IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エンテック インスツルメンツ インコーポレイテッドの特許一覧

特許7072134ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法
<>
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図1A
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図1B
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図2
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図3A
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図3B
  • 特許-ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-12
(45)【発行日】2022-05-20
(54)【発明の名称】ガスクロマトグラフィで使用するための試料予備濃縮システム及び方法
(51)【国際特許分類】
   G01N 30/08 20060101AFI20220513BHJP
   G01N 30/12 20060101ALI20220513BHJP
   G01N 30/30 20060101ALI20220513BHJP
   G01N 30/20 20060101ALI20220513BHJP
   G01N 30/14 20060101ALI20220513BHJP
   G01N 1/00 20060101ALI20220513BHJP
【FI】
G01N30/08 G
G01N30/12 J
G01N30/30
G01N30/20 A
G01N30/14 A
G01N1/00 101R
【請求項の数】 20
(21)【出願番号】P 2020521871
(86)(22)【出願日】2018-10-23
(65)【公表番号】
(43)【公表日】2021-01-14
(86)【国際出願番号】 US2018057151
(87)【国際公開番号】W WO2019084039
(87)【国際公開日】2019-05-02
【審査請求日】2020-06-01
(31)【優先権主張番号】62/576,769
(32)【優先日】2017-10-25
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518320904
【氏名又は名称】エンテック インスツルメンツ インコーポレイテッド
(74)【代理人】
【識別番号】100076428
【弁理士】
【氏名又は名称】大塚 康徳
(74)【代理人】
【識別番号】100115071
【弁理士】
【氏名又は名称】大塚 康弘
(74)【代理人】
【識別番号】100112508
【弁理士】
【氏名又は名称】高柳 司郎
(74)【代理人】
【識別番号】100116894
【弁理士】
【氏名又は名称】木村 秀二
(74)【代理人】
【識別番号】100130409
【弁理士】
【氏名又は名称】下山 治
(74)【代理人】
【識別番号】100195545
【弁理士】
【氏名又は名称】鮎沢 輝万
(72)【発明者】
【氏名】カーディン, ダニエル ビー
【審査官】三好 貴大
(56)【参考文献】
【文献】米国特許出願公開第2017/0284978(US,A1)
【文献】特開2009-069053(JP,A)
【文献】特表2014-529080(JP,A)
【文献】特開2009-002711(JP,A)
【文献】国際公開第2013/073693(WO,A1)
【文献】特開2010-112761(JP,A)
【文献】米国特許出願公開第2016/0320354(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 30/00-30/96
G01N 1/00
(57)【特許請求の範囲】
【請求項1】
化学分析システムであって、
弁システムと、
露点制御領域であって、第1の端部及び第2の端部を有するチューブを備え、前記露点制御領域のチューブの前記第1の端部が試料の源に流体連結され、前記露点制御領域の前記第2の端部が前記弁システムに連結され、水を化学試料の1つ以上の他の化合物から分離するよう構成され、かつ前記1つ以上の他の化合物が複数毛管カラムトラップシステム(MCCTS)に移送される間、前記水を保持するよう構成される、露点制御領域と、
前記MCCTSあって、第1の端部及び第2の端部を備え、前記MCCTSの前記第1の端部及び第2の端部が前記弁システムに流体連結されたMCCTSと、
第1の端部及び第2の端部を有する化学分離カラムであって、前記化学分離カラムの前記第1の端部が前記弁システムに流体連結された化学分離カラムと、
前記化学分離カラムの前記第2の端部に連結された検出器とを備え、前記弁システムが、
第1の期間中、前記露点制御領域のチューブの前記第2の端部を前記MCCTSの前記第1の端部に連結し、
前記第1の期間の後の第2の期間中に、前記MCCTSの前記第1の端部を前記化学分離カラムに連結するように構成される、化学分析システム。
【請求項2】
請求項1に記載の化学分析システムであって、
前記第1の期間中、前記試料が、前記露点制御領域の前記第1の端部から前記MCCTSの前記第2の端部へと順方向に流れ、
前記第2の期間中、前記試料が、前記MCCTSの前記第2の端部から前記MCCTSの前記第1の端部へと逆方向に流れる、化学分析システム。
【請求項3】
請求項1に記載の化学分析システムであって、
前記第1の期間中、前記露点制御領域が、摂氏25から35度の範囲の温度であり、前記MCCTSが、前記露点制御領域の前記温度よりも摂氏5から10度高い温度であり、
前記第2の期間中、前記MCCTSが、摂氏100から300度の範囲の温度である、化学分析システム。
【請求項4】
前記化学分析システムが、摂氏25度以上の温度で動作するように構成される、請求項1に記載の化学分析システム。
【請求項5】
前記化学分析システムが、前記システムの任意の部分を準周囲温度まで冷却する手段を含まない、請求項1に記載の化学分析システム。
【請求項6】
請求項1に記載の化学分析システムであって、前記MCCTSが、
前記MCCTSの前記第1の端部にある第1の端部及び第2の端部を有する第1の毛管カラムであって、前記試料の1つ以上の化合物に対する第1の親和性を有する第1の毛管カラムと、
前記第1の毛管カラムの前記第2の端部に流体連結された第1の端部と、前記MCCTSの前記第2の端部にある第2の端部とを有する第2の毛管カラムであって、前記試料の前記1つ以上の化合物に対する前記第1の親和性よりも大きい前記試料の前記1つ以上の化合物に対する第2の親和性を有する第2の毛管カラムと、を備える、化学分析システム。
【請求項7】
請求項1に記載の化学分析システムであって、更に、
前記試料の源を保持するように構成された熱脱着装置を備え、前記熱脱着装置が、前記試料の源と前記露点制御領域の前記第1の端部との間の流体連結を提供するように構成される、化学分析システム。
【請求項8】
前記露点制御領域の前記チューブが不活性毛管チューブを備える、請求項1に記載の化学分析システム。
【請求項9】
請求項1に記載の化学分析システムであって、
前記第1の期間中、前記露点制御領域の相対湿度が、前記MCCTSの相対湿度よりも高い、化学分析システム。
【請求項10】
請求項1に記載の化学分析システムであって、
前記試料の源によって保持されている間、前記試料が、第1の量の水蒸気を含み、
前記MCCTSによって保持されている間、前記試料が、前記第1の量の水蒸気よりも少ない第2の量の水を含む、化学分析システム。
【請求項11】
請求項1に記載の化学分析システムを使用する方法であって、
化学分析システムの露点制御領域のチューブ内で、化学試料に含まれる水の一部を凝縮させることと、
第1の期間中、前記化学試料の1つ以上の化合物を、料の源から前記露点制御領域の前記チューブ及び前記化学分析システムの複数毛管カラムトラップシステム(MCCTS)に移送することと、
前記露点制御領域において、前記化学試料中に含まれる前記水の一部を前記化学試料の前記1つ以上の化合物から分離すること、
