IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 岩澤 多恵の特許一覧

特許7075882肺野病変の診断支援装置、該装置の制御方法及びプログラム
<>
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図1
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図2
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図3
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図4
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図5
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図6
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図7
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図8
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図9
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図10
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図11
  • 特許-肺野病変の診断支援装置、該装置の制御方法及びプログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-18
(45)【発行日】2022-05-26
(54)【発明の名称】肺野病変の診断支援装置、該装置の制御方法及びプログラム
(51)【国際特許分類】
   A61B 6/03 20060101AFI20220519BHJP
   G06T 7/00 20170101ALI20220519BHJP
【FI】
A61B6/03 360J
A61B6/03 360D
G06T7/00 612
G06T7/00 300F
【請求項の数】 21
(21)【出願番号】P 2018503316
(86)(22)【出願日】2017-02-28
(86)【国際出願番号】 JP2017007668
(87)【国際公開番号】W WO2017150497
(87)【国際公開日】2017-09-08
【審査請求日】2020-02-12
(31)【優先権主張番号】P 2016039752
(32)【優先日】2016-03-02
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】522125283
【氏名又は名称】岩澤 多恵
(74)【代理人】
【識別番号】110001656
【氏名又は名称】特許業務法人谷川国際特許事務所
(72)【発明者】
【氏名】岩澤 多恵
(72)【発明者】
【氏名】後藤 敏行
(72)【発明者】
【氏名】岩男 悠真
【審査官】蔵田 真彦
(56)【参考文献】
【文献】特開2015-136480(JP,A)
【文献】特開2009-195279(JP,A)
【文献】特開2011-048481(JP,A)
【文献】特開2010-035635(JP,A)
【文献】岩澤 多恵,“胸部CT定量評価の意義と限界”,画像診断 7月号,第31巻,第8号,須摩 春樹 株式会社学研メディカル秀潤社,2011年06月25日,pp.850~863
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00-6/14
G06T 1/00、7/00-7/90
(57)【特許請求の範囲】
【請求項1】
被検体を撮影して得られた胸部断層画像を取得する画像取得部と、
胸部断層画像より、臓側胸膜表面から5mm以内の任意に指定された深度で肺辺縁領域を抽出する、肺辺縁領域抽出部と、
肺辺縁領域から1又は複数の特徴量を取得する、特徴量取得部と、
取得された1又は複数の特徴量に基づき、肺辺縁領域内の病変を識別する、病変識別部と、
病変の識別結果を出力する出力部と
を備える、慢性線維化性間質性肺炎の診断支援装置。
【請求項2】
任意に指定された深度が、胸膜表面から1.5mm~3.5mmの範囲から選択される、請求項記載の装置。
【請求項3】
肺辺縁領域抽出部は、胸部断層画像より肺領域を抽出し、次いで肺辺縁領域の抽出を行なう、請求項1又は2記載の装置。
【請求項4】
断層画像が軸位断画像である、請求項1~のいずれか1項に記載の装置。
【請求項5】
断層画像が薄スライス画像である、請求項1~のいずれか1項に記載の装置。
【請求項6】
断層画像がCT画像である、請求項1~のいずれか1項に記載の装置。
【請求項7】
病変識別部は、特徴量取得部が取得した特徴量に基づき、肺辺縁領域内の正常部及び蜂巣肺を含む1以上の病変部をそれぞれ識別して分類し、出力部は、病変識別部による分類結果を出力する、請求項1~のいずれか1項に記載の装置。
【請求項8】
病変識別部はさらに、肺辺縁領域において蜂巣肺が占める割合を算出し、出力部は、分類結果及び算出された蜂巣肺が占める割合を出力する、請求項記載の装置。
【請求項9】
病変識別部はさらに、前記蜂巣肺が占める割合と所定の第1の閾値との比較を行ない、蜂巣肺が占める割合が第1の閾値以下である場合には正常であり、第1の閾値を超える場合には慢性線維化性間質性肺炎である、又は肺線維症及び特発性非特異性間質性肺炎のいずれかである、と判定し、出力部は該判定の結果を出力する、請求項記載の装置。
【請求項10】
病変識別部は、前記蜂巣肺が占める割合と所定の第2の閾値との比較をさらに行ない、蜂巣肺が占める割合が第1の閾値を超え第2の閾値以下である場合には特発性非特異性間質性肺炎であり、第2の閾値を超える場合には肺線維症である、と判定し、出力部は該判定の結果を出力する、請求項記載の装置。
【請求項11】
蜂巣肺を含む複数の肺野病変の教師画像より、各病変の教師パターンとして1又は複数の特徴量をそれぞれ取得する、教師パターン取得部をさらに含み、
病変識別部は、特徴量取得部が取得した特徴量と教師パターンとの対比により、肺辺縁領域の病変部を分類する、請求項10のいずれか1項に記載の装置。
【請求項12】
特徴量が、CT画像のCT値分布を含む、請求項11のいずれか1項に記載の装置。
【請求項13】
特徴量が、CT画像の微分画像の画素値分布をさらに含む、請求項12記載の装置。
【請求項14】
特徴量取得部は、肺辺縁領域からCT値強度を特徴量として取得し、病変識別部は、肺辺縁領域においてCT値-700HU以上又は-600HU以上の高CT値領域が占める割合を算出し、出力部は、算出された高CT値領域が占める割合を識別結果として出力する、請求項記載の装置。
【請求項15】
病変識別部はさらに、前記高CT値領域が占める割合と所定の閾値との比較を行ない、高CT値領域が該閾値以下である場合には正常であり、該閾値を超える場合には慢性線維化性間質性肺炎である、又は肺線維症及び特発性非特異性間質性肺炎のいずれかである、と判定し、出力部は該判定の結果を出力する、請求項14記載の装置。
【請求項16】
特徴量取得部は、肺辺縁領域からCT画像の微分画像の画素値強度を取得し、病変識別部は、肺辺縁領域において該画素値が所定の値以上である高画素値領域が占める割合を算出し、出力部は、算出された高画素値領域が占める割合を識別結果として出力し、前記所定の値は、100~120の範囲から選択される値である、請求項14及び15のいずれか1項に記載の装置。
【請求項17】
病変識別部はさらに、前記高画素値領域が占める割合と所定の閾値との比較を行ない、高画素値領域が該閾値を超える場合には肺線維症であり、該閾値以下である場合には特発性非特異性間質性肺炎である、と判定し、出力部は該判定の結果を出力する、請求項16記載の装置。
【請求項18】
病変識別部は、高CT値領域が占める割合に基づく判定と、高画素値領域が占める割合に基づく判定とを組み合わせて行ない、出力部は、正常、肺線維症、及び特発性非特異性間質性肺炎のいずれであるかの判定結果を出力する、請求項17記載の装置。
【請求項19】
被検体を撮影して得られた胸部断層画像を取得する、画像取得工程と、
胸部断層画像より、臓側胸膜表面から5mm以内の任意に指定された深度で肺辺縁領域を抽出する、肺辺縁領域抽出工程と、
