(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-10
(45)【発行日】2022-05-18
(54)【発明の名称】脳卒中検出及び予防システム及び方法
(51)【国際特許分類】
G16H 50/30 20180101AFI20220511BHJP
A61B 10/00 20060101ALI20220511BHJP
A61B 5/11 20060101ALI20220511BHJP
A61B 5/00 20060101ALI20220511BHJP
【FI】
G16H50/30
A61B10/00 H
A61B5/11 200
A61B5/00 G
A61B5/11 230
(21)【出願番号】P 2019515536
(86)(22)【出願日】2017-09-19
(86)【国際出願番号】 US2017052297
(87)【国際公開番号】W WO2018053521
(87)【国際公開日】2018-03-22
【審査請求日】2020-09-23
(32)【優先日】2017-09-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2016-09-19
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518179874
【氏名又は名称】エヌ・ティ・ティ リサーチ インコーポレイテッド
【住所又は居所原語表記】1950 University Avenue Suite 600, East Palo Alto, California United States of America
(74)【代理人】
【識別番号】100094569
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109335
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【氏名又は名称】那須 威夫
(72)【発明者】
【氏名】片岡 泰之
(72)【発明者】
【氏名】スリヴァトサヴ ラヴィ
【審査官】塩澤 如正
(56)【参考文献】
【文献】米国特許出願公開第2008/0294019(US,A1)
【文献】特開2002-143097(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00 - 80/00
A61B 10/00
A61B 5/11
A61B 5/00
(57)【特許請求の範囲】
【請求項1】
脳卒中検出及び予防システムであって、
プロセッサ及びメモリを有する脳卒中検出及び予防コンピュータシステムと、
前記脳卒中検出及び予防コンピュータシステムに、第1のタイプの脳卒中検出データと、第2のタイプの脳卒中検出データと、第3のタイプの脳卒中検出データとを提供する1又は2以上のコンピュータ装置と、
を備え、前記脳卒中検出及び予防コンピュータシステムは、
前記第1のタイプの
脳卒中検出データを処理して第1の低い精度の脳卒中検出データの組を生成
し、脳卒中リスクスコアを生成し、脳卒中のリスクが検出された場合に前記第2のタイプの脳卒中検出データを生成する第2段階要素を実行するようユーザを促す、ユーザによって実行される2つのテストを含む、第1の脳卒中検出段階を実行する
、前記プロセッサによって実行される複数行のコンピュータコードを有する第1段階要素と、
第2のさらに高い精度の脳卒中検出データの組を生成
し、脳卒中のリスクが検出された場合に第3段階要素を実行するよう前記ユーザを促すテストを含む第2の脳卒中検出段階を実行する
、前記プロセッサによって実行される複数行のコンピュータコードを有する前記第2段階要素と、
前記第3のタイプの
脳卒中検出データを処理して第3の最も高い精度の脳卒中検出データの組を生成する第3の脳卒中検出段階を実行する
遠隔治療を含む、前記プロセッサによって実行される複数行のコンピュータコードを有する前記第3段階要素と、
をさらに有する、
ことを特徴とするシステム。
【請求項2】
前記第1段階要素は、歩行データを
受信する歩行分析ツールと、発話データを
受信する発話分析ツールとをさらに有し、前記歩行データ及び前記発話データは
、第1のタイプの健康データである、
請求項1に記載のシステム。
【請求項3】
前記歩行分析ツールは、ユーザに関する上肢運動データと、前記ユーザに関する歩行データとを受け取り、前記上肢運動データ及び前記歩行データに基づいて前記第1の低い精度の脳卒中検出データの組を生成するように構成される、
請求項2に記載のシステム。
【請求項4】
前記第1のタイプの脳卒中検出データを生成する前記コンピュータ装置は、ウェアラブル健康装置である、
請求項3に記載のシステム。
【請求項5】
前記歩行分析ツールは、異常スコアを計算して脳卒中のリスクを判定するようにさらに構成される、
請求項4に記載のシステム。
【請求項6】
前記歩行分析ツールは、1/3*(x+y+z)に等しい
前記異常スコアSを計算するようにさらに構成され、xは身体バランスを測定し、yは腕の振りを測定し、zは歩調を測定する、
