(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-02
(45)【発行日】2022-05-13
(54)【発明の名称】燃料電池システム及びその制御方法、並びに、発電システム及びその制御方法
(51)【国際特許分類】
H01M 8/04 20160101AFI20220506BHJP
H01M 8/00 20160101ALI20220506BHJP
H01M 8/0438 20160101ALI20220506BHJP
H01M 8/04746 20160101ALI20220506BHJP
H01M 8/0432 20160101ALI20220506BHJP
F02C 6/00 20060101ALI20220506BHJP
F02C 6/08 20060101ALI20220506BHJP
F02C 9/50 20060101ALI20220506BHJP
F02C 9/18 20060101ALI20220506BHJP
F01K 23/02 20060101ALI20220506BHJP
H01M 8/12 20160101ALN20220506BHJP
【FI】
H01M8/04 J
H01M8/00 Z
H01M8/0438
H01M8/04746
H01M8/0432
H01M8/04 Z
F02C6/00 B
F02C6/08
F02C6/00 Z
F02C9/50
F02C9/18
F01K23/02 Z
H01M8/12 101
H01M8/12 102B
H01M8/12 102A
(21)【出願番号】P 2020149602
(22)【出願日】2020-09-07
(62)【分割の表示】P 2016162168の分割
【原出願日】2016-08-22
【審査請求日】2020-09-07
(73)【特許権者】
【識別番号】000006208
【氏名又は名称】三菱重工業株式会社
(74)【代理人】
【識別番号】100112737
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100172524
【氏名又は名称】長田 大輔
(72)【発明者】
【氏名】▲高▼村 直樹
(72)【発明者】
【氏名】入江 弘毅
(72)【発明者】
【氏名】大澤 弘行
(72)【発明者】
【氏名】永井 卓磨
【審査官】大内 俊彦
(56)【参考文献】
【文献】特開平5-205761(JP,A)
【文献】特開2016-95940(JP,A)
【文献】特開2016-91644(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/00-8/2495
F02C 6/00,6/08,9/18,9/50
F01K 23/02
(57)【特許請求の範囲】
【請求項1】
空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、
前記空気極と前記燃料極との差圧を計測する差圧計測手段と、
前記燃料極から系外へ排気させる第1ベント弁と、
前記第1ベント弁に設けられ、前記第1ベント弁を閉状態から開状態に制御する場合に、前記第1ベント弁を閉状態から開状態にさせる弁開度速度を調整するスピードコントローラと、
前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第1所定差圧値以上であると判定した場合に、前記スピードコントローラを用いて、前記燃料極から系外へ排気させる前記第1ベント弁を所定時間かけて閉状態から開状態に制御し、
前記差圧が、前記第1所定差圧値より小さい第2所定差圧値以下になった場合に、該第1ベント弁を開状態から閉状態に制御する制御装置と
を具備
し、
インターロック時において、前記燃料極に対して設定される前記差圧の閾値であって、前記第1ベント弁を所定時間かけて閉状態から開状態にする制御を開始するための閾値は、前記第1所定差圧値よりも絶対値が小さい第5所定差圧値とする燃料電池システム。
【請求項2】
前記空気極から系外へ排気させる第2ベント弁と、
前記第2ベント弁に設けられ、前記第2ベント弁を閉状態から開状態に制御する場合に、前記第2ベント弁を閉状態から開状態にさせる弁開度速度を調整するスピードコントローラとを備え、
前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第3所定差圧値以下であると判定した場合に、前記スピードコントローラを用いて、前記空気極側から系外へ排気させる前記第2ベント弁を所定時間かけて閉状態から開状態に制御し、
前記差圧が、前記第3所定差圧値より大きい第4所定差圧値以上になった場合に、前記第2ベント弁を開状態から閉状態に制御する制御装置と
を具備する請求項1に記載の燃料電池システム。
【請求項3】
インターロック時に用いられる経路であって、
前記燃料極から系外へ排気させる前記第1ベント弁よりも上流において、前記燃料極からの排燃料ガスの流通経路を系外に排気させる経路から分岐させる排燃料ガス均圧ベントラインと、
前記排燃料ガス均圧ベントラインに設けられる遮断弁と、
前記空気極から系外へ排気させる第2ベント弁よりも上流において、前記空気極からの排空気の流通経路を系外に排気させる経路から分岐させる排空気均圧ベントラインと、
前記排空気均圧ベントラインに設けられる遮断弁と、
前記排空気均圧ベントラインと前記排燃料ガス均圧ベントラインとの合流位置より下流側に設けられるオリフィスと
を備える請求項1
または2に記載の燃料電池システム。
【請求項4】
インターロック時において、前記燃料極から系外へ排気させる前記第1ベント弁による排燃料ガスの排気及び前記空気極から系外へ排気させる第2ベント弁による排空気の排気を行うにあたり、前記空気極側の圧力が所定圧以上に高くなった場合は、前記燃料極側に窒素を供給する請求項1から請求項
3のいずれかに記載の燃料電池システム。
【請求項5】
請求項1から請求項
4のいずれかに記載の燃料電池システムと、
圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、
前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、
前記燃料電池の圧力を計測する圧力計測手段と、
吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報を格納する格納手段と、
前記対応情報に基づいて、前記圧力計測手段によって計測された前記燃料電池の圧力が前記加圧目標値に到達したと判定された場合に、加圧を停止する制御装置と
を備える発電システム。
【請求項6】
請求項1から請求項
4のいずれかに記載の燃料電池システムと、
圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、
前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、
前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、
吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報を格納する格納手段と、
前記対応情報に基づいて、前記温度計測手段によって計測された吸気温度に対応する吐出圧力を推定し、推定された前記吐出圧力が、前記加圧目標値に対応する前記吐出圧力に到達した場合に、前記燃料電池の圧力が前記加圧目標値に到達したと判定され、加圧を停止する制御装置と
を備える発電システム。
【請求項7】
空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池を備える燃料電池システムの制御方法であって、
前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧を計測する第1過程と、
前記燃料極から系外に第1ベント弁を介して排気させる第2過程と、
前記第1ベント弁に設けられ、前記第1ベント弁を閉状態から開状態に制御する場合に、前記第1ベント弁を閉状態から開状態にさせる弁開度速度をスピードコントローラにより調整する第3過程と、
前記差圧が、第1所定差圧値以上であると判定した場合に、前記スピードコントローラを用いて、前記燃料極から系外に排気させる前記第1ベント弁を所定時間かけて閉状態から開状態に制御する第4過程と、
前記差圧が、前記第1所定差圧値より小さい第2所定差圧値以下になった場合に、前記第1ベント弁を開状態から閉状態に制御する第5過程と
を有
し、
インターロック時において、前記燃料極に対して設定される前記差圧の閾値であって、前記第1ベント弁を所定時間かけて閉状態から開状態にする制御を開始するための閾値は、前記第1所定差圧値よりも絶対値が小さい第5所定差圧値とする燃料電池システムの制御方法。
【請求項8】
前記空気極から第2ベント弁を介して系外へ排気させる第6過程と、
前記第2ベント弁に設けられ、前記第2ベント弁を閉状態から開状態に制御する場合に、前記第2ベント弁を閉状態から開状態にさせる弁開度速度をスピードコントローラにより調整する第7過程と、
前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第3所定差圧値以下であると判定した場合に、前記スピードコントローラを用いて、前記空気極側から系外へ排気させる前記第2ベント弁を所定時間かけて閉状態から開状態に制御する第8過程と、
前記差圧が、前記第3所定差圧値より大きい第4所定差圧値以上になった場合に、前記第2ベント弁を開状態から閉状態に制御する第9過程と
を有する請求項
7に記載の燃料電池システムの制御方法。
【請求項9】
請求項1から請求項
4のいずれかに記載の燃料電池システムと、
圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、
前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、
前記燃料電池の圧力を計測する第2過程と、
吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報に基づいて、計測された前記燃料電池の圧力が前記加圧目標値に到達したと判定された場合に、加圧を停止する第3過程と
を有する発電システムの制御方法。
【請求項10】
請求項1から請求項
4のいずれかに記載の燃料電池システムと、
圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、
前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、
前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報に基づいて、計測された前記吸気温度に対応する吐出圧力を推定する第2過程と、
推定された前記吐出圧力が、前記加圧目標値に対応する前記吐出圧力に到達した場合に、前記燃料電池の圧力が前記加圧目標値に到達したと判定され、加圧を停止する第3過程とを備える発電システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池システム及びその制御方法、並びに、発電システム及びその制御方法に関するものである。
【背景技術】
【0002】
燃料ガスと酸化性ガスとを化学反応させることにより発電する燃料電池が知られている。このうち、固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)は、電解質としてジルコニアセラミックスなどのセラミックスが用いられ、炭素質原料をガス化設備により製造した石炭ガス化ガス等のガス、水素、都市ガス、天然ガス、石油、メタノールなどを燃料として運転される燃料電池である。このようなSOFCは、例えばマイクロガスタービン(以下、「MGT」と呼ぶ)等の内燃機関と組み合わせて複合発電システムを構築することにより、発電効率の高い発電が可能とされている。
【0003】
所定の出力で定常運転する通常運転時、SOFCは空気系統と燃料系統の間の差圧が所定圧力範囲内となるように均圧制御され、さらには所定の圧力まで加圧された空気系統に対して燃料系統の方がごくわずかに高くなるように制御されている。また、SOFCの起動時には、SOFCを加圧運転するにあたりSOFCの圧力は、MGTのコンプレッサで空気極側を加圧し、燃料極側を加圧N2ガスによって加圧し、コンプレッサから空気を供給する空気供給系統に設置した圧力計センサを用いて所定の加圧値に到達すると加圧完了と判定している。
【0004】
下記特許文献1では、燃料電池の起動時に、燃料極側に窒素等(または燃料ガス、圧縮空気)を供給して昇圧を開始する。燃料極系統のベント(系統外排出)ラインとガスタービン燃焼器への供給ラインを遮断して、再循環ラインの再循環ブロワを駆動して均圧制御することが開示されている。
下記特許文献2では、加圧状態で運転する場合に、燃料極系統及び空気極系統のそれぞれに排気ライン、及び排気ラインにエゼクタと減圧弁を設けて差圧を制御することが開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2014-107071号公報
【文献】特許第3241226号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、燃料極側と空気極側の間で差圧制御を行う過程において、何らかの異常や加圧/減圧が生じた場合には差圧が急変するリスクが高くなるので、例えば、運転員が常時監視しており、差圧急変時には、燃料極側と空気極側の差圧を制御する差圧制御弁を作業員が手動で制御する手動介入を行うか、燃料極側と空気極側のガスを系外へ放出するベント遮断弁を開閉させて差圧を抑制させる必要があった。このように、運転員による手動での制御が必要となることで、差圧制御が煩雑であるという問題があった。
【0007】
本発明は、このような事情に鑑みてなされたものであって、人手を要することなく、燃料極側と空気極側の差圧制御が簡素化できる燃料電池システム及びその制御方法、並びに、発電システム及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明は以下の手段を採用する。
本発明の参考例は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、前記燃料電池の圧力を計測する圧力計測手段と、吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報を格納する格納手段と、前記対応情報に基づいて、前記圧力計測手段によって計測された前記燃料電池の圧力が前記加圧目標値に到達したと判定された場合に、加圧を停止する制御装置とを備える発電システムを提供する。
【0009】
本発明の参考例の構成によれば、酸化性ガスが空気極に供給され、燃料ガスが燃料極に供給される燃料電池と、圧縮した空気の少なくとも一部を空気極に供給して空気極を昇圧し、燃料電池を加圧するコンプレッサと燃焼器とタービンと発電機とが設けられたガスタービンとを備える発電システムにおいて、ガスタービンのコンプレッサの吸気温度が計測され、圧力計測手段によって燃料電池の圧力が計測され、吸気温度と燃料電池の加圧目標値とを対応付けた対応情報に基づいて、圧力計測手段によって計測された燃料電池の圧力が、吸気温度に対応する加圧目標値に到達したと判定された場合に、加圧が停止される。
【0010】
このように、吸気温度と燃料電池の加圧目標値とが対応付けられているので、吸気温度を計測することによって、圧力計測手段によって計測された燃料電池の圧力が、加圧目標に到達したか否かを簡便に判定できる。
また、コンプレッサの吸気温度に基づいて、燃料電池の圧力が加圧目標値に到達したかどうかを推定できるので、従来MGTからSOFCへ空気供給する経路に設置していた空気の加圧を完了するか否かを判断するために設けていた圧力計センサが不要となる。これにより、計器を削減でき、計器故障による影響を下げられるのでより安全なプラントの運転が可能となり、コストも低減できる。コンプレッサの吐出圧力は、コンプレッサの回転数に応じて定められるものであり、例えば、コンプレッサの定格回転数に応じて定められる。
なお、コンプレッサが吸気するのは外気とするので吸気温度は外気温度としてもよい。
【0011】
本発明の参考例は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報を格納する格納手段と、前記対応情報に基づいて、前記温度計測手段によって計測された吸気温度に対応する吐出圧力を推定し、前記燃料電池の圧力が、推定された前記吐出圧力に対応する前記加圧目標値に到達したと判定された場合に、加圧を停止する制御装置とを備える発電システムを提供する。
【0012】
本発明の参考例の構成によれば、酸化性ガスが空気極に供給され、燃料ガスが燃料極に供給される燃料電池と、圧縮した空気の少なくとも一部を空気極に供給して空気極を昇圧し、燃料電池を加圧するコンプレッサと燃焼器とタービンと発電機とが設けられたガスタービンとを備える発電システムにおいて、コンプレッサの吸気温度が計測され、吸気温度とコンプレッサからの吐出圧力とを対応付けた対応情報に基づいて、計測された吸気温度に対応する吐出圧力が推定され、燃料電池の圧力が、推定された吐出圧力に対応する加圧目標値に到達したと判定された場合に、加圧が停止される。
【0013】
このように、コンプレッサからの吐出圧力と燃料電池の加圧完了とする加圧目標値は同等に対応できることを勘案し、吐出圧力と燃料電池の加圧目標値とを対応付け、吸気温度と吐出圧力とを対応付けるので、吸気温度を計測することによって、吐出圧力を推定した上で燃料電池が加圧目標値に到達したか否かを簡便に判定できる。
また、コンプレッサの吸気温度に基づいて推定される吐出圧力から、燃料電池の圧力が加圧目標値に到達したかどうかを推定できるので、従来MGTからSOFCへ空気供給する経路に設置していた空気の加圧を完了するか否かを判断するために設けていた圧力計センサが不要となる。これにより、計器を削減でき、計器故障による影響を下げられるのでより安全なプラントの運転が可能となり、コストも低減できる。コンプレッサの吐出圧力は、コンプレッサの回転数に応じて定められるものであり、例えば、コンプレッサの定格回転数に応じて定められる。
【0014】
上記参考例に係る発電システムは、インターロック時に用いられる経路であって、前記燃料極から系外へ排気させる第1ベント弁よりも上流において、前記燃料極からの排燃料ガスの流通経路を系外に排気させる経路から分岐させる排燃料ガス均圧ベントラインと、前記排燃料ガス均圧ベントラインに設けられる遮断弁と、前記空気極から系外へ排気させる第2ベント弁よりも上流において、前記空気極からの排空気の流通経路を系外に排気させる経路から分岐させる排空気均圧ベントラインと、前記排空気均圧ベントラインに設けられる遮断弁と、前記排空気均圧ベントラインと前記排燃料ガス均圧ベントラインとの合流位置より下流側に設けられるオリフィスとを備えていても良い。
【0015】
上記構成により、インターロック時に用いられる経路が加えられ、発電システムの燃料電池の空気極と燃料極とを均圧制御できる。
【0016】
上記参考例に係る発電システムは、インターロック時において、前記燃料極から系外へ排気させる第1ベント弁による排燃料ガスの排気及び前記空気極から系外へ排気させる第2ベント弁による排空気の排気を行うにあたり、前記空気極側の圧力が所定圧以上に高くなった場合は、前記燃料極側に窒素を供給してもよい。