肺辺縁領域から1又は複数の特徴量を取得する、特徴量取得工程と、
取得された1又は複数の特徴量に基づき、肺辺縁領域内の病変を識別する、病変識別工程と、
病変の識別結果を出力する出力工程と
を含む、慢性線維化性間質性肺炎の診断支援装置の制御方法。
【請求項20】
請求項19記載の慢性線維化性間質性肺炎の診断支援装置の制御方法の各工程をコンピュータに実行させるためのプログラム。
【請求項21】
請求項20記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特発性間質性肺炎などの肺野病変の診断支援装置、該装置の制御方法及びプログラムに関する。
【背景技術】
【0002】
慢性間質性肺炎の代表的な疾患である特発性肺線維症(idiopathic pulmonary fibrosis; IPF)は、肺が線維化して固くなり、呼吸不全をきたす疾患である(非特許文献1、2)。組織学的には通常型間質性肺炎(UIP)パターンを特徴とする。現時点で根本的な治療薬はなく、緩徐進行性で、致死的な疾患である。ただし、最近、PirfenidoneやnintedanibといったIPFに対する治療薬が開発され、これらの薬剤により疾患の進行を抑制できることが示された(非特許文献3~5)。これにより、IPFの早期診断、早期治療が生存率の改善をもたらすことが期待されるので、早期診断や内服治療による効果判定のため、病気の重症度や進行の正確な定量評価が求められるようになってきている。
【0003】
IPFに対する治療薬の有効性を示した大規模研究では、効果判定の指標として呼吸機能検査が用いられてきた(非特許文献3~5)。努力性肺活量(Forced expiratory volume, FVC)はその代表的な指標である。しかし、進行したIPFで在宅酸素療法を受けている患者や、気胸の既往のある症例では、呼吸機能検査の実施は難しく、実施できない症例も多くみられる。一方、CTはこうした状態の悪い症例でも実施できる利点がある。もともと、IPFの診断は、臨床、画像、病理をもとに総合的に行うとされ、CTはIPFの診断において極めて重要である(非特許文献1)。IPFにおいては、病気の進行に伴い、CT所見も徐々に進行していくことが知られている(非特許文献6)。IPFでは、CT所見の重症度は、呼吸機能検査のデータ、あるいは生命予後はよく相関する(非特許文献7~10)。これらの知見を踏まえると、CTの所見の定量評価は、IPFの重症度、あるいは疾患の進行程度を測るバイオマーカーとなりうることが期待される。
【0004】
コンピュータを利用したCT画像による間質性肺炎の定量評価法はすでにいくつか提案されている。まず、単純なCT値の閾値で病変と正常肺を分離する手法が挙げられるが(非特許文献11)、この手法では進行した線維化である蜂巣肺とその他の病変との分別は困難である。その他、各病変の分離にニューラルネットワークを用いた手法として、17の特徴量を用いたAdaptive multiple feature method (AMFM)(非特許文献12)、25の特徴量を用いてsmart vector machineで定量評価する手法(非特許文献13)などが報告されている。しかしながらこれらの手法は、トレーニングのために多数例のサンプルが必要で、計算コストもかかる欠点があった。これに対し、Zavalettaらは、CT値のヒストグラムをk clusterに変換し、そのcentroid とweightについて、解析対象とサンプルの相関をthe earth mover’s distanceを用いて評価する手法を提案した(非特許文献14)。このシステムを用いた多施設共同研究での結果もすでに報告されている(非特許文献15、16)
【0005】
本願発明者らは過去に、Gaussian Histogram Normalized Correlation segmentation(GHNC)システムと呼ばれる間質性肺炎のコンピュータ解析手法を開発した(非特許文献17、18)。GHNCは、CT画像と微分画像のヒストグラムのパターンを利用して、肺野を各病変に分類する手法である。これらの手法を臨床例に応用し、呼吸機能や予後と相関をみた論文も複数報告されており(非特許文献19~21)、GHNCの間質性肺炎診断における有用性は非常に高い。しかしながら、GHNCでは正常の症例でも末梢の血管を病変と誤認する欠点があり、GHNCのみで、間質性肺炎と診断する、あるいは検診などで疑わしい症例を指摘することには限界があった(非特許文献22)。
【0006】
また、実際の臨床でIPFを診断する場合、IPFと特発性非特異性間質性肺炎(fibrosing nonspecific interstitial pneumonia; fNSIP)との区別が非常に困難であるという問題がある(1)。fNSIPにはステロイドが有効な症例もあるが、IPFに対してはステロイドの処方は悪影響があるため使用は推奨されておらず、IPFとfNSIPとの鑑別が非常に重要であるものの、両者の鑑別は肺の専門医でも困難である(非特許文献23)。IPFとfNSIPの鑑別を可能にするコンピュータ支援診断技術も知られていない。
【先行技術文献】
【非特許文献】
【0007】
【文献】Travis WD et al. Am J Respir Crit Care Med, 2013, 188:733-748
【文献】日本呼吸器学会びまん性肺疾患 診断・治療ガイドライン作成委員会 (2011) 特発性間質性肺炎 診断と治療の手引き, 第2版 edn. 南江堂
【文献】Azuma A, et al. Am J Respir Crit Care Med, 2005, 171:1040-1047
【文献】Taniguchi H, et al., Eur Respir J, 2010, 35:821-829
【文献】Richeldi L, et al., N Engl J Med, 2014, 370:2071-2082
【文献】Lee HY, et al., AJR Am J Roentgenol, 2012, 199:982-989
【文献】Park SO, et al., Korean J Radiol, 2009, 10:455-463
【文献】Ley B, et al., Radiology, 2014:130216
【文献】Lynch DA, et al., Am J Respir Crit Care Med, 2005, 172:488-493
【文献】Sumikawa H, et al., Am J Respir Crit Care Med, 2008, 177:433-439
【文献】Shin KE, et al., J Comput Assist Tomogr, 2011, 35:266-271
【文献】Uppaluri R, et al., Am J Respir Crit Care Med, 1999, 160:648-654
【文献】Rosas IO, et al., Chest, 2011, 140:1590-1597
【文献】Zavaletta VA, et al., Acad Radiol, 2007, 14:772-787
【文献】Maldonado F, et al., Respirology, 2014, 19:773-774
【文献】Bartholmai BJ et al., J Thorac Imaging, 2013 September, 28(5)
【文献】朝倉輝ら, 非特異性間質性肺炎X線CT像の病巣領域分割手法. 画像電子学会雑誌, 2004, 33:180-188
【文献】Iwao Y, et al., Biomedical Signal Processing and Control, 2014, 12:28-38
【文献】Iwasawa T, et al., J Thorac Imaging, 2009, 24:216-222
【文献】Iwasawa T, et al., AJR Am J Roentgenol, 2014, 203:W166-173
【文献】Iwasawa T, et al., Eur J Radiol, 2014, 83:32-38
【文献】Iwasawa T, et al., Japanese Journal of Clinical Radiology, 2012, 57:41-47
【文献】Akira, M., et al., Radiology, 2009, 251(1): 271-279.