請求項5に記載のシステム。
【請求項7】
前記第2段階要素は、上肢強度テストをさらに含む、
請求項1に記載のシステム。
【請求項8】
前記第2のタイプの脳卒中検出データを生成する前記コンピュータ装置は、ゲーム装置である、
請求項7に記載のシステム。
【請求項9】
前記第3段階要素は、ビデオリンクを介して医師を前記ユーザに接続する遠隔治療を使用するように構成される、
請求項1に記載のシステム。
【請求項10】
前記第2のタイプの脳卒中検出データを生成する前記コンピュータ装置は、ラップトップコンピュータ、パーソナルコンピュータ及びタブレットコンピュータのうちの1つである、
請求項9に記載のシステム。
【請求項11】
コンピュータによって実行される脳卒中検出及び予防方法であって、
第1のタイプの健康データを取り込む少なくとも1つのコンピュータ装置から脳卒中検出データを受け取るステップと、
第1のサービスと、
前記第1のタイプの健康データを処理して第1の低い精度の脳卒中検出データの組を生成
し、脳卒中のリスクが検出された場合に第2のタイプの脳卒中検出データを生成する第2段階要素を実行するようユーザを促す、第1のデータ分析モジュールとを用いて第1の脳卒中検出段階を実行するステップと、
第2のタイプの健康データを取り込む少なくとも1つのコンピュータ装置から脳卒中検出データを受け取るステップと、
第2のサービスと、前記第2のタイプの健康データを処理して第2のさらに高い精度の脳卒中検出データの組を生成
し、脳卒中のリスクが検出された場合に第3段階要素を実行するよう前記ユーザを促す第2のデータ分析モジュールとを用いて第2の脳卒中検出段階を実行するステップと、
第3のタイプの健康データを取り込む少なくとも1つのコンピュータ装置から脳卒中検出データを受け取るステップと、
前記第3のタイプの健康データを処理して第3の最も高い精度の脳卒中検出データの組を生成する第3のサービスを用いて第3の脳卒中検出段階を実行するステップと、
を含むことを特徴とする方法。
【請求項12】
前記第1の脳卒中検出段階を実行するステップは、歩行データを用いた歩行分析と、発話データを用いた発話分析とを実行するステップをさらに含み、前記歩行データ及び前記発話データは、前記第1のタイプの健康データである、
請求項11に記載の方法。
【請求項13】
前記歩行分析を実行するステップは、ユーザに関する上肢運動データと、前記ユーザに関する歩行データとを受け取り、前記上肢運動データ及び前記歩行データに基づいて前記第1の低い精度の脳卒中検出データの組を生成するステップをさらに含む、
請求項12に記載の方法。
【請求項14】
前記第1のタイプの健康データをウェアラブル健康装置から受け取るステップをさらに含む、
請求項13に記載の方法。
【請求項15】
前記歩行分析を実行するステップは、異常スコアを計算して脳卒中のリスクを判定するステップをさらに含む、
請求項14に記載の方法。
【請求項16】
前記異常スコアを計算するステップは、1/3*(x+y+z)に等しい
前記異常スコアSを計算するステップをさらに含み、xは身体バランスを測定し、yは腕の振りを測定し、zは歩調を測定する、
請求項15に記載の方法。
【請求項17】
前記第2の脳卒中検出段階を実行するステップは、上肢強度テストを実行するステップをさらに含む、
請求項11に記載の方法。
【請求項18】
前記第2のタイプの健康データをゲーム装置から受け取るステップをさらに含む、
請求項17に記載の方法。
【請求項19】
前記第3の脳卒中検出段階を実行するステップは、ビデオリンクを介して医師を前記ユーザに接続する遠隔治療を使用するステップをさらに含む、
請求項11に記載の方法。
【請求項20】
前記第3のタイプの健康データを、ラップトップコンピュータ、パーソナルコンピュータ及びタブレットコンピュータのうちの1つから受け取るステップをさらに含む、
請求項19に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に脳卒中(strokes)の検出及び予防のためのシステム及び方法に関する。
【背景技術】
【0002】
毎年、世界中で1500万人の人々が脳卒中に襲われている。これらのうち、毎年600万人の人々が亡くなっており、従って脳卒中によって6秒毎に1つの命が奪われていることになる。しかしながら、脳卒中の80%は完全に予防可能である。脳卒中の治療は外科手術を含めて既に存在するが、これらの治療を受ける患者は3~4%にすぎない。このことは、世界の人口の96%が脳卒中の検出及び予防のための解決策から大きな恩恵を受けることを意味する。
【先行技術文献】
【特許文献】
【0003】
【文献】Harbison,J.、Hossain,O.、Jenkinson,D.、Davis,J.、Louw,S.J.、及びFord,G.A.著(2003)、一次医療、救急処置室の医師及び救急職員から紹介された、顔・腕・発話テストを用いた脳卒中の診断精度(Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test)、脳卒中(Stroke)、34(1)、71~76