これにより、燃料極側に窒素を供給することにより、燃料極側と空気極側との差圧を所望の値に制御しながら、降圧制御できる。
【0017】
本発明は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、前記空気極と前記燃料極との差圧を計測する差圧計測手段と、前記燃料極から系外へ排気させる第1ベント弁と、前記第1ベント弁に設けられ、前記第1ベント弁を閉状態から開状態に制御する場合に、前記第1ベント弁を閉状態から開状態にさせる弁開度速度を調整するスピードコントローラと、前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第1所定差圧値以上であると判定した場合に、前記スピードコントローラを用いて、前記燃料極から系外へ排気させる前記第1ベント弁を所定時間かけて閉状態から開状態に制御し、前記差圧が、前記第1所定差圧値より小さい第2所定差圧値以下になった場合に、該第1ベント弁を開状態から閉状態に制御する制御装置とを具備する燃料電池システムを提供する。
【0018】
本発明の構成によれば、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池を備える燃料電池システムにおいて、空気極と燃料極との差圧が計測され、燃料極の圧力値から空気極の圧力値を差し引いた差圧が、第1所定差圧値以上であると判定された場合に、第1ベント弁に設けられるスピードコントローラを用いて第1ベント弁を所定時間かけて閉状態から開状態に制御して燃料極から系外に排気させ、差圧が、第1所定差圧値より小さい第2所定差圧値以下になった場合に、第1ベント弁を開状態から閉状態に制御させる。
【0019】
このように、空気極と燃料極との差圧が第1所定差圧値以上となる差圧時には、第1ベント弁がスピードコントローラを用いて所定時間かけて開状態に制御されるので、電磁弁のように即時に開動作する場合に比べて、燃料極側と空気極側の差圧の急変を抑制できる。また、空気極と燃料極との差圧が第1所定差圧値より小さい第2所定差圧値以下になった場合には、スピードコントローラが用いられないので、速やかに第1ベント弁が開状態から閉状態に制御される。また、本発明による差圧制御は、人手を要することなく、簡素化できる。
【0020】
上記燃料電池システムは、前記空気極から系外へ排気させる第2ベント弁と、前記第2ベント弁に設けられ、前記第2ベント弁を閉状態から開状態に制御する場合に、前記第2ベント弁を閉状態から開状態にさせる弁開度速度を調整するスピードコントローラとを備え、前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第3所定差圧値以下であると判定した場合に、前記スピードコントローラを用いて、前記空気極側から系外へ排気させる前記第2ベント弁を所定時間かけて閉状態から開状態に制御し、前記差圧が、前記第3所定差圧値より大きい第4所定差圧値以上になった場合に、前記第2ベント弁を開状態から閉状態に制御する制御装置とを具備してもよい。
【0021】
このように、燃料極の圧力値から空気極の圧力値を差し引いた差圧が第3所定差圧値以下(例えば、空気極の方が燃料極と比較して圧力が高くなる所定値)となる場合には、第2ベント弁を閉状態から開状態にさせる弁開度速度を調整するスピードコントローラを用いて、第2ベント弁を閉状態から開状態にさせ、空気極から系外に排気させるので、電磁弁のように即時に開動作する場合に比べて、燃料極側と空気極側の差圧の急変を抑制できる。また、空気極と燃料極との差圧が第3所定差圧値より大きい第4所定差圧値以上になった場合には、スピードコントローラが用いられないので、速やかに第2ベント弁が開状態から閉状態に制御される。また、本発明による差圧制御は、人手を要することなく、簡素化できる。
【0022】
上記燃料電池システムは、インターロック時において、前記燃料極に対して設定される前記差圧の閾値は、前記第1所定差圧値よりも絶対値が小さい第5所定差圧値としてもよい。
これにより、インターロック時の減圧速度を早めることができ、速やかに圧力低下される。
【0023】
上記燃料電池システムは、インターロック時に用いられる経路であって、前記燃料極から系外へ排気させる第1ベント弁よりも上流において、前記燃料極からの排燃料ガスの流通経路を系外に排気させる経路から分岐させる排燃料ガス均圧ベントラインと、前記排燃料ガス均圧ベントラインに設けられる遮断弁と、前記空気極から系外へ排気させる第2ベント弁よりも上流において、前記空気極からの排空気の流通経路を系外に排気させる経路から分岐させる排空気均圧ベントラインと、前記排空気均圧ベントラインに設けられる遮断弁と、前記排空気均圧ベントラインと前記排燃料ガス均圧ベントラインとの合流位置より下流側に設けられるオリフィスとを備えていても良い。
【0024】
上記構成により、インターロック時に用いられる経路が加えられ、燃料電池システムの空気極と燃料極とを均圧制御できる。
【0025】
上記燃料電池システムは、インターロック時において、前記燃料極から系外へ排気させる第1ベント弁による排燃料ガスの排気及び前記空気極から系外へ排気させる第2ベント弁による排空気の排気を行うにあたり、前記空気極側の圧力が所定圧以上に高くなった場合は、前記燃料極側に窒素を供給してもよい。
これにより、燃料極側に窒素を供給することにより、燃料極側と空気極側との差圧を所望の値に制御しながら、降圧制御できる。
【0026】
本発明は、上記いずれかに記載の燃料電池システムと、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、前記燃料電池の圧力を計測する圧力計測手段と、吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報を格納する格納手段と、前記対応情報に基づいて、前記圧力計測手段によって計測された前記燃料電池の圧力が前記加圧目標値に到達したと判定された場合に、加圧を停止する制御装置とを備える発電システムを提供する。
【0027】
本発明は、上記いずれかに記載の燃料電池システムと、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンと、前記ガスタービンの前記コンプレッサの吸気温度を計測する温度計測手段と、前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報を格納する格納手段と、前記対応情報に基づいて、前記温度計測手段によって計測された吸気温度に対応する吐出圧力を推定し、推定された前記吐出圧力が、前記加圧目標値に対応する前記吐出圧力に到達した場合に、前記燃料電池の圧力が前記加圧目標値に到達したと判定され、加圧を停止する制御装置とを備える発電システムを提供する。
【0028】
本発明の参考例は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、前記燃料電池の圧力を計測する第2過程と、吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報に基づいて、計測された前記燃料電池の圧力が、計測された前記吸気温度に対応する前記加圧目標値に到達したと判定された場合に、加圧を停止する第3過程とを有する発電システムの制御方法を提供する。
【0029】
本発明の参考例は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池と、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報に基づいて、計測された吸気温度に対応する吐出圧力を推定する第2過程と、推定された前記吐出圧力が、前記加圧目標値に対応する前記吐出圧力に到達した場合に、前記燃料電池の圧力が前記加圧目標値に到達したと判定され、加圧を停止する第3過程とを有する発電システムの制御方法を提供する。
【0030】
本発明は、空気極に酸化性ガスが供給されるとともに固体電解質を挟んで設けた燃料極に燃料ガスが供給されることにより発電を行う燃料電池を備える燃料電池システムの制御方法であって、前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧を計測する第1過程と、前記燃料極から系外に第1ベント弁を介して排気させる第2過程と、前記第1ベント弁に設けられ、前記第1ベント弁を閉状態から開状態に制御する場合に、前記第1ベント弁を閉状態から開状態にさせる弁開度速度をスピードコントローラにより調整する第3過程と、前記差圧が、第1所定差圧値以上であると判定した場合に、前記スピードコントローラを用いて、前記燃料極から系外に排気させる前記第1ベント弁を所定時間かけて閉状態から開状態に制御する第4過程と、前記差圧が、前記第1所定差圧値より小さい第2所定差圧値以下になった場合に、前記第1ベント弁を開状態から閉状態に制御する第5過程とを有する燃料電池システムの制御方法を提供する。
【0031】
上記燃料電池システムの制御方法は、前記空気極から第2ベント弁を介して系外へ排気させる第6過程と、前記第2ベント弁に設けられ、前記第2ベント弁を閉状態から開状態に制御する場合に、前記第2ベント弁を閉状態から開状態にさせる弁開度速度をスピードコントローラにより調整する第7過程と、前記燃料極の圧力値から前記空気極の圧力値を差し引いた差圧が、第3所定差圧値以下であると判定した場合に、前記スピードコントローラを用いて、前記空気極側から系外へ排気させる前記第2ベント弁を所定時間かけて閉状態から開状態に制御する第8過程と、前記差圧が、前記第3所定差圧値より大きい第4所定差圧値以上になった場合に、前記第2ベント弁を開状態から閉状態に制御する第9過程とを有していてもよい。
