IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ナティアスの特許一覧

特許7075681立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法
<>
  • 特許-立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-18
(45)【発行日】2022-05-26
(54)【発明の名称】立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法
(51)【国際特許分類】
   C07H 21/04 20060101AFI20220519BHJP
【FI】
C07H21/04 A
C07H21/04 Z
【請求項の数】 9
(21)【出願番号】P 2020517080
(86)(22)【出願日】2019-05-07
(86)【国際出願番号】 JP2019018307
(87)【国際公開番号】W WO2019212063
(87)【国際公開日】2019-11-07
【審査請求日】2020-10-30
(31)【優先権主張番号】P 2018088911
(32)【優先日】2018-05-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】518156680
【氏名又は名称】株式会社ナティアス
(74)【代理人】
【識別番号】100112737
【弁理士】
【氏名又は名称】藤田 考晴
(74)【代理人】
【識別番号】100140914
【弁理士】
【氏名又は名称】三苫 貴織
(74)【代理人】
【識別番号】100136168
【弁理士】
【氏名又は名称】川上 美紀
(74)【代理人】
【識別番号】100196117
【弁理士】
【氏名又は名称】河合 利恵
(72)【発明者】
【氏名】片岡 正典
(72)【発明者】
【氏名】兵藤 守
【審査官】三上 晶子
(56)【参考文献】
【文献】国際公開第2012/024776(WO,A1)
【文献】国際公開第2017/111137(WO,A1)
【文献】特表平08-502642(JP,A)
【文献】OKA,N. et al,Solid-Phase Synthesis of Stereoregular Oligodeoxyribonucleoside Phosphorothioates Using Bicyclic Oxa,Journal of the American Chemical Society,2008年,Vol.130, No.47,pp.16031-16037
【文献】NUKAGA,Y. et al,Stereocontrolled Solid-Phase Synthesis of Phosphate/Phosphorothioate (PO/PS) Chimeric Oligodeoxyribo,Journal of Organic Chemistry,2016年,Vol.81, No.7,pp.2753-2762
【文献】HYODO,M. et al,Utility of azolium triflates as promoters for the condensation of a nucleoside phosphoramidite and a,European Journal of Organic Chemistry,2005年,No.24,pp.5216-5223
【文献】GUO,M. et al,Solid-phase stereoselective synthesis of 2'-O-methyl-oligo-ribonucleoside phosphorothioates using nu,Bioorganic & Medicinal Chemistry Letters,1998年,Vol.8, No.18,pp.2539-2544
【文献】OKA,N. et al,Stereocontrolled synthesis of dinucleoside phosphorothioates using a fluorous tag,Journal of Fluorine Chemistry,2013年,Vol.150,pp.85-91
(58)【調査した分野】(Int.Cl.,DB名)
C07H 21/04
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(I):
【化1】
(式中、
Bは、独立して、保護基によって保護された、または未保護ヌクレオシド塩基であり;
は、置換または未置換の脂肪族基、置換または未置換の芳香族基、置換または未置換のヘテロアリール基であり;
が酸性条件下で除去可能な保護基またはシリル系保護基であるとき、Rが-P(R11){N(R12}である、または、Rが-P(R11){N(R12}であるとき、Rが酸性条件下で除去可能な保護基またはシリル系保護基であり;
,Rは、独立して、H、アルキル、アルケニル、置換または未置換の芳香族基、置換または未置換のヘテロアリール基、-CH-置換または未置換アリール、-CH-置換シリルであり;
,R,R,Rは、独立して、H、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
11は、独立して、OCHCHCN、SCHCHCN、OCHCH=CH、OCHであり;
12は、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
Xは、独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲンであり;
Yは、独立して、H、NHR13、ハロゲン、CN、CFまたはアシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であるか、または、または、前記Xとの間でX-Y結合を形成し;
13は、独立して、H、アルキル、カルバメート、アミド基、置換シリルであり;
Zは、独立して、OまたはSであり;
nは、0以上4以下の整数である)
で表される、立体制御オリゴヌクレオチド合成用光学活性セグメント。
【請求項2】
前記式(I)において、前記Bが保護基によって保護されたヌクレオシドであるとき、該保護基がアシル系保護基である、請求項1に記載の立体制御オリゴヌクレオチド合成用光学活性セグメント。
【請求項3】
前記式(I)において、
前記Rが、アルキルオキシ、メチル、トリフルオロメチル、フェニル、またはフェニルアセチル基であり、
前記XがHであり、
前記YがHまたはt-ブチルジメチルシリル基で保護された水酸基であり、
前記ZがOであり、