【文献】Nor,A.M.、McAllister,C.、Louw,S.J.、Dyker,A.G.、Davis,M.、Jenkinson,D.、及びFord,G.A.著(2004)、救急医療隊員の記録と医師の記録との間における、急性脳卒中患者に顔・腕・発話テスト(FAST)を用いた神経学的兆候の合意(Agreement between ambulance paramedic-and physician-recorded neurological signs with Face Arm Speech Test ( FAST) in acute stroke patients)、脳卒中(Stroke)、35(6)、1355~1359
【発明の概要】
【発明が解決しようとする課題】
【0004】
今日、患者は、重篤になるまで病気を認識しない。従って、脳卒中、心臓発作及び糖尿病のようないくつかの病気又は疾患の症状は良く知られているが、多くの人々は、費用、怠惰、過信、時間の無さ、又は他の何らかの言い訳を理由に状況が深刻になるまで医者に掛からない。
【課題を解決するための手段】
【0005】
従って、脳卒中の検出及び予防のための解決策を提供することが望ましく、本開示はこれを目的とする。
【図面の簡単な説明】
【0006】
【
図1】脳卒中検出及び予防システムを示す図である。
【
図2】脳卒中検出及び予防システムの実施形態を示す図である。
【
図3】脳卒中検出及び予防システムの実装例を示す図である。
【
図4】脳卒中検出及び予防システムの歩行分析を示す図である。
【
図5】脳卒中検出及び予防システムの歩行分析部分のユーザインターフェイスの例を示す図である。
【
図6】脳卒中検出及び予防システムの歩行分析部分のユーザインターフェイスの例を示す図である。
【
図7】脳卒中検出及び予防システムの一部である発話分析の例を示す図である。
【
図8】脳卒中検出及び予防システムの一部である発話分析の例を示す図である。
【
図9】脳卒中検出及び予防システムの一部である上肢テストの例を示す図である。
【
図10】脳卒中検出及び予防システムの一部である上肢テストの例を示す図である。
【
図11】脳卒中検出及び予防システムの一部である上肢テストの例を示す図である。
【
図12】脳卒中検出及び予防システムの一部である上肢テストの例を示す図である。
【
図13】脳卒中検出及び予防システムの遠隔治療部分のユーザインターフェイスの例を示す図である。
【
図14】脳卒中検出及び予防システムの遠隔治療部分のユーザインターフェイスの例を示す図である。
【
図15】脳卒中検出及び予防システムの遠隔治療部分のユーザインターフェイスの例を示す図である。
【発明を実施するための形態】
【0007】
本開示は、歩行分析、発話分析、上肢テスト及び遠隔治療を用いて脳卒中の検出及び予防を行う脳卒中検出及び予防システム及び方法にとりわけ適用可能であり、この文脈で本開示を説明する。しかしながら、脳卒中検出及び予防システム及び方法は、以下の実装で説明する段階以外の段階を用いて実装することもできるのでさらに有用性が高く、これらの他の段階も本開示の範囲に含まれると理解されるであろう。さらに、後述する実装は脳卒中の検出及び予防に関するものであるが、システム及び方法は、他の健康問題/病気/病状の検出及び/又は予防に使用されるように修正することもできる。
【0008】
脳卒中検出及び予防システム及び方法は、脳卒中の検出及び予防を通じて世界中の多くの人々の命を救うことができる解決策の一部として、急増するウェアラブルな補助的Human Internet of Things(HIoT)装置を使用することができる。システム及び方法は、データ分析を使用することもできる。
【0009】
図1に、多次元データ収集及び集約を含むことができる脳卒中検出及び予防システム100を示す。このシステムは、脳卒中の検出及び予防を支援するために使用できる1又は2以上の検出/分析段階を含むことができる。これらの異なる段階は、段階1 102における利用しやすいサービスから、段階2 104、さらには段階3 106における利用しにくいサービスにまで及ぶことができる。各段階102~106は、段階1のサービス1などのサービス108と、サービスに結合されてサービスからデータを受け取るデータ分析モジュール110とを含むことができる。段階102~106の各々は、以下でさらに詳細に説明するような各段階のプロセスを実行するコンピュータシステム要素を用いて実施することができる。
【0010】
各段階からの分析データは、データ集約コンポーネント112によって集約することができる。データ集約コンポーネント112は、1又は2以上の装置114にさらに結合してデータを交換することができ、各段階の装置は、段階1における利用しやすい装置から段階3における利用しにくい装置にまで及ぶことができる。
【0011】