【0032】
本発明は、上記いずれかに記載の燃料電池システムと、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、前記燃料電池の圧力を計測する第2過程と、吸気温度と前記燃料電池の加圧目標値とを対応付けた対応情報に基づいて、計測された前記燃料電池の圧力が前記加圧目標値に到達したと判定された場合に、加圧を停止する第3過程とを有する発電システムの制御方法を提供する。
【0033】
本発明は、上記いずれかに記載の燃料電池システムと、圧縮した空気の少なくとも一部を前記空気極に供給して前記空気極を昇圧し、前記燃料電池を加圧するコンプレッサと、燃焼ガスを生成する燃焼器と、燃焼器から排出された前記燃焼ガスにより回転駆動されるタービンと、該タービンの動力によって発電する発電機と、が設けられたガスタービンとを備える発電システムの制御方法であって、前記ガスタービンの前記コンプレッサの吸気温度を計測する第1過程と、前記燃料電池の加圧目標値を前記コンプレッサからの吐出圧力に対応させ、吸気温度と前記コンプレッサからの吐出圧力とを対応付けた対応情報に基づいて、計測された前記吸気温度に対応する吐出圧力を推定する第2過程と、推定された前記吐出圧力が、前記加圧目標値に対応する前記吐出圧力に到達した場合に、前記燃料電池の圧力が前記加圧目標値に到達したと判定され、加圧を停止する第3過程とを備える発電システムを提供する。
【発明の効果】
【0034】
本発明は、人手を要することなく、燃料極側と空気極側の差圧制御が簡素化できるという効果を奏する。また、本発明は、計器を削減することにより計器障害による影響を低減させ、より安全なプラント運転ができるという効果を奏する。
【図面の簡単な説明】
【0035】
【
図1】本発明の実施形態に係るセルスタックの一態様を示している。
【
図2】本発明の実施形態に係るSOFCモジュールの一態様を示している。
【
図3】本発明の実施形態に係るSOFCカートリッジの断面の一態様を示している。
【
図4】本発明の実施形態に係る発電システムの概略構成図である。
【
図5】本発明の実施形態に係る排燃料放出遮断弁の概略構成を示す一例である。
【
図6】本発明の実施形態に係る排空気放出遮断弁の概略構成を示す一例である。
【
図7】本発明の実施形態に係るインターロック時に用いられる経路の一例である。
【
図8】通常動作時の燃料極側の差圧変化に応じたベント弁制御を説明するための図である。
【
図9】インターロック動作時の燃料極側の差圧変化に応じたベント弁制御を説明するための図である。
【
図10】通常動作時の空気極側の差圧変化に応じたベント弁制御を説明するための図である。
【
図11】コンプレッサの吸気温度と吐出圧力とを対応付けた対応情報の一例を示した図である。
【発明を実施するための形態】
【0036】
以下に、本発明にかかる燃料電池システム及びその制御方法、並びに、発電システム及びその制御方法の実施形態について、図面を参照して説明する。
【0037】
以下においては、説明の便宜上、紙面を基準として「上」及び「下」の表現を用いて各構成要素の位置関係を特定するが、鉛直方向に対して必ずしもこの限りである必要はない。例えば、紙面における上方向が鉛直方向における下方向に対応してもよい。また、紙面における上下方向が鉛直方向に直行する水平方向に対応してもよい。また、以下においては、燃料電池は、固体酸化物形燃料電池(以下「SOFC」という)とし、SOFCのセルスタックとして円筒形を例として説明するが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。
【0038】
(円筒形セルスタックの構造)
まず、本実施形態に係るSOFC複合発電システム(発電システム)のSOFCに用いる円筒形セルスタックについて
図1を用いて説明する。ここで、
図1は、本実施形態に係るセルスタック101の一態様を示すものである。セルスタック101は、円筒形状の基体管103と、基体管103の外周面に複数形成された燃料電池セル105と、隣り合う燃料電池セル105の間に形成されたインターコネクタ107とを備える。燃料電池セル105は、燃料極109と固体電解質111と空気極113とが積層して形成されている。また、セルスタック101は、基体管103の外周面に形成された複数の燃料電池セル105の内、基体管103の長手軸方向において最も端の一端に形成された燃料電池セル105の空気極113に、インターコネクタ107を介して電気的に接続されたリード膜115を備え、最も端の他端に形成された燃料電池セル105の燃料極13Aに電気的に接続されたリード膜(不図示)を備える。
【0039】
(セルスタックの各構成要素の材料と機能の説明)
基体管103は、多孔質材料からなり、例えば、CaO安定化ZrO2(CSZ)、CSZと酸化ニッケル(NiO)との混合物(CSZ+NiO)、又はY2O3安定化ZrO2(YSZ)、又はMgAl2O4などを主成分とされる。この基体管103は、燃料電池セル105とインターコネクタ107とリード膜115とを支持すると共に、基体管103の内周面に供給される燃料ガスL2を基体管103の細孔を介して基体管103の外周面に形成される燃料極109に拡散させるものである。
【0040】
燃料極109は、Niとジルコニア系電解質材料との複合材の酸化物で構成され、例えば、Ni/YSZが用いられる。燃料極13Aの厚さは50~250μmである。この場合、燃料極109は、燃料極109の成分であるNiが燃料ガスL2に対して触媒作用を備える。この触媒作用は、基体管103を介して供給された燃料ガスL2、例えば、メタン(CH4)と水蒸気との混合ガスを反応させ、水素(H2)と一酸化炭素(CO)に改質するものである。また、燃料極109は、改質により得られる水素(H2)及び一酸化炭素(CO)と、固体電解質111を介して供給される酸素イオン(O2-)とを固体電解質111との界面付近において電気化学的に反応させて水(H2O)及び二酸化炭素(CO2)を生成するものである。なお、燃料電池セル105は、この時、酸素イオンから放出される電子によって発電する。
SOFC13の燃料極109に供給し利用できる燃料ガスL2は、水素(H2)および一酸化炭素(CO)、メタン(CH4)などの炭化水素系ガス、都市ガス、天然ガスのほか、石油、メタノール、石炭ガス化ガスなどの炭素質原料をガス化設備により製造したガスなどを燃料として運転される。
本実施形態での燃料ガスL2は例えば都市ガスを使用し、メタンを主成分とする燃料ガスを用いている。
【0041】
固体電解質111は、ガスを通しにくい気密性と、高温で高い酸素イオン導電性とを備えるYSZとが主として用いられる。この固体電解質111は、空気極113で生成される酸素イオン(O2-)を燃料極109に移動させるものである。燃料極109の表面上に位置する固体電解質111の膜厚は10~100μmである。
【0042】
空気極113は、例えば、LaSrMnO3系酸化物、又はLaCoO3系酸化物で構成される。この空気極113は、固体電解質111との界面付近において、供給される空気等の酸化性ガス(後述する本実施形態での空気A2)中の酸素を解離させて酸素イオン(O2-)を生成するものである。空気極113は2層構成とすることもできる。この場合、固体電解質111側の空気極層(空気極中間層)は高いイオン導電性を示し、触媒活性に優れる材料で構成される。空気極中間層上の空気極層(空気極導電層)は、Sr及びCaドープLaMnO3で表されるペロブスカイト型酸化物で構成されても良い。こうすることにより、発電性能をより向上させることができる。
【0043】
インターコネクタ107は、SrTiO3系などのM1-xLxTiO3(Mはアルカリ土類金属元素、Lはランタノイド元素)で表される導電性ペロブスカイト型酸化物などから構成され、燃料ガスL2と酸化性ガスとが混合しないように緻密な膜となっていて、酸化雰囲気と還元雰囲気との両雰囲気下で安定した耐久性と電気導電性を備える。このインターコネクタ107は、隣り合う燃料電池セル105において、一方の燃料電池セル105の空気極113と他方の燃料電池セル105の燃料極109とを電気的に接続し、隣り合う燃料電池セル105同士を直列に接続するものである。リード膜115は、電子伝導性を有すること、及びセルスタック101を構成する他の材料との熱膨張係数が近いことが必要であることから、Ni/YSZ等のNiとジルコニア系電解質材料との複合材で構成されている。このリード膜115は、インターコネクタにより直列に接続される複数の燃料電池セル105で発電された直流電力をセルスタック101の端部付近まで導出すものである。
【0044】
(SOFCモジュールの構造と各要素の機能の説明)
次に、
図2と
図3とを参照して本実施形態に係るSOFCモジュール及びSOFCカートリッジについて説明する。ここで、
図2は、本実施形態に係るSOFCモジュールの一態様を示すものである。また、
図3は、本実施形態に係るSOFCカートリッジの一態様の断面図を示すものである。
【0045】
SOFCモジュール201は、
図2に示すように、例えば、複数のSOFCカートリッジ203と、これら複数のSOFCカートリッジ203を収納する圧力容器205とを備える。なお、
図2には円筒形のSOFCのセルスタックを例示しているが、必ずしもこの限りである必要はなく、例えば平板形のセルスタックであってもよい。圧力容器205は、内部の圧力が0.1MPa~約1MPa、内部の温度が大気温度~約550℃で運用されるので、耐力性と酸化性ガス中に含まれる酸素などの酸化性ガスに対する耐食性を保有する材質が利用される。例えばSUS304などのステンレス系材が好適である。