前記Rがイソプロピル基である、請求項1に記載の立体制御オリゴヌクレオチド合成用光学活性セグメント。
【請求項4】
下記式(I):
【化2】
(式中、
Bは、独立して、保護基によって保護された、または未保護ヌクレオシド塩基であり;
は、置換または未置換の脂肪族基、置換または未置換の芳香族基、置換または未置換のヘテロアリール基であり;
が酸性条件下で除去可能な保護基またはシリル系保護基であるとき、Rが-P(R11){N(R12}である、または、Rが-P(R11){N(R12}であるとき、Rが酸性条件下で除去可能な保護基またはシリル系保護基であり;
,Rは、独立して、H、アルキル、アルケニル、置換または未置換の芳香族基、置換または未置換のヘテロアリール基、-CH-置換または未置換アリール、-CH-置換シリルであり;R,R,R,Rは、独立して、H、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
11は、独立して、OCHCHCN、SCHCHCN、OCHCH=CH、OCHであり;
12は、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;
Xは、独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲンであり;
Yは、独立して、H、NHR13、ハロゲン、CN、CFまたはアシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であるか、または、または、前記Xとの間でX-Y結合を形成し;
13は、独立して、H、アルキル、カルバメート、アミド基、置換シリルであり;
Zは、独立して、OまたはSであり;
nは、0以上4以下の整数である)
で表される、立体制御オリゴヌクレオチド合成用光学活性セグメントの製造方法であって、
(a)下記式(II):
【化3】
によって表されるヌクレオシドを(ただし、式(II)において、Rは、酸性条件下で除去可能な保護基またはシリル系保護基である)、下記式(III):
【化4】
と反応させ、下記式(IV):
【化5】
の構造を有する化合物を調製する工程と、
(b)前記式(IV)の構造を有する化合物を、下記式(V):
【化6】
の構造を有する化合物(式(V)において、R10は、アシル、アルキルオキシカルボニル、アルキル、アセタール、またはシリル系保護基である)と反応させ、続けて硫化反応を行うことで、下記式(VI):
【化7】
の構造を有する化合物を調製する工程と、
(c)前記式(I)においてn=1~4の場合、前記式(VI)の構造を有する化合物の5´-水酸基の脱保護反応を行って得られた化合物と、前記式(IV)の構造を有する化合物とを反応させ、続けて硫化反応を行う工程を1~4回行う工程と、
(d)前記(b)または(c)工程で得られた化合物の3´-水酸基の保護基OR10の脱保護反応を行った後に、R11P{N(R12の構造を有する三価リン化合物と反応させ、前記式(I)の構造を有するセグメントを調製する工程と、を含む製造方法。
【請求項5】
前記式(I)において、前記Bが保護基で保護されたヌクレオシドであるとき、該保護基がアシル系保護基である、請求項4に記載の製造方法。
【請求項6】
前記式(I)において、
前記Rが、アルキルオキシ、メチル、トリフルオロメチル、フェニル、またはフェニルアセチル基であり、
前記XがHであり、
前記YがHまたはt-ブチルジメチルシリル基で保護された水酸基であり、
前記Rがイソプロピル基である、請求項4に記載の製造方法。
【請求項7】
請求項1に記載の式(I)で表される立体制御オリゴヌクレオチド合成用光学活性セグメントを用いた立体制御オリゴヌクレオチドの合成方法であって、
(a)前記式(I)で表される光学活性セグメントのアミダイト部分と、ヌクレオシドまたはヌクレオチドの水酸基との縮合工程と、
(b)前記縮合工程でヌクレオシドまたはヌクレオチドと縮合された前記オリゴヌクレオチド合成用セグメントの末端保護基の脱保護工程と、を含む合成方法。
【請求項8】
溶液中で前記各工程を行う、請求項7に記載の合成方法。
【請求項9】
固相担体上で前記各工程を行う、請求項7に記載の合成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、立体が制御されたリン原子修飾オリゴヌクレオチドの合成に用いる光学活性セグメントおよびその製造方法、ならびにその光学活性セグメントを用いる、立体が制御されたリン原子修飾オリゴヌクレオチドの合成方法に関するものである。
【背景技術】
【0002】
近年、天然型または非天然型オリゴヌクレオチドを基本骨格とする核酸医薬への注目度が高まっている。目的とした作用が得られるように設計した核酸医薬を得るために、化学合成法が広く用いられている。
【0003】
核酸医薬として広く利用されるチオホスフェートオリゴヌクレオチドは、リン酸ジエステル結合の中にチオホスフェートが存在する場合、リン酸ジエステル結合の非架橋酸素原子の一つが置換された硫黄原子の存在によって、そのリン酸ジエステル結合を形成するリン原子上に不斉中心を有する。
【0004】
汎用されているチオホスフェートオリゴヌクレオチドの合成法においては、リン原子上の立体を制御して所望の立体構造を有するチオホスフェートオリゴヌクレオチドのみを合成することが困難である。このため、ジアステレオマー混合物のまま、医薬有効成分(API)として利用されている実情がある(非特許文献1参照)。
【0005】
その一方で、ジアステレオマーが混在したまま投与されていることに起因する副作用や、所望の効果を発揮する立体構造を有するチオホスフェートの量を確保するために、ジアステレオマー混合物の体内への投与量を過剰にせざるを得ないことが懸念されている。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2011/108682号
【非特許文献】
【0007】
【文献】European Medicines Agency,Assessment Report,Spinraza(登録商標),pp.13(2017)
【発明の概要】
【発明が解決しようとする課題】
【0008】
チオホスフェートオリゴヌクレオチドについて、これまでにいくつかの立体選択的合成法が試みられている。その中の一つとして、プロリノールを不斉源として、ヌクレオシドホスホロアミダイトの亜リン酸結合部分に導入したユニットを用いて合成を行う方法がある。しかしながら、チオホスフェート部分の立体を制御したオリゴヌクレオチドを合成するにあたって、特許文献1に記載されているような方法は、ヌクレオシドモノマー型のユニットを合成単位として用いていることで、モノマー型ユニットを一段階ずつ縮合していく必要がある。