図1に示すサービス108、データ分析モジュール110及びデータ集約エンジン112(集合的に脳卒中検出及び予防システム)は、それぞれハードウェア又はソフトウェア、或いはハードウェアとソフトウェアの組み合わせで実装することができる。脳卒中検出及び予防システム、並びに様々な要素をソフトウェアで実装する場合、各要素は、(メモリも有する)脳卒中検出及び予防コンピュータシステムのプロセッサが実行できる複数行のコンピュータコード/命令とすることができ、従ってプロセッサは、以下で各要素についてさらに詳細に説明するプロセスを実行するように構成される。脳卒中検出及び予防システム、並びに様々な要素をハードウェアで実装する場合、各要素は、以下で各要素についてさらに詳細に説明するプロセスを実行できる、メモリ、マイクロコントローラなどのハードウェア装置とすることができる。
【0012】
図2に、脳卒中の検出及び予防に使用できるサービス108及び段階102~106の例を含む脳卒中検出及び予防システム100の実施形態を示す。
図2に示す実施形態では、段階1 102(利用しやすいサービス)が、(いずれも自宅で行うことができる)歩行分析及び発話分析を含むことができ、段階2 104が、(やはり自宅で行うことができる)上肢テストを含むことができ、段階3 106が、1人又は2人以上の医師がテレビ会議を用いて自宅にいる患者を検査できる遠隔治療を含むことができる。歩行分析、発話分析及び上肢テストは、機械学習アルゴリズムを用いて実施することができる。ウェブベースのダッシュボードが、医師に患者のリアルタイムデータを提供する。1人又は2人以上の医師は、HIoT装置及びシステムを通じて、装置からのデータ及び段階にラベリングすることができる。システムは、機械学習アルゴリズムを用いて診断精度を改善することもできる。
図2に示すように、段階1 102は、精度は低いが装置を利用しやすく、段階3 106は、精度は高いが装置を利用しにくいものとすることができる。
【0013】
システム100は、脳卒中検出及び予防システムの一部として、様々な異なるタイプのコンピュータ装置114を用いてユーザと対話することができる。例えば、システムは、自宅での健康管理用途に1又は2以上のモノのインターネット(IoT)装置を使用することもできる。装置114は、NTT社のhitoe、Microsoft Band、Apple Watch及びFitbit社のtrackersなどのウェアラブルな検知素材及びバンド型装置、Amazon Echo、Siri及びDocomoしゃべってコンシェルなどの補助装置、Kinect及びLeapなどのゲーム装置、及び/又は血圧センサ及び重量センサなどの検知装置を含むことができる。患者の排泄物を追跡するIoTトイレも存在する。
図2に示す例では、段階1の部分102が異なるウェアラブル装置及び/又は補助装置を使用し、段階2の部分104がゲーム装置を使用し、段階3の部分106が、ラップトップコンピュータ、パーソナルコンピュータ、タブレットコンピュータ及び同様の装置などのコンピュータ装置を使用することができる。各異なるタイプのコンピュータ装置114は、脳卒中検出に使用できる異なるタイプの健康データを取り込むことができる。例えば、Microsoft Band及びhitoeは、脳卒中の検出に使用できる1つのタイプの健康データである、腕を回している人物又は歩行ペースに関するデータを取り込むことができる。別の例として、Microsoft Kinect装置は、脳卒中の検出に使用できる別のタイプの健康データである、ユーザの上肢強度に関するデータを取り込むことができる。さらに別の例として、遠隔治療セッション中に患者が脳卒中指標に関する言語データ又は映像データを医師に提供することもでき、これらの脳卒中指標も、脳卒中の検出に使用できる別のタイプの健康データである。
【0014】
1又は2以上の装置114は、ユーザと脳卒中検出及び予防システムとの相互作用を可能にするディスプレイ及び入力/出力装置を含むこともできる。例えば、ユーザは、後述する様々なテストデータをアップロードし、後述するような遠隔治療セッションを実施して、システムが実行した分析に関するデータを受け取ることができる。
【0015】
システムは、上記の装置114を使用して、患者が脳卒中の発症前に医師の診察を受けられるように脳卒中症状を予防的に診断することができる。例えば、システムは、装置114から患者のデータを収集し、集約して脳卒中症状を診断するとともに、医師がラベリングした患者データを収集することもできる。システムは、それぞれが複数の装置からの複数のデータストリームの分析によって特定される複数の脳卒中症状を特定することもできる。システムは、脳卒中検出段階を通じて患者を誘導することができる。
【0016】
システム内では、歩行分析が、(装置114からのデータに基づく)サービス108としての歩行分析ツールと、歩行データ分析モジュール110とを使用することができ、これらの歩行データ及び分析された歩行データはデータアグリゲータ112に提供される。発話分析は、(装置114からのデータに基づく)サービス108としての発話分析ツールと、発話データ分析モジュール110とを使用することができ、これらの発話データ及び分析された発話データはデータアグリゲータ112に提供される。上肢テストは、(装置114からのデータに基づく)サービス108としての上肢テストツールと、上肢テストデータ分析モジュール110とを使用することができ、これらの上肢テストデータ及び分析された上肢テストデータはデータアグリゲータ112に提供される。段階3 106における遠隔治療は、サービス108としての遠隔治療ツールを使用して、データアグリゲータ112とデータを交換することができる。遠隔治療ツールを使用する医師は、患者データにラベリングし、このデータをデータアグリゲータ112にフィードバックすることができる。患者は、ラップトップ、タブレットなどのコンピュータ装置を使用して遠隔治療ツールと相互作用することができる。