【発明の概要】
【発明が解決しようとする課題】
【0008】
以上の通り、間質性肺炎又はその疑いのある症例を発見するための診断支援技術は未だ十分には確立されていない。とりわけ、IPFに代表される、UIPパターンを示す間質性肺炎は、その他の間質性肺炎と比べて予後が不良であることが知られており、UIPパターンを示す間質性肺炎とその他の間質性肺炎との識別、例えばIPFとNSIPとの識別が非常に重要であるものの、それらの識別に有用な診断支援システムも知られていない。本発明は、間質性肺炎などの肺野病変の診断性能に優れ、従来非常に困難であったIPFとNSIPとの識別をも可能にする新規な診断支援手段を提供することを目的とする
【課題を解決するための手段】
【0009】
本願発明者らは、鋭意研究の結果、肺の全体ではなく辺縁領域を解析することにより、間質性肺炎の診断性能が大いに向上し、従来非常に困難であったIPFとNSIPとの鑑別も可能になることを見出し、本願発明を完成した。
【0010】
すなわち、本発明は、被検体を撮影して得られた胸部断層線画像を取得する画像取得部と;胸部断層画像より、臓側胸膜表面から5mm以内の任意に指定された深度で肺辺縁領域を抽出する、肺辺縁領域抽出部と;肺辺縁領域から1又は複数の特徴量を取得する、特徴量取得部と;取得された1又は複数の特徴量に基づき、肺辺縁領域内の病変を識別する、病変識別部と;病変の識別結果を出力する出力部とを備える、慢性線維化性間質性肺炎の診断支援装置を提供する。また、本発明は、被検体を撮影して得られた胸部断層画像を取得する、画像取得工程と;胸部断層画像より、臓側胸膜表面から5mm以内の任意に指定された深度で肺辺縁領域を抽出する、肺辺縁領域抽出工程と;肺辺縁領域から1又は複数の特徴量を取得する、特徴量取得工程と;取得された1又は複数の特徴量に基づき、肺辺縁領域内の病変を識別する、病変識別工程と;病変の識別結果を出力する出力工程とを含む、慢性線維化性間質性肺炎の診断支援装置の制御方法を提供する。さらに、本発明は、上記本発明の慢性線維化性間質性肺炎の診断支援装置の制御方法の各工程をコンピュータに実行させるためのプログラムを提供する。さらに、本発明は、上記本発明のプログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。

【発明の効果】
【0011】
本発明により、間質性肺炎の診断性能が大いに向上し、IPFとNSIPとの鑑別をも可能にする肺野病変の診断支援装置が提供される。間質性肺炎のコンピュータ支援診断技術は上述の通り種々報告されているが、肺の辺縁領域に着目した手法は全く知られていない。また、本願発明者らは、CT画像の微分画像の画素値強度に基づいてIPFとNSIPの識別が可能になることを見出したが、微分画像の画素値強度が一定の値以上である領域が占める割合を指標とする手法そのものも新規である。ステロイドの処方の決定にはIPFと区別してNSIPを診断することが非常に重要であり、また、近年IPFの治療薬も開発されつつあることから、IPFの早期発見、早期診断がますます重要となってきている。肺の辺縁領域のみを解析することにより、間質性肺炎の診断能が向上するとともに、IPFとNSIPとの識別など、UIPパターンを示す間質性肺炎と、その他の間質性肺炎及び間質性肺炎とまぎらわしいその他肺疾患(例えば線維化を伴う気腔拡張(airspace enlargement with fibrosis; AEF))との間の識別のために非常に有用な情報を得ることができる。
【図面の簡単な説明】
【0012】
図1】GHNCにおいて教師画像として使用可能なCT画像の一例であり、CTの原画像及び微分画像、並びにこれらの画像から得られるヒストグラムを示す。
図2】GHNCにおいて、被検者の肺のCT画像(軸位断)及びその微分画像からガウシアンヒストグラムを作成する工程を説明する図である。
図3】GHNCにおいて、教師パターン(教師画像のCT原画像及び微分画像のガウシアンヒストグラム)との対比により被検者の肺の画像をパターン分類する工程を説明する図である。
図4】本発明の診断支援装置の一例の概略構成を示すブロック図である。
図5】本発明の装置による処理の一例を説明するフローチャートである(教師画像を用いない処理例)。
図6】本発明の装置による処理の一例を説明するフローチャートである(教師画像を用いる処理例)。
図7】肺の軸位断CT画像において、解析対象とする肺辺縁領域を説明した図である。
図8】正常群、IPF患者群、及びfNSIP患者群について、GHNCにより肺全体及び辺縁2mmの領域における蜂巣肺パターンの割合をそれぞれ調べて比較した結果である。
図9】IPF症例(黒丸)及びNSIP症例(白丸)のそれぞれについて、肺全体のHパターンの割合を横軸に、辺縁2mmに占めるHパターンの割合を縦軸にとって示した散布図である。
図10】正常群(17例)、fNSIP群(25例)、IPF群(23例)を対象に、胸膜表面深度1mm~5mmの領域に占めるHパターンの割合をまとめたグラフである。
図11】正常群(17例)、fNSIP群(25例)、IPF群(23例)を対象に、胸膜表面深度1mm~5mmの領域に占めるCT値-700HU以上の領域の割合をまとめたグラフである。
図12】正常群(17例)、fNSIP群(25例)、IPF群(23例)を対象に、胸膜表面深度1mm~5mmの領域に占める微分画像の画素値120以上の領域の割合をまとめたグラフである。
【発明を実施するための形態】
【0013】
本発明で対象とする肺野病変は、典型的には間質性肺炎である。間質性肺炎は、大きく特発性と二次性に分類される。以下、間質性肺炎の分類について説明する。本発明で対象とする間質性肺炎には、これらの間質性肺炎が包含される。
【0014】
特発性間質性肺炎(IIP)は、大きく、
(1) 通常型間質性肺炎(UIP)パターンを組織学的な特徴とする特発性肺線維症(idiopathic pulmonary fibrosis; IPF)、
(2) 特発性非特異性間質性肺炎(idiopathic nonspecific interstitial pneumonia; 特発性NSIP、又はINSIP)、
(3) 急性間質性肺炎(acute interstitial pneumonia; AIP)、
(4) 特発性器質化肺炎(cryptogenic organizing pneumonia; COP)、
(5) 剥離性間質性肺炎(desquamative interstitial pneumonia ; DIP)、
(6) 喫煙に関連した間質性肺炎である、呼吸細気管支炎に伴うILD(Respiratory bronchiolitis-associated interstitial lung disease; RBILD)
の6種に分けられ、さらに非常に特殊な病型としてPleuroparenchymal fibroelastosis; PPFEが挙げられる(非特許文献1)。単にNSIPと言った場合、特発性NSIPを指す。特発性NSIPには、細胞浸潤が主体の細胞性NSIP(cellular NSIP; cNSIP)と、線維化主体の線維化性NSIP(fibrosing NSIP; fNSIP)がある。
【0015】
アメリカ胸部疾患学会(ATS)及びヨーロッパ呼吸器学会(ERS)により2013年に発表された特発性間質性肺炎に関する合同ステートメントでは、IPFとNSIPの区別が非常に困難であることから、特発性間質性肺炎の中で慢性に経過するものを、その他の原因不明な間質性肺炎と分けて慢性線維化性間質性肺炎(chronic fibrosing IP)としてまとめることが提案されている(非特許文献1)。つまり、このステートメントに従った場合、IIPには、chronic fibrosing IPと、その他の原因不明な間質性肺炎(急性経過の間質性肺炎なども含む)があり、chronic fibrosing IPにIPF及びNSIPが含まれる。
【0016】