前記露点制御領域において、前記化学試料の前記1つ以上の化合物が前記MCCTSに移送される間、前記水の一部を保持すること、
第2の期間中、前記化学試料中に含まれる前記水の一部を前記化学分析システムの化学分離カラムに移送することなく、前記化学試料の前記1つ以上の化合物を前記MCCTSから前記化学分離カラムに移送することと、を備える、方法。
【請求項12】
前記露点制御領域の前記チューブ内で凝縮する前記化学試料中に含まれる前記水の一部が、過剰な水を含む、請求項11に記載の方法。
【請求項13】
請求項11に記載の方法であって、更に、
前記第1の期間中に、
前記化学分析システムの弁システムによって前記露点制御領域の第2の端部を前記MCCTSの第1の端部と連結させることであって、前記化学試料が、前記第1の期間中に前記MCCTSの前記第1の端部から前記MCCTSの第2の端部へと順方向に流れることと、
前記第2の期間中に、
前記化学分析システムの前記弁システムによって前記MCCTSの前記第1の端部を前記化学分離カラムと連結させることであって、前記化学試料が、前記第2の期間中に前記MCCTSの前記第2の端部から前記MCCTSの前記第1の端部へと逆方向に流れる、方法。
【請求項14】
請求項11に記載の方法であって、前記MCCTSが、
前記MCCTSの第1の端部にある第1の端部及び第2の端部を有する第1の毛管カラムであって、前記試料の1つ以上の化合物に対する第1の親和性を有する第1の毛管カラムと、
前記第1の毛管カラムの前記第2の端部に流体連結された第1の端部と、前記MCCTSの前記第2の端部にある第2の端部とを有する第2の毛管カラムであって、前記試料の前記1つ以上の化合物に対する前記第1の親和性よりも大きい前記試料の前記1つ以上の化合物に対する第2の親和性を有する第2の毛管カラムと、を備える、方法。
【請求項15】
請求項11に記載の方法であって、
前記第1の期間中、前記露点制御領域が、摂氏25から35度の範囲の温度であり、前記MCCTSが、前記露点制御領域の前記温度よりも摂氏5から10度高い温度であり、
前記第2の期間中、前記MCCTSが、摂氏100から300度の範囲の温度である、方法。
【請求項16】
前記化学分析システムが、前記方法が実行されている間、摂氏25度以上の温度である、請求項11に記載の方法。
【請求項17】
前記化学分析システムが、前記システムの任意の部分を準周囲温度まで冷却する手段を含まない、請求項11に記載の方法。
【請求項18】
請求項11に記載の方法であって、更に、
前記化学試料に含まれる前記水蒸気の一部を凝縮させる前に、
前記化学試料を吸着剤内に保持することと、
熱脱着装置によって前記吸着剤から前記化学試料を脱着することと、を備える、方法。
【請求項19】
前記露点制御領域の前記チューブが不活性毛管チューブを備える、請求項11に記載の方法。
【請求項20】
請求項11に記載の方法であって、
前記第1の期間中、前記露点制御領域の相対湿度が、前記MCCTSの相対湿度よりも高い、方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、その開示全体が全ての目的のためにその全体を参照することにより本明細書に組み込まれる、2017年10月25日に出願された米国仮特許出願第62/576,769号の利益を主張するものである。
【0002】
(発明の分野)
これは、ガスクロマトグラフィ又はガスクロマトグラフ質量分析などによる、後続の化学分析のために試料を濃縮するシステム及び方法に関する。
【背景技術】
【0003】
ガスクロマトグラフィ及びガスクロマトグラフ質量分析による微量VOC及び他の揮発性化学物質の分析は、約50PPBv未満の濃度を有する化合物を検出するために、化学分析装置(例えば、GC又はGCMS(ガスクロマトグラフィ/質量分析計))に注入する前に予備濃縮を必要とする場合がある。いくつかの実施形態では、GCは、0.5~3cc/分の範囲の流量、及び2~8秒幅のカラムから溶出する典型的なピーク幅を有する毛管GCカラムを使用して動作する。一例として、2cc/分の流量で、カラムから溶出するとき、0.2cc(2cc/分×0.1分)のキャリアガス内に6秒幅のピークが含まれることができる。したがって、この例では、注入容積は、0.2cc以下であるべきであり、そうでなければ、より軽い化合物のピーク広範化及び分解能の損失が生じる可能性がある。このピーク幅の一部は、カラム上で拡散及び「ピーク拡散」によって引き起こされるため、分解能を維持するために、毛管GCカラムに注入されるキャリアガスの容積を、この6秒ピーク容積(0.2cc)又は0.1ccの約半分に制限することが望ましい場合がある。分解能の損失は、例えば、他の化学物質からの干渉についてのより低い感度及びより高い可能性を引き起こす可能性がある。広いピークによって引き起こされる不十分な分解能はまた、注入混合物中の化合物を更に分離するために、より長い実行時間を必要とし、これは、化合物がカラム上に長く残存するほど、より大きな拡散ベースのバンドの広がりを経験し得るため、生産性に影響を及ぼす可能性があるとともにピーク幅を更に増加させる可能性がある。良好なGC法は、一般に、分析技術の有効性を増加又は最大化するためにピーク幅を低減又は最小化することを試みる。
【0004】
水、食品、飲料、消費者製品、及び他の試料における関心のある多くの化学物質は、0.1ccシリンジ又はループ注入装置の50PPB未満の制限よりも1000倍低いレベルで検出されなければならない。サブPPBレベルで存在する化合物は、依然として毒性リスクをもたらす可能性がある一方で、他の微量化合物は、兆レベルあたりの部分で消費者製品の風味及び臭気に良い及び悪い影響の双方を及ぼす可能性がある。更に、呼気、血液、及び尿中の多くの微量マーカは、様々なヒト関連の状態及び疾患の診断のために現在検討されている。したがって、いくつかの実施形態では、これらの低濃度で生じる関心のある化合物を有する試料は、GC注入前の試料濃縮を必要とする。
【0005】
いくつかの実施形態では、試料は、最適な注入速度を達成するために、0.1cc未満の容積のキャリア流体を使用して脱着及び移動される。0.1ccシリンジ又はループ注入システムの感度を下回る感度を提供する例示的な揮発性化学分析技術を以下に示す。
・動的ヘッドスペース(例えば、パージ及びトラップ)
・塩飽和溶液中の高温での静的ヘッドスペース、ループ注入
・SPME(固相微小抽出)
・VASE(真空支援型吸着剤抽出)
・大容積ループ注入
【0006】
上記技術は、0.1ccシリンジ又はループ注入システムによって提供されるものよりも低い感度(例えば、試料中でより低い濃度で生じる化合物に敏感である)を提供することができるが、いくつかの実施形態では、それらは、一般に、より軽い化合物の分解能を最大化しながら、0.5~3cc/分だけ流れる典型的なGCカラムに十分に高速に試料を移すことができない。上記技術を使用してトラップ又は移送される軽い化学物質は、注入時にGCカラムに堆積して動的に集束させることができず、むしろ、分析中に、より低い初期開始温度であっても、カラムを通って検出器に向かって移動し続けることができる。いくつかの実施形態では、この傾向は、注入が高速に完了すること、及び0.1ccの容積内で、最良のクロマトグラフィ解像度のために必要とされる。高速注入速度は、吸着剤床のサイズに起因して又は試料の初期容積に起因して、上記の試料導入技術を使用して可能でない場合がある。したがって、以下に記載される3つの技術を使用して、より速い注入速度を達成するために、化学分析の前に試料を集束させることができる。
【0007】
第1の集束技術は、数マイクロリットルの内容積を有する極低温トラップを含み、これは、試料中で、非常に低い濃度(例えば、試料1ccに対して50PPB未満若しくは5PPB未満、試料10ccに対して0.5cc、又は試料100ccに対して0.05PPB未満)で生じる標的化合物の分析に使用して、全ての化合物をGCカラムのヘッドにおいて「集束」することを可能にすることができる。得られた低容積は、1~2秒で完全に脱着されることができ、低減又は最小のバンド幅を可能にし、したがってGCカラム上のピーク分解能を改善することができる。
【0008】
しかしながら、この手法は、2つの問題を有し得る。第1に、液体窒素は、コスト及び安全性の懸念により、一部の研究室において好まれず、これらの理由及び他の理由では、多くの研究室は、単に液体窒素を使用することができない。
【0009】
