(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-10
(45)【発行日】2022-05-18
(54)【発明の名称】環境の空間プロファイルの推定
(51)【国際特許分類】
G01S 17/89 20200101AFI20220511BHJP
【FI】
G01S17/89
(21)【出願番号】P 2019530217
(86)(22)【出願日】2017-12-15
(86)【国際出願番号】 AU2017051395
(87)【国際公開番号】W WO2018107237
(87)【国際公開日】2018-06-21
【審査請求日】2020-12-15
(32)【優先日】2016-12-16
(33)【優先権主張国・地域又は機関】AU
(73)【特許権者】
【識別番号】518090546
【氏名又は名称】バラハ ピーティーワイ リミテッド
(74)【代理人】
【識別番号】110001461
【氏名又は名称】特許業務法人きさ特許商標事務所
(72)【発明者】
【氏名】ロディン,レベッカ
(72)【発明者】
【氏名】プリッカセリル,シビー
(72)【発明者】
【氏名】コラルテ ボンディー,フェデリコ
【審査官】仲野 一秀
(56)【参考文献】
【文献】特開2009-222616(JP,A)
【文献】特開2010-48662(JP,A)
【文献】米国特許出願公開第2007/0177841(US,A1)
【文献】特開2011-85610(JP,A)
【文献】特開平1-233416(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48-7/51
17/00-17/95
G01C 3/00-3/32
G01B 11/00-11/30
(57)【特許請求の範囲】
【請求項1】
環境の空間プロファイルの推定を容易にするためのシステムであって、
複数の波長チャネルの内の選択された1つ又はそれ以上において、少なくとも1つの時間変化特性を有する光を供給するように構成された光源と、
角度分散素子と開口とを含み、出射光を、前記開口を通して前記環境内に空間的に差し向け、前記環境によって反射された前記出射光の少なくとも一部を受け取るように構成されたビームディレクタと、
を含み、
前記出射光は、
第1の次元に沿った、前記環境内への複数の方向の内の、第1の選択された波長チャネルにおける前記出射光に対応する、第1の方向における前記開口と、
前記第1の次元に沿った、前記環境内への複数の方向の内の、第2の選択された波長チャネルにおける前記出射光に対応する、第2の方向における前記開口と、
を通して差し向けられ、
前記角度分散素子は、
前記第1の次元に実質的に直交する第2の次元に沿って前記出射光を差し向けるように調節可能に傾斜可能である、1つ又はそれ以上の回折格子
を含み、
前記システムは、
反射された該光を検知するように構成された光検知器と、
前記第1の方向及び前記第2の方向に関連付けられる、前記環境の前記空間プロファイルの推定のための、前記反射された光の少なくとも1つの時間変化特性に関連付けられる少なくとも1つの特徴を決定するように構成された処理ユニットと、
をさらに含む、システム。
【請求項2】
前記第1の選択された波長チャネルにおける前記出射光は、前記第2の選択された波長チャネルにおける前記出射光と、実質的に同一のビーム形状を含む、請求項1に記載のシステム。
【請求項3】
前記ビームディレクタは、前記第1の方向における前記開口の第1の部分を通して、かつ、前記第2の方向における前記開口の第2の部分を通して、前記出射光を方向づけるように構成され、前記第2の部分は、前記第1の部分と空間的に重なる、請求項1又は2に記載のシステム。
【請求項4】
前記第2の部分は、前記第1の部分と50~90%の面積で空間的に重なっており、前記ビームディレクタは、前記第1の選択された波長チャネルにおける前記反射された光を、前記開口の第3の部分を通して受け取り、前記第2の選択された波長チャネルにおける前記反射された光を、前記開口の第4の部分を通して受け取るように構成され、前記開口の前記第3の部分は、前記開口の前記第4の部分と空間的に重なる、請求項3に記載のシステム。
【請求項5】
前記開口の前記第1の部分、前記第2の部分、前記第3の部分、及び前記第4の部分は、互いに空間的に重なる、請求項4に記載のシステム。
【請求項6】
前記光源からの前記出射光を前記ビームディレクタまで輸送し、前記ビームディレクタからの前記反射された光を前記光検知器まで輸送するように構成され、
前記第1の選択された波長チャネル及び前記第2の選択された波長チャネルにおける前記出射光を伝えるための、前記光源と前記ビームディレクタとの間のアウトバウンド誘導光路と、
前記第1の選択された波長チャネル及び前記第2の選択された波長チャネルにおける前記反射された光を伝えるための、前記ビームディレクタと前記光検知器との間のインバウンド誘導光路と、
を含む、光輸送アセンブリをさらに備え、
前記インバウンド誘導光路及び前記アウトバウンド誘導光路は、各々、光ファイバ経路及び光回路経路の群から選択され、
前記アウトバウンド誘導光路は、前記インバウンド誘導光路より小さい開口数に関連付けられ、
前記アウトバウンド誘導光路は、前記インバウンド誘導光路から空間的に分離される、請求項1に記載のシステム。
【請求項7】
前記光輸送アセンブリは、前記アウトバウンド誘導光路内に単一モードファイバ、及び、前記インバウンド誘導光路内に多重モードファイバを含む、請求項6に記載のシステム。
【請求項8】
前記光源からの前記出射光を前記ビームディレクタまで輸送し、前記ビームディレクタからの前記反射された光を前記光検知器まで輸送するように構成され、
前記第1の選択された波長チャネル及び前記第2の選択された波長チャネルにおける前記出射光を伝えるための、前記光源と前記ビームディレクタとの間のアウトバウンド誘導光路と、
前記第1の選択された波長チャネル及び前記第2の選択された波長チャネルにおける前記反射された光を伝えるための、前記ビームディレクタと前記光検知器との間のインバウンド誘導光路と、
を含む、光輸送アセンブリをさらに備え、
前記インバウンド誘導光路及び前記アウトバウンド誘導光路は、各々、光ファイバ経路及び光回路経路の群から選択され、
前記アウトバウンド誘導光路は、前記インバウンド誘導光路より小さい開口数に関連付けられ、
前記アウトバウンド誘導光路は、前記インバウンド誘導光路と空間的に重なる、請求項
1に記載のシステム。
【請求項9】
前記光輸送アセンブリは、空間的に重なる前記アウトバウンド誘導光路及び前記インバウンド誘導光路内にダブルクラッドファイバを含み、前記ダブルクラッドファイバは、前記アウトバウンド誘導光路のための第1の開口数、及び、前記インバウンド誘導光路のための、前記第1の開口数より大きい第2の開口数に関連付けられる、請求項
8に記載のシステム。
【請求項10】
前記ビームディレクタは、1つ又はそれ以上の調節可能に傾斜可能な前記回折格子を含み、調節可能に傾斜可能な前記回折格子の少なくとも1つは、前記出射光の伝播の方向に実質的に平行な、及び/又は、前記回折格子の線によって定められる平面に垂直な傾斜軸の周りに傾斜する、請求項1に記載のシステム。
【請求項11】
前記ビームディレクタは、前記光を時計回り又は反時計回りの光路内で回転させるように配置された3つの回折格子を備える、請求項10に記載のシステム。
【請求項12】
前記ビームディレクタは、1つ又はそれ以上のビームコンペンセータを含む、請求項10又は11に記載のシステム。
【請求項13】
前記1つ又はそれ以上のビームコンペンセータの内の少なくとも1つは、前記1つ又はそれ以上の回折格子の隣接する対の間に置かれる、請求項12に記載のシステム。
【請求項14】
前記ビームディレクタは、複合ポートとN個のインターリーブポートの内の1つとの間で光を移すためのスペクトルコムフィルタを含み、前記複合ポートは、前記複数の波長チャネルの内のN番目毎の連続する波長チャネルのいずれか1つにおいて、光を受け取るか又は供給するように構成され、N個の前記インターリーブポートは、波長チャネルのN個の群の1つにおける対応する光を、それぞれ供給するか又はそれぞれ受け取るように構成される、請求項1に記載のシステム。
【請求項15】
N個の前記インターリーブポートは各々、第2の次元にわたる対応する角度分離をもたらすために、光軸からそれぞれの量だけずらされる、請求項14に記載のシステム。
【請求項16】
Nは、2~16の間の任意の整数である、請求項15に記載のシステム。
【請求項17】
回転可能な屈折素子又は反射素子を含み、その回転速度に基づく走査速度で前記第2の次元にわたって前記出射光を差し向ける、多角形走査システムをさらに備え、前記システムは、前記第1の次元に関する前記波長チャネルと、前記第2の次元に関する角度調節可能反射素子の回転角度とを制御することによって、光を二次元内に差し向けるように構成される、請求項1~9のいずれか一項に記載のシステム。