また、SOFCモジュール201は、燃料ガス供給管207と複数の燃料ガス供給枝管207a及び燃料ガス排出管209と複数の燃料ガス排出枝管209aとを備える。また、SOFCモジュール201は、酸化性ガス供給管(不図示)と酸化性ガス供給枝管(不図示)及び酸化性ガス排出管(不図示)と複数の酸化性ガス排出枝管(不図示)とを備える。
【0046】
燃料ガス供給管207は、圧力容器205の外部に設けられ、SOFCモジュール201の発電量に対応して所定ガス組成と所定流量の燃料ガスL2を供給する燃料ガス供給部(第2燃料ガス供給ライン41)に接続されると共に、複数の燃料ガス供給枝管207aに接続されている。この燃料ガス供給管207は、上述の燃料ガス供給部から供給される所定流量の燃料ガスL2を、複数の燃料ガス供給枝管207aに分岐して導くものである。また、燃料ガス供給枝管207aは、燃料ガス供給管207に接続されると共に、複数のSOFCカートリッジ203に接続されている。この燃料ガス供給枝管207aは、燃料ガス供給管207から供給される燃料ガスL2を複数のSOFCカートリッジ203に略均等の流量で導き、複数のSOFCカートリッジ203の発電性能を略均一化させるものである。
【0047】
燃料ガス排出枝管209aは、複数のSOFCカートリッジ203に接続されると共に、燃料ガス排出管209に接続されている。この燃料ガス排出枝管209aは、SOFCカートリッジ203から排出される排燃料ガスを燃料ガス排出管209に導くものである。また、燃料ガス排出管209は、複数の燃料ガス排出枝管209aに接続されると共に、一部が圧力容器205の外部に配置されている。この燃料ガス排出管209は、燃料ガス排出枝管209aから略均等の流量で導出される排燃料ガスL3を圧力容器205の外部に導くものである。
【0048】
圧力容器205は、内部の圧力が0.1MPa~約1MPa、内部の温度が大気温度~約550℃で運用されるので、耐力性と酸化性ガス中に含まれる酸素などに対する耐食性を保有する材質が利用される。例えばSUS304などのステンレス系材が好適である。
【0049】
ここで、本実施形態においては、複数のSOFCカートリッジ203が集合化されて圧力容器205に収納される態様について説明しているが、これに限られず例えば、SOFCカートリッジ203が集合化されずに圧力容器205内に収納される態様とすることもできる。
【0050】
(SOFCカートリッジの構造と各要素の機能の説明)
SOFCカートリッジ203は、
図3に示す通り、複数のセルスタック101と、発電室215と、燃料ガス供給室217と、燃料ガス排出室219と、酸化性ガス供給室221と、酸化性ガス排出室223とを有する。また、SOFCカートリッジ203は、上部管板225aと、下部管板225bと、上部断熱体227aと、下部断熱体227bとを備える。なお、本実施形態においては、SOFCカートリッジ203は、燃料ガス供給室217と燃料ガス排出室219と酸化性ガス供給室221と酸化性ガス排出室223とが
図3のように配置されることで、燃料ガスL2と酸化性ガスとがセルスタック101の内側と外側とを対向して流れる構造となっているが、必ずしもこの必要はなく、例えば、セルスタックの内側と外側とを平行して流れる、または酸化性ガスがセルスタックの長手軸方向と直交する方向へ流れるようにしても良い。
【0051】
発電室215は、上部断熱体227aと下部断熱体227bとの間に形成された領域である。この発電室215は、セルスタック101の燃料電池セル105が配置され、燃料ガスL2と酸化性ガスとを電気化学的に反応させて発電を行う領域である。
例えば、発電室215のセルスタック101の長手方向の中央部付近の温度は、温度センサ92などで監視され、SOFCモジュール201の定常運転時に、約700℃から1000℃の高温雰囲気となる。
【0052】
燃料ガス供給室217は、SOFCカートリッジ203の上部ケーシング229aと上部管板225aとに囲まれた領域である。また、燃料ガス供給室217は、上部ケーシング229aの上部に設けられた燃料ガス供給孔231aによって、燃料ガス供給枝管207aと連通されている。複数のセルスタック101は、上部管板225aとシール部材237aにより接合されており、燃料ガス供給室217は、燃料ガス供給枝管207aから燃料ガス供給孔231aを介して供給される燃料ガスを、複数のセルスタック101の基体管103の内部に略均一流量で導き、複数のセルスタック101の発電性能を略均一化させる。
【0053】
燃料ガス排出室219は、SOFCカートリッジ203の下部ケーシング229bと下部管板225bとに囲まれた領域である。また、燃料ガス排出室219は、下部ケーシング229bの下部に設けられた燃料ガス排出孔231bによって、燃料ガス排出枝管209aと連通されている。複数のセルスタック101は、下部管板225bとシール部材237bにより接合されており、燃料ガス排出室219は、複数のセルスタック101の基体管103の内部を通過して燃料ガス排出室219に供給される排燃料ガスL3を集約して、燃料ガス排出孔231bを介して燃料ガス排出枝管209aに導くことができる。
【0054】
SOFCモジュール201の発電量に対応して所定ガス組成と所定流量の酸化性ガスを酸化性ガス供給枝管へと分岐して、複数のSOFCカートリッジ203へ供給する。酸化性ガス供給室221は、SOFCカートリッジ203の下部ケーシング229bと下部管板225bと下部断熱体227bとに囲まれた領域である。また、酸化性ガス供給室221は、下部ケーシング229bに備えられた酸化性ガス供給孔233aによって、図示しない酸化性ガス供給枝管と連通されている。この酸化性ガス供給室221は、図示しない酸化性ガス供給枝管から酸化性ガス供給孔233aを介して供給される所定流量の酸化性ガスを、酸化性ガス供給隙間235aを介して発電室215に略均一流量で導くものである。
【0055】
酸化性ガス排出室223は、SOFCカートリッジ203の上部ケーシング229aと上部管板225aと上部断熱体227aとに囲まれた領域である。また、酸化性ガス排出室223は、上部ケーシング229aの側面に設けられた酸化性ガス排出孔233bによって、図示しない酸化性ガス排出枝管と連通されている。この酸化性ガス排出室223は、発電室215から、酸化性ガス排出隙間235bを介して酸化性ガス排出室223に供給される排酸化性ガスを、酸化性ガス排出孔233bを介して図示しない酸化性ガス排出枝管に導くものである。
【0056】
上部管板225aは、上部ケーシング229aの天板と上部断熱体227aとの間に、上部管板225aと上部ケーシング229aの天板と上部断熱体227aとが略平行になるように、上部ケーシング229aの側板に固定されている。また上部管板225aは、SOFCカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この上部管板225aは、複数のセルスタック101の一方の端部をシール部材及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス供給室217と酸化性ガス排出室223とを隔離するものである。
【0057】
下部管板225bは、下部ケーシング229bの底板と下部断熱体227bとの間に、下部管板225bと下部ケーシング229bの底板と下部断熱体227bとが略平行になるように下部ケーシング229bの側板に固定されている。また下部管板225bは、SOFCカートリッジ203に備えられるセルスタック101の本数に対応した複数の孔を有し、該孔にはセルスタック101が夫々挿入されている。この下部管板225bは、複数のセルスタック101の他方の端部をシール部材237a、237b及び接着部材のいずれか一方又は両方を介して気密に支持すると共に、燃料ガス排出室219と酸化性ガス供給室221とを隔離するものである。
【0058】
上部断熱体227aは、上部ケーシング229aの下端部に、上部断熱体227aと上部ケーシング229aの天板と上部管板225aとが略平行になるように配置され、上部ケーシング229aの側板に固定されている。また、上部断熱体227aには、SOFCカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。上部断熱体227aは、この孔の内面と、上部断熱体227aに挿通されたセルスタック101の外面との間に形成された酸化性ガス排出隙間235bを備える。
【0059】
この上部断熱体227aは、発電室215と酸化性ガス排出室223とを仕切るものであり、上部管板225aの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化性ガスによる腐食が増加することを抑制する。上部管板225a等はインコネルなどの高温耐久性のある金属材料から成るが、上部管板225a等が発電室215内の高温に晒されて上部管板225a等内の温度差が大きくなることで熱変形することを防ぐものである。また、上部断熱体227aは、発電室215を通過して高温に晒された排酸化性ガスを、酸化性ガス排出隙間235bを通過させて酸化性ガス排出室223に導くものである。
【0060】
本実施形態によれば、上述したSOFCカートリッジ203の構造により、燃料ガスL2と酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、排酸化性ガスは、基体管103の内部を通って発電室215に供給される燃料ガスL2との間で熱交換がなされ、金属材料から成る上部管板225a等が座屈などの変形をしない温度に冷却されて酸化性ガス排出室223に供給される。また、燃料ガスL2は、発電室215から排出される排酸化性ガスとの熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に適した温度に予熱昇温された燃料ガスL2を発電室215に供給することができる。