第2に、液体窒素を使用する集束は、試料中の水分の全てを保持し、GC及びGCMS分析中に干渉を引き起こす。過剰な水(例えば、25℃における相対湿度100%のガス試料の約10cc以上)は、質量分析計内の信号を抑制する場合があり、多くの場合、ガスクロマトグラフィ中の化合物の分解能及びピーク形状にも影響を及ぼす場合がある。多くのガス試料はまた、極低温集束トラップを使用して除去されないことがある極量の二酸化炭素(CO2)を含有する可能性があり、これは、クロマトグラフィの問題と追加の検出器抑制とを引き起こす可能性がある。極低温集束を伴うこれらの問題のために、ほとんどの状況では、代替的な集束技術が望ましい。
【0010】
第2の集束技術は、例えば、1つ以上の吸着剤床を含むマイクロパックトラップを使用して、試料の容積を更に減少させ、続いて後続の加熱及びGCカラム上へのバックフラッシュを行うことを伴う。この種のトラップは、試料中の水及びCO2の量を低減することができ、注入容積を低下させることができるが、試料から全ての水分を除去するのに有効ではなく、毛管GCカラム上の最適なピーク幅を得るのに十分高速に試料を放出しないことがある。これらの欠点は、これらの吸着トラップ内の粒径が、マイクロパックトラップを通る妥当な流量を達成するために、毛管カラムの内面上に見られる粒径よりも、典型的には約10倍大きいために生じることができる。
【0011】
ほぼ球状の形状を仮定すると、マイクロパックトラップに含まれる吸着粒子の内部容積は、半径の立方体によって容積が変化するため、毛管カラムの壁部の内部容積よりも1000倍大きい程度であり得る。このより大きな粒子容積は、より高い脱着温度であっても、粒子から拡散するために化合物についてより長い時間を必要とし、これは、ひいてはピーク幅を増加させ、化学物質の最終5~20%がより大きな粒子から「ブリード」するため、望ましくないピーク「テーリング」を更に引き起こし得る。パックされたトラップに見られるより大きな粒子は、注入後に「システムベークアウト」の間にそれらを洗浄するために、より長い時間を更に必要とし、1000倍小さい内部容積を有する開放管状毛管カラムの壁上の小粒子よりも高濃度試料による汚染を受けやすい。
【0012】
第3の集束技術は、例えば、大抵の場合にカラム上への流れよりも10~100倍多い分割ポートからの流れを有するGCカラムの前方に分割ティを配置することによって、「分割」注入を行うことを含む。一例として、20倍の分割流は、2cc/分のキャリアガスが化学分離カラム上に流れるときに、分割ポートから流出する38cc/分のキャリアガスをもたらす。この例では、試料は、2cc/分の代わりに40cc/分の速度で注入され、合計4ccが初期収着材を介してちょうど6秒で脱着され、これは、初期吸着トラップから化学分離カラム上へのほぼ完全な移送を達成することができる。更に、20:1分割により、水蒸気及び他のマトリクス成分の95%が除去され、これは、クロマトグラフィの問題又は質量分析計における抑制の可能性を低減することができる。分割注入の好ましくない点は、試料の95%が分割ポートを介して廃棄され、より少ない試料が検出器に提供されるため、必要な検出限界に到達することをより困難にするということである。
【0013】
他の例として、試料を収集するために小さな繊維を使用する技術であるSPMEは、非常に多くの水を収集することができず、集束又は分割を伴わずに比較的高速に脱着することができるが、多くのマトリクスにおいて再現性が悪くなる恐れがあり、大抵の場合に関心のある軽い化学物質を回収することができない。
【0014】
したがって、水蒸気、いくつかの例ではエタノール及び/又はCO2を除去しながら、0.1cc以下のキャリアガスを使用してGCへの注入を可能にするのに十分低い試料容積を低減するための化学分析の分野における必要性が存在する。例えば、アルコール含有飲料を分析する際に、試料からエタノールを除去することが望ましい場合がある。試料容積が、0.1cc以下のGCキャリアガスに脱着されることを可能にする手段を使用して低減されると、試料は、分割注入を行うことなく化学分離カラムに高速に移送されることができ、これは、現在の分割注入技術の感度よりも10~50倍大きい感度をもたらすことができる。図1~4を参照して以下に記載される多段階毛管トラップ内の開放管状カラムの壁に使用される粒子は、パックされた微小収束トラップにおいて使用されるものよりも約1000倍少ない内部容積を有することができ、はるかに優れたクロマトグラフィ分解能をサポートするより高速な放出速度を可能にする。極低温又は電子冷却を必要とせずにこの機能を実行する集束及び水管理システムの実施形態を以下に説明する。
【発明の概要】
【0015】
これは、ガスクロマトグラフィ又はガスクロマトグラフ質量分析などによる、後続の化学分析のために試料を濃縮するシステム及び方法に関する。開示された手法は、ガスクロマトグラフィ(GC)などによる化学分析前の気相試料の容積を減少させ、揮発性化学物質の損失が低減されるとともに非常に良好な水分及びCO2排出を行う。毛管GCカラム上への注入速度は、分割注入を行うことなく、従来技術と比較して改善される。
【0016】
直列に接続された強度を増加させるいくつかの毛管カラムを含む複数毛管カラムトラップシステムMCCTSは、必要に応じて、-50℃から400℃以上などの広範囲の沸点にわたって、化学物質をトラップ及び「集束」するために使用される。化合物をより小さい容積に集束させた後、いくつかの実施形態では、MCCTSは、不活性ガス又は非反応性ガスなどのキャリア流体により、順流れ方向に実質的にパージされ、いかなる残りの空気又は水蒸気も部分的に、実質的に、又は完全に除去した後、MCCTSは、急速に加熱され、キャリア流体によってバックフラッシュされて、GCなどの化学分析装置への高速注入を提供する。MCCTSは、必要に応じて、0.5~3cc/分で動作する低流動毛管化学分離カラムへの試料の直接、分割なし注入を可能にするのに十分な容積を減少させる。
【0017】
いくつかの実施形態では、バンド幅を低減又は最小化するのに十分に急速に試料を注入する能力は、ガスクロマトグラフィなどの高分解能化学分析が追加の分割流なしで且つ感度を増加又は最大化することなく実施されることを可能にする。MCCTS前の露点制御領域は、必要に応じて、MCCTSを通過している間に水が飽和点に到達するのを防止し又は妨げ、集束及び水除去中の水凝縮の機会を低減又は排除する。いくつかの実施形態は、より大きい一次吸着トラップの熱脱着から得られる試料、試料ループから得られるガスの容積、テドラーバッグ若しくは他の容器から直接引かれたガス試料、又は他の供給源から得られる試料を集束させるために使用されることができる。いくつかの実施形態は、液体及び固体食品試料中の芳香、風味、及び香りの分析、数十ものガスサンプリング用途において使用されるテドラーバッグからの試料の分析、様々な合成及び天然製品における臭気の分析、並びに呼気、血液、尿、又は組織試料中の化学マーカ、薬物、又は代謝産物の分析のための、感度を最大化するためのVOCについての水及び汚れ試料の分析を含む、数十もの用途に使用されることができる。
【図面の簡単な説明】
【0018】
図1A】本開示のいくつかの実施形態にかかる例示的なシステムを示している。
図1B】本開示のいくつかの実施形態にかかる例示的なシステムを示している。
【0019】
図2】本開示の例にかかる例示的な拡散抽出装置を示している。
【0020】
図3A】本開示のいくつかの実施形態にかかる拡散試料抽出装置200を含む化学分析システムを示している。
図3B】本開示のいくつかの実施形態にかかる拡散試料抽出装置200を含む化学分析システムを示している。
【0021】
図4】本開示のいくつかの実施形態にかかるシステムを使用して試料を濃縮及び分析するための例示的なプロセスを示している。
【発明を実施するための形態】
【0022】
以下の説明では、本明細書の一部を形成し、実施することができる具体的な例を例示することによって示される添付図面を参照する。本開示の例の範囲から逸脱することなく、他の例を使用することができ、構造的変化を行うことができることを理解されたい。
【0023】
図1A~Bは、本開示のいくつかの実施形態にかかる例示的なシステム100を示している。システム100は、注入前の試料中の水及び任意の二酸化炭素を除去しながら、化学分離カラム(例えば、GCカラム)への急速で分割なしの注入のために脱着中に0.1ccのキャリアガスに放出されることを可能とする方法で試料を集束するために使用されることができる。