図3に、サーバと、ウェブページと、装置114と、APIと、データベースとを含むシステムの実装を示す。
【0017】
歩行分析
歩行分析では、ある人物の歩き方を検査する。複数の装置114からの多モードデータ分析により、腕を振らずに歩いている人々(Microsoft Band)、或いは歩みの遅い人又はバランスが悪い人(hitoe)などの症状を検出することができる。多モードデータ分析は、装置114から収集された入力に基づいて(単複の)異常スコアを計算するアルゴリズムを実装するが、他のアルゴリズムを使用することもできる。
【0018】
異常スコアSは、以下の方程式を用いて求めることができる。
S=1/3*(x+y+z)
式中、
x:身体バランスを測定(測定値はhitoe APIを通じて取得される)、
y:腕の振りを測定(測定値はMicrosoft Band APIを通じて取得される)、
z:歩調を測定(測定値はhitoe APIを通じて取得される)。
【0019】
例えば、ユーザは、
図4に示すように2つの装置/センサを着用することができる。1つの例では、ユーザが、バランス及び歩調を測定するhitoeファブリックセンサと、腕の振りを測定するMicrosoft Band 2.0センサとを着用することができる。
図5に、ウェブベースの歩行ダッシュボードの例を示しており、ここでは19という歩行異常スコアと、リアルタイムでのECG又は加速データと、問題を示す歩行特徴(
図5の右下のチャート)とが示されている。
図6に示すように、患者が腕を振らずに又はバランスを失って歩いた場合、システムはこの状態を検出し、これをチャート内に異常状態として示す。
【0020】
発話分析
発話分析には、医療用IoT装置などの装置114を使用することができる。例えば、ユーザは、Amazon Echoなどの補助装置に日常的に話し掛ける。発話の質に歪みがある場合、装置は、これを脳卒中の症状として受け取ることができる。装置は、声質分析に応じて異常スコアを計算することができる。
【0021】
以下は、あるシナリオ例である。
・ユーザ:「状況を教えて。」
・補助装置:「今日の歩数は7800歩でした。お元気そうですね。Yasuさん、気分はいかがですか?」
[正常な場合]
・ユーザ:「元気だよ。」
・補助装置:「それは素晴らしい。良い一日を。」
[異常な場合]
・ユーザ:「まぁ、大丈夫。」(話しぶりがおかしい)
・補助装置:「うーん。体調が良くなさそうですね。最近の歩き方もおかしいかもしれません。薬を飲むか、身体バランステストを行って下さい。両腕を90度持ち上げて5秒間キープできますか? Microsoft Kinectが動作をチェックします。」
【0022】
図7に示すように、脳卒中検出及び予防システムにはユーザの活動情報が集約されているので、補助装置は、ユーザの睡眠の質、運動歴及び職歴のような要因に基づいてユーザの健康状態を決定することができる。
図8に示すように、補助装置が「元気ですか?」のような一般的な質問を尋ねた時に、バックエンドでユーザの応答が分析されて、発話の質、及び異常があるかどうかが判定される。歩行分析と発話分析がいずれも脳卒中症状を示す場合、システムは、ユーザに段階2のテストを行うように促す。
【0023】
上肢テスト
上肢テストは、脳卒中について患者をテストするようになった時の黄金律である。2003年に発表された研究によれば、医師は、脳卒中の診断精度の高さから上肢テストを行うように奨励されている。このテストは、以下のようなものとすることができる。
【0024】
「患者の両腕を座位の場合には90度、仰臥位の場合には45度持ち上げ、その姿勢を5秒間保持した後に力を抜くように求める。一方の腕の下降又は落下が速かったか? 一方の腕の下降又は落下が速かった場合、それが患者の左腕又は右腕のどちらであるかを記録する。」Harbison,J.、Hossain,O.、Jenkinson,D.、Davis,J.、Louw,S.J.、及びFord,G.A.(2003)、一次医療、救急処置室の医師及び救急職員から紹介された、顔・腕・発話テストを用いた脳卒中の診断精度(Diagnostic accuracy of stroke referrals from primary care, emergency room physicians, and ambulance staff using the face arm speech test)、脳卒中(Stroke)、34(1)、71~76。
【0025】