二次性間質性肺炎の代表例は、膠原病に合併する間質性肺炎(リウマチや強皮症、SLEなどに合併する)であり、膠原病肺とも呼ばれる。膠原病肺は病理パターンとしてはNSIPが多いが、UIPパターンを示すものもあり、両者が混在することも多い。膠原病肺は通常、免疫抑制剤やステロイドである程度の治療が期待できるが、膠原病肺の中でもUIPパターンをとる症例は予後が不良であることが知られており、IPFと予後に差がなかったとする報告もある(Song JW, et al., Chest. 2009;136(1):23-30.)。本発明によればUIPパターンを特徴とする間質性肺炎を他の間質性肺炎やその他の疾患と区別することができるので、膠原病肺のような二次性の間質性肺炎も本発明の対象に含まれる。
【0017】
未だ自己抗体が見つかっておらず現状では特発性と診断されている、将来的に膠原病肺などの二次性の間質性肺炎に分類され得る間質性肺炎も、特発性のあるいは二次性の間質性肺炎として、本発明の対象に包含される。
【0018】
また、間質性肺炎との鑑別が困難な疾患として、線維化を伴う気腔拡張(airspace enlargement with fibrosis; AEF)が知られている(Kawabata Y, Hoshi E, Murai K, et al. Histopathology. 2008;53(6):707-714.)。これは肺気腫の壁が少し厚い状態であり、間質性肺炎ではないが、画像的には間質性肺炎と紛らわしいものがかなり存在する。肺癌症例では、肺気腫やAEFが合併する症例が多いが、中には間質性肺炎を合併している症例もある。UIPパターンを示す症例では術後に急性増悪することが多く、AEFとUIPの区別が重要とされている(Omori T, Tajiri M, Baba T, et al. Ann Thorac Surg. 2015;100(3):954-960)。
【0019】
本発明において、間質性肺炎の診断という語には、上記した各種の間質性肺炎の診断が包含される。具体的には、間質性肺炎の診断(間質性肺炎と、正常、あるいは肺気腫やAEF等のその他の肺疾患との鑑別)、IIPの診断(IIPと、正常、あるいは肺気腫やAEF等のその他の肺疾患との鑑別)、chronic fibrosing IPの診断(chronic fibrosing IPと、正常、あるいは肺気腫やAEF等のその他の肺疾患との鑑別)、IPFの診断(IPFと、正常、あるいは肺気腫やAEF等のその他の肺疾患との鑑別)、IPF及びNSIPの診断(IPFと、NSIPと、正常、あるいは肺気腫やAEF等のその他の肺疾患との間の鑑別、又はchronic fibrosing IP症例におけるIPFとNSIPとの鑑別)、肺線維症の診断(肺線維症と、正常あるいは肺線維症以外の肺疾患との鑑別)等が包含される。従来鑑別が困難であったIPFとNSIPを鑑別することで、ステロイド等の治療薬を投与すべき患者(NSIP患者)を、投与すべきではない患者(IPF患者)と区別して選定することや、抗線維化薬を投与すべきIPF患者の早期診断、早期治療が可能になる。また、膠原病肺などの二次性間質性肺炎において、UIPパターンを示す間質性肺炎を早期に診断する、あるいは肺癌などにおいてUIPパターンを示す間質性肺炎合併症例とAEFとを早期に診断することで、早期に適切な対処をとることができ、予後改善にも貢献できる。
【0020】
なお、本発明において、単に「肺線維症」と言った場合には、UIPパターンを示す間質性肺炎を意味し、特発性肺線維症(IPF)のみならずUIPパターンを示すその他の間質性肺炎(二次性間質性肺炎も含む)が包含される。
【0021】
本発明では、肺の辺縁領域を解析対象とする。辺縁領域を抽出する際の胸膜表面深度は特に限定されないが、通常は胸膜表面から数mm程度以内であり、例えば5mm以内の範囲で選択され得る。具体的には、胸膜表面から5mm、4mm、3mm、2mm、又は1mmまでの領域を肺辺縁領域として抽出してよい。好ましくは、胸膜表面深度は、1.5mm~3.5mmの範囲、例えば2mm~3mmの範囲から選択され得るが、これらに限定されない。なお、本発明において「胸膜」とは臓側胸膜である。
【0022】
肺辺縁領域の抽出は、例えば、肺野画像から肺領域を抽出後、肺の輪郭(肺表面)から一定の深度までを抽出することにより行なえばよい。画像診断における肺の抽出法としては、閾値処理、領域拡張処理に基づいた手法に加えてモルフォロジ演算や肋骨の抽出結果を用いた肺野輪郭の補正法を適用する方法、肺野アトラスを用いた手法、テクスチャー特徴を用いて肺野の異常部位を認識して肺野を抽出する手法が知られている(例えば、Wang J, Li F, Li Q. Med Phys 2009; 36:4592-4599)。肺領域の抽出にはいずれの手法を用いてもよい。肺全体の画像解析においては、病変と誤認するおそれのある血管領域及び気管・気管支領域を肺領域から抽出除外して解析を行なう手法も存在するが、肺辺縁領域では気管支や血管がCT等のX線画像ではほとんど確認されないため、本発明においては血管領域及び気管・気管支領域の抽出工程は省略可能である。
【0023】
胸部断層画像は、CTやMRI等により撮影することができる。MRIの場合には、例えば、脳脊髄液の信号など基準となる信号との比を測定して、後述する各種の閾値を決定すればよい。本発明においては、CT画像を好ましく用いることができる。断層画像の断面の方向は特に限定されないが、軸位断及び矢状断が好ましく、軸位断が特に好ましい。CT画像としては、薄層スキャンにより撮影された薄スライスCT画像が好ましい。複数の一連のスキャン画像からなる薄スライスCT画像は、例えばマルチスライスCT装置を用いた撮影により得ることができる。薄層スライスCT画像のスライス厚は、通常数ミリ以下であり、例えば0.5~1mm程度である。2次元の薄スライスCT画像のそれぞれについて、肺辺縁領域を抽出して解析すればよい。肺をミリ単位でスライスした薄スライスCT画像の全てを用いた方がより正確な解析が可能であるが、そのうちの一部のみ(例えば数枚~十数枚程度)を用いてもよい。
【0024】
辺縁領域から取得する特徴量としては、CT値(強度、平均値、分散、ヒストグラム(分布)、ヒストグラムのskewnessやkurtosis、gray level entropyなど)、微分画像の画素値(強度、ヒストグラム(分布)など)、run length、すなわち所見のあるピクセルが連続する長さ(short run emphasis, long run emphasis, gray level uniformity, run length nonuniformitiy, run percentなど)、co-occurrence matrixなどが挙げられる。これらのうちの1つ又は複数を組み合わせて病変部の識別が行われる。
【0025】
特徴量に基づいて病変部を識別する方法は特に限定されない。肺野病変の画像解析の分野では、肺全体を対象とした画像解析により間質性肺炎の診断を支援する様々な手法が知られている。本発明では、解析対象領域を肺辺縁領域に限定するが、画像のコンピュータ解析自体はそれらの公知の手法を適用することができる。
【0026】
公知の手法の代表的な例として、病変部をパターン分類するテクスチャー解析法が種々知られている。この手法では、画像データから得られる各種の特徴量に基づき、肺領域を正常、蜂巣肺、すりガラス状病変、気腫性病変/肺気腫などのパターンに分類する。各病変の典型的な画像を教師画像として使用する手法が多い。本発明でも、そのような公知の手法を用いて肺辺縁領域の画像を解析し、肺辺縁領域を正常部及び蜂巣肺を含む1以上の病変部に分類して評価することができる。以下、テクスチャー解析法の具体例を挙げる。もっとも、本発明で適用可能な画像解析方法はこれらに限定されるものではない。
【0027】