【請求項18】
環境の空間プロファイルの推定を容易にするためのシステムであって、
複数の波長チャネルの内の選択された1つ又はそれ以上において、少なくとも1つの時間変化特性を有する光を供給するように構成された光源と、
1つ又はそれ以上の回折格子を含み、出射光を、前記1つ又はそれ以上の回折格子を通して前記環境内に空間的に差し向け、前記環境によって反射された前記出射光の少なくとも一部を受け取るように構成されたビームディレクタと、
を含み、
前記出射光は、
第1の次元に沿った、前記環境内への複数の方向の内の、第1の選択された波長チャネルにおける前記出射光に対応する、第1の方向の、前記1つ又はそれ以上の回折格子と、
前記第1の次元に沿った、前記環境内への複数の方向の内の、第2の選択された波長チャネルにおける前記出射光に対応する、第2の方向における1つ又はそれ以上の回折格子であって、前記1つ又はそれ以上の回折格子の内のいずれか1つ又はそれ以上は、前記第1の次元と実質的に直交する第2の次元に沿って光を差し向けるように、調節可能に傾斜可能である、1つ又はそれ以上の回折格子と、
によって差し向けられ、
前記システムは、
反射された該光を検知するように構成された光検知器と、
前記第1の方向及び前記第2の方向に関連付けられる、前記環境の前記空間プロファイルの推定のための、前記反射された光の少なくとも1つの時間変化特性に関連付けられる少なくとも1つの特徴を決定するように構成された処理ユニットと、
をさらに含む、システム。
【請求項19】
調節可能に傾斜可能な前記回折格子の少なくとも1つは、前記出射光の伝播の方向に実質的に平行な、及び/又は、前記回折格子の線によって定められる平面に垂直な傾斜軸の周りに傾斜する、請求項18に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、環境の空間プロファイルの推定を容易にするためのシステム及び方法に関する。より具体的には、本発明は、少なくとも1つの次元にわたって光を差し向けることに基づいて環境の空間プロファイルの推定を容易にすることに関する。
【背景技術】
【0002】
空間プロファイリングは、所望の視野から眺められる環境のマッピングを指す。視野内の各々の点又はピクセルは、環境の表示を形成するように距離に関連付けられる。空間プロファイルは環境内の物体及び/又は障害物を識別し、それにより仕事の自動操作を容易にするのに有用であり得る。
【0003】
空間プロファイリングの1つの技術は、光を環境内に特定の方向に送るステップと、その方向から戻る、例えば、環境内の反射表面による、いずれかの反射光を検知するステップとを含む。反射光は、反射表面までの距離を決定するための関連情報を伝える。特定の方向及び距離の組み合わせは、環境の表示の中の点又はピクセルを形成する。上記のステップは、表示の他の点又はピクセルを形成するように、複数の異なる方向に対して繰り返すことができ、それにより所望の視野内の環境の空間プロファイルの推定を容易にする。
【0004】
本明細書においては、どのような従来技術に対する参照も、この従来技術がいかなる権限においても一般共通知識の部分を形成すること、又はこの従来技術が、当業者により、従来技術の他の部分に関連する及び/又は組み合わせられると理解され、見なされると合理的に予期される可能性があること、の承認又はいかなる形での示唆であると取られず、また、取られるべきではない。
【発明の概要】
【課題を解決するための手段】
【0005】
本発明の第1の態様によれば、環境の空間プロファイルの推定を容易にするための、
複数の波長チャネルの内の選択された1つ又はそれ以上において、少なくとも1つの時間変化特性を有する光を供給するように構成された光源と、
開口を含み、出射光を、開口を通して環境内に空間的に差し向け、及び環境によって反射される出射光の少なくとも一部を受け取るように構成された
ビームディレクタと、
を含むシステムであって、
出射光は、第1の次元に沿った環境内への複数の方向の内の、第1の選択された波長チャネルにおける出射光に対応する、第1の方向における開口の第1の部分と、第1の次元に沿った環境内への複数の方向の内の、第2の選択された波長チャネルにおける出射光に対応する、第2の方向における開口の、第1の部分と空間的に重なる第2の部分と、
を通して差し向けられ、
さらに、
反射光を検知するように構成された光検知器と、
第1の方向及び第2の方向に関連付けられる環境の空間プロファイルの推定のために、反射光の少なくとも1つの時間変化特性に関連付けられる少なくとも1つの特徴を決定するように構成された処理ユニットと、
を含む、システムが提供される。
【0006】
第1の選択された波長チャネルにおける出射光は、第2の選択された波長チャネルにおける出射光と、実質的に同一のビーム形状を含むことができる。
【0007】
ビームディレクタは、第1の選択された波長チャネルにおける反射光を、開口の第3の部分を通して受け取り、第2の選択された波長チャネルにおける反射光を、開口の第4の部分を通して受け取るように構成することができ、開口の第3の部分は、開口の第4の部分と空間的に重なる。開口の第1、第2、第3及び第4の部分は、互いに空間的に重なることができる。
【0008】
一例において、開口の第1及び第2の部分は、少なくとも4mmのビームウェストサイズに対応し得る。
【0009】
一例において、開口の第3及び第4の部分は、少なくとも4mmのビームウェストサイズに対応する。
【0010】
本システムは、光源からの出射光をビームディレクタへ輸送し、ビームディレクタからの反射光を光検知器へ輸送するように構成された光輸送アセンブリをさらに備えることができ、その光輸送アセンブリは、
第1及び第2の選択された波長チャネルにおける出射光を伝えるための、光源とビームディレクタとの間のアウトバウンド誘導光路と、
第1及び第2の選択された波長チャネルにおける反射光を伝えるための、ビームディレクタと光検知器との間のインバウンド誘導光路と、
を含む。
【0011】
インバウンド及びアウトバウンド誘導光路は、各々、光ファイバ経路及び光回路経路の群から選択することができる。アウトバウンド誘導光路は、インバウンド誘導光路のそれよりも小さい開口数と関連付けることができる。アウトバウンド誘導光路は、インバウンド誘導光路から空間的に分離することができる。
【0012】
光輸送アセンブリは、アウトバウンド誘導光路内の単一モードファイバ、及びインバウンド誘導光路内の多重モードファイバを含むことができる。
【0013】
アウトバウンド誘導光路は、インバウンド誘導光路と空間的に重なることができる。
【0014】
光輸送アセンブリは、空間的に重なったアウトバウンド及びインバウンド誘導光路の中にダブルクラッドファイバを含むことができ、そのダブルクラッドファイバは、アウトバウンド誘導光路のための第1の開口数、及びインバウンド誘導光路のための、第1の開口数よりも大きい第2の開口数に関わる。
【0015】
ビームディレクタは、1つ又はそれ以上の回折格子を含むことができる。その1つ又はそれ以上の回折格子は、光を時計回り又は反時計回りの光路において回転させるように配置された3つの回折格子を備えることができる。
【0016】
ビームディレクタは、1つ又はそれ以上のビームコンペンセータを含む。その1つ又はそれ以上のビームコンペンセータの内の少なくとも1つは、1つ又はそれ以上の回折格子の隣接する対の間に置くことができる。
【0017】
ビームディレクタは、第1の次元に実質的に直交する第2の次元にわたって光を差し向けるために、回転可能にすることができ、或いは、回転可能な屈折又は反射素子を含むことができる。光輸送アセンブリは、光を回転可能ビームディレクタと結合するためのスリップリングアセンブリを含むことができる。
【0018】
ビームディレクタは、複合ポートとN個のインターリーブポートの内の1つとの間で光を移すためのスペクトルコムフィルタを含み、その複合ポートは、複数の波長チャネルのN番目毎の連続する波長チャネルのいずれか1つにおいて光を受け取るか又は供給するように構成され、N個のインターリーブポートは、波長チャネルのN個の群の内の1つにおいて、対応する光をそれぞれ供給するか又はそれぞれ受け取るように構成される。N個のインターリーブポートは、各々、第2の次元にわたる対応する角度分離をもたらすために光軸からそれぞれの量だけずらすことができる。Nは、2~16の間の任意の整数とすることができる。
【0019】
本発明の第2の態様によれば、環境の空間プロファイの推定を容易にするための、
複数の波長チャネルの内の選択された1つ又はそれ以上において、少なくとも1つの時間変化特性を有する光を供給するように構成された光源と、