2004年に発表された研究によれば、上肢テストにおける上肢脱力の場合、患者が脳卒中症状を示している確実性は98%である。「各神経学的兆候の完全合意は、顔面脱力78%、上肢脱力98%、及び発話障害89%であった。」Nor,A.M.、McAllister,C.、Louw,S.J.、Dyker,A.G.、Davis,M.、Jenkinson,D.、及びFord,G.A.(2004)、救急医療隊員の記録と医師の記録との間における、急性脳卒中患者に顔・腕・発話テスト(FAST)を用いた神経学的兆候の合意(Agreement between ambulance paramedic-and physician-recorded neurological signs with Face Arm Speech Test ( FAST) in acute stroke patients)、脳卒中(Stroke)、35(6)、1355~1359。
【0026】
両研究において上肢脱力が最も信頼性できる兆候であり、その後に発話障害及び顔面脱力が続くことは特筆に価する。上肢テストに使用できてシステム100と一体化することもできる装置のうちの1つが、腕の動きを追跡できるMicrosoft Kinectである。例えば、ユーザが両腕を5秒間保持できる場合には対策は取られない。一方で、片方の腕が5秒以内に落下した場合、システム100は警告メッセージを送信することができる。ユーザが両腕を保持できない場合、システム100は、即時の医学的な配慮を必要とする危険な状態の存在を示すメッセージを送信することができる。
【0027】
例えば、
図9に示すように、Microsoft Kinectなどの装置114は、体位を識別することができる。このテストでは、手が肩の線(赤色の太字線)よりも上に動いた場合にタイマを始動させる。ユーザの手が5秒間にわたって肩の線よりも上に留まった場合、
図10のユーザインターフェイスに示すように対策は不要である。一方で、
図11に示す例では、患者の左腕が5秒未満で落下しており、これは脳卒中症状の可能性がある。脳の右側の障害が疑われる。
図12の例では、両腕が5秒未満で落下しており、これは危険な兆候となり得る。システム100は、即座に一次診療医に遠隔治療を実施するように通知しなければならない。この
図12に示すような場合、システム100は、ユーザを段階3(遠隔治療)に誘導する。
【0028】
遠隔治療
遠隔治療では、上述したデータ分析サービスによって計算された全てのスコアを、
図13に示すようなダッシュボードを通じて指定一次診療医に配信することができる。医師は、ダッシュボードを通じて患者の状態をリアルタイムでモニタすることができる。医師は、患者に脳卒中の危険性があると考えた場合、
図13に示すようなwebRTCを用いて患者とのウェブベースのテレビ会議を開始することができる。患者がウェアラブルセンサを使用していれば、テレビ会議中にECGなどのデータをリアルタイムで医師に配信することができる。テレビ会議では、医師が、患者の歩行、発話及び腕の動きだけでなく、脳卒中症状のさらなる根拠となり得る患者の顔の表情を観察することもできる。医師は、患者に脳卒中の危険性があると結論付けた場合、患者に病院で診察を受けるように指示することができる。システム100は、医師が、観察された症状の危険レベルを入力することによって分析データにラベリングして、将来的なビッグデータ分析に役立つことができるようにすべきである。
【0029】
例えば、システム100は、
図13に示すように患者と医療提供者との間で同意済みの患者のデータを集約して医師に配信する。このデータは、名前、性別、年齢、血液型、歩行異常スコア、発話異常スコア及び上肢テスト異常スコアを含む。医師は、テレビ会議が必要であり、webRTCを用いてテレビ会議を開始すると決定することができる。
【0030】
図14に示すように、テレビ会議中には、医師が患者の発話をテストして患者の顔の表情を観察する。医師は、自身のダッシュボードを使用して、リアルタイムで配信されているECGなどのデータも調べる。医師は、
図15に示すようなセッションの終了時に診断スコアを入力する。機械学習の観点からすれば、専門の医療提供者がラベリングしたデータをGSATが収集することは、このデータをさらなる分析に使用して精度を改善することができるので非常に重要である。
【0031】
以上、特定の実施形態を参照しながら説明目的で解説を行った。しかしながら、上記の例示的な説明は、完全であることや、或いは開示した厳密な形に本開示を限定することを意図したものではない。上記の教示に照らして多くの修正及び変形が可能である。これらの実施形態は、本開示の原理及びその実際の応用を最良に説明することにより、他の当業者が検討する特定の用途に適した形で本開示及び様々な実施形態を様々に修正して最良に利用できるように選択し説明したものである。
【0032】
本明細書に開示したシステム及び方法は、1又は2以上のコンポーネント、システム、サーバ、機器又はその他のサブコンポーネントを通じて実装することができ、或いはこのような要素間で分散することもできる。システムとして実装する場合、このようなシステムは、とりわけ汎用コンピュータで見られるソフトウェアモジュール、汎用CPU、RAMなどのコンポーネントを含み、及び/又は伴うことができる。サーバに革新性が存在する実装では、このようなサーバが、汎用コンピュータで見られるようなCPU、RAMなどのコンポーネントを含み、及び/又は伴うことができる。