肺辺縁解析において特に好ましく利用できる病変分類法の1つとして、ガウシアンヒストグラム正規化相関法(Gaussian Histogram Normalized Correlation; GHNC)を挙げることができる。GHNCは本願発明者らが開発し、既に報告し公知となっている手法であり、CT画像及びその微分画像のヒストグラムのパターンを利用して、肺野を各病変に分類する。CT値分布及びCT画像の微分画像の画素値分布を特徴量として使用し、肺全体を正常(Normal)、気腫性病変/肺気腫(Emphysema)、すりガラス状陰影(Ground-glass opacities)、コンソリデーション(consolidation)、網状陰影(Reticular opacities)、蜂巣肺(Honeycomb)の6パターンに分類することができる。
【0028】
GHNCでは、CT画像とその微分画像の局所のヒストグラムにガウス関数を畳みこみガウシアンヒストグラムとし、教師画像との正規化相関をとって、病変を分類、定量する。このシステムの原理、および2次元の画像での解析結果は、朝倉らが2004年に発表した(非特許文献17)。さらに岩男らはこれを3次元的に評価する手法を開発した(非特許文献18)。岩澤は、これらの手法を臨床例に応用し、呼吸機能や予後と相関をみた論文を発表している(非特許文献19~21)。
【0029】
GHNCは非常に優れたパターン分類法ではあるが、正常の症例でも末梢の血管を病変と誤認する欠点があり、GHNCのみで、間質性肺炎と診断する、あるいは検診などで疑わしい症例を指摘することに限界があった(非特許文献22)。また、GHNCで肺全体を解析した場合、解析結果からIPFとNSIPを鑑別することは事実上困難だった。肺の全体ではなく辺縁領域を解析することで、これらの問題を解決することができる。
【0030】
GHNC自体は上述の通り既に報告され公知である。解析手順を以下に示す。あらかじめいくつかの典型画像をサンプル(教師画像)として登録し、このサンプルのCTの原画像及び微分画像でそれぞれ病変のヒストグラムを作成しておく(図1)。微分画像は、隣り合った画素値の変化が大きい部分を白く表示した画像であり、画像データから公知のアルゴリズムないしはソフトウェアを用いて容易に作成することができる。次に、解析したい画像の各ピクセル毎のヒストグラムを作成する(図2)。当然1個の画像値ではヒストグラムにならないので、あるピクセルの周囲50ピクセルの画像値を使う。これだけでは、値が離散的なので、各画素値はもともとゆらぎがあると仮定して、個々の画素値にガウス関数をかけてなだらかなヒストグラムを得る。これをガウシアンヒストグラムと呼ぶ。このガウシアンヒストグラムとあらかじめ作成しておいたサンプルのヒストグラム(これもガウシアンヒストグラムとしておく)の正規化相関をとって、最もよく一致したグループにこのピクセルを分類していく(図3)。GHNCシステムでは、肺がピクセル単位で各病変に分類されるので、面積や体積として表示することも容易である。図2図3では肺全体の解析を例示しているが、本発明では、CTの原画像及び微分画像の辺縁領域を対象にピクセル毎のガウシアンヒストグラムを作成し、サンプルのガウシアンヒストグラムと対比すればよい。
【0031】
GHNCにおける教師画像であるサンプルは、肺野病変の読影に習熟している放射線科医が選定すればよい。肺のCT値は血流の分布に影響を受けるため、正常でも肺尖部で低く、肺底部は高く、腹側で低く、背側で高い傾向があることから、肺の肺尖部、中部、肺底部の3箇所それぞれに対して腹側、中間、背側の計9領域についてサンプルを設定することが望ましい。NSIPとIPFの鑑別を目的とする場合には、すりガラス状病変、コンソリデーション、及び網状病変のサンプルはNSIP症例(ステロイドが効果があり、病変の改善がみられた症例)から、蜂巣肺のサンプルはIPF症例から、それぞれ選定してもよい。本発明では肺辺縁領域を解析するが、サンプルは肺辺縁領域から選定してもよいし、辺縁ではない領域から選定してもよい。
【0032】
教師画像は、基本的には、撮影や再構成の条件が解析対象画像と同じ画像から選定すればよい。低線量で撮影したCTやエッジを強調する再構成関数を使用した画像では、高空間周波数帯のノイズが多くなる。教師画像と解析対象画像とで、撮影や再構成の条件がほぼ同じであり、高空間周波数帯のノイズの量に大きな差が無い場合には、解析対象画像に対してフィルター処理をすることなくパターン分類を実行できる。例えば、教師画像として選定した画像が縦隔条件で再構成された画像であり、解析対象画像も縦隔条件で再構成された画像であれば、フィルター処理は必要ではない。教師画像が肺野条件で再構成された画像であれば、肺野条件の画像をフィルター処理無しでパターン分類できる。解析対象画像の撮影・再構成条件が既に選定していた教師画像の撮影・再構成条件と異なり、解析対象画像と教師画像との間で高空間周波数帯のノイズの量に大きな差がある場合には、解析対象画像と同じ条件の教師画像に入れ替えてパターン分類を行なってもよいし、あるいは、解析対象画像に対して適当なフィルター処理を施すことで、撮影・再構成条件が異なる教師画像を用いてパターン分類を実施できる。例えば、教師画像が通常線量で撮影され縦隔条件で再構成された画像であり、一方で、解析対象画像が、低線量で撮影されるか又は肺野条件で再構成され、高空間周波数のノイズが強調された画像である場合には、高空間周波数のノイズを低減できるフィルターで解析対象画像を処理することで、縦隔条件の教師画像をそのまま用いてパターン分類を実施できる。フィルターは各種のものが公知であり、例えばガウシアンフィルターを好ましく用いることができる。ガウシアンフィルターは画像の平滑化に用いるフィルターであり、高空間周波数のノイズを低減する効果がある(佐藤嘉伸 「平滑化と強調」 医用画像工学ハンドブック 日本医用画像工学会監修 p395-418,(2012))。
【0033】
テクスチャー解析の他の好ましい例として、メイヨークリニックのグループが報告するCALIPER (Computer Aided Lung Informatics for Pathology Evaluation and Rating)(非特許文献14)を挙げることができる。この手法では、正常、すりガラス状病変、網状病変、蜂巣肺、気腫性病変/肺気腫などのk種類のパターンを教師画像として与え、CT値のヒストグラム(CT値分布)を特徴量として使用し、解析対象と教師画像の相関をEarth Mover's Distanceを用いて肺全体をk clusterに分類する。さらに、各clusterのcentroidとweightを出力する。この手法を用いた多施設共同研究での結果も報告されている(非特許文献15、16)。
【0034】
上記のCALIPERも教師画像を使用する手法である。教師画像の選定は、GHNCのサンプルの選定と同様に行なうことができる。胸部CT画像より抽出した肺辺縁領域のCT値のヒストグラムを用いて、上記したように教師画像との相関を評価して、肺辺縁をk種類のパターンに分類すればよい。
【0035】
本発明で使用可能なテクスチャー解析手法のさらなる例として、ニューラルネットワークを用いて蜂巣肺等の病変部を識別する手法が挙げられる。具体例を挙げると、Uppaluriらが報告した、17の特徴量を用いたAdaptive multiple feature method (AMFM)(非特許文献12)、Rosasらが報告した、25の特徴量を用いてサポートベクターマシンで定量評価する手法(非特許文献13)、またYoonらが報告した手法(Yoon RG, et al., Eur Radiol. 2013 Mar;23(3):692-701.)等がある。これらも教師画像を使用する手法である。
【0036】
下記実施例では、GHNCにより辺縁領域の病変をパターン分類し、蜂巣肺が辺縁領域に占める割合を算出しているが、蜂巣肺を識別・分類できる解析方法であればいかなる解析手法でも採用可能であり、本発明の範囲はGHNCに限定されるものではない。
【0037】