1つ又はそれ以上の回折格子を含み、1つ又はそれ以上の回折格子を通して出射光を環境内に空間的に差し向け、環境によって反射された出射光の少なくとも一部を受け取るように、構成されたビームディレクタと、
を含むシステムであって、
出射光は、第1の次元に沿った環境内への複数の方向の内の、第1の選択された波長チャネルにおける出射光に対応する、第1の方向における1つ又はそれ以上の回折格子と、
第1の次元に沿った環境内の複数の方向の内の、第2の選択された波長チャネルにおける出射光に対応する第2の方向における1つ又はそれ以上の回折格子であって、1つ又はそれ以上の回折格子の内のいずれか1つ又はそれ以上は、第1の次元に実質的に直交する第2の次元に沿って光を差し向けるように、調節可能に傾斜可能である、1つ又はそれ以上の回折格子と、によって差し向けられ、
さらに、
反射光を検知するように構成された光検知器と、
第1の方向及び第2の方向に関連付けられる、環境の空間プロファイルの推定のために、反射光の少なくとも1つの時間変化特性に関連付けられる少なくとも1つの特徴を決定するように構成された処理ユニットと、
を含む、システムが提供される。
【0020】
本発明のさらに別の態様、及び、先行するパラグラフにおいて説明された態様のさらに別の実施形態が、例として与えられ、添付の図面に関連する、以下の説明から明白となるであろう。
【図面の簡単な説明】
【0021】
【
図1A】環境の空間プロファイルの推定を容易にするためのシステムの配置を示す。
【
図1B】環境の空間プロファイルの推定を容易にするためのシステムの配置を示す。
【
図1C】環境の空間プロファイルの推定を容易にするためのシステムの配置を示す。
【
図2A】時間変化強度プロファイルを有する出射光を供給する光源の配置を示す。
【
図2B】時間変化強度プロファイルを有する出射光を供給する光源の配置を示す。
【
図2C】時間変化周波数偏移を有する出射光を供給する光源の配置を示す。
【
図2D】時間変化周波数偏移を有する出射光を供給する光源の配置を示す。
【
図3】環境の空間プロファイルの推定を容易にするためのシステムの別の配置を示す。
【
図4A】
図4C、4D、4E、4F及び4Gのいずれかにおける傾斜可能回折格子の傾斜可能角度を推定するための構成を示す。
【
図4B】ゼロ次の光強度と傾斜可能角度との間の関係の一例を示す。
【
図4C】異なる波長チャネルにおける光を受け取り及び差し向ける角度分散素子の別の例を示す。
【
図4D】異なる波長チャネルにおける光を受け取り及び差し向ける角度分散素子の別の例を示す。
【
図4E】異なる波長チャネルにおける光を受け取り及び差し向ける角度分散素子の別の例を示す。
【
図4F】異なる波長チャネルにおける光を受け取り及び差し向ける角度分散素子の別の例を示す。
【
図4G】異なる波長チャネルにおける光を受け取り及び差し向ける角度分散素子の別の例を示す。
【
図4H】調節可能に傾斜可能な回折格子の斜視図を示す。
【
図4I】格子傾斜角度と第2の次元にわたるビーム方向との関係を示す。
【
図4J】格子傾斜角度と第1の次元にわたるビーム方向との関係を示す。
【
図5】選択された波長チャネルにおける光を受け取り及び差し向ける、
図3に示された角度分散素子の配置を示す。
【
図6】環境の空間プロファイルの推定を容易にするためのシステムの別の配置を示す。
【
図7】環境の空間プロファイルの推定を容易にするためのシステムの別の配置を示す。
【
図9】環境の空間プロファイルの推定を容易にするためのシステムの別の配置を示す。
【発明を実施するための形態】
【0022】
本明細書で開示されるのは、光検知及び測距(LiDAR:light detection and ranging)に基づく技術に基づいて、環境の空間プロファイルの推定を容易にするためのシステム及び方法である。「光」は、以下では、遠赤外線、赤外線、可視光線及び紫外線を含む、光周波数を有する電磁放射を含む。一般に、LiDARは、環境内へ光を送ること、及び次に環境によって反射された光を検知することを含む。光が往復するのに要する時間、及びそれ故に、視野内の反射表面の距離を決定することによって、環境の空間プロファイルの推定を形成することができる。一配置において、本開示は、一次元にわたり、例えば、垂直方向に沿って、光を差し向けることに基づいて、空間プロファイル推定を容易にする。別の配置において、一次元に差し向けられた光を別の次元、例えば、水平方向に沿って、さらに差し向けることにより、本開示は、2次元において光を差し向けることに基づいて、空間プロファイル推定を容易にする。
【0023】
本発明人等は、少なくとも1つの次元にわたり光を差し向けることにおいて、出射光の光ビームサイズを選択することに関連付けられる競合する要件が、反射光の検知を改善する役割を果たすことを認識している。一般に、より大きい初期ビームサイズは、距離にわたるより小さいビーム広がりをもたらす。従って、より大きい初期ビームサイズを選択することにより、固定された検知器面積に対して受け取られる、即ち、検知される電力を改善することができる。そのようにして、例えば、より長距離の検知及びより正確な空間推定のために信号対雑音比を大きくすること、及び/又は、電力消費及び節電機能を改善するための送信電力要件を減らすことにより、システムの性能を高める。しかし、いずれの光学システムも、例えば、その物理的設置面積によって制限される特定の開口を有し、これが最大ビームサイズに実際的制限を加える。開口の異なる小部分を通るように光を送る、傾斜させられた別々の光源による光を差し向ける解決策は、必然的に出射ビームサイズを小さくし、それ故に受け取られる電力を減らす。ミラーを機械的に調節することにより、光を特定の角度にステアリングすることを含む他の解決策は、付加的な機械的安定性を必要とすることが予期される。これ等の競合する要件を考えて、本発明人等は、光がそれに向けて差し向けられる角度又は方向の数に関わらず、開口サイズの使用を実質的に最大にすることができる、LiDARに基づくシステムにおいて、出射光を差し向けるためのシステム及び方法を発明した。
【0024】
空間回折は光ビーム広がりを支配する。例えば、ガウスビーム(Gaussian beam)(即ち、ビーム軸からの半径方向偏位に対してガウス強度分布を有するビーム)に関して、範囲z(即ち、強度が軸値の1/e2に低下する半径方向偏位)におけるビーム半径wは、次式で与えられる。
【0025】
【0026】
ここで、w0はビームウェストであり、zR=πw0
2/λはレイリー(Rayleigh)範囲である。他のビームプロファイルに対しては、空間回折光学系計算を用いて範囲zにおけるビームプロファイルを決定することができる。特に別に断らない限り、以下の開示は、光源がガウスビームプロファイルを有する光を供給するとの仮定のもとで与えられる。
【0027】
レイリー範囲zRは、コリメートされたビームの範囲を定量化するために有用なメトリックである。これは、所与のビームウェストを有するガウスビームが、そのビームサイズを√2倍に増加する距離である。ガウスビームに関する上記の式は、z軸に沿った、負のz値を含む任意の開始点に対して当てはまる。正のz方向に伝播するビームに関して、ビームはz<0に対して収束し、z>0に対しては広がる。波面は、ビームウェストであり、ビームが収束も広がりもしないz=0において平面状である。波面の曲率半径は、R(z)=z[1+(zR/z)2]で与えられ、ここで、負の曲率半径は、収束ビームを表し、正の曲率半径は、広がるビームを表す。
【0028】
所与の範囲は、放射の適切なビームウェストサイズ及び曲率半径に基づいて決定することができる。一配置において、光源(例えば、
図1Aの光源102)は平面状の波面を放射する。出射ビームは、光源102がz=0に置かれ、w(z=0)のビームサイズを有することに基づいて、広がる。z=z
Rにおいて、ビームサイズは、次式で与えられる。
【0029】
【0030】
物体における反射により、出射光の一部はさらに散乱又は拡散する可能性があり、その場合、反射光は、もはや初めのガウスビームプロファイルを取らない可能性があり、それ故に、もはやガウス光学によるビームサイズ及び曲率半径を有して伝播しない可能性がある。この配置において、zRはシステムの範囲として設定することができる。例えば、λ=1550nmにおいて、zRは、w0=10mmに対して凡そ200メートルとなる。そのような一例に関する対応する範囲は、従って、200メートル(即ち、z=0からz=zR=200メートルまで)に設定することができる。
【0031】
別の配置において、光源102は、例えば、z=-zRにおける波面に対応する、収束する波面を放射する。放射の出射ビームは、光源102がz=-zRに置かれ、
【0032】
【0033】
のビームサイズを有することに基づいて、収束し及び広がる。伝播する出射光は、z=0におけるビームウェストw(z=0)及びz=+zRにおけるビームサイズ