【0024】
図1A図1Bに示されるように、システム100は、必要に応じて、試料102と、露点制御領域104と、露点制御領域104に近接するファン106と、ヒータ122内に位置する6位置回転弁120と、第1のカラム112、第2のカラム114、及び第3のカラム116を含む複数毛管カラムトラップシステム(MCCTS)110と、MCCTS110に近接するファン118と、少なくとも2つの弁V2及びV5と、流量/容積制御部128と、電子圧力制御部(EPC)152と、GCカラムなどの化学分離カラム124と、MS又は他の適切な検出器などの検出器130とを含む。システム100は、システム100の1つ以上の構成要素の動作を制御するための非一時的コンピュータ可読媒体上に格納されたソフトウェア及び/又は命令を実行する1つ以上のプロセッサ(例えば、コントローラ、マイクロプロセッサ、コンピュータ、コンピュータシステムなど)(図示せず)を更に含むことができる。
【0025】
回転弁120は、試料及びキャリア流体が順流れ方向に露点制御領域104及びMCCTS110を通って前方に流れることを容易にする図1Aに示される第1の位置に構成されることができる。回転弁120はまた、MCCTSから化学分離カラム124及び検出器130への試料及びキャリア流体の逆流を容易にする図1Bに示される第2の位置に構成されることができる。いくつかの実施形態では、試料が化学分離カラム124に移送されると、回転弁120は、図1Aに示される第1の位置に構成されることができる一方で、MCCTS110及び露点制御領域104は、次の運転のためにシステム100を準備するために加熱されてバックフラッシュされる。
【0026】
0.2から50ccの範囲の容積を有する試料102は、必要に応じて、図1A~Bに示されるようにシステム100内に導入される。試料102は、必要に応じて、気相試料である。この気相試料は、大容積ループを含むいくつかの供給源のうちの1つから、直接気体容器から、動的にサンプリングされた吸着トラップ(例えば、パージ及びトラップ又は他のもの)から、SPMEなどの拡散抽出装置から、又は抽出後に試料も保持する拡散真空抽出装置(例えば、図2図4を参照して以下に記載される)VASE又は他のもの)から導出されることができる。例示的な拡散抽出装置が図2図3を参照して以下に説明される。拡散抽出装置及び他の種類の吸着トラップを含む吸着トラップは、(例えば、図3A~Bに示されるEPC358によって制御されることができる)キャリア流体の流れを開始する前に予熱されることができる。いくつかの実施形態では、予熱は、それが保持される吸着剤から試料102を脱着するために必要な脱着ガスの容積を低減又は最小化する。
【0027】
いくつかの実施形態では、試料源から試料120を脱着又は送達すると、0.2から50ccの試料が露点制御領域104を通って流れる。露点制御領域104は、必要に応じて、加熱器又は他の温度制御された領域内に配置された不活性チューブ管又は他のカラムを部分的に、実質的に、又は完全に含む。露点制御領域104のチューブは、2から24インチ(0.05から0.6メートル)の範囲の長さを有することができる。それらのカラムの長さは、11から120インチ(0.3から3メートル)とすることができるため、この長さは、以下に記載されるMCCTS110に含まれるカラムの長さよりも短くすることができる。いくつかの実施形態では、露点制御領域104のチューブは、分析者にとって関心がない重い化合物をトラップするように構成された弱いコーティング(例えば、ポリジメチルシロキサン)を含むことができる。これらのトラップされた重い化合物は、後述するように、露点制御領域104の加熱されたバックフラッシュ中に除去されることができる。露点制御領域104に近接するファン106は、システム100の動作に応じて、露点制御領域104を高温(例えば、システムからの最終ベークアウト中に100から300℃の範囲の温度)から冷却器温度(例えば、試料を試料源からMCCTS110に移送してプロセスにおいて過剰な水を除去するとき、25から35℃の範囲の温度)まで冷却するように必要に応じて動作可能である。
【0028】
試料が試料容器から引き出されるか又は脱着されるとき、露点制御領域は、必要に応じて、25~35℃の範囲の温度である。いくつかの実施形態では、露点制御領域104のチューブ又はカラムは、露点制御領域104内の気相に維持されることができる水の量を制限することができる。いくつかの実施形態では、過剰な水は、MCCTSトラップ110に続く試料の化学物質の残りの部分から一時的又は恒久的に分離されることができる。過剰な水は、関心のある全ての化合物が化学分離カラム124に移送されると、システムがベークアウトされるまで、露点制御領域104内に留まることができる。システムベークアウトの間、加熱器は、露点制御領域104を100℃よりも高く加熱して水を蒸発させることができ、それを試料入口102に向かって逆方向に流すことを可能にする。追加的に又は代替的に、V2は、試料を化学分離カラム124に移送する前に、水蒸気及び空気をMCCTS110から押し出す間に、露点制御領域104から水蒸気を押し出すためにオンにされることができる。
【0029】
MCCTS110は、必要に応じて、最も弱いカラム112を最初に且つ最も強いカラム116を最後にして吸着強度のために直列に配置された、大きい孔毛管カラムとすることができる複数の開放管状毛管カラム112、114、及び116を含む。いくつかの実施形態では、MCCTS110は、2又は4カラムなどの異なる数の開放管状毛管カラムを含む。MCCTS110は、一般に1つのカラムを含む露点制御領域104のカラムの数よりも多くのカラムを含む。化学的親和性を増加させる複数カラムの使用は、いくつかの実施形態では、MCCTS110が広範囲の試料化合物をトラップすることを可能にする。いくつかの実施形態では、各ステージは、それに進むステージよりも3から30倍強い親和性を有する(例えば、カラム114は、カラム112よりも3から30倍強く、カラム116は、カラム114よりも3から30倍強い)。カラム114、116、及び118は、必要に応じて、十分に濃縮されたトラップされた化学物質を保持して、化学分離カラム124への高速注入を可能にするように十分に短い。例えば、カラム112、114、及び116は、11から120インチ(0.3から3メートル)の範囲の長さを有することができる。したがって、MCCTS110の総組み合わせ長さは、0.3から3メートルとすることができる。一例として、カラム112は、0.5mのPDMS WCOT(壁コーティングされた開放管状)カラムとすることができ、カラム114は、0.5mmのPLOT Q(多孔質層の開放管状)カラムとすることができ、カラム116は、0.5mの炭素分子ふるいPLOTカラムとすることができる。上述したコーティングと同様の保持強度を有する他のカラムは、適切な代替である。化学分離カラム124上のピーク幅を低減又は最小化するために高速注入速度を必要とすることができ、それにより、より高い信号対雑音比を有するクロマトグラム中のより高いピークを提供するとともに、ピークが互いから分離又は分解されて、識別及び定量化をより信頼性及び正確にすることを可能にする。より高速な注入速度及びカラム上の狭いピークはまた、ピークを互いに完全に分解するために、より少ないピーク重心の分離を必要とすることができ、より短いカラムを使用して、続いてより高速な分析時間を可能にする。
【0030】
露点制御領域104からMCCTS110への試料120の移送中、MCCTS110は、露点制御領域104の温度よりも5~10℃高い温度とすることができる。いくつかの実施形態では、この温度差は、水蒸気が凝縮することなくMCCTS110を通過するように、MCCTS110内部の水蒸気を気相中に留まらせる。MCCTS110中に試料をトラップした後、ヘリウムなどの追加の少量のキャリア流体は、MCCTS110を介してパージされ、固定ガス(例えば、空気、CO2など)及び任意の残留水蒸気を除去して、試料中の水分の部分的、実質的、又は完全な排出を達成することができる。MCCTS110がこのようにしてパージされるとき、分析のための1つ以上の標的化合物は、MCCTS110上に必要に応じて残存する。
【0031】