【0009】
具体的には、目的とする長さを有するオリゴヌクレオチドを最終的に得る段階で、上記のような各工程で生じた副生成物や試薬の残渣を除去する精製工程を行う必要がある。オリゴヌクレオチドN量体を合成する場合に生じる、1塩基ずつ伸長する合成方法における副生成物の代表的なものとして、カップリング工程で生じる、1塩基分だけ短い(N-1)量体、2塩基分だけ短い(N-2)量体等がある。このような(N-1)量体、(N-2)量体は、目的とするN量体と構造や物性が非常に類似している。このため、クロマトグラフィー等を用いてN量体を精製する段階で、目的とするN量体の移動度と、副生成物である(N-1)量体、(N-2)量体等の移動度との差が小さい。このことから、N量体とそれ以外とを正確に分離するための精製負荷が大きいという問題が存在する。
【0010】
さらに、チオホスフェートオリゴヌクレオチドのチオホスフェート部分には、リン原子上の立体異性体が混在している可能性がある。このため、目的とする立体構造を有するチオホスフェートオリゴヌクレオチドから、異なる立体構造を有する副生成物を分離しなければならないという精製負荷の問題が加わってくる。現在までに知られた合成法の中には、チオホスフェート部分が所望の立体に制御されたオリゴヌクレオチド合成の実用化に耐え得る合成法はない。
【0011】
本発明は、このような事情に鑑みてなされたものであって、より少ない工程数で、かつ確実に立体が制御されたオリゴヌクレオチドを合成するためのセグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明の立体制御オリゴヌクレオチド合成用光学活性セグメントおよびその製造方法、ならびにそれを用いた立体制御オリゴヌクレオチドの合成方法は、以下の手段を採用する。
本発明の第1の態様は、下記式(I):
【化1】
で表される立体制御オリゴヌクレオチド合成用光学活性セグメントである。
【0013】
前記式(I)中、Bは、独立して、保護基によって保護された、または未保護ヌクレオシド塩基であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基、置換または未置換のヘテロアリール基であり;Rが酸性条件下で除去可能な保護基またはシリル系保護基であるとき、Rが-P(R11){N(R12}である、または、Rが-P(R11){N(R12}であるとき、Rが酸性条件下で除去可能な保護基またはシリル系保護基であり;R,Rは、独立して、H、アルキル、アルケニル、置換または未置換の芳香族基、置換または未置換のヘテロアリール基、-CH-置換または未置換アリール、-CH-置換シリルであり;R,R,R,Rは、独立して、H、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;R11は、独立して、OCHCHCN、SCHCHCN、OCHCH=CH、OCHであり;R12は、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Xは、独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲンであり;Yは、独立して、H、NHR13、ハロゲン、CN、CFまたはアシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であるか、または、または、前記Xとの間でX-Y結合を形成し;R13は、独立して、H、アルキル、カルバメート、アミド基、置換シリルであり;Zは、独立して、OまたはSであり;nは、0以上4以下の整数である。
【0014】
前記第1の態様においては、前記式(I)におけるBが保護基によって保護されたヌクレオシドであるとき、該保護基がアシル系保護基であってもよい。
【0015】
前記第1の態様においては、前記式(I)において、前記Rが、アルキルオキシ、メチル、トリフルオロメチル、フェニル、またはフェニルアセチル基であって、好ましくはフェニル基またはアセチル基であり、前記XがHであり、前記Yが好ましくはHまたはt-ブチルジメチルシリル基で保護された水酸基であり、前記ZがOであり、前記R12がイソプロピル基であってもよい。また、前記式(I)中、R-C(=Z)-が、アセチル基、トリフルオロアセチル基、ベンゾイル基などのアシル系保護基であってもよい。
【0016】
本発明の第2の態様は、下記式(I):
【化2】
で表される立体制御オリゴヌクレオチド合成用光学活性セグメントの製造方法である。
【0017】
前記式(I)中、Bは、独立して、保護基によって保護された、または未保護ヌクレオシド塩基であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基、置換または未置換のヘテロアリール基であり;Rが酸性条件下で除去可能な保護基またはシリル系保護基であるとき、Rが-P(R11){N(R12}である、または、Rが-P(R11){N(R12}であるとき、Rが酸性条件下で除去可能な保護基またはシリル系保護基であり;R,Rは、独立して、H、アルキル、アルケニル、置換または未置換の芳香族基、置換または未置換のヘテロアリール基、-CH-置換または未置換アリール、-CH-置換シリルであり;R,R,R,Rは、独立して、H、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;R11は、独立して、OCHCHCN、SCHCHCN、OCHCH=CH、OCHであり;R12は、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Xは、独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲンであり;Yは、独立して、H、NHR13、ハロゲン、CN、CFまたはアシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であるか、または、または、前記Xとの間でX-Y結合を形成し;R13は、独立して、H、アルキル、カルバメート、アミド基、置換シリルであり;Zは、独立して、OまたはSであり;nは、0以上4以下の整数である。
【0018】
前記製造方法は、
(a)下記式(II):
【化3】
によって表されるヌクレオシド(ただし、式(II)において、Rは、酸性条件下で除去可能な保護基またはシリル系保護基である)を、下記式(III):
【化4】
と反応させ、下記式(IV):
【化5】
の構造を有する化合物を調製する工程と、
(b)前記式(IV)の構造を有する化合物を、下記式(V):
【化6】