【0034】
【0035】
に向かって進展する。
【0036】
この配置において、2zRをシステムの範囲として設定することができる。第1の配置と比べて、この配置は最大範囲を2倍に改善し、並びに、半範囲における空間解像度を、ビームウェストに向けてのビーム進展により半分の範囲で改善する。例えば、前述のように、λ=1550nmにおいて、zRは、w0=10mmに対して凡そ200メートルとなる。そのような例に関する対応する範囲は、従って、400メートル(即ち、z=-zR=-200メートルからz=zR=+200メートルまで)に設定することができる。
【0037】
同様に、所望の範囲z物体に適応するためのビームサイズを決定することは、レイリー範囲zRに基づくことができる。例えば、光源102が平面状の波面(例えば、z=0における波面に対応する)を放射する場合、100メートルの所望の範囲z物体を、z=0メートルに置かれた光源102、z=+zR=100メートルに置かれた所望の範囲における反射表面により、zRに等しくなるように設定することができる。zRのこの値は、半径が凡そ7.0mm又は直径が14.0mmのビームウェストw0に対応する。それ故に、100メートルの所望の範囲z物体におけるビーム直径は次のようになる。
【0038】
【0039】
別の例として、光源102が収束波面(例えば、z=-zRにおける波面に対応する)を放射する場合、100メートルの所望の範囲z物体は、光源102がz=-zR=-50メートルに置かれ、所望の範囲における反射表面がz=+zR=+50メートルに置かれるとき、2zRに等しくなるように設定することができる。zRのこの値は、半径が凡そ5mm又は直径が10mmのビームウェストw0に対応し、ここで、このビームウェストはz=0(又は光源102から50m)において生じる。100mの所望の範囲z物体におけるビーム直径はそれ故に次のようになる。
【0040】
【0041】
ビームサイズ決定のこれらの例は、所望の範囲にわたる広がりを最小限にすることを目的とする。
【0042】
説明されるシステムは、環境内の相対的移動又は変化を監視することに有用であり得る。例えば、自律乗物(地上、空中、水中、又は宇宙)の分野において、説明されるシステムは、乗物の視野から、例えば、前方の障害物又は目標などのあらゆる物体の距離を含む、交通状況の空間プロファイルを推定することができる。乗物が動くにつれて、乗物から見える空間プロファイルは、別の場所では変化する可能性があり、再推定することができる。別の例として、ドッキングの分野において、説明されるシステムは、コンテナ船の視点からドックの空間プロファイル、例えば、ドックの特定の部分へのコンテナ船の近さなど、を推定し、ドックの如何なる部分との衝突なしに成功するドッキングを容易にすることができる。さらに別の例として、例えば、自由空間光学又はマイクロ波通信などの見通し内通信の分野において、説明されるシステムは、調整目的のために使用することができる。送受信機が動いたか又は動いている場合、光又はマイクロ波ビームを調整するために、送受信機を連続的に追跡することができる。さらに別の例として、適用可能な分野は、それらに限定されないが、工業計測及び自動操作、現場測量、軍事、安全性監視及び見張り、ロボット及びマシンビジョン、印刷、プロジェクタ、照明、攻撃及び/又はフラッディング及び/又は他のレーザの妨害、並びにIRビジョンシステムを含む。
【0043】
図1Aは、本開示の一実施形態による空間プロファイリングシステム100Aの配置を示す。システム100Aは、光源102、ビームディレクタ103、光検知器104及び処理ユニット105を含む。
図1Aの配置において、光源102からの光は、ビームディレクタ103により、空間プロファイルを有する環境110内へ一次元又は二次元における方向に差し向けられる。出射光が物体又は反射表面に当たる場合、出射光の少なくとも一部が、物体又は反射表面によって反射され(中実矢印で表される)、例えば、散乱され、ビームディレクタ103に戻り、光検知器104で受け取られる。処理ユニット105は動作可能に光源102に、その動作を制御するために結合される。処理ユニット105はさらに、動作可能に光検知器104に結合され、ビームディレクタ103へ戻る反射光の往復時間を決定することによって反射表面までの距離を決定する。
【0044】
一変形物において、光源102、ビームディレクタ103、光検知器104及び処理ユニット105は実質的に並置される。例えば、自律乗物用途において、この並置は、これらの構成要素を乗り物の範囲内又は単一の筐体内にコンパクトにパッケージすることを可能にする。別の変形物において、
図1Bに示される空間プロファイリングシステム100Bにおいて、光源102、光検知器104及び処理ユニット105は、中央ユニット101の内部に実質的に並置され、他方、ビームディレクタ103は中央ユニット101から遠隔に存在する。この変形物において、中央ユニット101は、1つ又はそれ以上の光ファイバ106を介して遠隔ビームディレクタ103に光学的に結合される。この例は、熱、湿気、腐食又は物理的損傷などの外部障害にあまり影響されないため、より過酷な環境に置かれるように、受動構成要素(例えば、受動交差分散光学系)のみを含むことができる遠隔ビームディレクタ103を可能にする。さらに別の変形物において、
図1Cに示されるように、空間プロファイリングシステム100Cは、単一の中央ユニット101及び複数のビームディレクタ(例えば、130A、130B及び130C)を含むことができる。複数のビームディレクタの各々は、それぞれの光ファイバ(例えば、106A、106B及び106C)を介して、中央ユニット101に光学的に結合することができる。
図1Cの例において、複数のビームディレクタは、異なる場所に配置する、及び/又は、異なる視野を有するように配向させることができる。特に別に断らない限り、以後の説明は、並置変形物に言及するが。当業者であれば、些細な修正により、以後の説明はまた他の変形物に適用できることを認識するであろう。
【0045】
光波は、以下のように数学的に表すことができる振動電場Eを含む。
【0046】
【0047】
ここで、I(t)は光の強度を表し、φ(t)=(2πc/λk)t+2πfd(t)tは電場の位相を表し、λkはk番目の波長チャネルの中心波長を表し、fd(t)はk番目の波長チャネルの中心光周波数からの光周波数偏位を表し、c=299792458m/sは光の速度である。光源102は、少なくとも1つの時間変化特性、例えば、時間変化強度プロファイルI(t)及び/又は時間変化周波数偏位fd(t)などを有する光を供給するように構成される。この少なくとも1つの時間変化特性は、出射光にタイムスタンプ情報を付与し、これが、戻り又は検知において、処理ユニット105が往復時間及びそれ故に距離を決定することを可能にする。
【0048】
一配置において、光源102は、複数の波長チャネル(各々、それぞれの中心波長λ
1、λ
2、...λ
Nによって表される)の内の選択された1つにおいて、時間変化強度プロファイルI(t)を有する出射光を供給するように構成される。
図2Aは、光源102の1つのそのような配置の一例を示す。この例において、光源102は、波長可変光源、例えば、波長可変レーザダイオードなどを含むことができ、レーザダイオードに印加される1つ又はそれ以上電流(例えば、レーザキャビティ内の1つ又はそれ以上の波長調節素子内への注入電流)に基づいて、可変波長の光を供給する。別の例において、光源102は選択された波長において、実質的に連続波(CW:continuous-wave)の光強度を供給するために、広帯域光源及び可変スペクトルフィルタを含むことができる。
【0049】
図2Aの例において、光源102は、出射光に時間変化強度プロファイルを付与するための変調器204を含むことができる。一例において、変調器204は半導体光増幅器(SOA:semiconductor optical amplifier)又はレーザダイオード上に統合されたマッハツェンダー(Mach Zehnder)変調器である。SOAに印加される電流は、時間にわたってレーザにより生成されるCW光の増幅を時間にわたって変化させることができ、このことが次に出射光に時間変化強度プロファイルを与える。別の例において、変調器204はレーザダイオードに対する外部変調器(例えば、マッハツェンダー又変調器は外部SOA変調器など)である。さらに別の例において、光源102は、出射光に時間変化強度プロファイルを付与するために、統合型又は外部変調器を含む代わりに、励起電流が制御可能に注入される利得媒体を有するレーザを含む。
【0050】