回転弁120が図1Aに示される位置にある間、露点制御領域104からMCCTS110へと通過する容積は、流量制御部128によって制御されることができる。いくつかの実施形態では、流量/容積制御部128は、質量流量制御部などの時間積分流量制御部、脱着が設定時間だけ生じる固定制限器、又は流量制限器、圧力センサ、及び圧力の変化が既知の脱着量と容易に等しいとみなされる場合の既知の容積のリザーバの組み合わせなどとすることができる。試料102から必要な容積を収集した後、ヘリウムなどの乾燥ガスが、弁V2を開放することによって露点制御領域104の後段であり且つMCCTS110の前段とすることができる接合部152に導入されることができる。乾燥ガスの流れは、水分、CO2、又はMCCTSトラップ110内に残された空気の残部を、GCへの脱着前にパージすることができる。乾燥ガスはまた、凝縮水を除去するためにバックフラッシュ及び加熱しながら、露点制御領域をバックフラッシュするために使用されることもできる。弁を移動させる直前に、及び図1Aに示す構成では、MCCTSトラップ110は、改善された又は最適なクロマトグラフィ分解能を達成するために試料102の化学分離カラム124への注入速度を増加させるように流れのない状態で予熱されることができる。
【0032】
回転弁120が図1Bに示される位置に移動されるとき、MCCTSトラップ110は、化学分離カラム124上への試料の急速な分割なし注入を行いながら、化学分離カラム124にバックフラッシュされることができる。MCCTSトラップ110からの脱着は、最も重い化合物が注入されることを確実にするために30秒間ほど発生することができ、より高揮発性化合物が数秒以内に注入されて、GCカラム上のバンド幅を最小限に抑えることができる。
【0033】
注入後、回転弁120は、図1Aに示すように負荷位置に戻されることができ、V5は、MCCTSトラップ110及び露点制御領域104をバックフラッシュしながら、双方が加熱されるようにオンにされることができる。バックフラッシュが完了した後、MCCTSトラップ110及び露点制御領域104は、それらの開始温度まで冷却されることができる。いくつかの実施形態では、2つの領域を冷却すると、システム100は、次の試料の集束を開始することができるとともに、GC又はGCMSは、以前に注入された試料を分析して試料の処理量を増加させ、改善された実験室の生産性をもたらすことができる。試料の所与のバッチ中の全ての試料が分析されるまで、集束及びトラップ動作が繰り返されることができる。
【0034】
前述したように、図1A~Bに示される試料102は、様々な方法で収集されることができる。例えば、試料102は、大容積ループから、直接気体容器から、動的にサンプリングされた吸着トラップ(パージ及びトラップ又は他のもの)から、又は拡散的にサンプリングされた吸着トラップ(VASE又は他のもの)から導出されることができる。いくつかの実施形態では、試料102は、真空支援型吸着剤抽出(VASE)装置などの拡散試料抽出装置を使用して収集されてシステム100に送達される。ここで、本開示のいくつかの実施形態にかかる例示的な拡散試料抽出装置200が図2図3を参照して説明される。
【0035】
図2は、本開示の例にかかる例示的な拡散抽出装置200を示している。一例として、拡散抽出装置200は、1/32インチから3/8インチの直径(例えば、試料抽出装置の外径又は内径)を有することができる。いくつかの例では、他の寸法が可能である。拡散抽出装置200は、後述するように、様々なチャネル及び/又は空洞を含む、管状構造を含むことができる。いくつかの例では、拡散抽出装置200は、ステンレス鋼又は他の適切な材料(例えば、実質的に不活性である材料)から作製されることができる。拡散抽出装置200の表面の全て又は一部は、例えば拡散抽出装置200の不活性を高めるために、化学蒸着(CVD)-蒸着セラミックによってコーティングされることができる。拡散抽出装置200の不活性化を同様に高める他のコーティングが同様に使用されることができる。
【0036】
拡散抽出装置200は、下部空洞220を含むことができる。いくつかの例では、下部空洞220は、例えば、吸着剤及び/又は吸収剤を含むことができる1つ以上の吸着剤202を含むことができる。吸着剤は、例えば、Tenax又はTenax TAなどの高分子吸着剤、非晶質炭素吸着剤、ポリジメチルシロキサン(PDMS)、PLOT Q、及び/又は炭素分子ふるいからの組成物の範囲の0.53mm ID多孔質層開放管状(PLOT)カラムの短片、又は拡散抽出装置200によって収集される試料に基づいて選択されることができるいくつかの他の吸着剤とすることができる。以下に記載されるように、いくつかの例では、吸着剤202は、分析用試料を収集するために選択されることができる。いくつかの例では、吸着剤202は、拡散抽出装置200の抽出端212に向かって位置することができる。すなわち、吸着剤202は、拡散抽出装置の弁端214よりも拡散抽出装置200の抽出端212に近くすることができる。試料抽出中、拡散抽出装置200の抽出端212は、以下により詳細に記載されるように、収集される試料が下部空洞220に入ることができ、吸着剤202を吸着又は吸収することができるように、試料抽出装置の環境に対して開放されることができる。
【0037】
拡散抽出装置200の弁端214(例えば、拡散抽出装置200の反対の抽出端212)では、拡散抽出装置200は、例えば、封止プランジャ204と、ばね205と、内部シール206とを含むことができる。内部シール206は、例えば、フルオロエラストマーシール、ペルフルオロエラストマーシール、又は任意の他の適切なシールとすることができる。いくつかの例では、封止プランジャ204及び内部シール206は、封止プランジャ204/内部シール206と下部空洞220/吸着剤202との間の内部チャネル230を流れる流体(例えば、気体、液体など)を選択的に制限することができる。例えば、封止プランジャ204がシール206に押し付けられると、拡散抽出装置200を通る流体の流れは制限されてもよく、封止プランジャ204がシール206から離れるように移動されるかあるいは分離されると、拡散抽出装置200を通る流体の流れは制限されなくてもよい。いくつかの例では、デフォルト構成では、封止プランジャ204がシール206に対して押し上げられ且つ拡散抽出装置200を通る流体の流れが制限されることができるように、封止プランジャ204は、シール206に対してばね205を介して張力をかけられることができる。いくつかの例では、ばね205は、化学蒸着(CVD)プロセスを使用して、セラミック材料によってコーティングされた316ステンレス鋼などの非反応性材料から作製されることができる。拡散抽出装置200を通る流体の流れ(例えば、真空源に引き込まれる空気)は、(例えば、上記からのピンなどの機械的手段、又は他の手段を介して)封止プランジャ204をシール206から離れるように移動させることによって可能とされることができる。例えば、真空源は、弁端214において拡散抽出装置200に連結されて、封止プランジャ204を開放し、封止プランジャ204、内部チャネル230、及び下部空洞220を介して真空を引き込むことができる。更に、いくつかの例では、封止プランジャ204は、試料から吸着剤202を介して、水又はアルコールなどの望ましくないマトリクスを蒸発させるために、(例えば、連続真空排気中に)開放したままとすることができる。
【0038】
一例として、試料が拡散抽出装置200内に収集されることができる試料抽出プロセス中に、下部空洞220内の吸着剤202による試料収集を容易にするために、真空が封止プランジャ204、内部チャネル230及び下部空洞220を介して引き込まれることができる。試料が拡散抽出装置200によって収集された後、封止プランジャ204は、閉じたままとすることができ(例えば、試料収集中とすることができるため)、試料を環境から隔離することができ、抽出と分析との間で試料を拡散抽出装置200内に保管することを可能とする。例えば、ばね205は、封止プランジャ204を開放するための機械的力の非存在下で封止プランジャ204を閉じたままにさせることができる。
【0039】