の構造を有する化合物(ただし、式(V)において、R10は、アシル、アルキルオキシカルボニル、アルキル、アセタール、またはシリル系保護基である)と反応させ、続けて硫化反応を行うことで、下記式(VI):
【化7】
の構造を有する化合物を調製する工程と、
(c)前記式(I)においてn=1~4の場合、前記式(VI)の構造を有する化合物の5´-水酸基の脱保護反応を行って得られた化合物と、前記式(IV)の構造を有する化合物とを反応させ、続けて硫化反応を行う工程を1~4回行う工程と、
(d)前記(b)または(c)工程で得られた化合物の3´-水酸基の保護基OR10の脱保護反応を行った後に、R11P{N(R12の構造を有する三価リン化合物と反応させ、前記式(I)の構造を有するセグメントを調製する工程と、を含む。
【0019】
前記第2の態様において、前記式(I)における前記Bが保護基によって保護されたヌクレオシドであるとき、該保護基がアシル系保護基であってもよい。
【0020】
前記第2の態様において、前記式(I)において、前記Rが、アルキルオキシ、メチル、トリフルオロメチル、フェニル、またはフェニルアセチル基であって、好ましくはフェニル基またはアセチルであり、前記XがHであり、前記Yが好ましくはHまたはt-ブチルジメチルシリル基で保護された水酸基であり、前記ZがOであり、前記R12がイソプロピル基であってもよい。また、前記式(I)中、R-C(=Z)-が、アセチル基、トリフルオロアセチル基、ベンゾイル基などのアシル系保護基であってもよい。
【0021】
本発明の第3の態様は、上記式(I)で表される立体制御オリゴヌクレオチド合成用光学活性セグメントを用いたオリゴヌクレオチドの合成方法である。
【0022】
前記製造方法は、(a)前記式(I)で表される光学活性セグメントのアミダイト部分と、ヌクレオシドまたはヌクレオチドの水酸基との縮合工程と、(b)前記縮合工程でヌクレオシドまたはヌクレオチドと縮合された前記オリゴヌクレオチド合成用セグメントの末端保護基の脱保護工程と、を含む。
【0023】
前記第3の態様においては、溶液中で各工程を行ってもよい。
【0024】
前記第3の態様においては、固相担体上で各工程を行ってもよい。
【発明の効果】
【0025】
本発明の立体制御オリゴヌクレオチド合成用光学活性セグメントによれば、原料の一つとして用いるL-またはD-プロリノール誘導体を不斉源として利用して、1つのセグメント中に複数個の立体制御されたチオホスフェート基を有することができる。このため、ヌクレオシドモノマー型のユニットを用いて1段階ずつ立体制御オリゴヌクレオチドを合成する従来法と比べて、同じ長さの立体制御オリゴヌクレオチドを合成する場合に必要な工程数を減らすことができる。
【0026】
さらに、本発明の立体制御オリゴヌクレオチド合成用光学活性セグメントを用いて立体制御オリゴヌクレオチドを合成する場合、N-1~N-2の長さを有する副生成物が生じない。さらに、本発明の光学活性セグメントは、チオホスフェート部分のリン原子上で目的物の立体構造と異なる立体構造を有する副生成物の混入の割合が非常に低い。このため、目的とするN量体の立体制御オリゴヌクレオチドの精製負荷を小さくすることができることで、より簡便に精製することができ、かつ、より大量に目的物を供給することができる、という効果を奏する。
【図面の簡単な説明】
【0027】
図1】本発明の一実施形態における、実施例2で得られた光学活性テトラヌクレオチドのUPLCスペクトルを表した図である。
【発明を実施するための形態】
【0028】
以下に、本発明に係る立体制御オリゴヌクレオチド合成用光学活性セグメントを得るための一実施形態について説明する。
本実施形態における立体制御オリゴヌクレオチド合成用光学活性セグメントは、下記式(I):
【化8】
で表される構造を有する。
前記式(I)中、Bは、独立して、保護基によって保護された、または未保護ヌクレオシド塩基であり;Rは、置換または未置換の脂肪族基、置換または未置換の芳香族基、置換または未置換のヘテロアリール基であり;Rが酸性条件下で除去可能な保護基またはシリル系保護基であるとき、Rが-P(R11){N(R12}である、または、Rが-P(R11){N(R12}であるとき、Rが酸性条件下で除去可能な保護基またはシリル系保護基であり;R,Rは、独立して、H、アルキル、アルケニル、置換または未置換の芳香族基、置換または未置換のヘテロアリール基、-CH-置換または未置換アリール、-CH-置換シリルであり;R,R,R,Rは、独立して、H、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;R11は、独立して、OCHCHCN、SCHCHCN、OCHCH=CH、OCHであり;R12は、置換または未置換の脂肪族基、置換または未置換の芳香族基であり;Xは、独立して、H、アルキル、O-アルキル、N-アルキル、ハロゲンであり;Yは、独立して、H、NHR13、ハロゲン、CN、CFまたはアシル系保護基、エーテル系保護基、シリル系保護基で保護された水酸基であるか、または、または、前記Xとの間でX-Y結合を形成し;R13は、独立して、H、アルキル、カルバメート、アミド基、置換シリルであり;Zは、独立して、OまたはSであり;nは、0以上4以下の整数である。
【0029】
本実施形態における立体制御オリゴヌクレオチド合成用光学活性セグメントは、下記のような工程を経て合成する。(1)L-またはD-プロリノール誘導体を不斉源とした光学活性リン酸化剤を合成し、(2)5´-水酸基および必要に応じてヌクレオシド塩基部分を保護基で保護し、3´-水酸基を無保護としたヌクレオシド(以下、「5´-保護・3´-無保護ヌクレオシド」という)の3´-水酸基に、(1)で得た光学活性リン酸化剤を用いてリン酸化を行って光学活性3´-ホスホロアミダイトを得、(3)3´-水酸基および必要に応じてヌクレオシド塩基部分を保護基で保護し、その一方で5´-水酸基を無保護としたヌクレオシド(以下、「3´-保護・5´-無保護ヌクレオシド」という)の5´-水酸基と、(2)で得られた光学活性3´-ホスホロアミダイトとの反応を行い、リン酸結合上のリン原子上の立体がS-またはR-体に制御されたホスホロチオエート2量体を得る。
【0030】
この後、上記式(I)で表される化合物においてn=0の場合には、(3)で得られたホスホロチオエート2量体の3´-水酸基の保護基を脱保護し、3価のリン酸化剤と反応させることで、チオホスフェート結合上のリン原子上の立体がS-またはR-体に制御されたホスホロチオエート2量体の3´-ホスホロアミダイトである、光学活性セグメントが合成される。n=1~4の場合には、(3)で得られたホスホロチオエート2量体の5´-水酸基の保護基を脱保護し、(3)を必要回数(n回)繰り返すことで、リン酸結合上のリン原子上の立体がS-またはR-体に制御されたホスホロチオエート(n+1)量体の3´-ホスホロアミダイトである光学活性セグメントが合成される。