図2Bに示される別の配置において、光源206は、波長可変レーザ202を有する代わりに、広帯域レーザ208及びそれに続く波長可変フィルタ210を含む。さらに別の配置(図示せず)において、光源206は、各々がそれぞれの範囲にわたって波長可変であり、それらのそれぞれの出力が単一出力を形成するように結合される、複数のレーザダイオードを含む。それぞれの出力は、光学スプリッタ又はAWGなどの、波長コンバイナを用いて結合することができる。
【0051】
別の配置において、光源102は、複数の波長チャネル(λ
1、λ
2、...λ
N)の内の選択された1つにおいて、時間変化周波数偏位f
d(t)を有する出射光を供給するように構成される。
図2Cは、光源102の一つのそのような配置の一例を示す。光照射野の瞬間的光周波数f及び瞬間的波長λは、光照射野の波動振動率の等価な物理的特性を表し、波動方程式c=fλによって関連付けられる。光の速度cは一定であるので、それ故に、f又はλのいずれかの変化が必然的に他方の量を変化させる。同様に、
図2Dに示される一例におけるように、λ
k又はf
dのいずれかの変化は、それにより、他方の量を変化させるように記述することができる。具体的には、f
d(t)及びλ
kは次のように関連付けられる。
λ=c/(c/λ
k+f
d)及び
f=c/λ
k+f
d
【0052】
実際には、光源102のfd(t)及びλkの変化は、単一の制御、例えば、レーザダイオードへの注入電流により、例えば光源102の波長を調整することによってもたらすことができる。しかし、明瞭にするために、以後の説明は、周波数偏位fd(t)を、単一波長チャネル内の光周波数のその中心光周波数からの偏位に関連させ、他方、λkの変化は、1つの波長チャネルから別の波長チャネルへ、光源102をジャンプさせることに関連付けられる。例えば、光源102の、より小さい実質的に連続な波長変化は時間変化周波数偏位fd(t)をもたらすと説明され、他方、光源102のより大きい段階的波長変化は、光源102に、波長チャネルλkからλk+1へのジャンプをもたらすと説明される。
【0053】
別の配置において、光源102は、時間変化強度プロファイルI(t)及び時間変化周波数偏位f
d(t)の両方を有する出射光を供給するように構成することができる。
図2A及び
図2Bに示される例は両方共に、光源102のそのような配置での使用に適している。(a)時間変化強度プロファイルI(t)及び(b)時間変化周波数偏位f
d(t)に関する上記の説明は、光源102のそのような配置に当てはまる。
【0054】
光源102は、複数の波長チャネルの内の選択された1つ又はそれ以上における光を供給するように構成される。一配置において、光源102は、例えば、波長可変レーザのように、一度に単一の選択された波長チャネルを供給する。この配置において、説明されるシステム100は、一度に1つの選択された波長チャネルに基づいて、光を特定の方向にステアリングすることができる。別の配置において、光源102は、例えば、その可変通過帯域が単一又は複数の選択された波長チャネルを含む可変フィルタを後ろに伴う広帯域光源のように、単一又は複数の選択された波長チャネルを供給する。1つの選択された波長チャネルが一度に使用される場合、光検知器104は、複数の波長チャネルの範囲内の任意の波長を検知するアバランシェ光ダイオード(APD:avalanche photodiode)を含むことができる。複数の選択された波長チャネルが一度に使用される場合、光検知器104は、例えば、各々が特定の波長チャネル専用の複数のAPDを使用する、或いは、各々のチャネルがそれらの時間変化特性に基づいて(例えば、それぞれ、1550.01、1550.02及び1550.03nm...チャネルに対応する21MHz、22MHz及び23MHz...の変調周波数などの異なる正弦変調に基づいて)区別して検知される、複数の波長チャネルのための単一のAPDを使用する、波長敏感検知器システムを含むことができる。以後の説明は、一度に単一の選択された波長チャネルを供給することによる光差し向けに関するが、当業者であれば、些細な修正により、この説明は、一度に複数の選択された波長チャネルを供給することによる光差し向けにも当てはまることを認識するであろう。
【0055】
光源102、例えば、波長可変レーザ202(例えば、その波長)及び変調器204(例えば、変調波形)の両方の動作は、処理ユニット105によって制御することができる。
【0056】
図3は、
図1Aに開示されたシステムの一例300を示す。この例において、システム300は、光源102からの出射光301をビームディレクタ103へ輸送し、ビームディレクタ103からの反射光303を光検知器104に輸送するように構成された光輸送アセンブリ302を含む。
【0057】
光輸送アセンブリ302は、光ファイバ、又は2D若しくは3D導波路の形態の光回路(例えば、フォトニック集積回路)のような光導波路を含む。以下でさらに説明するように、光源102からの出射光は、環境内に差し向けるためのビームディレクタ103に供給される。幾つかの実施形態において、ビームディレクタ103によって集められたいずれかの反射光は、付加的に光検知器104に差し向けることができる。一配置において、光混合検知のために、光源102からの光はまた、光処理のために、光源102から光検知器104への直接光路(図示せず)を介して、光検知器104に供給される。例えば、光源102からの光は、最初にサンプラ(例えば、90/10誘導光カップラ)に入り、そこで光の大部分(例えば、90%)がビームディレクタ103に供給され、光の残りのサンプル部分(例えば、10%)は直接光路を介して光検知器104に供給される。別の例において、光源102からの光は、最初に光学スイッチの入口ポートに入り、2つの出口ポートの内の1つから出ることができるが、ここで1つの出口ポートは光をビームディレクタ103に差し向け、他の出口ポートは、光を、処理ユニット105によって決められた時間に、光検知器104に差し向け直す。
【0058】
光輸送アセンブリ302は、第1のポートから受け取った出射光を第2のポートに結合し、及び第2のポートから受け取った光を第3のポートに結合するための3ポート素子305を含む。この3ポート素子305は、光サーキュレータ又は2×2カップラ(ここで第4のポートは使用されない)を含むことができる。
【0059】
一配置において、光輸送アセンブリ302は、第1及び第2の選択された波長チャネルにおける出射光301を伝えるための、光源102とビームディレクタ103との間のアウトバウンド誘導光路と、第1及び第2の選択された波長チャネルにおける反射光303を伝える(同時にまたは異なる時間に)ための、ビームディレクタ103と光検知器104との間のインバウンド誘導光路303とを含む。誘導光路は、各々、光ファイバ経路及び光回路経路の内の1つとすることができる。
【0060】
この配置において、ビームディレクタ103は、波動誘導形状における出射光301を、ビームサイズを含むビーム形状を有する自由空間形状における拡大ビーム306に拡大するための、例えばピッグテール型コリメータなどの、ビーム拡大光学系304を含む。実線及び破線は、異なる選択された波長チャネル内の拡大ビームを表し、説明のためにわずかにずれるように描かれている。実際には、それらは、空間内で実質的に又は完全に重なっても重ならなくてもよい。その後の、実線及び波線を描く図面は同様に表される。ビームディレクタ103はさらに、光の波長に基づいて光の角度分散をもたらす角度分散素子308を含む。角度分散素子308は、拡大ビーム306を、波長に応じて、第1の次元に沿った少なくとも第1の方向310A及び第2の方向310Bに差し向けるように構成される。角度分散素子308は、簡単のために、三角形素子の形状で概略的に示されているが、その実際の形は異なってもよく、複数の素子を含むことができる。角度分散素子308の例は、1つ又はそれ以上の回折格子を含み、その幾つかの例は、
図4A~4Jに示され、それらの図に関連してさらに説明される。第1の方向310Aは、第1の選択された波長チャネルλ
Aにおける出射光に対応する。第2の方向310Bは、第2の選択された波長チャネルλ
Bにおける出射光に対応する。
【0061】