【0061】
下部断熱体227bは、下部ケーシング229bの上端部に、下部断熱体227bと下部ケーシング229bの底板と下部管板225bとが略平行になるように配置され、下部ケーシング229bの側板に固定されている。また、下部断熱体227bには、SOFCカートリッジ203に備えられるセルスタック101の本数に対応して、複数の孔が設けられている。この孔の直径はセルスタック101の外径よりも大きく設定されている。下部断熱体227bは、この孔の内面と、下部断熱体227bに挿通されたセルスタック101の外面との間に形成された酸化性ガス供給隙間235aを備える。
【0062】
この下部断熱体227bは、発電室215と酸化性ガス供給室221とを仕切るものであり、下部管板225bの周囲の雰囲気が高温化し強度低下や酸化性ガス中に含まれる酸化性ガスによる腐食が増加することを抑制する。下部管板225b等はインコネルなどの高温耐久性のある金属材料から成るが、下部管板225b等が高温に晒されて下部管板225b等内の温度差が大きくなることで熱変形することを防ぐものである。また、下部断熱体227bは、酸化性ガス供給室221に供給される酸化性ガスを、酸化性ガス供給隙間235aを通過させて発電室215に導くものである。
【0063】
本実施形態によれば、上述したSOFCカートリッジ203の構造により、燃料ガスL2と酸化性ガスとがセルスタック101の内側と外側とを対向して流れるものとなっている。このことにより、基体管103の内部を通って発電室215を通過した排燃料ガスL3は、発電室215に供給される酸化性ガスとの間で熱交換がなされ、金属材料から成る下部管板225b等が座屈などの変形をしない温度に冷却されて燃料ガス排出室219に供給される。また、酸化性ガスは排燃料ガスL3との熱交換により昇温され、発電室215に供給される。その結果、ヒーター等を用いることなく発電に必要な温度に昇温された酸化性ガスを発電室215に供給することができる。
【0064】
発電室215で発電された直流電力は、複数の燃料電池セル105に設けたNi/YSZ等からなるリード膜115によりセルスタック101の端部付近まで導出した後に、SOFCカートリッジ203の集電棒(不図示)に集電板(不図示)を介して集電して、各SOFCカートリッジ203の外部へと取り出される。前記集電棒によってSOFCカートリッジ203の外部に導出された直流電力は、各SOFCカートリッジ203の発電電力を所定の直列数及び並列数へと相互に接続され、SOFCモジュール201の外部へと導出されて、図示しないインバータなどにより所定の交流電力へと変換されて、電力負荷へと供給される。
【0065】
図4は、上述したSOFCと、MGT等の内燃機関であるガスタービン11と組み合わせて構築した発電システム10の概略構成図を示している。
図4に示されるように、発電システム10は、ガスタービン11と、SOFC13を有する燃料電池システム16とを備えている。発電システム10は、SOFC13の排燃料ガスL3と排空気A3をガスタービン11の燃焼器22に供給するように設置することにより、SOFC13、ガスタービン11の2段階でエネルギを電気に変換して取り出すことができるので高い発電効率を実現する。
【0066】
ガスタービン11は、コンプレッサ21と、燃焼器22と、タービン23と、熱交換器60とを備えており、コンプレッサ21とタービン23は、回転軸24により一体回転可能に接続されている。
コンプレッサ21は、空気取り込みライン25から空気(酸化性ガス)Aを取り込み、圧縮した空気を空気極113側に供給する。
空気取り込みライン25には、温度計測部(温度計測手段)29が設けられている。温度計測部29は、空気取り込みライン25を流通したコンプレッサ21の吸気空気の温度を計測し、吸気温度計測値の情報を制御装置58(詳細は後述する)に出力する。
【0067】
熱交換器60は、コンプレッサ21から供給された圧縮後の空気を熱交換し、熱交換後の圧縮空気Aの一部を第2圧縮空気供給ライン31を介して、空気極113に空気A2として供給する。また、コンプレッサ21から排出された圧縮後の空気Aは、制御弁66を制御することにより、熱交換器60を迂回させ、圧縮後の空気Aを熱交換させないバイパスライン62に流通させ、第2圧縮空気供給ライン31を流通する熱交換後の圧縮空気Aの一部と混合させて、空気極113に空気A2として供給することもできる。
【0068】
燃焼器22は、第1圧縮空気供給ライン26を通し、制御弁65で調整された流量で供給された圧縮空気A1と、第1燃料ガス供給ライン27から燃料ガス流量制御弁70で調整された流量で供給された燃料ガスL1と、空気極113から排出された排空気A3と、燃料極109から排出された排燃料ガスL3の一部とを混合して燃焼ガスを生成する。
タービン23は、燃焼器22から排ガス供給ライン28を通して供給された燃焼ガスGが断熱膨張することにより回転し、排ガスが熱交換器60で圧縮空気Aの一部と熱交換され、燃焼排ガスライン53から排出される。
発電機12は、タービン23と同軸上に設けられ、タービン23の回転動力によって発電する。
【0069】
燃料電池システム16は、差圧計90と、系外に排気させるベント弁である排燃料放出遮断弁(第1ベント弁)46及び排空気放出遮断弁(第2ベント弁)37と、制御装置58とを備えている。
差圧計90は、SOFC13において、燃料極109と空気極113との差圧を計測する。差圧計90で計測された燃料極109と空気極113との差圧値の情報は、制御装置58に出力される。
SOFC13には、SOFCモジュール201の容器内圧力を計測するSOFCモジュール201の容器内圧力計(センサ)Px1が接続されており、容器内圧力計Px1における圧力計測値の情報が制御装置58に出力される。
【0070】
SOFC13は、第1圧縮空気供給ライン26から分岐した第2圧縮空気供給ライン31が接続され、コンプレッサ21が圧縮した一部の圧縮空気A2を空気極113の導入部に供給する。第2圧縮空気供給ライン31には、流通する圧縮空気A2の空気量を調整する制御弁64が設けられている。
SOFC13は、空気極113で用いられた排空気A3を排出する排空気ライン34が接続されている。排空気ライン34は、空気極113で用いられた排空気A3を系外に排出する排空気排出ライン35と、燃焼器22に接続される排空気供給ライン36と、排空気均圧ベントライン39とに分岐される。
【0071】
排空気排出ライン35には、系外に排出する空気量を調整する排空気放出遮断弁37が設けられており、排空気供給ライン36には、SOFC13とガスタービン11との間の系統を接続・切り離しするための遮断弁(バイパス弁)38が設けられている。
SOFC13の起動時の昇圧工程において、遮断弁38は、上流側のSOFC13の圧力容器205と下流側のガスタービン11とがコンバインドするときに閉状態から開状態に制御され、例えば、SOFC13の圧力容器205と燃焼器22側との圧力値が略等しくなったときに開状態に制御される。
排空気均圧ベントライン39は、インターロック動作時に用いられる経路であり、排空気放出遮断弁37よりも上流側から分岐させ、空気極113からの排空気A3を系外へ流通させる。
【0072】
また、SOFC13は、燃料ガスL2を燃料極109の導入部に供給する第2燃料ガス供給ライン41と接続されている。第2燃料ガス供給ライン41には、供給する燃料ガスL2の流量を調整する制御弁42が設けられる。また、第2燃料ガス供給ライン41から分岐して、空気極燃料供給ライン80が設けられ、空気極燃料供給ライン80には燃料ガス流量制御弁82が設けられ、燃料ガスL2の一部を空気極113の導入部に供給できるようになっている。
【0073】
SOFC13は、燃料極109で用いられた排燃料ガスL3を排出する排燃料ガスライン43が接続されている。SOFC13は、排燃料ガスライン43と、排燃料ガスライン43から分岐して再循環ブロワ50に接続する再循環ライン51を設けている。燃料ガス再循環ライン49の排燃料ガスL3の一部は、再循環ブロワ50を設けた再循環ライン51の再循環ブロワ50の出口において、第2燃料ガス供給ライン41に供給する燃料ガス再循環ライン49と、燃焼器22に接続される排燃料ガス供給ライン45とに分岐される。また、再循環ブロワ50に接続する再循環ライン51と分岐した排燃料ガスライン43は、系外に排出する排燃料ガス排出ライン44と、排燃料ガス均圧ベントライン48とに分岐される。
排燃料ガス排出ライン44は、排燃料ガスの排出を調整する排燃料放出遮断弁46を設けている。
【0074】
図5には、排燃料放出遮断弁46の概略構成が示され、
図6には、排空気放出遮断弁37の概略構成が示されている。
図5に示されるように、排燃料放出遮断弁46は、遮断弁部59aと、スピードコントローラ56aとを備えている。
図6に示されるように、排空気放出遮断弁37は、遮断弁部59bと、スピードコントローラ56bとを備えている。
スピードコントローラ56a、56bは、排燃料放出遮断弁46及び排空気放出遮断弁37を閉状態から開状態に制御する場合に、弁開度速度を調整する。具体的には、制御装置58から取得した開指令に基づいて、遮断弁部59a,59bを閉状態から開状態にする際の供給空気を絞り、遮断弁部59の開動作を緩やかにさせる。
このように、スピードコントローラ56を開方向に適用して弁開度速度を調整することにより、圧力差低減のアンダーシュートを防ぎ、燃料極109と空気極113の差圧の急変を抑制できる。
【0075】
排燃料ガス供給ライン45は、再循環ブロワ50の出口における排燃料ガスL3の一部を分岐した燃料ガス量の供給量を調整する燃料空気差圧調整弁47を設けており、燃料空気差圧調整弁47によって調整された流量の排燃料ガスL3を燃焼器22に供給させる。