図1A~Bを参照して上述した化学分析プロセスなどの化学分析プロセス、又は図3図4を参照して以下に記載される化学分析プロセスの間、キャリア流体は、ポート232を介して内部チャネル230及び下部空洞220内に引き込まれることができるとともに、試料を脱着することができる(例えば、露点制御領域104を介して)。いくつかの例では、ポート232は、下部空洞220及び拡散抽出装置200の外側と流体連通するチャネルとすることができる。好ましくは、ポート232の開放端部は、例えば、拡散抽出装置200が他の物体(例えば、脱着装置又は試料バイアル)に対して封止されるときにポート232が封止されることができるように、外部シール208の間に配置されることができる。いくつかの例では、拡散抽出装置200上のポート232の他の位置が可能である。
【0040】
拡散抽出装置200は、例えば、1つ以上の外部シール208を更に含むことができる。外部シール208は、エラストマ材料から作製されることができ、フルオロエラストマーシール又はペルフルオロエラストマーシールとすることができる。いくつかの例では、外部シール208は、Viton(商標)シール又は他の適切なシールとすることができる。外部シール208は、端部212と214との間において拡散抽出装置200上に外部に配置されることができる。外部シール208は、例えば、拡散抽出装置200の外側の周囲に取り付けられた1つ以上のガスケット又はOリングを含むことができる。いくつかの例では、外部シール208は、拡散抽出装置200と、試料抽出プロセス中に拡散抽出装置200が挿入されることができる試料バイアルとの間にシールを形成するために、及び/又は拡散抽出装置200と、図3図4を参照して以下に記載される化学分析プロセスの一部などの試料脱着プロセス中に拡散抽出装置200が挿入されることができる脱離装置354との間にシールを形成するために使用されることができる。
【0041】
図3A~Bは、本開示のいくつかの実施形態にかかる拡散試料抽出装置200を含む化学分析システム300を示している。システム300は、図1A~Bを参照して上述したシステム100に関して説明したものと同じ方法で機能するシステム100に含まれる多くの同じ部品を含むことができる。簡潔にするために、それらの詳細は、ここでは全て繰り返されない。
【0042】
図3A~Bに示されるように、システム300は、必要に応じて、拡散抽出装置200(例えば、試料102と必要に応じて同様の試料を含む)と、露点制御領域304(例えば、露点制御領域104と同様)と、露点制御領域304に近接するファン306(例えば、ファン106と同様)と、加熱器322(例えば、加熱器122と同様)に位置する6位置回転弁320(例えば、回転弁120と同様)と、第1のカラム312、第2のカラム314、及び第3のカラム316を含む複数毛管カラムトラップシステム(MCCTS)310(例えば、MCCTS110と同様)と、MCCTS310に近接するファン318(例えば、ファン118と同様)と、少なくとも5つの弁V1、V2、V3、V4、及びV5と、流量/容積制御部328(例えば、流量/容積制御部128と同様)と、電子圧力制御部(EPC)352(例えば、EPC152と同様)と、GCカラムなどの化学分離カラム324(例えば、化学分離カラム124と同様)と、MS又は他の適切な検出器などの検出器330(例えば、検出器130と同様)とを含む。いくつかの実施形態では、システム300は、必要に応じて、熱脱着装置354と、キャリア流体を供給することができるEPC358と、分割制御部356とを更に含む。システム300は、システム300の1つ以上の構成要素の動作を制御するための非一時的コンピュータ可読媒体上に格納されたソフトウェア及び/又は命令を実行する1つ以上のプロセッサ(例えば、コントローラ、マイクロプロセッサ、コンピュータ、コンピュータシステムなど)(図示せず)を更に含むことができる。
【0043】
システム300は、必要に応じて、「バイアル内」拡散試料濃縮技術のための集束装置として機能する。試料抽出中、液体又は固体試料中の化学物質は、設定時間だけ拡散抽出装置200の吸着剤へと移送され、これは、多くの化学物質をほぼ100%まで抽出することができる。試料抽出プロセスは、試料バイアル上に真空を配置することによって加速されることができ、これは、図2を参照して上述したように、拡散抽出装置200の弁端214に真空源を連結することなどにより、拡散抽出装置200の吸着剤を介して行われることができる。真空を使用する場合、この手順は、「真空支援型吸着剤抽出」、又はVASEとして記載されている。
【0044】
試料抽出後、必要に応じて吸着剤ペンと呼ばれる拡散抽出装置200は、熱脱着装置354に挿入される。拡散抽出装置200を予熱すると、ヘリウム又は窒素などの不活性ガス(例えば、EPC358によって制御される)は、開口V1によって拡散抽出装置200を介して導かれ、トラップされた化学物質を任意の同時収集された水とともに回収する。過剰な水は、露点制御領域304内で凝縮するとともに、脱着された試料の残りは、MCCTS集束部310に流れてそれによって保持される。V2を介して乾燥ヘリウムを使用してMCCTS集束部310から残りの水をパージした後且つ接合部352を介して送達されるとき、MCCTS集束部は、図3Bに示されるように、GC又はGCMSへの分割なし注入に影響を及ぼすように、6ポート2位置弁を回転させる前に、ゼロ流量下で予熱されることができる。
【0045】
図4は、本開示のいくつかの実施形態にかかるシステム100又は300を使用して試料を濃縮及び分析するための例示的なプロセス400を示している。いくつかの実施形態では、非一時的コンピュータ可読媒体上に格納されたソフトウェア及び/又は命令を実行する1つ以上のプロセッサ(例えば、コントローラ、マイクロプロセッサ、コンピュータ、コンピュータシステムなど)(図示せず)は、プロセス400を実行するとき、システム100又は300の1つ以上の構成要素の動作を制御することができる。
【0046】
いくつかの実施形態では、試料が取得される(402)。試料は、必要に応じて、バイアルのヘッドスペース内などの拡散抽出装置200を使用してトラップされる。トラップ後、図3A~Bに示されるように、拡散抽出装置200は、熱脱着装置354に挿入されることができる。いくつかの実施形態では、上述したものなどの他のトラップ技術が可能である。
【0047】
試料(例えば、試料102又は拡散抽出装置200内に保持された試料)がシステム100又は300に結合されると、試料は、必要に応じて、非流動状態下で予熱されて、露点制御領域104又は304及びMCCTS110又は310へのより高速な放出を可能とする(404)。予熱温度は、100から300℃とすることができる。いくつかの実施形態では、試料を加熱することは、拡散抽出装置200が挿入される熱脱着装置354を加熱することを備える。
【0048】
試料は、図1A~Bに示されるように、ヘリウムなどの不活性ガスとすることができる(例えば、EPC358によって制御される)キャリア流体を使用して、拡散抽出装置200から又は他の試料容器から脱着される(406)。試料を脱着するために、V1はオンにされ、流量/容積制御システム128又は328は、拡散抽出装置200を介して又はシステム100によって使用される他の試料容器を介して(又は記載されるように、気相試料の場合には、試料容器から)脱着されるガスの容積を測定するためにオンされる。いくつかの実施形態では、ガス試料が、テドラーバッグ、キャニスタ、気相プロセスストリーム、又は液体若しくは固体上の気体状ヘッドスペース(例えば、ガス試料が吸着剤に保持されていない場合)に保持される場合などには、試料は、キャリア流体を使用して脱着されない。むしろ、そのような実施形態では、試料は、例えば、非保持ガス(例えば、固定ガス及び非凝縮水蒸気)の容積を測定することができる流量/容積制御部128又は328を使用して、露点制御領域104及びMCCTS110を介して引き込まれる。露点制御領域104又は304及びMCCTS110又は310を介して試料を引くことは、多くの試料が大気圧更には大気圧未満であり、ガスの大量移送をもたらすために高圧から低圧まで差圧が必要とされるため、真空ポンプを必要とすることができる。すなわち、システム100又は300は、必要に応じて、この目的のために、流量/容積制御部128又は328の位置に真空ポンプを含む。これらの実施形態におけるガス試料は、それ自体「脱着されていない」が、ステップ406は、流量/容積制御部128又は328、及び場合によっては記載されるような真空ポンプを使用して試料容器から気相試料を引くことによって試料容器から試料を移送することを含むことを理解されたい。試料の揮発性化学物質は、露点制御領域104又は304を通過することができる。このとき、露点制御領域104又は304は、必要に応じて、25~35℃の温度である。いくつかの実施形態では、露点制御領域104又は304の温度は、試料中に含まれる過剰な水を凝結させ、これは、MCCTS110又は310における凝縮を防止する。