この配置において、ビームディレクタ103は、この配置においては角度分散素子308の出光面上に両方向矢印として示される、開口309を含む。開口309は、この配置においては角度分散素子308の出光面上にあるように示され説明されるが、ビームディレクタ103の開口は、光路に沿った任意の点、及び、それを通してビームディレクタ103が複数の方向のうちの1つ又はそれ以上に光を差し向ける任意の界面又は平面の上に、存在することができる。ビームディレクタ103は、出射光301を、開口309を通して環境内に空間的に差し向け、環境によって反射される出射光301の少なくとも一部である反射光301を受け取るように構成される。出射光301は、各々がそれぞれの波長チャネルに関連付けられ、開口309内で空間的に重なる、2つの方向310A及び310Bに差し向けられる。具体的には、λAにおける出射光301は、開口309の第1の部分(実線でマーク付けされる)を通して第1の方向310Aに差し向けられ、他方、出射光301λBは、開口309の第2の部分(破線でマーク付けされた)を通して第2の方向310Bに差し向けられる。それぞれ、方向310A及び310Bに差し向けられるビームの間の空間的重なりは、拡大ビーム306が開口309のサイズの使用を実質的に最大にすることを可能にする。この使用可能性は、2つの別々の光源が、それらそれぞれの光ビームを異なる方向に差し向けるように傾けられ、そのため各々の差し向けられた光ビームが開口サイズの凡そ半分又はそれ以下を使用する場合の構成と対比させることができる。この対比は、より多くの別々の光源(例えば、10個)が、それらそれぞれの光ビームを異なる方向に差し向けるように傾けられ、そのために各々の差し向けられた光ビームが開口サイズの一部分(例えば、1/10)のみを使用する場合の構成においてはさらに大きくなる。比較すると、本開示により、光ビームを異なる方向に差し向けるためのビームディレクタの開口サイズの使用を実質的に最大にすることによって、ビーム広がりは望ましく最小にされる。
【0062】
幾つかの配置において、同様の重なり又は同様の実質的な重なりが、これらの又は異なる方向から受け取られた反射光303に対して存在する。即ち、λ
Aにおける反射光303は、第1の方向310Aに関連付けられる第3の方向から開口309の第3の部分を通して受け取られ、他方、λ
Bにおける反射光303は、第2の方向310Bに関連付けられる第4の方向から、第3の部分と空間的に重なる、開口309の第4の部分を通して受け取られる。一例において(
図5に示されるような)、出射光と反射光は、開口309の空間内で重ならないか又は実質的に重ならない。代替的な例において(
図6に示されるような)、出射光と反射光はまた、開口309の第1の部分、第2の部分、第3の部分及び第4の部分が、空間内で重なるか又は実質的に重なるように、開口309の空間内で重なるか又は実質的に重なる。
【0063】
一配置において、それぞれ、方向310A及び310Bに差し向けられるビームの間の空間的重なりは、面積で90~100%の間のどこかにある。別の配置において、空間的重なりは、面積で80~90%の間のどこかにある。さらに別の配置において、空間的重なりは、面積で70~80%の間のどこかにある。さらに別の配置において、空間的重なりは、面積で60~70%の間のどこかにある。さらに別の配置において、空間的重なりは、面積で50~60%の間のどこかにある。当業者であれば、空間的重なりはまた0~50%の間とすることができることを認識するであろう。空間的重なりのレベルは、方向がより小さい角度差を有する隣接する波長チャネル又はビームに対してより高くなり、方向がより大きい角度差を有する遠く離れた波長チャネル又はビームに対してより低くなる傾向があり得る。
【0064】
空間的重なりは、多数の計量の内の1つに基づいて定量化することができる。一配置において、定量化は、最大光強度のある特定の部分において重なるビームの幅計量に基づく。例えば、幅計量は、半値全幅(FWHM:full-width at half maximum)強度又は最大強度の1/e2における全幅とすることができる。代替的に、定量化は、重なるビームの出力計量に基づく。例えば、出力計量は、結合された光出力の、ビームの重なり領域内に含まれる、部分とすることができる。空間的重なりを定量化するための特定の計量の選択は、ビームプロファイルに依存する。例えば、単一の強度ピークを有するガウスビームの重なりは、FWHM計量を用いてより適切に定量化することができる。別の例において、複数の強度ピークを有する、より高次のビームの重なりは、部分的な光出力計量を用いて、より適切に定量化することができる。
【0065】
一配置において、方向310A及び310Bは、光源102の連続する波長チャネルに関連付けることができる(即ち、開示されるシステムの最小波長変化は、波長チャネルをステップスルーすることによって出射光301を差し向けるように構成される)。別の配置、例えば、以下で説明される光インターリーバの使用を含む配置において、方向310A及び310Bは、光源102の連続しない波長チャネルに関連付けることができる
【0066】
幾つかの配置において、出射光301は所定のビームプロファイルを有するように調節される。所定のビームプロファイルを有する伝播ビームの広がりは、空間回折光学系を用いて、計算することができ、従って、知ることができる。例えば、ガウスビーム(即ち、ビーム軸からの半径方向偏位に対してガウス強度分布を有するビーム)に関して、範囲z(即ち、強度が軸値の1/e2に低下する半径方向偏位)におけるビーム半径wは、次式によって与えられる。
【0067】
【0068】
ここで、w0はビームウェストであり、zR=πw0
2/λはレイリー範囲である。別のビームプロファイルに対しては、範囲zにおけるビームプロファイルを決定するために空間回折光学系計算を用いることができる。同様に、逆伝播に関する計算を、光検知器104における、所与の所望のビームプロファイル或いは所望のビームプロファイルの所与の群又は範囲に対する出射ビームプロファイルを決定するために、用いることができる。幾つかの配置において、第1の選択された波長チャネルλAにおける出射光301は、第2の選択された波長チャネルλBにおける出射光301と実質的に同一のビーム形状を有するように、調節される。この調節は、複数の波長チャネルの範囲内の複数の波長を用いる使用のために最適化されたビーム整形器によって成し遂げることができる。例えば、種々の波長チャネルにおける出射ビームは、少なくとも4mmのビームウェストサイズを有するように調節することができる。別の例において、種々の波長チャネルにおける出射ビームは、少なくとも10mmのビームウェストサイズを有するように調節することができる。
【0069】
図4Cは、1つ又はそれ以上の多重回折格子412を含む角度分散素子308Cの一例を示す。この例は、3つの回折格子を用いる配置を示すが、当業者であれば、より多くの又はより少ない回折格子を用いることができることを認識するであろう。各々の付加的な回折格子は付加的な回折をもたらすことができ、それ故に、異なるように差し向けられるビームの角度分離をより大きくすることができる。別々の回折格子の使用はまた、角度分散素子308Cの設計における多数の自由度を可能にし得る(例えば、斜入射ではなく直角入射に向けて角度を選択することにより、反射防止コーティング要件を緩和することにより)。しかし、各々の付加的回折格子はまた、減衰を増加させる可能性がある(例えば、格子の有限の回折効率により)。各々の回折格子は、出射ビームを、波長に応じて僅かに異なる角度(例えば、410A及び410B)に差し向けることによって形成される少なくとも1つの回折次数(例えば、N=1次)を生成するように、構成される。各々がそれぞれの波長チャネルに関連つけられる2つの方向410A及び410Bに差し向けられた出射光は、格子412Cを通過した後、開口409C内で空間的に重なる。
図3に示された角度分散素子308と同様に、回折格子412は、拡大ビーム406を、波長に応じて、第1の次元に沿った少なくとも第1の方向410A及び第2の方向410Bに差し向けるように構成される。第1の方向410Aは、第1の選択された波長チャネルλ
Aにおける出射光に対応する。第2の方向410Bは、第2(first)の選択された波長チャネルλ
Bにおける出射光に対応する。
図4Cは、1つの回折次数を生成する各々の回折格子を示す。各々の格子は、1つ又はそれ以上の他の回折次数(例えば、N=0次及び/又はN=-1次)を生成するか又は抑制することができる。示されるように、各々の格子の開口において、異なるように差し向けられるビームの間に実質的な重なりが存在する。この配置において、格子412Aは拡大ビーム406を受け取り、そのビームを格子412Bの方へ差し向け、次に格子412Bがそのビームを格子412Cの方へ差し向ける。各々の回折格子において、ビームは次第に角度分散される。複数の回折格子の使用は、例えば、単一回折格子による配置と比べて角度分離を大きくする。さらに、複数の回折格子は、一方向性ビーム経路内で光ビームを回転させる(例えば、
図4Cに示されるように、格子412A、412B、そして次に412Cを通る時計回りに、又は反時計回りに)。一方向性ビーム経路は、光路の折り畳みを容易にし、角度分散素子308のサイズ及びそれ故に全システムの設置面積を減らすことを容易にする。
【0070】
