RBIの表示画像を生成する際にはG画像及びA画像、R画像を合成するが、AI処理へは合成画像ではなくG画像及びA画像、R画像の各々を入力する。診断支援部121は、例えばG画像及びA画像、R画像の各々から注目部位を抽出する。或いは、診断支援部121は、A画像とR画像を比較した結果に基づいて注目部位を抽出してもよい。
【0142】
なお、上記では第1処理回路110は、G画像及びA画像、R画像の3枚を診断支援部121へ出力する場合を例に説明したが、第1処理回路110は、A画像及びR画像の2枚を診断支援部121へ出力してもよい。
【0143】
以上の実施形態によれば、mは4以上である。光源部140は、第1~第4光源を含む。第1光源は第1の光を発生し、第1の光は、436~480nmの範囲内にピーク波長を有する。第2光源は第2の光を発生し、第2の光は、481~585nmの範囲内にピーク波長を有する。第3光源は第3の光を発生し、第3の光は、586~615nmの範囲内にピーク波長を有する。第5光源は第5の光を発生し、第5の光は、616~700nmの範囲内にピーク波長を有する。
【0144】
第3実施形態において、第1光源は光源LDbであり、第2光源は光源LDcであり、第3光源は光源LDdであり、第5光源は光源LDeである。
【0145】
本実施形態によれば、オレンジ色レーザ光を発生する第3光源を設けたことで、緑色レーザ光及び赤色レーザ光と合わせてRBI観察モードを実現できる。RBI観察モードでは、粘膜深部の血管或いは粘膜の出血点を高コントラストで観察できる。また、オレンジ色レーザ光及び緑色レーザ光、赤色レーザ光により撮像した画像群を支援用画像群とすることで、粘膜深部の血管或いは粘膜の出血点が高コントラストで撮像された画像群から診断支援情報を抽出できる。
【0146】
また本実施形態では、光源部140は、第1光源及び第2光源、第3光源を、第1撮像フレームにおいて発光させ、第5光源を第2撮像フレームにおいて発光させる。nは4以上である。第1表示用画像群は、第1~第3の光に対応する第1~第3の画像を含む。第2表示用画像群は、第2~第4の光に対応する第2~第4の画像を含む。支援用画像群は、第3、第5の画像を含む。第1処理回路110は、第1表示モードが設定された場合において、第1表示用画像群を合成することで第1表示画像を生成し、支援用画像群を第2処理回路120へ出力する。また第1処理回路110は、第2表示モードが設定された場合において、第2表示用画像群を合成することで第2表示画像を生成し、支援用画像群を第2処理回路120へ出力する。
【0147】
第3実施形態において、第2表示用画像群は、G画像及びA画像、R画像である。また支援用画像群も同一である。第2表示画像は、これら3画像を合成したものである。一方、これら3画像の各々が独立の画像として第2処理回路120へ入力される。即ち、第2処理回路120へ入力される支援用画像群は、第2表示用画像群とは異なる画像となっている。
【0148】
5.第4実施形態
次に、第4実施形態について説明する。なお、第1~第3実施形態と同じ内容についてはその説明を省略する。
【0149】
第4実施形態では、観察時において録画された画像に基づいて、事後的に各観察モードにおける画像を表示する。画像は静止画及び動画のいずれであってもよい。
【0150】
図9は、処理装置500の構成例である。処理装置500は、第1処理回路110と、記憶装置510と、入力部520と、を含む。また処理装置500は、更に第2処理回路120を含んでもよい。処理装置500の一例としては、PC(Personal Computer)又はタブレット、サーバ等の情報処理装置である。或いは、処理装置500の他の一例としては、内視鏡装置10の制御装置100である。この場合、記憶装置510は制御装置100に含まれ、入力部520は入力部600に相当し、表示部550は表示部300に相当する。
【0151】