【0033】
また、本明細書におけるシステム及び方法は、上述した以外の異種の又は完全に異なるソフトウェアコンポーネント、ハードウェアコンポーネント及び/又はファームウェアコンポーネントを含む実装を通じて実現することもできる。このような他のコンポーネント(例えば、ソフトウェア、処理コンポーネントなど)、及び/又は本発明に関連する又は本発明を具体化するコンピュータ可読媒体については、例えば本明細書における革新性の態様を数多くの汎用又は専用コンピュータシステム又は構成と調和させて実装することができる。本明細書における革新性との併用に適することができる様々な例示的なコンピュータシステム、環境及び/又は構成としては、以下に限定されるわけではないが、パーソナルコンピュータ、ルーティング/接続性コンポーネントなどのサーバ又はサーバコンピュータ装置、ハンドヘルド又はラップトップ装置、マルチプロセッサシステム、マイクロプロセッサベースのシステム、セットトップボックス、消費者電子装置、ネットワークPC、他の既存のコンピュータプラットフォーム、上記のシステム又は装置のうちの1つ又は2つ以上を含む分散型コンピュータ環境などの内部の又はこれらに組み込まれたソフトウェア又はその他のコンポーネントを挙げることができる。
【0034】
場合によっては、システム及び方法の態様を、例えばこのようなコンポーネント又は回路に関連して実行されるプログラムモジュールを含む論理回路及び/又は論理命令を介して実現し、或いはこのような論理回路及び/又は論理命令によって実行することもできる。一般に、プログラムモジュールは、本明細書における特定のタスク又は特定の命令を実行するルーチン、プログラム、オブジェクト、コンポーネント、データ構造などを含むことができる。また、本発明は、通信バス、通信回路又は通信リンクを介して回路が接続された分散ソフトウェア、分散コンピュータ又は分散回路環境を背景として実施することもできる。分散環境では、メモリストレージデバイスを含むローカルコンピュータ記憶媒体及び遠隔コンピュータ記憶媒体の両方から制御/命令を行うことができる。
【0035】
本明細書におけるソフトウェア、回路及びコンポーネントは、1又は2以上のタイプのコンピュータ可読媒体を含み及び/又は利用することもできる。コンピュータ可読媒体は、このような回路及び/又はコンピュータコンポーネント上に存在する、これらに関連する、又はこれらがアクセスできるいずれかの利用可能な媒体とすることができる。一例として、限定するわけではないが、コンピュータ可読媒体としてはコンピュータ記憶媒体及び通信媒体を挙げることができる。コンピュータ記憶媒体は、コンピュータ可読命令、データ構造、プログラムモジュール又はその他のデータなどの情報を記憶するためのいずれかの方法又は技術で実装された揮発性及び不揮発性の取り外し可能及び取り外し不能媒体を含む。コンピュータ記憶媒体は、以下に限定するわけではないが、RAM、ROM、EEPROM、フラッシュメモリ又はその他のメモリ技術、CD-ROM、デジタル多用途ディスク(DVD)又はその他の光学ストレージ、磁気テープ、磁気ディスクストレージ又はその他の磁気記憶装置、或いは所望の情報を記憶するために使用できるとともにコンピュータコンポーネントがアクセスできる他のいずれかの媒体を含む。通信媒体は、コンピュータ可読命令、データ構造、プログラムモジュール及び/又はその他のコンポーネントを含むことができる。さらに、通信媒体は、有線ネットワーク又は直接有線接続などの有線媒体を含むことができるが、本明細書におけるこのようなタイプの媒体は、いずれも一時的媒体を含まない。また、上記のいずれかの組み合わせもコンピュータ記憶媒体の範囲に含まれる。
【0036】
本明細書におけるコンポーネント、モジュール、装置などの用語は、様々な形で実装できるあらゆるタイプの論理的又は機能的ソフトウェア要素、回路、ブロック及び/又はプロセスを意味することができる。例えば、様々な回路及び/又はブロックの機能を互いに組み合わせて他のあらゆる数のモジュールにすることができる。各モジュールは、中央処理装置に読み取られて本明細書における革新性の機能を実行できる、有形メモリ(例えば、ランダムアクセスメモリ、リードオンリメモリ、CD-ROMメモリ、ハードディスクドライブなど)に記憶されたソフトウェアプログラムとして実装することもできる。或いは、これらのモジュールは、汎用コンピュータに送信される、又は送信搬送波を介して処理/グラフィックスハードウェアに送信されるプログラミング命令を含むこともできる。また、モジュールは、本明細書における革新性に含まれる機能を実装するハードウェア論理回路として実装することもできる。最後に、これらのモジュールは、専用命令(SIMD命令)、フィールドプログラマブルロジックアレイ、又は所望のレベルの性能及びコストをもたらすこれらのいずれかの混合物を用いて実装することもできる。
【0037】