なお、上記式(II)で表される化合物のRをアシル、アルキルオキシカルボニル、アルキル、アセタール、またはシリル系保護基、上記式(V)で表される化合物のRを酸性条件下で除去可能な保護基またはシリル系保護基とすることで、光学活性5´-ホスホロアミダイトを合成することが可能である。
【0031】
したがって、本実施形態に係る光学活性セグメントによれば、1つのセグメント中で、複数個のチオホスフェート結合上のリン原子上の立体がS-またはR-体に制御されているので、ヌクレオシドモノマー型のユニットを用いて1段階ずつ立体制御オリゴヌクレオチドを合成する従来法と比べて、同じ長さの立体制御オリゴヌクレオチドを合成する場合に必要な工程数を減らすことができる。特に、オリゴヌクレオチドの両末端に複数個のヌクレオチドホスホロチオエートを有する、Gapmerと呼ばれる核酸医薬候補物質の合成において有効に機能すると考えられる。
【0032】
これに対し、特許文献1に記載されているような他の方法によって、モノマー型の光学活性セグメントを用いた立体制御オリゴヌクレオチド合成は試みられていたが、1つのセグメントの中で複数個のチオホスフェート結合の立体を制御したホスホロチオエート2量体以上の3´-ホスホロアミダイトの合成は、これまでに実現されていない。
【0033】
また、モノマー型の光学活性セグメントを用いて、全てのリン酸結合部分がチオホスフェート化されたオリゴヌクレオチドの合成を行う場合には、リン酸結合がm個あるとするとm回の縮合工程を行う必要がある。これに対し、本実施形態における光学活性セグメントは予めn回の縮合がなされたものであるため、m/n回の縮合工程を行うだけで、同じ長さのチオホスフェート化されたオリゴヌクレオチドを得ることができる。したがって、高度に立体制御されたオリゴヌクレオチドを、短工程で合成することができる。
【0034】
本実施形態におけるヌクレオシド塩基は、アデニル基、グアニル基、シトシニル基、チミニル基、ウラシル基などの天然型塩基、5-メチルシトシニル基、5-フルオロウラシル基、7-メチルグアニル基、7-デアザアデニル基などの修飾塩基を含む。これらのヌクレオシド塩基中のアミノ基は、ベンジル系保護基、アリル系保護基、カルバメート系保護基、アシル系保護基を含む。好ましくは、アセチル基、ベンゾイル基、フェノキシアセチル基、イソプロピルカルボニル基などのアシル系保護基を用いる。
【0035】
本実施形態における脂肪族基は、飽和または不飽和の、直鎖状または分岐しているC-C18炭化水素、飽和または不飽和の環状C-C18炭化水素を含む。好ましくは、飽和または不飽和の、C-C炭化水素またはC-C環状炭化水素である。本実施形態における芳香族基は、フェニル基などの炭素環式芳香環、ナフチル基などの炭素環式芳香環または非炭素式芳香環に縮合した炭素環式芳香環を含む。本実施形態における脂肪族基、芳香族基は、飽和または不飽和の、C-C炭化水素またはC-C環状炭化水素、ハロゲン、シアノ、ニトロ、芳香環などの置換基で置換されていてもよい。
【0036】
本実施形態における5´-、3´-または2´-水酸基の保護基は、酸性条件下で除去可能な保護基、アシル系保護基、シリル系保護基を含む。酸性条件下で除去可能な保護基は、置換または未置換のトリチル基を含むエーテル系保護基、置換または未置換のテトラヒドロピラニル(THP)基を含み、代表的な保護基として4,4´-ジメトキシトリチル基がある。シリル系保護基は、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基、トリフェニルシリル基を含む。アシル系保護基は、アセチル基、ベンゾイル基を含む。また、4´-位と2´-位とを架橋するように結合したヌクレオシドを原料として用いることもできる。この場合、4´-位と2´-位とは、(4´-位)-L-O-(2´-位)という結合を形成することができ、Lの例としてC-Cアルキレン基(途中の炭素原子が、酸素原子、アルキル基が結合した窒素原子と置換されていてもよい)がある。
【0037】
上記工程(1)においては、市販のL-またはD-プロリノールや、公知の方法で合成可能なL-またはD-プロリノール誘導体を出発物質とし、公知の合成例に従って光学活性リン酸化剤を合成することが可能である。上記工程(2)においては、5´-保護・3´-無保護ヌクレオシドの3´-水酸基を、上記工程(1)で得られた光学活性リン酸化剤と反応させて、光学活性3´-ホスホロアミダイトの粗生成物を得る。粗生成物の状態で、単一の立体異性体であることを確認している。
【0038】
上記工程(2)においては、5´-保護・3´-無保護ヌクレオシドの溶液(0.1~0.3M)に、光学活性リン酸化剤(5´-保護・3´-無保護ヌクレオシドの1.05~2.0当量)および3級アミン(5´-保護・3´-無保護ヌクレオシドの1.05~2.0当量)を-78℃で加えた後、0℃で1~2時間攪拌する。得られた光学活性3´-ホスホロアミダイトは、シリカゲル精製後、次の工程(3)に用いる。
【0039】
上記工程(3)では、上記工程(2)で得られた光学活性3´-ホスホロアミダイトに、5´-無保護・3´-保護ヌクレオシド(5´-保護・3´-無保護ヌクレオシドの0.7~0.9当量)および活性化剤(5´-保護・3´-無保護ヌクレオシドの1.05~1.2当量)を加え、室温で反応させ、シリカゲル精製を経て、1塩基分伸長した立体制御ヌクレオチドを得る。収率は、約80~95%である。4量体以上の立体制御ヌクレオチドを合成する場合には、1塩基ずつ伸張させていく方法の別法として、既に2量体以上となっているセグメントどうしを縮合させることで、2以上の塩基分を一度に伸張させることもできる。
【0040】
得られた立体制御ヌクレオチドの5´-保護基を脱保護してシリカゲル精製した後、3価のリン酸化剤と反応させて3´-ホスホロアミダイトを生成させる。3価のリン酸化剤の代表的なものとしては、NCCHCHOP[N(i-C、CH=CHCHOP[N(i-Cがあるが、これらに限定されない。活性化剤の代表的なものとしては、1H-テトラゾール、S-エチルチオテトラゾール、ジシアノイミダゾールや、スルホン酸とアゾールまたは3級アミンとの塩があるが、これらに限定されない。必要に応じて、さらに工程(3)を行うことで、4量体以上の光学活性3´-ホスホロアミダイトが得られる。
【0041】