【0049】
いくつかの実施形態では、露点制御領域104又は304及びMCCTS110又は310は、試料を集束する(408)。露点制御領域104又は304は、必要に応じて、水がMCCTS110又は310に送られることができる速度を調整する。例えば、露点制御領域104又は304が25℃の温度にある場合、相対湿度は、25℃において100%に調整され、過剰な水が少なくとも一時的に凝縮する。露点制御領域104又は304からの流出物は、回転弁120又は320を介してMCCTS110又は310に送達されることができ、これは、典型的には露点制御領域104又は304の温度よりも5~10℃高い温度に保持されるが、大抵の場合に10℃高い温度で保持される。例えば、露点制御領域104又は304が25℃の温度であり、MCCTS110又は310が35℃の温度である場合、ガス流の相対湿度は、露点制御領域104又は304内の最大100%相対湿度から、MCCTS中の水の任意の凝縮を防止するのに十分に低い、MCCTS110又は310においてちょうど55%~70%相対湿度まで低下する。
【0050】
流れは、必要に応じて、MCCTS310における収集により、露点制御領域304を介して揮発性化学物質の全てを移送するために必要な限り継続する。いくつかの実施形態では、この移送は、4~20ccのガスを必要とするが、回収するのに重要な化学物質に応じて、より多量のガスをMCCTSに通過させることができる。すなわち、最も軽い化学物質の回収が重要ではない場合、50cc以上までの容積を回収することができる。MCCTS310において使用される毛管カラム312、314、及び316は、それらの長さ及び強度(例えば、試料中の関心のある1つ以上の化合物に対する化学的親和性)が、脱着時の高速な放出を可能にしながら、関心のある全ての化合物を保持するように選択される。
【0051】
いくつかの実施形態では、MCCTS110又は410中に試料をトラップした後、MCCTS110又は410は、水蒸気及び/又はCO2及び/又はエタノールからパージされる。露点制御領域104又は304を通る流れは、必要に応じて停止され、そして、弁V2は、必要に応じてオンにされて、MCCTS110又は310を介して、乾燥ヘリウムなどの不活性ガスを送る。このプロセス中、不活性ガスの流れは、10ccほどの不活性ガスを使用して、依然としてMCCTS110又は310上で残りの水及び/又はCO2及び/又はエタノールを追い払う。
【0052】
全ての容積は、分析についての関心のある最も軽い化合物のブレイクスルーを防止するのに十分低いままとすることができる。試料が高濃度のアルコールを含有するいくつかの実施形態では、より大量の不活性ガスを使用して、化学分離カラム324に注入する前に、エタノール及び他のアルコール並びに水蒸気及びCO2を除去することができる。あるいは、他のカラム又はカラム長がMCCTS110又は310内で選択され、エタノールのより容易な除去を可能とするとともに、関心のある他の化合物を保持することができる。例えば、最も強い化合物親和性を有する最後のカラムは、短縮又は排除のいずれかとすることができ、第1の2つのステージは、GCアップ注入にバックフラッシュする前に、関心のある全てのより重い化合物を保持しながら、エタノールをより容易に除去することを可能にするように潜在的に増加される。
【0053】
以下に記載されるように試料を化学分離カラム124又は324に移送する前に、化学分析器(例えば、化学分離カラム124又は324及び/又は検出器130又は330のうちの1つ以上を含むシステム100又は300のサブシステム)は、準備完了信号を生成する(412)。準備完了信号が生成されるまで、全ての流れが必要に応じて停止される。いくつかの実施形態では、化学分析器は、GC、GCMS、又は行われる分析に適切な他の化学分析器を含む。
【0054】
化学分析器が標準的な接触近接準備完了信号を提供するとき、MCCTS110又は310は、それを通って流れるガスがない注入温度(例えば、100から300℃)まで予熱される(414)。このようにしてMCCTS110又は310を予熱することは、脱着流れが導入されると、非常に高速な注入速度を可能にすることができる。MCCTS110又は310をその予熱温度まで加熱する間、回転弁120又は320は、図1B又は図3Bに示される他の流れ状態に移動される。
【0055】
いくつかの実施形態では、MCCTS110又は310がその予熱温度に留まる間、試料は、化学分離カラム124又は324に移送される(416)。図1B又は図3Bに示される流れ状態の回転弁120又は320を用いて、MCCTS110又は310は、必要に応じて、キャリア流体を使用してバックフラッシュされて、濃縮された試料を迅速に化学分離カラム124又は324に、次いで検出器130又は330に送達する。検出器130又は330は、化学分析を実施するために化学分離カラム124又は324を出る化合物を検出する(418)。
【0056】
いくつかの実施形態では、化学分離カラム124又は324に、次いで検出器130又は330に送達される試料の量を低減する目的で、回転弁120又は320と化学分離カラム124又は324との間に追加の分割ティを追加することができる。いくつかの実施形態では、このように分割することは、システム100又は300が化学分離カラム124若しくは324又は検出器130若しくは330をオーバーロードすることなく、より大きな試料濃度を分析することを可能にすることができる。しかしながら、分割は、迅速な注入速度を得るために又は水を除去するためには必要とされない。化学分離カラム124若しくは324又は検出器130若しくは330のオーバーロードはまた、分析される元の試料の希釈又は使用、及び化学分離カラム124又は324の前の分割ティの取り止めによって防止されることもできる。
【0057】
試料を化学分離カラム124又は324に注入した後、回転弁120又は320は、必要に応じて、図1A又は図3Aに示す流れ構成に戻される。弁V5は、必要に応じて、MCCTS110又は310を更にバックフラッシュしてベークアウトするためにオンにされ(420)、V3は、次の分析の準備において、システム100又は300からいかなる残りの水又は試料マトリクスも除去するために、100℃を超えて露点制御領域304を加熱する間オンされる。いくつかの実施形態では、MCCTS110又は310及び露点制御領域104又は304は、ベークアウト中に100から300℃の範囲の温度まで加熱される。V3は図1A図1Bには示されていないが、いくつかの実施形態では、システム100は、この目的のために同様に配置された弁を含む。
【0058】
ベークアウト期間の後、露点制御領域104又は304及びMCCTS110又は310は、再び、それらのトラップ温度まで冷却され(422)、化学分析装置が注入される次の試料の準備完了信号を送信するまで、次の試料、又は較正基準、又はブランクがMCCTS310上に脱着されて保管される。プロセスは、全ての試料が分析されるまで繰り返されることができる。前の試料が作動している間に注入のために次の試料を準備する能力は、実験室生産性を増加させる。
【0059】