肺辺縁領域の病変をパターン分類した後、蜂巣肺が辺縁領域に占める割合を算出する。肺辺縁領域に占める蜂巣肺パターンの領域の割合に基づいて、間質性肺炎の診断、例えば、慢性線維化性間質性肺炎の診断、肺線維症の診断、UIPパターンを示す間質性肺炎の診断等が行われる。慢性線維化性間質性肺炎症例では、肺辺縁領域に蜂巣肺が占める割合が正常よりも多く、その中でもIPF症例ではNSIP症例よりも蜂巣肺が占める割合が多い。従って、蜂巣肺が占める割合に基づく判定では、2つの閾値が使用され得る。第1の閾値は、慢性線維化性間質性肺炎と、正常及び慢性線維化性間質性肺炎以外の肺疾患(肺気腫やAEFなど)とを鑑別する閾値である。また、第1の閾値は、肺線維症及びNSIPと、正常及び慢性線維化性間質性肺炎以外の肺疾患(肺気腫やAEFなど)とを鑑別する閾値でもあり得る。第2の閾値は、第1の閾値よりも高い値であり、NSIPとIPF、あるいはNSIPと肺線維症を鑑別する閾値である。これらの閾値の具体例は下記実施例に示されている(表5~表7参照)。
【0038】
テクスチャー解析以外の解析手法では、例えばCT値-700HU以上(Matsuoka S, Yamashiro T, Matsushita S, et al. J Comput Assist Tomogr. 2015, 39(2):153-159)、CT値-600HU以上(Kliment CR, Araki T, Doyle TJ, et al. BMC Pulm Med. 2015, 15:134、及びLederer DJ, Enright PL, Kawut SM, et al. Am J Respir Crit Care Med. 2009, 180(5):407-414)という指標が知られている。本発明による肺辺縁解析でも、CT値-700HU以上あるいは-600HU以上に基づく解析が可能である。CT画像で肺辺縁領域に占めるCT値-700HU以上ないしは-600HU以上の領域(「高CT値領域」ということがある)の割合を算出し、この割合が所定の閾値を超えるかどうかで慢性線維化性間質性肺炎などの間質性肺炎を診断できる。この態様における閾値の具体例も下記実施例に示されている(表8及び表12参照)。CT画像のCT値は再構成関数やウインドウ設定などに影響されるが、市販のCT装置は通常どの装置もCT値を水が0HU、空気が-1000HUを取るように校正されており、またCT値が線量や再構成関数に依存しないように校正されているので、CT値-700HU以上又は-600HU以上を指標とした肺辺縁解析は撮影・再構成条件に左右されることなく実施可能である。
【0039】
さらに、これらの公知の手法のほか、本願発明者らは新たに、CT画像の微分画像(以下、単に「微分画像」ということがある)の画素値強度に基づいてIPFとNSIPとを鑑別できることを見出した。微分画像の画素値強度を特徴量として用いる解析では、肺辺縁領域において当該画素値が一定の値以上である領域(「高画素値領域」ということがある)が占める割合を算出する。ここでいう一定の値とは、100~120の範囲から選択される値である。例えば、画素値が100以上の領域、110以上の領域、又は120以上の領域が占める割合を算出すればよい。この割合が所定の閾値を超えるかどうかで(特発性)肺線維症とNSIPの鑑別をすることができる。この態様において用いる閾値の具体例も下記実施例に示されている(表9~表12参照)。微分画像は、上述のGHNCで用いる微分画像と同様の方法で作成できる。
【0040】
微分画像の画素値強度による診断では、一般には縦隔条件のCT画像を用いることが好ましいが、縦隔条件よりも高空間周波数帯のノイズが多い肺野条件の画像や低線量の画像でも、必要に応じて高空間周波数帯のノイズを低減するフィルター処理を施すことで、縦隔条件画像と同様に画素値強度による診断を実施できる。あるいは、必要に応じて、肺野条件などの条件が異なる画像について、高画素値領域を規定する画素値強度、又は高画素値領域の割合に関する閾値を別途設定してもよい。
【0041】
微分画像の画素値強度に基づく診断は、とりわけ、慢性線維化性間質性肺炎症例においてIPFとNSIPとを鑑別するのに好適である。そのため、微分画像の画素値強度による診断は、正常と慢性線維化性間質性肺炎とを鑑別できる特徴量に基づく診断(例えばCT値-700HU以上)と組み合わせて実施することが好ましい。もっとも、間質性肺炎の画像の読影に習熟している医師であれば、微分画像の画素値のみでも十分に(特発性)肺線維症とNSIPの鑑別に役立てることができるので、CT値-700HU以上などの他の指標と組み合わせて用いることは必須ではない。
【0042】
本発明によれば、IPFとNSIPの鑑別が可能なので、NSIPに効果があるがIPFには投与を避けるべきステロイドなどの治療薬の投与対象の選別が可能になる。また、IPFをNSIPと区別して早期に発見・診断することで、IPFの早期治療が可能になり、IPF患者の予後改善も期待できる。さらに、本発明によれば、UIPパターンを示す二次性の間質性肺炎を、他の間質性肺炎やその他の肺疾患と区別することもできるので、そのような症例についても、早期に発見して適切な対処法を早期に選択することにより、予後改善が期待される。さらにまた、本発明による肺野病変の診断支援技術は、間質性肺疾患に代表される肺疾患の診断のみならず、重症度の診断、病勢のモニタリング、抗線維症薬又はその候補物質の治療効果判定にも使用することができる。
【0043】
以下、上記した肺辺縁領域の解析による診断を実施するための本発明の診断支援装置について説明する。図4は、本発明の装置の一例の概略構成を示すブロック図である。図5及び図6は、本発明の装置による処理を説明するフローチャートであり、図5が教師画像を用いない態様(例えば、CT値-700HU以上や微分画像の画素値強度を指標として病変識別を行なう態様)による処理例、図6が教師画像を用いる態様(例えば、GHNC等のテクスチャー解析により病変識別を行なう態様)による処理例である。なお、図5及び図6では省略するが、取得した画像のフィルター処理の工程を、胸部断層画像の取得(S101、S201)の後、肺辺縁領域の特徴量の取得(S103、S203)の前までに実施してもよい。
【0044】
本発明の装置10において、画像取得部110は、撮像装置20により被検体(例えば間質性肺炎患者)を撮影して得られた胸部断層画像を取得する。撮像装置20は、例えば、高解像度のマルチスライスCT装置などであり得る。CT装置は各種の市販品が存在するが、通常どの装置もCT値を水が0HU、空気が-1000HUを取るように校正されており、水ファントム及び空気ファントム等の測定による0HU、-1000HU等のCT値のキャリブレーションが適切に行われている限り、いずれのCT装置を用いてもよい。撮影及び再構成の条件は特に限定されず、例えば肺野条件でも縦隔条件でもよいし、通常線量でも低線量でもよい。
【0045】
装置10は、フィルター処理部170を備えていてもよい。必要な場合には、取得した画像を適当なフィルターで処理する。例えば、教師画像を用いる態様において、画像取得部110が取得した画像と教師パターン取得部160が用いる教師画像との間で高空間周波数帯のノイズの量が大きく異なる場合には、上述した通り、ガウシアンフィルターなどのフィルターで取得画像の処理を行えばよい。また、微分画像の画素値強度を指標とする態様において、必要に応じて取得画像のフィルター処理が行われ得る。
【0046】
肺辺縁領域抽出部120は、胸部断層画像から肺辺縁領域を抽出する。胸膜表面から任意に指定された深度で抽出を実行する。胸膜表面深度については上述した通りであり、通常は数mm以内、例えば5mm以内、特には1.5mm~3.5mmの範囲内の値であり得る。例えば、まず肺領域の抽出により肺の輪郭(表面)を定め、そこから所定の深度で辺縁領域の抽出を行なえばよい。予め特定の深度が装置10に設定されていてもよいし、装置の使用者が入力装置30より所望の深度を入力ないしは選択して設定してもよい。
【0047】