上記式(I)で表されるオリゴヌクレオチド合成用セグメントを用いたオリゴヌクレオチドの合成は、溶液中で行う(以下、「液相合成法」という)ことができ、また固相担体上で行う(以下、「固相合成法」という)こともできる。液相合成法で合成を行う場合には、反応溶媒への溶解性を高めるために、3´-保護・5´-無保護ヌクレオシドの3´末端の水酸基にシリル系の保護基、あるいは脂肪族を含む保護基を導入したものを用い、そのものに対して(a)光学活性セグメントとの縮合工程と、(b)酸化工程と、(c)脱保護工程を繰り返す。固相合成法で合成を行う場合には、(a)光学活性セグメントとの縮合工程と、(b)キャッピング工程と、(c)酸化工程と、(d)脱保護工程とを繰り返す。両方法とも、その後の塩基性条件での脱保護処理により、目的のオリゴヌクレオチドを得ることができる。このとき、硫化剤としてフェニルアセチルジスルフィド(PADS)を用いることで、ピロリジン部分の保護も同時に行うことができ、キャッピング工程を省略してもよい。
【0042】
液相合成法、固相合成法のどちらを用いる場合も、オリゴヌクレオチド合成の第1段階として、上記式(I)で表される化合物の3´-末端アミダイトを活性化剤で活性化し、3´-保護・5´-無保護ヌクレオシドまたはヌクレオチドと縮合させる工程を行う。活性化剤としては、汎用されている3価のリンの活性化剤を用いることができ、例えば1H-テトラゾール、S-エチルチオテトラゾール、ジシアノイミダゾール、スルホン酸とアゾールまたは3級アミンからなる塩があるが、これらに限定されない。本カップリング反応に必要な時間は、一般的に1分~30分程度であり、反応を行うスケールに依存する。
【0043】
次に、立体制御オリゴヌクレオチド合成の第2段階として、上記縮合工程で得られた中間体を酸化剤と反応させて、ホスフェートヌクレオチドを得る酸化工程を行う。
【0044】
次いで、オリゴヌクレオチド合成の第3段階として、上記酸化工程で得られた中間体を、無水の酸性溶液と反応させて、5´-水酸基無保護ヌクレオチドを得る。
【0045】
本実施形態における立体制御オリゴヌクレオチド合成用光学活性セグメントを用いて合成した立体制御オリゴヌクレオチド中の、ヌクレオシド塩基の保護基、5´-、3´-または2´-水酸基の保護基、リン酸結合中のリン酸の保護基は、用いられている保護基に対応した脱保護条件下で脱保護される。これにより、目的とする立体制御オリゴヌクレオチドが得られる。
【0046】
以下の実施例は、本発明の一実施形態を説明し、例示するものである。実施例1に示す手順に従い、上記式(I)で表される化合物の一例である光学活性3´-ホスホロアミダイト3量体を製造した。また、実施例2に示す手順に従い、上記式(I)で表される化合物の一例である光学活性3´-ホスホロアミダイトを経由して、リン酸部光学活性テトラヌクレオチドを製造した。さらに、実施例3に示す手順に従い、上記式(I)で表される化合物の一つである光学活性3´-ホスホロアミダイトを用いた立体制御オリゴヌクレオチド合成を行うことができる。
【0047】
〔実施例1〕
(ステップ1:光学活性リン酸化剤の合成)
【化9】
三塩化リン(3.5mL,5.5g,40mmol)をトルエン(50mL)に溶解させ、-78℃にした。これとは別にL-prolinol(3.9mL,4.0g,40mmol)、トリエチルアミン(12mL,8.9g,88mmol)をトルエン(50mL)に溶解させ、三塩化リンへ1時間かけて滴下した。そのまま12時間撹拌した後0℃に戻してさらに1時間撹拌した。反応後、副生した沈殿物をセライトろ過して除き、減圧下溶媒を留去し、粗生成物を得た。これを減圧下蒸留し(65℃,1.0mmHg)、目的とするホスホロクロリダイト1(3.2g,19mmol,48%yield)を得た。
【0048】
(ステップ2:光学活性ホスホロアミダイト2の合成)
【化10】
【0049】
5´-DMTr保護チミジン(11g,21mmol,Hongene社製)をジクロロメタン(150mL)に溶かし、そこへジイソプロピルエチルアミン(3.9mL,3.0g,23mmol)を加え、-78℃に冷却した。これとは別に、ホスホロクロリダイト1(3.8g,23mmol)をジクロロメタン(50mL)に溶かし、チミジン溶液へ30分かけて滴下して加えた。12時間かけて0℃まで昇温したのち、0℃で1時間撹拌し、反応を完結させた。得られた反応混合物を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、溶媒を留去し、目的とする光学活性ホスホロアミダイト2(16g)を粗生成物として得た。31PNMR測定において154ppmに1本のシグナルが観測されたことから概ね単一の立体異性体であると考えられた。
【0050】
(ステップ3:5´-無保護ヌクレオシドの合成)
【化11】
【0051】
5´-DMTr保護チミジン(2.7g,5.0mmol,Hongene社製)をジクロロメタン(50mL)に溶かし0℃にした。そこへテトラメチルエチレンジアミン(450μL,350mg,3.0mmol)、塩化アリルオキシカルボニル(590μL,650mg,5.5mmol)を加え、反応を開始した。12時間後に反応混合物をジクロロメタン(100mL)と飽和炭酸水素ナトリウム水溶液(100mL)で分配し、有機層を回収した。この有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥させ、粗生成物を得た。これをヘキサン-酢酸エチルを溶出溶媒とするカラムクロマトグラフィーにて精製し、目的とする5´-DMTr-3´-Allocチミジン(3.0g,4.8mmol,95%yield)を得た。ESI-MS:651.5[(M+Na)
この化合物をジクロロメタン(50mL)に溶かして0℃に冷やし、ジクロロ酢酸(8.3mL,13g,100mmol)/ジクロロメタン(50mL)溶液を加え、反応を開始した。反応混合物がトリチルカチオンの遊離を示す赤色に呈色するのを確認したのち、反応混合物を直接、酢酸エチル-メタノールを溶出溶媒とするカラムクロマトグラフィーに供し、目的物3を得た。(1.3g,4.0mmol,80%yield),ESI-MS:340.9[(M+Na)
【0052】
(ステップ4:光学活性チオリン酸結合を有するジヌクレオチドの合成)
【化12】
【0053】
光学活性ホスホロアミダイト2(2.7g,4.0mmol)と5´-水酸基無保護ヌクレオシド3(1.0g,3.1mmol)をアセトニトリル(20mL)に溶かし、そこへベンゾイミダゾリウムトリフラート(1.2g,4.6mmol)を加えた。30分後、N-メチルイミダゾール(0.49mL,510mg,6.2mmol)、次いで無水安息香酸(1.7g,7.7mmol)を加え、さらに30分撹拌した。最後にフェニルアセチルジスルフィド(1.9g,6.2mmol)を加え、30分撹拌した。反応混合物をジクロロメタン(100mL)と飽和炭酸水素ナトリウム水溶液(100mL)で分配し、有機層を回収した。この有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥させ、粗生成物を得た。これをヘキサン-酢酸エチル-メタノールを溶出溶媒とするカラムクロマトグラフィーにて精製し、目的とする光学活性チオリン酸結合を有する化合物4(3.2g,2.8mmol,91%yield)を得た。ESI-MS:1159.1[(M+Na)