本開示の実施形態は、GC及びGCMSなどによって揮発性化合物を測定する多くの分析技術を改善するために使用されることができる。具体的には、EPA法502.3、524.3、8260C、及びその他の方法は、現在の方法がより低いレベルの検出において精度を低下させ、状況によっては必要とされる感度をほとんど達成しないため、非常に有益であろう。GCなどの化学分析器に注入する前にパージ及びトラップから到来する試料を集束するためのシステム100などの本開示の実施形態の使用は、通常の30:1の分割が、急速な注入を得るためにもはや必要とされないことを意味し、そのため、システム100又は300を使用する検出限界は、完全に30倍下げることができ、これは、現在の分析装置に対する感度の大幅な増加である。記載されたVASE技術は、水分析のためのパージ及びトラップの代わりに使用され、分析される水の量に応じて感度を同様に4~40倍増加させ、性能を改善し、パージ及びトラップシステムに対するシステム設計及びメンテナンスを簡略化することができる。0.25~5ccのループを使用するより大きな容積のループ注入システムは、毛管GCに直接注入するには大きすぎる可能性があるが、従来の液体窒素の再集束を使用することなく、迅速な注入速度を提供するためにシステム100を使用して集束されることができる。テドラーバッグ又はキャニスタなどの全空気サンプリング容器は、集束トラップを介して1~50ccを引くことによって分析されることができ、注入前にCO2及び水を排除しながら、検出限界を大幅に低下させることができる。多くの食品及び風味用途は、-50℃から+100℃の化合物が注入時に試料の大部分を分離する必要なく集束されることができる場合に強化される。嗅覚検出限界を考慮すると、多くの重要な臭気及び芳香化合物について兆レベルあたりの低い部分に到達することができ、これらの化合物を集束する分割なし注入技術は、試料から過剰な水分を除去しながら、風味化学物質、ワイン及びビール化学物質、芳香剤化学物質、及び多くのその他のものがこれまで不可能だったレベルまで定量化することができるようにする。本開示の実施形態はまた、既存の動的ヘッドスペースシステムに連結して、注入前に追加の集束を可能にすることができる。より良好な正確さ及び精度でより低い検出限界に到達することは、常に新たな分析技術の目標であり、本開示の実施形態は、その方向への大きな飛躍を提供する。
【0060】
したがって、上述したシステム100及び300並びに方法400は、分析前に試料を濃縮して富化するとともに、試料を化学分離カラム124又は324に移送する前に、水、二酸化炭素、及び空気を除去する。システム100及び300は、低温集束部、冷媒ベースの冷却システム、焼結冷却器、ペルチェ冷却器、又は他の電子冷却装置などの、システムを準周囲温度(例えば、20℃以下)に冷却する任意の構成要素を必要としない。
【0061】
したがって、上述した実施形態は、いくつかの実施形態では、分割注入の必要性を伴わずに、化学分析の前に試料をトラップ及び集束するためのシステム及び方法を提供する。
【0062】
いくつかの実施形態では、化学分析システムは、弁システムと、第1の端部及び第2の端部を有するチューブを備える露点制御領域であって、露点制御領域チューブの第1の端部が試料源に流体連結され、露点制御領域の第2の端部が弁システムに連結された露点制御領域と、複数毛管カラムトラップシステム(MCCTS)であって、第1の端部及び第2の端部を備え、MCCTSの第1の端部が弁システムに流体連結されたMCCTSと、第1の端部及び第2の端部を有する化学分離カラムであって、化学分離カラムの第1の端部が弁システムに流体連結された化学分離カラムと、化学分離カラムの第2の端部に連結された検出器とを備え、弁システムは、第1の期間中、露点制御領域チューブの第2の端部をMCCTSの第1の端部に連結し、第1の期間の後の第2の期間中、MCCTSの第1の端部を化学分離カラムに連結するように構成される。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、試料は、露点制御領域の第1の端部からMCCTSの第2の端部へと順方向に流れ、第2の期間中、試料は、MCCTSの第2の端部からMCCTSの第1の端部へと逆方向に流れる。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、露点制御領域は、摂氏25から35度の範囲の温度であり、MCCTSは、露点制御領域の温度よりも摂氏5から10度だけ高い温度であり、第2の期間中、MCCTSは、摂氏100から300度の範囲の温度である。追加的に又は代替的に、いくつかの実施形態では、化学分析システムは、摂氏25度以上の温度で動作するように構成される。追加的に又は代替的に、いくつかの実施形態では、化学分析システムは、システムの任意の部分を準周囲温度まで冷却するための手段を含まない。追加的に又は代替的に、いくつかの実施形態では、MCCTSは、MCCTSの第1の端部にある第1の端部及び第2の端部を有する第1の毛管カラムであって、試料の1つ以上の化合物に対する第1の親和性を有する第1の毛管カラムと、第1の毛管カラムの第2の端部に流体連結される第1の端部と、MCCTSの第2の端部にある第2の端部とを有し、試料の1つ以上の化合物に対する第1の親和性よりも大きい試料の1つ以上の化合物に対する第2の親和性を有する、第2の毛管カラムとを備える。追加的に又は代替的に、いくつかの実施形態では、化学分析システムは、試料源を保持するように構成された熱脱着装置を更に備え、熱脱着装置は、試料源と露点制御領域の第1の端部との間の流体連結を提供するように構成される。追加的に又は代替的に、いくつかの実施形態では、露点制御領域のチューブは、不活性毛管チューブを備える。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、露点制御領域の相対湿度は、MCCTSの相対湿度よりも高い。追加的に又は代替的に、いくつかの実施形態では、試料源によって保持されている間、試料は、第1の量の水蒸気を含み、MCCTSによって保持されている間、試料は、第1の量の水蒸気未満の第2の量の水を含む。
【0063】
いくつかの実施形態では、方法は、化学分析システムの露点制御領域のチューブ内で、化学試料に含まれる水の一部を凝縮させることと、第1の期間中、化学試料の1つ以上の化合物を試料源から露点制御領域の毛管チューブ及び化学分析システムの複数毛管カラムトラップシステム(MCCTS)に移送することと、第2の期間中、化学試料に含まれる水の一部を化学分離カラムに移送することなく、化学試料の1つ以上の化合物をMCCTSから化学分析システムの化学分離カラムに移送することとを備える。追加的に又は代替的に、いくつかの実施形態では、露点制御領域のチューブ内で凝縮する化学試料中に含まれる水の一部は、過剰な水を含む。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、化学分析システムの弁システムによって露点制御領域の第2の端部をMCCTSの第1の端部と連結させることであって、化学試料が第1の期間中にMCCTSの第1の端部からMCCTSの第2の端部へと順方向に流れることと、第2の期間中、化学分析システムの弁システムによってMCCTSの第1の端部を化学分離カラムと連結させることであって、化学試料が第2の期間中にMCCTSの第2の端部からMCCTSの第1の端部へと逆方向に流れることとを備える。追加的に又は代替的に、いくつかの実施形態では、MCCTSは、MCCTSの第1の端部にある第1の端部及び第2の端部を有する第1の毛管カラムであって、試料の1つ以上の化合物に対する第1の親和性を有する第1の毛管カラムと、第1の毛管カラムの第2の端部に流体連結される第1の端部と、MCCTSの第2の端部にある第2の端部とを有する第2の毛管カラムであって、試料の1つ以上の化合物に対する第1の親和性よりも大きい試料の1つ以上の化合物に対する第2の親和性を有する第2の毛管カラムとを備える。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、露点制御領域は、摂氏25から35度の範囲の温度であり、MCCTSは、露点制御領域の温度よりも摂氏5から10度だけ高い温度であり、第2の期間中、MCCTSは、摂氏100から300度の範囲の温度である。追加的に又は代替的に、いくつかの実施形態では、化学分析システムは、方法が実行されている間、摂氏25度以上の温度である。追加的に又は代替的に、いくつかの実施形態では、化学分析システムは、システムの任意の部分を準周囲温度まで冷却するための手段を含まない。追加的に又は代替的に、いくつかの実施形態では、本方法は、化学試料中に含まれる水蒸気の一部を凝縮する前に、吸着剤内に化学試料を保持することと、吸着剤からの化学試料を熱脱着装置によって脱着することとを更に備える。追加的に又は代替的に、いくつかの実施形態では、露点制御領域のチューブは、不活性毛管チューブを備える。追加的に又は代替的に、いくつかの実施形態では、第1の期間中、露点制御領域の相対湿度は、MCCTSの相対湿度よりも高い。
【0064】
添付の図面を参照して例が完全に説明されてきたが、様々な変形及び変更が当業者にとって明らかとなることに留意されたい。そのような変形及び変更は、添付の特許請求の範囲によって定義される本開示の例の範囲内に含まれるものとして理解されるべきである。
図1A
図1B
図2
図3A
図3B
図4