特徴量取得部130は、肺辺縁領域の画像データから特徴量を取得する。特徴量の取得のために画像の処理が必要な場合には、その処理も行なう。例えば、微分画像の画素値強度を特徴量として取得する場合には、CT画像から微分画像を生成する処理も行なう。またCT値分布(ヒストグラム)を特徴量として取得する場合には、ヒストグラムを生成する処理も行なう。肺辺縁領域の抽出と特徴量取得の順序は特に限定されず、肺全体から特徴量を得た後、肺辺縁領域の特徴量のみを抽出して取得してもよいが、処理時間等の観点からは、肺辺縁領域のみを対象に特徴量を得る方が好ましい。取得すべき特徴量、ひいては病変識別部140による識別方法を、装置10の使用者が入力装置30より選択できる構成としてもよい。
【0048】
肺辺縁領域抽出部及び特徴量取得部での処理により肺辺縁領域の特徴量が得られた後、病変識別部において、特徴量に基づく病変の識別等が行われる。上述した通り、種々のテクスチャー解析法や、CT値-700HU以上又は-600HU以上、微分画像の画素値強度等に基づく病変識別方法を適用することができる。
【0049】
教師パターン取得部160は、テクスチャー解析などの教師画像を用いた解析を行なう装置例において必要な構成である。CT値強度(CT値-700HU以上又は-600HU以上)及び微分画像の画素値強度に基づく診断など、教師画像を使用しない解析方法を実行する装置例においては、教師パターン取得部160は省略可能である。もっとも、そのような装置例においても、テクスチャー解析も実施できるように教師パターン取得部160を備えていてよい。
【0050】
教師パターン取得部160は、蜂巣肺を含む複数の肺野病変の教師画像より、各病変の教師パターンとして1又は複数の特徴量をそれぞれ取得する。病変識別部は、被検体の肺辺縁領域画像から得られる特徴量と教師パターンとの対比により、肺辺縁領域の病変部を分類する。教師画像は、上述した通り、肺野病変の読影に習熟している放射線科医が選定すればよい。
【0051】
教師画像の設定及び教師パターンの取得は、病変識別部140による病変の識別・分類工程までに実施すればよいので、被検体の胸部断層画像を取得する前に行なってもよいし、胸部断層画像取得の後から病変識別部140による病変の識別・分類工程までの間のいずれかのステップで行なってもよい。一旦設定した教師画像及び該教師画像から取得した教師パターンは、その後同じ装置を用いて病変分類を行なう際に繰り返し使用することができる。フィルター処理部170により適当なフィルター処理を行うことで、設定済みの教師画像とは異なる条件で撮影ないしは再構成され、高空間周波数のノイズが強調された画像であっても、教師画像を変更せずに同じ教師画像及び同じ教師パターンを用いて解析を実施できる。もっとも、所望により、教師画像の追加や変更を行なってもよい。撮影・再構成の条件が異なる教師画像のセットを予め複数設定しておき、取得画像の条件に応じて教師画像を選択する構成にしてもよい。
【0052】
病変識別部140による識別結果は、出力部150によってモニター等の表示装置40に出力され、表示される。さらに、プリンター等の印刷装置や記録媒体等に識別結果が出力され得る。さらにまた、出力部150は、装置10の外部に存在するデータベース等の外部記憶装置にネットワークを介して識別結果を出力するように構成することもできる。
【0053】
1つの態様において、病変識別部140は、テクスチャー解析を実行し、蜂巣肺パターンが肺辺縁領域に占める割合に基づいて病変の識別を行なう。この態様では、例えば、病変識別部140は、特徴量取得部が取得した特徴量に基づき、肺辺縁領域内の正常部及び蜂巣肺を含む1以上の病変部をそれぞれ識別して分類し、出力部はこの分類結果を出力する。教師画像を必要とする解析方法の場合には、装置10は、教師パターン取得部160をさらに備え、フィルター処理部170もさらに備えていてよい。病変識別部140は、肺辺縁領域において蜂巣肺が占める割合を算出してもよく、出力部は、算出された蜂巣肺が占める割合を分類結果とともに出力する。
【0054】
病変識別部140は、蜂巣肺が占める割合と所定の第1の閾値との比較を行ない得る。蜂巣肺の割合が第1の閾値以下である場合には正常判定となり、超える場合には慢性線維化性間質性肺炎である、又は肺線維症及び特発性非特異性間質性肺炎のいずれかである、と判定される。さらに、病変識別部140は、第1の閾値との比較に加え、第1の閾値よりも高い第2の閾値との比較も行なってよい。第1の閾値及び第2の閾値の具体例は下記実施例に示される通りである。蜂巣肺が肺辺縁領域に占める割合が、第1の閾値を超え、かつ第2の閾値以下である場合には、特発性非特異性間質性肺炎と判定される。蜂巣肺が占める割合が第2の閾値も超える場合には、(特発性)肺線維症と判定される。出力部はこれらの判定結果を出力する。
【0055】
他の1つの態様において、病変識別部140は、CT値強度を特徴量として使用し、CT値-700HU以上又は-600HU以上を指標として病変の識別を行なう。この態様では、例えば、病変識別部140はCT値-700HU以上又は-600HU以上である高CT値領域が肺辺縁領域に占める割合を算出し、出力部150は算出された当該割合を識別結果として出力する。
【0056】
あるいは、病変識別部140は、高CT値領域が占める割合を算出し、さらに、算出された当該割合と所定の閾値との比較を行ない得る。所定の閾値の具体例は下記実施例に示す通りである。この場合、病変識別部140は、高CT値領域が閾値以下である場合には正常であり、該閾値を超える場合には慢性線維化性間質性肺炎である、又は肺線維症及び特発性非特異性間質性肺炎のいずれかである、と判定し、出力部150はこの判定結果を出力する。
【0057】
さらに他の1つの態様において、病変識別部140は、微分画像の画素値強度を特徴量として使用し、画素値強度100~120以上を指標として病変の識別を行なう。この態様では、例えば、病変識別部140は、微分画像の画素値が100~120の範囲から選択される値以上である領域(高画素値領域)が肺辺縁領域に占める割合を算出し、出力部150は算出された当該割合を識別結果として出力する。
【0058】
あるいは、病変識別部140は、高画素値領域が占める割合を算出し、さらに、算出された当該割合と所定の閾値との比較を行ない得る。所定の閾値の具体例は下記実施例に示す通りである。この場合、病変識別部140は、高画素値領域が該閾値を超える場合には(特発性)肺線維症であり、該閾値以下である場合には特発性非特異性間質性肺炎である、と判定し、出力部150はこの判定結果を出力する。
【0059】
さらなる他の態様において、病変識別部140は、高CT値領域が占める割合に基づく判定と、高画素値領域が占める割合に基づく判定とを組み合わせて行なう。例えば、まず高CT値領域が占める割合に基づく慢性線維化性間質性肺炎か否かないしは肺線維症及び特発性非特異性間質性肺炎のいずれかであるか否かの判定が行われ、慢性線維化性間質性肺炎である又は肺線維症及び特発性非特異性間質性肺炎のいずれかであると判定された場合に、高画素値領域が占める割合に基づく判定が行われる。出力部150は、正常、(特発性)肺線維症、又は特発性非特異性間質性肺炎との判定結果を出力する。この場合、特徴量取得部は、CT値強度及び微分画像の画素値強度の両者を同時に取得してもよいし、あるいは、高CT値領域が占める割合に基づく判定が行われ、判定結果が正常判定ではなかったときに改めて微分画像の画素値を取得してもよい。あるいはまた、病変識別部140は、高CT値領域が占める割合に基づく判定と高画素値領域が占める割合に基づく判定を同時に実行してもよい。この場合、高CT値領域が占める割合に基づく判定結果が正常であったときは、高画素値領域による判定結果は無視されて正常との判定結果が出力され、高CT値領域が占める割合に基づく判定結果が疾患判定であったときには、高画素値領域が占める割合に基づく判定結果が出力される構成としてよい。
【0060】