排燃料ガス均圧ベントライン48は、例えば、インターロック動作時に用いられる経路であり、排燃料放出遮断弁46よりも上流側から分岐させ、燃料極109からの排燃料ガスL3を系外へ流通させる。
【0076】
図7は、例えば、インターロック時に用いられる経路である。
図7に示されるように、インターロック時に用いられる経路は、排空気均圧ベントライン39に均圧ベント空気極遮断弁32を設け、排燃料ガス均圧ベントライン48に均圧ベント燃料極遮断弁40を設け、排空気均圧ベントライン39と排燃料ガス均圧ベントライン48の合流後の下流位置にオリフィス54を設けて構成する。
図7で示される経路は、例えば、インターロック時に空気極113側と燃料極109側との差圧がつかないように制御、もしくは、燃料極109側が空気極113側よりも所定圧高くなるように維持しながら、SOFC13の減圧を行うための経路である。
【0077】
図7で示される経路から排燃料ガスL3および排空気A3を排出する際に、空気極113側の圧力が所定圧以上に高くなった場合は、燃料極109側に、第2燃料ガス供給ライン41に連結される窒素供給ライン72から窒素を供給することで差圧制御を行っても良い。この際、窒素の供給量は窒素供給ライン72に備えられた制御弁73で調整しても良く、それでも差圧が所定圧に維持できない場合は排空気排出ライン35に備えた排空気放出遮断弁37の間欠制御を行うことにより、空気極113側の圧力を低下させ、燃料極109側が空気極113側よりも所定圧高くなるように維持しても良い。
【0078】
制御装置58は、例えば、コンピュータやシーケンサであり、図示しないCPU(中央演算装置)と、CPUが実行するプログラム等を記憶するためのROM(Read Only Memory)と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)等を備えている。後述の各種機能を実現するための一連の処理の過程は、プログラムの形式で記録媒体等に記録されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。
【0079】
具体的には、制御装置58は、格納部(格納手段)57を備えている。
【0080】
格納部57は、対応情報55、コンプレッサ21の吐出圧力の加圧目標値、及び閾値等の情報を格納している。
対応情報55は、ガスタービン11のコンプレッサ21の温度計測部29で計測した吸気温度とSOFC13の加圧完了とする加圧目標値とが対応付けられた情報である。本実施形態では、SOFC13の加圧完了とする加圧目標値はコンプレッサ21からの吐出圧力とほぼ同等の対応ができる。コンプレッサ21の吐出流量は、コンプレッサ21の回転数に応じて定められるものであり、本実施形態においては、コンプレッサ21が定格回転数で運転しているときの吸気温度と吐出圧力とが関連付けられた対応情報を用いる。コンプレッサ21の温度計測部29で計測した吸気温度が上昇すると、空気の密度が低下するためにコンプレッサ21の吐出流量が低下し、定格回転数で運転しているときは吐出圧力が低下する。対応情報55は、例えば、
図11で示されるようにテーブルで与えられても良いし、演算式で与えられてもよく、対応情報の形式は特に限定されない。
【0081】
コンプレッサ21の吐出圧力の加圧目標値とは、SOFC13の起動時等において、空気極113側を加圧完了するときに用いられる目標値であり、本実施形態ではコンプレッサ21から吐出される空気の圧力として容器内圧力計Px1で計測されたSOFCモジュール201の容器内圧力値を用いる。容器内圧力計Px1で計測された圧力値と加圧目標値との圧力差が所定値(例えば、(容器内圧力計Px1で計測された圧力値)-(加圧目標値)≧-1~0kPa)以内となるような値が目標値とされる。
【0082】
また、格納部57には、空気極113の圧力に対する燃料極109の圧力との差圧に関する閾値(例えば、第1閾値、第2閾値等)の情報が格納されている。
第1閾値は、空気極113側に対する燃料極109側の圧力が高いときの差圧に対して設けられる閾値であり、差圧が第1閾値を以上になった場合に燃料極109側からベント(系外への排気)を開始する。
第2閾値は、空気極113側に対する燃料極109側の圧力が高いときの差圧に対して設けられる閾値であり、差圧が第2閾値以内になった場合に燃料極109側からのベントを終了する。
【0083】
本実施形態においては、SOFC13の通常動作(定常運転)時に設けられる空気極113側に対する燃料極109側の圧力が高いときの差圧の第1閾値を第1所定差圧値とし、このときの第2閾値を第2所定差圧値とする。また、SOFC13のインターロック等の緊急時においては、空気極113側に対する燃料極109側の圧力が高いときの差圧の第1閾値を第5所定差圧値とし、このときの第2閾値を第6所定差圧値として説明する。第5所定差圧値は、第1所定差圧値よりも絶対値が小さく設定される。
つまり閾値は、排空気放出遮断弁37または排燃料放出遮断弁46を開閉制御するか否かの判定に用いられる。
【0084】
以下に、
図8から
図10を用いて、本実施形態に係る差圧制御について説明する。
図8は、SOFC13の通常動作時において、燃料極109側が空気極113側と比較して差圧が大きくなった場合の排燃料放出遮断弁46の弁開度と圧力変化の様子を時系列に示した図である。
例えば、SOFC13の通常運転時、空気極113側と燃料極109側との差圧は、燃料極109側が空気極113側より所定差圧(本実施形態では例えば、+0.1kPaから+1kPa)大きくなるように運転されているが、何らかの要因により差圧に変動が生じ、燃料極109側が空気極113側より第1所定差圧値(本実施形態では例えば、所定差圧の+10倍から+50倍)以上となった場合には(
図8の時刻t1)、燃料極109側のベント弁である排燃料放出遮断弁46を閉状態から開状態にする。
【0085】
このとき、スピードコントローラ56aによって所定期間(本実施形態では例えば、10から100秒間)かけて排燃料放出遮断弁46を緩開させ、全開状態にし、系外に排気させる(
図8の時刻t2)。その後、空気極113側と燃料極109側との差圧が、第2所定差圧値(本実施形態では例えば、所定差圧の+5倍から+30倍)まで低下したことが検出されると、排燃料放出遮断弁46をスピードコントローラ56aを用いずに閉状態にし(
図8の時刻t3)、排燃料ガス排出ライン44からの系外への排気、つまりベントを終了する。
【0086】
図9は、インターロック時において、燃料極109側が空気極113側と比較して差圧が大きくなった場合の排燃料放出遮断弁46の弁開度と圧力変化の様子を時系列に示した図である。
例えば、インターロック等の緊急を要するような非常停止を動作中の場合には、ベントを開始する閾値を第1所定差圧値より小さく第5所定差圧値(本実施形態では例えば、所定差圧の+2倍から+20倍)に設定する。
図9に示されるように、空気極113側と燃料極109側との差圧が第5所定差圧値(本実施形態では例えば、所定差圧の+2倍から+20倍)となった場合には(
図9の時刻t4)、燃料極109側のベント弁である排燃料放出遮断弁46を閉状態から開状態にする。
【0087】
このとき、スピードコントローラ56aによって所定期間(本実施形態では例えば、10から60秒間)かけて排燃料放出遮断弁46を緩開させ、全開状態にし、系外に排気させる(
図9の時刻t5)。その後、空気極113側と燃料極109側との差圧が、第6所定差圧値(本実施形態では例えば、所定差圧の-10倍から-1倍)まで低下したことが検出されると、排燃料放出遮断弁46をスピードコントローラ56aを用いずに閉状態にし(
図9の時刻t6)、排燃料ガス排出ライン44からの系外への排気、つまりベントを終了する。
【0088】
図9は、緊急を要するような非常停止を動作中の場合などで、SOFC13の圧力などの系内の圧力を早く減圧したい場合に用いるもので、第1閾値(第5所定差圧値)が第1所定差圧値の絶対値より小さいために、第5所定差圧値の「所定差圧の+2倍~+20倍」に対し、ベント弁の開状態の期間を確保させ、速やかに差圧抑制するために所定幅(第5所定差圧値と第6所定差圧値との差)をもたせたので、第2閾値(第6所定差圧値)は「所定差圧の-10倍から-1倍」とマイナスの値を可能とする一例として示されているが、これは第2閾値をマイナス(つまり、空気極113側の圧力を高くする差圧値)に設定することに限定するものでない。
【0089】
なお、インターロック等の非常停止をさせる場合には、
図7のインターロック時に用いられる経路も併せて用いられ、空気極113側と燃料極109側との差圧が大きくならないように制御し、SOFC13の減圧制御も同時に行われる。
そうすると、インターロック時の経路を用いることに併せて、インターロック時の閾値を通常運転時の閾値より絶対値を小さく設定することによりベント弁を早い段階で開状態にさせ、減圧速度を早めることができる。
【0090】
図10は、SOFC13の通常動作時において、空気極113側が燃料極109側に対して圧力が高いときの差圧が大きくなった場合の排空気放出遮断弁37の弁開度と圧力変化の様子を時系列に示した図である。
例えば、通常運転時に空気極113側が、燃料極109側より圧力が大きくなり、第3所定差圧値以上大きくなった(燃料極側の圧力が高いことを+で表記し、空気極側の圧力が高いことを-表記している;本実施形態では例えば、所定差圧の-50倍から-10倍)場合には(
図10の時刻t7)、空気極113側のベント弁である排空気放出遮断弁37を閉状態から開状態にする。このとき、スピードコントローラ56bによって所定期間(本実施形態では例えば、10から100秒間)かけて排空気放出遮断弁37を緩開させ、全開状態にし、系外に排気させる(