記憶装置510は、内視鏡装置10が撮像した画像を記憶する。例えば第1実施形態を例にとると、6画像を記憶装置510が記憶する。即ち、V画像及びB画像、光量1におけるG画像、光量2におけるG画像、A画像、V画像を記憶装置510が記憶する。処理装置500がPC等である場合、内視鏡装置10からUSB又はネットワーク等を介して処理装置500へ画像が転送され、その画像を記憶装置510が記憶する。或いは、処理装置500が内視鏡装置10の制御装置100である場合、第1処理回路110が出力する画像を記憶装置510が記憶する。なお、ここでは第1実施形態において撮影される画像を記憶装置510が記憶する場合を例に説明したが、これに限定されず、第2実施形態又は第3実施形態において撮影される画像を記憶装置510が記憶してもよい。
【0152】
作業者は入力部520により観察モードを選択する。例えば、処理装置500は、記憶装置510に記憶されている画像群から構築可能な観察モードを選択肢として表示部550に表示させる。作業者は、入力部520により選択肢の中から所望の観察モードを選択する。入力部520としては、例えばポインティングデバイス又はキーボード、ボタン等の種々の操作装置を想定できる。また、処理装置500が内視鏡装置10の制御装置100である場合、作業者が操作部220により観察モードを選択してもよい。
【0153】
第1処理回路110は、選択された観察モードに基づいて表示画像を生成し、その表示画像を表示部550へ出力する。記憶装置510が上述の6画像を記憶している場合、例えば第1通常光観察モード、第2通常光観察モード、第3通常光観察モード、NBI観察モード、RBI観察モードを選択可能である。第1通常光観察モードでは、第1処理回路110は、B画像、及び光量1におけるG画像、A画像、R画像から白色光画像を合成する。第2通常光観察モードでは、第1処理回路110は、V画像、及びB画像、光量1におけるG画像、A画像、R画像から白色光画像を合成する。第3通常光観察モードでは、第1処理回路110は、B画像、及び光量1におけるG画像、R画像から白色光画像を合成する。NBI観察モードでは、第1処理回路110は、V画像及び光量2におけるG画像からNBI画像を合成する。RBI観察モードでは、第1処理回路110は、光量1におけるG画像、及びA画像、R画像からRBI画像を合成する。
【0154】
なお、作業者が6画像から任意に組み合わせを選択し、第1処理回路110が、その組み合わせの表示画像を合成してもよい。
【0155】
処理装置500が情報処理装置である場合、例えば、内視鏡装置10が行う画像処理と同等の処理を実行できる画像処理ソフトを情報処理装置へインストールしておく。そして、第1処理回路110が画像処理ソフトを実行することで、上述した画像処理を実現する。
【0156】
処理装置500が情報処理装置である場合、記憶装置510として、例えば半導体メモリ又はハードディスクドライブ、光学ドライブ等の種々の記憶装置を想定できる。或いは、記憶装置510からではなく、ネットワーク等のインフラを経由して画像データが処理装置500へ入力されてもよい。例えば、内視鏡装置10及び処理装置500がネットワークに接続されており、内視鏡装置10からネットワークを経由して処理装置500が画像データを取得してもよい。
【0157】
処理装置500が第2処理回路120を含む場合には、更に診断支援情報を取得することが可能である。即ち、第1処理回路110が、診断支援情報を抽出するための画像を第2処理回路120へ出力する。第2処理回路120は、第1処理回路110から入力された画像に対してAI処理を行うことで、診断支援情報を抽出し、その診断支援情報を第1処理回路110へ出力する。第1処理回路110は、診断支援情報に基づいて支援表示情報を表示画像へ付加し、その表示画像を表示部550へ出力する。診断支援情報を抽出する手法は、第1~第3実施形態と同様である。
【0158】
以上の実施形態によれば、処理装置500は、第1~第nの画像(nは2以上の整数)を記憶する記憶装置510と、記憶装置510から第1~第nの画像を取得する第1処理回路110と、を含む。第1~第nの画像の各々は、互いに色が異なる第1~第mの光(mは2以上の整数)のうちいずれかの光に対応した画像である。第1処理回路110は、第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成する。第1処理回路110は、第1~第nの画像のうちの表示用画像群に基づいて表示画像を生成し、表示画像とは異なる支援用画像、又は表示用画像を含まない支援用画像群を、第2処理回路120へ出力する。そして第1処理回路110は、診断支援情報を取得する。診断支援情報は、支援用画像又は支援用画像群に基づいて第2処理回路120が出力したものである。