【0054】
(ステップ5:リン酸部光学活性ジヌクレオチド5´保護基の脱保護)
【化13】
【0055】
光学活性ジヌクレオチド4(3.2g,2.8mmol)をジクロロメタン(28mL)に溶かし、0℃にした。そこへジクロロメタン(24mL)に溶解させたジクロロ酢酸(4.6mL,7.2g,56mmol)をゆっくり加え、反応混合物がトリチルカチオンの遊離を示す赤色に呈色するのを確認した後、30分撹拌後、反応混合物を直接カラムクロマトグラフィーに供し、目的とする化合物5(1.9g,2.2mmol,79%yield)を得た。
【0056】
(ステップ6:光学活性トリヌクレオチドの合成)
【化14】
【0057】
光学活性ホスホロアミダイト2(1.9g,2.9mmol)と5´-水酸基無保護ジヌクレオチド5(1.8g,2.2mmol)をアセトニトリル(14mL)に溶かし、そこへベンゾイミダゾリウムトリフレート(870mg,3.2mmol)を加えた。30分後、N-メチルイミダゾール(0.35mL,340mg,4.3mmol)、次いで無水安息香酸(1.2g,5.4mmol)を加え、さらに30分撹拌した。最後にフェニルアセチルジスルフィド(1.3g,4.3mmol)を加え、30分撹拌した。反応混合物をジクロロメタン(100mL)と飽和炭酸水素ナトリウム水溶液(100mL)で分配し、有機層を回収した。この有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥させ、粗生成物を得た。これをヘキサン-酢酸エチル-メタノールを溶出溶媒とするカラムクロマトグラフィーにて精製し、目的とする化合物6(2.9g,1.8mmol,83%yield)を得た。
【0058】
(ステップ7:光学活性トリヌクレオチド3´-水酸基保護基の脱保護)
【化15】
【0059】
光学活性トリヌクレオチド6(330mg,0.2mmol)をテトラヒドロフラン(5mL)に溶かし、そこへトリフェニルホスフィン(20mg,0.1mmol)、ブチルアミン(23μL,0.6mmol)、蟻酸(60μL,0.6mmol)、酢酸パラジウム(4.5mg,0.02mmol)の順に加え、反応を開始した。6時間後、溶媒を留去し、ジクロロメタンに溶解させたのちに、セライトろ過し、得られた粗生成物をカラムクロマトグラフィーに供した。3´-無保護トリヌクレオチド7(280mg,0.18mmol,90%yield)を得た。
【0060】
(ステップ8:光学活性トリヌクレオチドホスホロアミダイトの合成)
【化16】
【0061】
3´-無保護トリヌクレオチド7(280mg,0.18mmol)をジクロロメタン(9mL)に溶かし、そこへジイソプロピルエチルアミン(37μL,28mg,0.22mmol)を加え、-78℃に冷却した。これとは別に、化合物1(36mg,0.22mmol)をジクロロメタン(9mL)に溶かし、反応溶液へ30分かけて滴下して加えた。12時間かけて0℃まで昇温したのち、0℃で1時間撹拌し、反応を完結させた。得られた反応混合物を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、溶媒を留去し、目的物であるトリヌクレオチドアミダイト8(230mg,0.14mmol,60%yield)を得た。31PNMR測定から目的物の生成が示唆された。
【0062】
〔実施例2〕
(ステップ9:光学活性ジヌクレオチドの合成(N-アセチルキャッピング))
【化17】
【0063】
光学活性ホスホロアミダイト2(2.7g,4.0mmol)と5´-水酸基無保護ヌクレオシド3(1.0g,3.1mmol)をアセトニトリル(20mL)に溶かし、そこへベンゾイミダゾリウムトリフラート(1.2g,4.6mmol)を加えた。30分後、N-メチルイミダゾール(0.49mL,510mg,6.2mmol)、次いで無水酢酸(0.73mL,790mg,7.7mmol)を加え、さらに30分撹拌した。最後にフェニルアセチルジスルフィド(1.9g,6.2mmol)を加え、30分撹拌した。反応混合物をジクロロメタン(100mL)と飽和炭酸水素ナトリウム水溶液(100mL)で分配し、有機層を回収した。この有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥させ、粗生成物を得た。これをヘキサン-酢酸エチル-メタノールを溶出溶媒とするカラムクロマトグラフィーにて精製し、目的とする化合物9(2.4g,2.2mmol,72%yield)を得た。ESI-MS:1096.8[(M+Na)
【0064】
(ステップ10:リン酸部光学活性ジヌクレオチド5´-保護基の脱保護)
【化18】
【0065】
ステップ9で得られた光学活性ジヌクレオチド9(780mg,0.73mmol)をジクロロメタン(7.3mL)に溶かし、0℃にした。そこへジクロロメタン(6.1mL)に溶解させたジクロロ酢酸(1.2mL,1.9g,14mmol)をゆっくり加え、反応混合物がトリチルカチオンの遊離を示す赤色に呈色するのを確認した後、30分撹拌後、反応混合物を直接カラムクロマトグラフィーに供し、目的とする化合物10(500mg,0.65mmol,89%yield)を得た。ESI-MS:794.6[(M+Na)
【0066】
(ステップ11:光学活性ジヌクレオチド3´-水酸基保護基の脱保護)
【化19】
【0067】
光学活性ジヌクレオチド9(1.5g,1.4mmol)をテトラヒドロフラン(15mL)に溶かし、そこへトリフェニルホスフィン(370mg,1.4mmol)、ブチルアミン(700μL,7.0mmol)、蟻酸(260μL,7.0mmol)さらにテトラキストリフェニルホスフィンパラジウム(81mg,0.07mmol)の順に加え、反応を開始した。17時間後、溶媒を留去し、ジクロロメタンに溶解させた後に、セライトろ過し、得られた粗生成物をカラムクロマトグラフィーに供し、3´-無保護ジヌクレオチド11(1.1g,1.1mmol,79%yield)を得た。ESI-MS:1012.7[(M+Na)
【0068】
(ステップ12:光学活性ジヌクレオチドホスホロアミダイトの合成)
【化20】
【0069】