図10の時刻t8)。
【0091】
その後、空気極113側と燃料極109側との差圧が、第4所定差圧値(本実施形態では例えば、所定差圧の-30倍から-5倍)まで小さくなったことが検出されると、排空気放出遮断弁37を閉状態にし(
図10の時刻t9)、排空気排出ライン35からの系外への排気、つまりベントを終了する。
なお、空気極系統は、インターロック時であっても、ベントを開始する閾値は、通常運転時と同じ閾値(例えば、第3所定差圧値と第4所定差圧値)を用いる。
【0092】
以下に、本実施形態に係る発電システム10の作用について説明する。発電システム10を起動する場合、ガスタービン11が起動した後にSOFC13を起動させる。
ガスタービン11において、コンプレッサ21に吸気された空気Aが圧縮され、燃焼器22にて熱交換後の圧縮空気A1と燃料ガスL1とが混合され燃焼されて燃焼ガスGとなる。タービン23が燃焼ガスGにより回転することで、発電機12が発電を開始する。
こうして、コンプレッサ21は、定格回転数となる。
【0093】
SOFC13の起動時において、SOFC13の燃料極109側と空気極113側の差圧が大きくならないように、燃料極109の圧力と空気極113の圧力はほぼ同じ昇圧速度で圧力を上昇して加圧してゆく。SOFC13の燃料極109側は、第2燃料ガス供給ライン41に連結される窒素供給ライン72から窒素を供給して昇圧が開始される。排燃料ガス排出ライン44の排燃料放出遮断弁46、燃料空気差圧調整弁47、及び排燃料ガス均圧ベントライン48の均圧ベント燃料極遮断弁40を閉止し、窒素供給ライン72から窒素を供給し、燃料ガス再循環ライン49の再循環ブロワ50を駆動させる。
そうすると、窒素が窒素供給ライン72からSOFC13へ供給されると共に、燃料ガス再循環ライン49を流通して再循環する。
【0094】
SOFC13の空気極113側は、ガスタービン11側から圧縮空気A2が供給されて昇圧が開始される。排空気排出ライン35の排空気放出遮断弁37、排空気供給ライン36の遮断弁38、及び排空気均圧ベントライン39の均圧ベント空気極遮断弁32が閉止され、制御弁64と制御弁65にて調整された流量の圧縮空気A2がSOFC13に供給され、空気極113側の圧力が上昇され、空気極113側と燃料極109側が同時に加圧される。
これにより、SOFC13は窒素、圧縮空気A2等が供給されることで圧力が上昇する。こうして、空気極113側に対する燃料極109側の圧力が所定差圧(本実施形態では例えば、+0.1kPaから+1kPa)に収まるよう窒素供給ライン72に備えられた制御弁73で燃料極109側への窒素の供給量を調整することで差圧制御しながらSOFC13が昇圧される。
【0095】
空気取り込みライン25を流通したコンプレッサ21の吸気空気の温度が計測されており、適宜温度計測部29から吸気温度計測値の情報が制御装置58に出力されている。
制御装置58は、吸気温度計測値の情報と、吸気温度と加圧完了とする加圧目標値(本実施形態ではコンプレッサ21の吐出圧力)とを対応付けた対応情報55とに基づいて、コンプレッサ21の吐出圧力が推定される。推定されたコンプレッサ21からの圧縮空気A2によって加圧されるSOFC13の容器内圧力が加圧目標値に到達したか否かが判定される。コンプレッサ21の圧縮空気A2の圧力とSOFC13の容器内圧力が同圧となる、つまりSOFC13の容器内圧力が加圧目標値に到達したと判定した場合には、遮断弁38を開状態にし、ガスタービン11と、SOFC13を備える燃料電池システム16をコンバインドすることで、SOFC13の昇圧が完了する。加圧目標値に到達していないと判定した場合には、加圧を継続する。
【0096】
本実施形態は、外気温度によりガスタービン11のコンプレッサ21の空気流量が変化すると、加圧状態が変化することに着目し、コンプレッサ21の吸気温度(外気温度)と加圧目標値(本実施形態ではコンプレッサ21の吐出圧力)とを対応付けた対応情報55を用いてコンプレッサ21の吐出圧力の推定を行い、昇圧完了判定を行うこととした。
【0097】
SOFC13の昇圧完了後、遮断弁38を開状態にされると、SOFC13からの排空気A3が排空気供給ライン36を介して燃焼器22に供給される。燃焼器22側は、コンプレッサ21から吐出された空気が燃焼器22に入ってくるので、ガスタービン11のコンプレッサ21の出口側の圧力と略等しくなる。
排燃料ガスL3の成分が燃焼器22に投入可能となったら、燃料空気差圧調整弁47を開放する。これにより、SOFC13からの排燃料ガスL3が排燃料ガス供給ライン45から燃焼器22に供給される。
【0098】
このようにして、ガスタービン11駆動による発電機12での発電、SOFC13での昇圧が行なわれることで、発電システム10が加圧運転状態となる。その後、圧縮空気A2に空気極燃料供給ライン80から燃料ガスL2を供給して空気極113で触媒燃焼による昇温を行う。SOFC13が発電可能温度に昇温した後は、燃料極109に発電用に燃料ガスL2を投入して、SOFC13の発電反応による発熱も伴いながらSOFC13の昇温が進み、発電システム10が定格運転となる。
【0099】
通常運転時において、
図8から
図10に示されるように、何らかの要因によって差圧が変動した場合には、間欠的な保護動作をする。
本実施形態では例えば、燃料極109側が空気極113側より第1所定差圧値(例えば、所定差圧の+10倍から+50倍)以上の差圧となった場合には(
図8の時刻t1)、燃料極109側のベント弁である排燃料放出遮断弁46を閉状態から開状態にする。このとき、スピードコントローラ56によって所定期間(例えば、10から100秒間)かけて排燃料放出遮断弁46を緩開させ、全開状態にし、系外に排気、すなわちベントさせる(
図8の時刻t2)。その後、空気極113側と燃料極109側との差圧が、第2所定差圧値(例えば、所定差圧の+5倍~+30倍)まで低下したことが検出されると、排燃料放出遮断弁46を閉状態にし(
図8の時刻t3)、ベントを終了する。
【0100】
このように、排燃料放出遮断弁46や排空気放出遮断弁37を閉状態から開状態に制御する場合に、スピードコントローラ56を用いてベント弁(排燃料放出遮断弁46や排空気放出遮断弁37)を緩開することで、ON-OFF開閉弁のように即時に開動作する場合と比較して、空気極113側と燃料極109側の差圧の急激な変動を抑えられるので好ましい。
【0101】
以上、説明してきたように、本実施形態に係る燃料電池システム16及びその制御方法、並びに、発電システム10及びその制御方法によれば、酸化性ガスとして空気A2が空気極113側に供給され、燃料ガスL2が燃料極109側に供給されることで発電するSOFC13を備える燃料電池システム16において、空気極113側と燃料極109側との差圧が計測され、該差圧が第1所定差圧以上であると判定された場合には、燃料極109側または空気極113側から系外へ排出する排気量を調整するベント弁である排燃料放出遮断弁46、排空気放出遮断弁37を、スピードコントローラ56で調整したスピードで所定時間かけて閉状態から開状態に調整する。
このように、空気極113と燃料極109との差圧が第1所定差圧値以上となる差圧異常時には、ベント弁がスピードコントローラ56を用いて所定時間かけて開状態に制御されるので、差圧の急変を抑制でき、差圧がマイナス方向にアンダーシュートするのを防ぐので、空気極113の圧力が燃料極109の圧力より高くなり過ぎることを抑制し、燃料極109へ酸化性ガス(空気)が漏出して、燃料極109の構成する材料が酸化性ガスにより劣化することを抑制する効果を得る。
こうした燃料電池システム16をガスタービン等と組み合わせて発電システム10を構成すれば、より安全なプラントの運転が可能となる。
【0102】
本実施形態では、SOFC13が、コンプレッサ21の吸気空気の温度に応じて推定される吐出圧力に基づいて、加圧目標値になったことを判断してガスタービン11とコンバインドさせるため、ガスタービン11からSOFC13へ空気供給するラインに従来設置していた加圧完了判断用の圧力計が不要となる。また、コンプレッサ21の吸気空気は、「外気温度」としてもよい。
【0103】
このように、ガスタービン11のコンプレッサ21側に空気圧を計測する圧力計センサを不要とし、計器を削減できるので、計器故障によって生じる影響をなくし、コストも低減できる。
スピードコントローラ56を設けることにより、燃料極109側と空気極113側の差圧異常時は間欠制御により、差圧の急激な変動の発生を抑制して自動で差圧を抑制する機能を実現したため、より安全なプラントの運転が可能となる。
【0104】
なお、上記実施形態においては、排燃料放出遮断弁46にスピードコントローラ56aを備える構成として説明していたが、本発明はこれに限定されず、排燃料放出遮断弁46はスピードコントローラ56aを備えていない構成であっても良い。
また、上記実施形態においては、排空気放出遮断弁37にスピードコントローラ56bを備える構成として説明していたが、本発明はこれに限定されず、排燃料放出遮断弁46はスピードコントローラ56bを備えていない構成であっても良い。
【0105】
以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。
【符号の説明】
【0106】
10 発電システム
11 ガスタービン
12 発電機
13 SOFC(固体酸化物形燃料電池:燃料電池)
21 コンプレッサ
22 燃焼器
23 タービン
29 温度計測部(温度計測手段)
37 排空気放出遮断弁
38 遮断弁
46 排燃料放出遮断弁
56 スピードコントローラ
58 制御装置
62 バイパスライン
90 差圧計
109 燃料極
113 空気極
Px1 容器内圧力計(圧力計測手段)