【0159】
本実施形態によれば、内視鏡装置10によりリアルタイムに診察を行っているときだけでなく、事後的に観察画像を構築及び表示できる。また、リアルタイムに診察を行ったときの観察モードとは関係無く、事後的に行うときに所望の観察モードで画像を生成できる。例えば、事後に気づいた病変部を詳細に確認したり、別の作業者が画像確認したときに気になった部位を所望の観察モードで観察したりできる。また、後々病変であることがわかった場合、時間を遥か遡って所望の観察モードで観察しなおすことが可能である。例えば、新たに病変が発見された場合、前回の検診時のデータから特殊光画像を構築して状態を確認するなどが可能になる。また、処理装置500が情報処理装置である場合には、内視鏡装置10が無くても観察画像を構築及び表示できる。また、複数の観察者が異なる場所で観察やスクリーニング等の作業を行うことが可能となる。
【0160】
6.第5実施形態
次に、第5実施形態について説明する。なお、第1~第4実施形態と同じ内容についてはその説明を省略する。
【0161】
図10は、内視鏡システムの構成例である。内視鏡システムは、内視鏡装置10と処理装置400とを含む。第5実施形態では、内視鏡装置10は第2処理回路120を含まず、内視鏡装置10とは別に設けられた処理装置400が第2処理回路120を含んでいる。処理装置400は、例えばPC又はサーバ等の情報処理装置である。また、処理装置400は1つの情報処理装置に限定されず、例えばネットワークに接続されたクラウド処理システムであってもよい。
【0162】
内視鏡装置10の制御装置100は、画像及び診断支援情報を通信するための図示しないインターフェースを有する。このインターフェースとしては種々の装置間インターフェースを採用できる。例えば、インターフェースは、USB又はLAN等の有線通信インターフェースであってもよいし、或いは無線LAN等の無線通信インターフェースであってもよい。
【0163】
なお、以上の第1~第5実施形態によれば、略同時に画像を取得するため、異なる画像間の位置合わせを行わなくてよい。但し、本発明の適用対象は、これに限らない。複数の画像間において、一般的な画像認識や画像処理技術を用いた位置合わせを行っても良いことは無論である。位置合わせを行うことで、位置情報を含む診断支援情報を、より正確に提供することが可能となる。
【0164】
また、以上の第1~第5実施形態では、撮像した単色画像を第2処理回路120にインプットする例を説明した。但し、本発明の適用対象は、これに限らない。複数の画像を組み合わせた画像、たとえば、V画像と光量2のG画像を組み合わせたNBI画像を用いて診断支援情報を抽出しても良いことは無論である。このとき、表示画像は作業者が選択した画像を表示し、第1処理回路110は、それとは独立に診断支援に最適な画像を診断支援部121へ出力する。これにより、支援情報抽出に最適な画像を用いて支援情報を抽出し、また作業に最適な画像を用いて診断等の作業を行うことが可能となる。さらに、支援情報抽出に最適な画像を選択するとき、選択肢が増え、また他の内視鏡システムで撮像取得した画像を用いて診断支援情報を抽出することも可能となる。このとき、偶然、作業者が作業する画像と診断支援部121に最適な画像とが一致することはあるが、それぞれを独立に選択、設定可能にすることで、本発明の効果を享受できる。
【0165】
以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
【符号の説明】
【0166】
10 内視鏡装置、100 制御装置、110 第1処理回路、120 第2処理回路、121 診断支援部、140 光源部、141 光合波光学系、150 照明光制御回路、200 スコープ部、210 挿入部、211 照明レンズ、212 照明レンズ、213 撮像ユニット、214 導光路、215 画像信号線、220 操作部、230 接続ケーブル、240 コネクタ、300 表示部、310 第1処理装置、400 処理装置、500 処理装置、510 記憶装置、520 入力部、550 表示部、600 入力部、DRa~DRf 駆動回路、LDa~LDf 光源