図4D、4E、4F及び4Gは、角度分散素子の他の例(308D、308E、308F及び308G)を示す。これらの例における角度分散素子の各々は、1つ又はそれ以上の多重回折格子412及び1つ又はそれ以上のビームコンペンセータ414を含む。角度分散素子308Dは、3つの回折格子412A、412B及び412C並びに1つのビームコンペンセータ414を含む。角度分散素子308Eもまた、3つの回折格子412A、412B及び412C並びに1つのビームコンペンセータ414を含む。角度分散素子308Fは、3つの回折格子412A、412B及び412C並びに2つのビームコンペンセータ414A及び414Bを含む。角度分散素子308Gは、2つの回折格子412A及び412B並びに2つのビームコンペンセータ414A及び414Bを含む。
【0071】
回折格子(単数又は複数)412は、ビームコンペンセータ(単数又は複数)414から物理的に分離される。この物理的分離は、例えば、回折格子(単数又は複数)412がビームコンペンセータ(単数又は複数)414と密着する場合にはより厳しくなり得る異なる材料又はコーティングの要件を緩和することによって、より容易な熱膨張管理を可能にする。幾つかの配置において、ビームコンペンセータ(単数又は複数)414は、各々プリズムの形態とすることができる。ビームコンペンセータ(単数又は複数)414は、ビームプロファイル及び/又はビームサイズなどのビーム特性の波長依存性を補正するように構成される。幾つかの配置において、ビームコンペンセータ(単数又は複数)414は、さらに付加的な分散をもたらす。各々がそれぞれの波長チャネルに関連付けられる2つの方向410A及び410Bに差し向けられた出射光は、それぞれの開口409D(ビームコンペンセータ414の出射面における)、409E(格子412Cを通過した後)、409F(格子412Cを通過した後)又は409G(格子412Bを通過した後)の中で空間的に重なる。
【0072】
図4Dにおいて、ビームコンペンセータ414は、隣接する格子の間には置かれない。対照的に、
図4E、4F及び4Gにおいては、ビームコンペンセータ414又はビームコンペンセータ414A及び414Bは、隣接する回折格子の1つ又はそれ以上の対の間に置かれる。例えば、単一プリズム配置に関して、プリズムは、格子412Aと格子412Bとの間に存在することができる(
図4Eに示されるように)。2プリズム配置(
図4Fに示されるような)に関しては、1つのプリズムは格子412Aと格子412Bとの間、及び別のプリズムは412Bと412Cとの間に存在することができる。
図4Dの配置と比べると、
図4E~4Gの配置は空間節約を容易にする。複数の格子及び/又は複数のビームコンペンセータの使用は、構成要素の光学的要件を緩和する。例えば、2つの(1つではなく)回折格子又はビームコンペンセータを使用することにより、回折格子又はビームコンペンセータ毎の必要な角度分散を減らすことができる。より多くの回折格子及び/又はビームコンペンセータの使用はまた、角度分散素子408の設計においてより多くの自由度を可能にする(例えば、斜入射ではなく直角入射に向けて角度を選択することによる、反射防止コーティング要件を緩和することにより)。
【0073】
角度分散素子(例えば、308及び408)は出射光301及び反射光303の両方を受け取り及び差し向けるように構成される。
図3及び4は、角度分散素子が双方向性であるように示すが、出射及び反射光路は、必ずしも重ならない。換言すれば、幾つかの配置において、出射光及び反射光は、開口(309及び409)において実質的に重なり、他方、他の配置においては、出射光及び反射光は、開口(309及び409)において重ならない。
図5は、環境の空間プロファイルの推定を容易にするための部分的システム500の一例を示す。部分的システム500は、
図3に示された角度分散素子308を含む。前述のように、角度分散素子308は、簡単のために三角形素子の形で概略的に示されるが、その実際の形は異なってもよく、
図4C~4Gに示される角度分散素子のような複数の素子を含んでもよい。この例においては、光輸送アセンブリ302は、アウトバウンド光ファイバ経路(例えば、単一モードファイバ302A)及びインバウンド光ファイバ経路(例えば、多重モードファイバ302B)を含む。光源(図示せず)からのアウトバウンド光ファイバ経路内で輸送される光は、拡大光学系304A(例えば、ピッグテール型コリメータ)によって拡大され、角度分散素子308によって受け取られる。次に、角度分散素子408が、拡大された光を、その波長に基づく方向における出射光内へ差し向ける。簡単のために、角度分散素子308内の光路は示されていない。さらに、1つの選択された波長チャネル(例えば、λ
A)における光路のみが示されている。広がったように概略的に示される反射光303は、角度分散素子308によって受け取られ、コリメート光学系304B(例えば、ピッグテール型コリメータ)を介して、インバウンド光ファイバ経路に戻るように差し向けられ、光検知器(図示せず)まで輸送される。ビーム広がりを考慮に入れて、インバウンド光ファイバ経路の開口数は、光収集を改善するために、アウトバウンド光ファイバ経路の開口数よりも大きくすることができる。
図5には示されていないが、角度分散素子409の開口(図示せず)には、第1の次元にわたる異なる方向に差し向けられた異なる波長チャネルにおける出射ビーム301の間の空間的重なりが存在する。さらに、同様の空間的重なりが、第1の次元にわたる異なる方向に差し向けられた異なる波長チャネルにおける反射ビーム303の間に存在する。
【0074】
一配置において、
図6に示されるように、アウトバウンド光ファイバ経路302A及びインバウンド光ファイバ経路302Bの部分を並置することができる。例えば、並置された光ファイバ経路は、ダブルクラッドファイバ602とすることができ、これは、コア、内側クラッディング層及び外側クラッディング層を含む。コア及び内側クラッディング層は一緒に、より小さい開口数を有する単一モードファイバのように振る舞い、他方、内側クラッディング層及び外側クラッディング層は一緒に、より大きい開口数を有する多重モードファイバのように振る舞う。この並置配置600において、ダブルクラッドファイバ602は、3ポート素子305と
図3に示される拡大光学系304との間で光を輸送するように構成される。光源102と3ポート素子305との間の光ファイバ経路は、依然として、出射光301を輸送するための単一モードファイバ302Aの形をとり、他方、光検知器104と3ポート素子305との間の光ファイバ経路は、それでもなお、反射光303を輸送するための多重モードファイバ302Bの形をとる。
図6に関する説明は、光ファイバ変形物に関するが、当業者であれば、些細な修正なしに、本説明は、光回路変形物などの他の光導波路変形物にも当てはめ得ることを認識するであろう。
【0075】
上記の本開示は、第1の次元(例えば、垂直方向)にわたって光を差し向けることによって空間プロファイルの推定を容易にすることに関する。本開示はまた、第1の次元に実質的に垂直な第2の次元(例えば、水平方向)にわたって光を差し向けるように拡張することを構想する。一配置において、光をその波長に基づいて第1の次元に差し向ける、
図3の例に示される角度分散素子308は、第1の次元に垂直な第2の次元にわたって光を制御可能に反射するための角度調節可能反射素子を含むことができる。角度調節は、光学測位システムによって制御することができる。一例において、光学測位システムは微小電気機械システム(MEMS:microelectromechanical system)である。このMEMSは、光を反射するための個別に作動可能なミラーのアレイを含む。別の例において、光学測位システムは、ガルバノメータ走査システムである。幾つかの他の例と比べて、ガルバノメータ走査システムは比較的小型である。さらに別の例において、光学測位システムは、多角形走査システムである。この多角形走査システムは、三角形又は四角形プリズムなどの回転可能屈折素子、或いは、ミラーなどの回転可能反射素子を含み、これらは、その軸の周りの回転により、その回転速度に基づく走査速度で第2の次元にわたって光を差し向けるように構成される。一形態において、空間プロファイルの推定を容易にするためのシステムは、1つの次元に関する波長チャネルを制御し、他方の次元に関する角度調節可能反射素子の角度を調節することによって、光を二次元内に差し向けるように構成することができる。処理ユニット105は、波長制御のために光源102と、角度制御のために角度調節可能反射素子との両方に、動作可能に結合することができる。
【0076】
別の配置において、
図4C、4D、4E、4F及び4Gのいずれかの中の、いずれか1つ又はそれ以上の回折格子412A、412B及び412C(以後412x)を、第1の次元に垂直な第2の次元に出射光を差し向けるように、傾斜軸の周りに制御可能に傾斜させることができる。傾斜軸は、光伝播の方向に実質的に平行にすることができる。複数の回折格子の内の1つのみが制御可能に傾斜される場合、制御可能に傾斜される回折格子は、光が環境110に差し向けられる前に最後に通過する回折格子とすることができる。例えば、