本明細書に開示したように、本開示による機能は、コンピュータハードウェア、ソフトウェア及び/又はファームウェアを通じて実装することができる。例えば、本明細書で開示したシステム及び方法は、例えばデータベース、デジタル電子回路、ファームウェア、ソフトウェア又はこれらの組み合わせも含むコンピュータなどのデータプロセッサを含む様々な形態で具体化することができる。さらに、開示した実装の一部では、特定のハードウェアコンポーネントについて説明しているが、本明細書における革新性によるシステム及び方法は、ハードウェア、ソフトウェア及び/又はファームウェアのあらゆる組み合わせを用いて実装することもできる。さらに、上述した機能及びその他の態様、並びに本明細書における革新性の原理は、様々な環境で実装することができる。このような環境及び関連する用途は、本発明による様々なルーチン、プロセス及び/又は動作を実行するように特別に構成することも、或いは汎用コンピュータ、又は必要な機能を提供するようにコードによって選択的に有効化又は再構成されたコンピュータプラットフォームを含むこともできる。本明細書で開示したプロセスは、本質的にいずれかの特定のコンピュータ、ネットワーク、アーキテクチャ、環境又はその他の装置に関連するものではなく、ハードウェア、ソフトウェア及び/又はファームウェアの好適な組み合わせによって実装することができる。例えば、本発明の教示に従って書かれたプログラムと共に様々な汎用機械を使用することもでき、或いは必要な方法及び技術を実行するように特殊な装置又はシステムを構成する方が便利な場合もある。
【0038】
本明細書で説明したロジックなどの方法及びシステムの態様は、フィールドプログラマブルゲートアレイ(「FPGA」)、プログラマブルアレイロジック(「PAL」)デバイス、電気的にプログラム可能なロジックなどのプログラマブルロジックデバイス(「PLD」)、メモリデバイス及び標準的なセルベースの装置、並びに特定用途向け集積回路を含む様々な回路のいずれかにプログラムされる機能として実装することもできる。態様を実装するための他のいくつかの可能性としては、メモリデバイス、(EEPROMなどの)メモリ付きマイクロコントローラ、内蔵マイクロプロセッサ、ファームウェア、ソフトウェアなどが挙げられる。さらに、ソフトウェアベースの回路エミュレーション、個別ロジック(順序ロジック及び組み合わせロジック)、カスタムデバイス、ファジー(ニューラル)ロジック、量子デバイス、及びこれらのデバイスタイプのいずれかの混成を有するマイクロプロセッサにおいて態様を具体化することもできる。例えば、金属酸化物半導体電界効果トランジスタ(「MOSFET」)技術に似た相補型金属酸化物半導体(「CMOS」)、バイポーラ技術に似たエミッタ結合型論理回路(「ECL」)、ポリマー技術(例えば、シリコン共役ポリマー及び金属共役ポリマー金属構造体)、混合アナログ及びデジタルなどの基礎デバイス技術を様々なコンポーネントタイプで提供することができる。
【0039】
また、本明細書で開示した様々なロジック及び/又は機能は、挙動特性、レジスタ転送特性、論理コンポーネント特性及び/又はその他の特性の観点から、ハードウェア、ファームウェアのあらゆる数の組み合わせを使用して、及び/又は機械可読又はコンピュータ可読媒体に具体化されたデータ及び/又は命令として有効にすることができる。このようなフォーマットデータ及び/又は命令を具体化できるコンピュータ可読媒体は、限定的な意味ではなく様々な形態の不揮発性記憶媒体(例えば、光学記憶媒体、磁気記憶媒体又は半導体記憶媒体)を含むことができるが、ここでも一時的媒体は含まない。本明細書全体を通じ、「備える(comprise、comprising)」などの用語は、文脈上明らかに他の意味を必要としない限り、排他的又は網羅的な意味の対語である包括的な意味で、すなわち「~を含むけれどもそれに限定されない(including,but not limited to)」という意味で解釈されたい。また、単数又は複数を用いた単語は、それぞれ複数又は単数も含む。また、「本明細書において(herein)」、「本明細書に従って(hereunder)」、「上記の(above)」、「以下の(below)」、及び同様の意味の単語は、本出願のいずれかの特定の部分ではなく本出願全体を示す。2又は3以上の項目のリストへの言及において「又は(or)」という単語を使用している場合、この単語は、リスト内のいずれかの項目、リスト内の全ての項目、及びリスト内の項目のいずれかの組み合わせ、という解釈を全て含む。
【0040】
本明細書では、本発明の現在のところ好ましいいくつかの実装について具体的に説明したが、本発明に関連する当業者には、本発明の趣旨及び範囲から逸脱することなく、本明細書で図示し説明した様々な実装の変形及び変更を行えることが明らかであろう。従って、本発明は、適用される法の原則によって定められる範囲のみに限定されるように意図されている。
【0041】
上記では、本開示の特定の実施形態について言及したが、当業者であれば、本開示の原理及び趣旨から逸脱することなく実施形態に変更を行うことができ、本開示の範囲は添付の特許請求の範囲によって定められると理解するであろう。