ジヌクレオチド11(990mg,1.0mmol)をジクロロメタン(10mL)に溶かし、そこへジイソプロピルエチルアミン(340μL,260mg,2.0mmol)を加え、-78℃に冷却した。これとは別に、ホスホロクロリダイト1(250mg,1.5mmol)をジクロロメタン(10mL)に溶かし、反応溶液へ30分かけて滴下して加えた。12時間かけて0℃まで昇温した後、0℃で1時間撹拌し、反応を完結させた。得られた反応混合物を飽和炭酸水素ナトリウム水溶液および飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させ、溶媒を留去し、目的物である光学活性ジヌクレオチドホスホロアミダイト12(1.2g)を得た。31PNMR測定から目的物の生成が示唆された。
【0070】
(ステップ13:セグメント同士の縮合による光学活性テトラヌクレオチドの合成)
【化21】
【0071】
光学活性ジヌクレオチドホスホロアミダイト12(900mg,0.8mmol)と5´-水酸基無保護ジヌクレオチド10(480mg,0.62mmol)をアセトニトリル(8mL)およびジクロロメタン(4mL)に溶かし、そこへベンゾイミダゾリウムトリフレート(250mg,0.92mmol)を加えた。30分後、N-メチルイミダゾール(0.097mL,100mg,1.2mmol)、次いで無水酢酸(0.15mL,160mg,1.5mmol)を加え、さらに30分撹拌した。最後にフェニルアセチルジスルフィド(370mg,1.2mmol)を加え、30分撹拌した。反応混合物をジクロロメタン(100mL)と飽和炭酸水素ナトリウム水溶液(100mL)で分配し、有機層を回収した。この有機層を飽和食塩水(50mL)で洗浄し、硫酸ナトリウムで乾燥させ、粗生成物を得た。これをヘキサン-酢酸エチル-メタノールを溶出溶媒とするカラムクロマトグラフィーにて精製し、目的とする化合物13(1.0g,0.51mmol,63%yield)を得た。ESI-MS:1988.0[(M+Na)
【0072】
(ステップ14:リン酸部光学活性テトラヌクレオチド5´-保護基の脱保護)
【化22】
【0073】
光学活性テトラヌクレオチド13(980mg,0.50mmol)をジクロロメタン(10mL)に溶かし、0℃にした。そこへジクロロメタン(9.2mL)に溶解させたジクロロ酢酸(0.83mL,1.3g,10mmol)をゆっくり加え、反応混合物がトリチルカチオンの遊離を示す赤色に呈色するのを確認した後、30分撹拌後、反応混合物を直接カラムクロマトグラフィーに供し、目的とする化合物14(380mg,0.23mmol,46%yield)を得た。ESI-MS:1684.6[(M+Na)
【0074】
(ステップ15:リン酸部光学活性テトラヌクレオチドの合成)
【化23】
【0075】
3´-水酸基が保護された光学活性テトラヌクレオチド14(31mg,0.019mmol)をメタノール(0.5mL)および28%アンモニア水(0.5mL)に溶かし、65℃にした。16時間加熱したのち遠心濃縮に供しアンモニアを留去した。生成物を純水に溶かし、逆相分取カラムクロマトグラフィーに供し、目的とする化合物15(3.8mg,0.003mmol,17%yield)を得た。ESI-MS:1201[(M‐H)
【0076】
図1に、得られたリン酸部光学活性ヌクレオチド4量体15のUPLC-MSスペクトルを示す。5.75分に現れたメインの吸収は質量分析にて分子イオンピーク1201を示し、目的物15であることが確認された。また、目的物の後ろ、6.07分に現れた吸収は、質量分析にて分子イオンピーク1244を示し、脱保護が不十分な4量体であることが分かった。これに対して5.47分に現れた吸収は、質量分析にて、目的物と同様の分子イオンピーク1201であったため、ジアステレオマーであることが示唆され、それ以外の吸収は見られなかった。このことから、本法によるジアステレオマー副生成物は5.47分に現れた吸収だけであると考えられた。5.75分に現れたメインの吸収と、5.47分に現れた吸収との積分値の比から、得られたリン酸部光学活性ヌクレオチド4量体15のジアステレオマー過剰率は98.8%であることが分かった。
【0077】
〔実施例3〕
(オリゴヌクレオチド合成)
オリゴヌクレオチド固相合成装置において、本実施形態で得られる光学活性ホスホロアミダイトを用い、立体制御されたオリゴヌクレオチドを合成する。装置の標準プロトコールにしたがって縮合反応、キャッピング反応、必要に応じて酸化または硫化反応を行った後、固相担体を取り出し、得られたオリゴヌクレオチドを固相担体から切り出し、濃アンモニア水を用いて脱保護を行う。
【0078】
以上から、本実施形態の立体制御オリゴヌクレオチド合成用光学活性セグメントは、原料の一つとして用いるL-またはD-プロリノール誘導体を不斉源として利用して、1つのセグメント中に1つのみならず複数個の立体制御されたチオホスフェート基を有することができる。このため、ヌクレオシドモノマー型のユニットを用いて1段階ずつ立体制御オリゴヌクレオチドを合成する従来法と比べて、同じ長さの立体制御オリゴヌクレオチドを合成する場合に必要な工程数を減らすことができる。4量体以上の立体制御ヌクレオチドを合成する場合には、1塩基ずつ伸張させていく方法の別法として、既に2量体以上となっているセグメントどうしを縮合させることで、2以上の塩基分を一度に伸張させることもできる。
【0079】
また、本実施形態の立体制御オリゴヌクレオチド合成用光学活性セグメントは、予めチオホスフェート部分の立体が制御されている。このため、立体制御したい部分のみに本発明の光学活性セグメントを用い、それ以外の箇所については市販されているホスホロアミダイトを用いて、所望の立体構造を有するオリゴヌクレオチドを合成することができる。
【0080】
また、本実施形態のオリゴヌクレオチド合成用セグメントによれば、同じN量体のオリゴヌクレオチドを合成するにあたって、従来法である1塩基ずつ伸長を行う方法と比べて、必要となる工程数を減らすことができる。したがって、目的とする長さの立体制御オリゴヌクレオチドの収率を向上させることができる。
【0081】
また、本実施形態の立体制御オリゴヌクレオチド合成用光学活性セグメントは、比較的短鎖の立体制御オリゴヌクレオチドを液相合成法で大量に合成する場合に用いることができるとともに、固相合成法により、長鎖のオリゴヌクレオチド合成で一部のみを立体制御する場合、例として近年注目されているGapmer合成にも有効に用いることができる。したがって、オリゴヌクレオチド合成後に立体異性体を分離する負荷を大きく低減できるとともに、特に長鎖のN量体オリゴヌクレオチドを合成した後の精製負荷を小さくすることができ、より簡便な精製で、確実に立体制御されたオリゴヌクレオチドを得ることができる。
図1