図4Cにおいて、回折格子412Cを傾斜軸414の周りに傾斜させることができる。
図4Dの別の例において、回折格子412Cを傾斜軸414の周りに傾斜させることができる。
図4Eのさらに別の例において、回折格子412Cを傾斜軸414の周りに傾斜させることができる。
図4Fのさらに別の例において、回折格子412Cを傾斜軸414の周りに傾斜させることができる。
図4Gのさらに別の例において、回折格子412Bを傾斜軸414の周りに傾斜させることができる。当業者であれば、傾斜軸414は、必ずしも回折格子412xの中心を通る必要はないことを認識するであろう。例えば、傾斜軸414は、回折格子412xの中心からずらすことができる。さらに、傾斜軸414は、必ずしも回折格子412xを通過する必要はない。
【0077】
図4Hに示されるように、回折格子412xは、傾斜軸414の周りに、入射ビームの方向に平行に、及び/又は回折格子412xの線によって定められる平面に垂直に、調節可能に傾斜可能である。回折格子412xの傾斜可能角度416の調節は、第2の次元に沿った出射ビームの方向418に対応する変化を引き起こす。感受性(例えば、回折格子412xの傾斜可能角度416と出力ビームの方向418の範囲との間の比較に基づく)は、格子傾斜の1度毎に、第2の次元にわたる出力ビーム方向の凡そ0.5~2度の間の範囲とすることができる。一例において、80度にわたるビーム方向を、単一の回折格子を40度だけ傾斜させることによって達成することができる(即ち、2.0度の感受性)。別の例において、120度にわたるビーム方向を、単一の回折格子を180度だけ傾斜させることによって達成することができる(即ち、0.67度の感受性)。
【0078】
格子傾斜角の変化は主として第2の次元におけるビーム方向に生じるが、それはまた、第1の次元(即ち、波長依存の次元)にわたる、通常は比較的小さいビーム方向の変化に現れ得る。この出現は、一配置において、第1の次元に沿ったビーム方向の範囲を有利に拡張し得る。例えば、
図4I及び4Jに示されるように、回折格子412xの傾斜可能角度の140度にわたる調節は、出力ビームを、第2の次元に沿って120度にわたって差し向けることをもたらす(
図4I)が、第1の次元にわたる30度の全ビーム方向の内の、第1の次元に沿った5度にわたって(
図4J)差し向けることをもたらす。
【0079】
一配置において、ビームディレクタ103は、傾斜可能回折格子412xを通る非回折光強度に基づいて、傾斜可能角度416を推定するように構成される。傾斜可能回折格子412xを傾斜軸414の周りの傾斜可能角度416に傾斜させることは、非ゼロ次の回折次数(単数又は複数)430の方向への光回折の効率に影響を及ぼす。この効率の変化は、回折格子412xのゼロ次440を通る光強度の変化に現れる。
図4Aに示されるように、光検知器450を、回折格子412xの方向へ及びそれを超えて差し向けられる光420の光路内に置くことができる。光検知器450は、傾斜可能回折格子412xを、そのゼロ次440に沿って通過する光の強度を計測し、それに基づいて傾斜可能角度416を推測することができる。
図4Bは、傾斜可能回折格子412xの傾斜可能角度416に対するゼロ次光強度の計測の関係の一例を示す。ゼロ次光強度は、傾斜可能回折格子412xが軸414の周りに回転するにつれて、一般に、正弦曲線様に、周期的に変化する。例えば、連続する極小は、ゼロ次に沿って計測される最低の光強度を表す。これらの極小は、傾斜可能回折格子412xの180度の回転によって分離される。
図4Bを較正として用いると、傾斜可能角度416をゼロ次光強度の計測値に基づいて推定することができる。
【0080】
図7は、二次元にわたって光を差し向けることにより、空間プロファイルの推定を容易にするためのシステムの部分的に別の配置700を示す。システム700はビームディレクタ103を含み、これが、それぞれ
図3及び4に示される角度分散素子308又は408を含み、この角度分散素子が、光を、その波長に基づく第1の次元(例えば、垂直方向)に差し向ける。システム700において、角度分散素子308又は408は、回転可能支持台702の上に取り付けられるか又は別に支持される。回転可能支持台702は、第1の次元に実質的に垂直な第2の次元(例えば、水平方向)にわたり回転可能である。システム700は、光輸送アセンブリ302と光検知器104との間を機械的に及び/又は光学的に結合するためのスリップリング704を含むことができる。一形態において、空間プロファイルの推定を容易にするためのシステムは、1つの次元に関する波長チャネルを制御し、他方の次元に関して回転可能支持台702の角度又は回転を調節することによって、光を2次元に差し向けるように構成することができる。処理ユニット105は、波長制御のために光源102、及び、角度又は回転制御のために回転可能支持台702、の両方に動作可能に結合することができる。代替的配置において(図示せず)、ビームディレクタ103は、回転可能支持台の回転軸の周りに回転するのではなく、内部軸の周りに回転することができる。例えば、ビームディレクタ103は、ピッグテール型コリメータなどのビーム拡大光学系304の周りに、
図3の拡大ビーム306又は
図4A~4Gの拡大ビーム406の方向に整列された回転軸に沿って回転することができる。
【0081】
別の配置において、二次元にわたって光を差し向けることにより、空間プロファイルの推定を容易にするためのシステムは、第2の次元にわたる光方向をもたらすために、光軸(例えば、拡大光学系の)から空間的にずらされた出力ポート(インターリーブポート)を有する光インターリーバを含む。
図8は、入力(複合)ポートとN個の出力ポート(インターリーブポート)の内の1つとの間で光を移すための光インターリーバ800の形のスペクトルコムフィルタを示し、ここで、N=2
xであり、xは正の整数である。
図8においては、Nは8である。他の配置においては、Nは2又は16とすることができる。光インターリーバ800は、各々が、光路差806を有する2つの干渉計経路によって分離されたセグメントのそれぞれの端部にスプリッタ804を含む、複数の干渉計セグメント(例えば、802)を含む。分枝内の各々のセグメント802は、次に分枝内で2つのセグメントに分けられる。光路差は、1つの分枝から次の分枝へ2倍になる(例えば、ΔL、2ΔL、4ΔL...など)。複合ポート806は、複数の波長チャネルの内のN番目毎の連続する波長チャネル(例えば、λ
1、λ
N+1、λ
2N+1...)のいずれか1つにおいて、光を受け取るか又は供給するように構成される。N個のインターリーブポート808は、波長チャネルのN個の群の内の1つにおける対応する光を、それぞれ供給するか又はそれぞれ受け取るように構成される。
図9は、光インターリーバ800、N個のビームディレクタ103、及び拡大光学系902を含むシステム900を示す。ビームディレクタ103は、拡大光学系902の光軸から第2の方向にわたって空間的にずらされるそれぞれのインターリーブポートから光を受け取る。ビームディレクタ103は、各々、第1の次元(例えば、ページの内外)にわたって光を差し向け、他方、拡大光学系902は、ビームディレクタ103から差し向けられた光を、さらに第2の次元(例えば、ページの上下)にわたり差し向けるように傾斜させられる。当業者であれば、光インターリーバを使用することの代わりに又はそれに加えて、スペクトルコムフィルタの他の形、例えば、ファブリペロー(Fabry-Perrot)共振器又はマッハツェンダー干渉計を使用することができることを認識するであろう。
【0082】
別の配置において、光インターリーバ800を使用する代わりに、微小電気機械システム即ちMEMSなどの反射素子の1つ又はアレイを用いて、第2の次元にわたる光方向をもたらすことができる。反射素子の1つ又はアレイは、コリメート及び拡大のための拡大光学系902に向けて光を差し向けるように構成することができる。この配置は、第2の次元において、光インターリーバ800の場合におけるような不連続角度ではなく、連続角度にわたる調節を容易にする。
【0083】
本開示のその配置が説明されたので、当業者には、説明された配置の内の少なくとも1つは、以下の利点を有することが明白となるはずである。
・ ビームディレクタの開口サイズの使用が、光が差し向けられる範囲又は角度の数に関わらず、最大化される。
・ 一次元ビームディレクタには、第2の方向におけるビーム方向をもたらすために、様々な機械又は光学システムを加えることができる。
【0084】
本明細書において開示され、定義された本発明は、本文又は図面から言及された又は明白な2つ又はそれ以上の個々の特徴の全ての代替的組み合わせに拡張されることを理解されたい。これらの異なる組み合わせの全ては、本発明の種々の代替的態様を構成する。