本発明はさらに、肺野病変の診断支援装置の制御方法を提供する。該制御方法は、被検体を撮影して得られた胸部断層画像を取得する、画像取得工程と;胸部断層画像より、胸膜表面から任意に指定された深度で肺辺縁領域を抽出する、肺辺縁領域抽出工程と;肺辺縁領域から1又は複数の特徴量を取得する、特徴量取得工程と、取得された1又は複数の特徴量に基づき、肺辺縁領域内の病変を識別する、病変識別工程と;病変の識別結果を出力する出力工程とを含む。また、該制御方法は、病変識別工程において採用する解析方法に応じて、蜂巣肺を含む複数の肺野病変の教師画像より、各病変の教師パターンとして1又は複数の特徴量をそれぞれ取得する、教師パターン取得工程をさらに含み得る。
【0061】
本発明はさらに、上記した肺野病変の診断支援装置の制御方法の各工程をコンピュータに実行させるためのプログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体を提供する。「記録媒体」は、フレキシブルディスク、光磁気ディスク、ROM、EPROM、EEPROM、CD-ROM、MO、DVD等の任意の「可搬用の物理媒体」(非一過性の記録媒体)であり得る。あるいは、LAN、WAN、インターネットに代表される、ネットワークを介してプログラムを送信する場合の通信回線や搬送波のように、短期にプログラムを保持する「通信媒体」であり得る。
【実施例
【0062】
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。なお、実施例中で用いる略語は以下の通りである。
IIP; 特発性間質性肺炎
IPF: 特発性肺線維症
NSIP: 非特異性間質性肺炎
fNSIP: 線維化性NSIP
cNSIP: 細胞性NSIP
COP: 特発性器質化肺炎
DIP: 剥離性間質性肺炎
UIP: 通常型間質性肺炎
【0063】
1. GHNCによる肺野病変の診断
1-1. GHNCサンプル画像の選択
神奈川県循環器呼吸器病センターにおいて2005年までに外科的肺生検の病理組織診断で特発性間質性肺炎が確定した症例、および間質性肺炎のない正常ボランティアの症例の胸部軸位断CT画像から、GHNCのサンプル画像(教師パターンを取得するための教師画像)を選択した。なお、CT画像の撮影には東芝社の64列マルチスライスCTを使用した。
【0064】
GHNCでは肺の肺尖部、中部、肺底部の3箇所それぞれに対して腹側、中間、背側の計9領域についてサンプルを設定する必要がある。これは肺のCT値は血流の分布に影響を受けるため、正常でも肺尖部で低く、肺底部は高く、腹側で低く、背側で高い傾向があるためである。今回の検討では、正常(N)、気腫性病変/肺気腫(E)、すりガラス状病変(G)、コンソリデーション(C)、網状病変(R)、蜂巣肺(H)の6種類のパターンについて、それぞれ、(N)は7名より46サンプル、(E)は4名より15サンプル、(G)は5名より19サンプル、(C)は2名より8サンプル、(R)は5名より15サンプル、(H)は4名より14サンプルを設定した。G,C,Rについてはステロイドが効果があり、ステロイド治療により病変の改善がみられた症例(具体的にはfNSIP、COP、DIP、cNSIP(急性肺損傷を伴う症例))から抽出した。一方、HについてはIPF症例から抽出した。
【0065】
1-2. 正常、IPF、fNSIPの鑑別
上記のサンプル画像を用いたGHNCにより、サンプルを抽出した症例とは異なる症例を用いて、正常、IPF、及びfNSIPを鑑別できるかをレトロスペクティブに検討した。正常3例、IPF 24例、fNSIP 39例の軸位断マルチスライスCT画像をGHNC解析に付した。ここで用いたIPF症例及びfNSIP症例は、2006年から2011年までに神奈川県循環器呼吸器病センターで行われた外科的肺生検により病理が確定し、少なくとも3年間の経過観察で2次性の間質性肺炎が否定され、臨床的に特発性と診断された63症例であった。
【0066】
これらの症例のCTをGHNCで解析し、肺全体に占める各病変の割合を測定した。また、肺表面からある一定の深さの病変の占める割合についても検討した。この肺の辺縁の病変の範囲を図7に示す。「辺縁」の範囲は、肺の表面でも縦隔側は除き、かつ横隔膜面も内部は除く範囲とした。つまり、おおまかに左右の肺を合わせてひとつの円柱とみなしたときに、側面にあたる部分を解析対象とした。まず、肺表面から2mmおよび5mmについて検討した。肺表面より2mmの領域は肺全体の8%であり、5mmの占める割合はおよそ20%であった。
【0067】
表1および図8に結果を示す。肺全体の解析でも、正常とIIPの症例ではHパターンの割合に差があった(図8a)。ただし、肺全体の解析ではIPFとfNSIPの間に差は認められなかった。一方、図8bは、辺縁2mmの範囲に占めるHパターンの割合である。このグラフからもわかるように、辺縁2mmの解析では、IPFとfNSIPの間にも差が認められた。
【0068】
1-3. IPFとNSIPの鑑別
次にIPFとNSIPの鑑別がGHNCで可能かを検討した。まず、Mann-WhitneyのU検定で各指標に差があるか検討した。
【0069】
結果を表1に示す。IPFでは、患者の年齢が有意に高く、男性が有意に多かった。また、辺縁2mm、辺縁5mmのHパターンの割合がfNSIPと比較して有意に多かった。肺全体の各病変の割合はいずれも有意差はなかった。
【0070】
そこで、性別、年齢と辺縁2mmもしくは辺縁5mmに占めるHパターンの割合の3項目についてそれぞれ多変量解析を行ったところ、辺縁2mmに占めるHパターンの割合が、年齢、性別と並んで有意な指標となった(表2)。これより、辺縁2mmに占めるHパターンの割合が、性別、年齢と同様にIPFの判別に有意な指標と考えられた。
【0071】
【表1】
【0072】
【表2】
【0073】
図9に肺全体のHパターンの割合と辺縁2mmのHパターンの割合を示す。NSIP(白抜きの丸)では全体のHパターンが増加するにつれて辺縁のHパターンも増加する(全体の線維化が多ければ辺縁の線維化も多い)のに対して、IPF(黒丸)では、全体のHパターンが少なくても辺縁のHパターンが多い(全体の線維化が少なくても辺縁の線維化が多い)症例がある(図9中の破線で囲んだ症例)。辺縁2mmの情報を使うことにより、従来は正常と区別が難しかった、破線で囲んだ症例を正しくIPFと認識し、早期に診断できると考えられる。
【0074】
さらに、辺縁1mmから5mmまで1mm刻みでIPFとfNSIPとの鑑別能を検討したところ、多変量解析で2mm、3mm及び4mmまでは有意であった。1mmでも統計的には有意であったが、辺縁1mmというと、肺の表面を非常に厳格に抽出する必要がある。現在の技術では肺の表面の抽出に誤差が入り得るため、将来的な有用性は否定しないものの、辺縁1mmのデータは現状では実際的ではないと考えられる。
【0075】
2. CT値及びCT微分画像の画素値を指標とした肺野病変の診断
(2-1) 外科的生検サンプルの病理とCT解析結果との対比
上記1-2で用いた特発性間質性肺炎63症例(IPF 24例、fNSIP 39例)にて、病変のVATS(ビデオ補助下胸部手術)部位(101部位)の病理と、CTの解析結果との対比を行った。VATS前のCTとVATS後のCT画像からVATSされた部位を同定し、できる限り病理切片と同様の断面で(矢状断もしくは冠状断像)、局所の(平均332ピクセル、130mm2)の画素について検討した。できる限り病変のみが含まれるように関心領域を設定した。
【0076】
また、病理切片で、線維化の量や気腫化、空間的時間的不均一性などの特徴量をGHNC解析により定量評価し、CT所見との比較を行った。結果を表3に示す。
【0077】
【表3】
【0078】
全体の所見の不均一性、胸膜下線維化、線維芽細胞巣は、IPFの画像・病理パターンであるUIPパターンの特徴である。細胞浸潤が多い場合にはUIPパターンではなく、ステロイドなどの反応性がよい可能性が示唆される。従来間質性肺炎の指標とされていたCT値-700以上あるいは-600HU以上という特徴量は、線維化にも細胞浸潤にも相関した。
【0079】
(2-2) 病理の多数例での検討
病理切片でNSIPパターン(fNSIP)、UIPパターン(IPF)と診断された領域に対応する画像の特徴量がその診断と一致するかを検討した。結果を表4に示す。
【0080】
まず、それぞれの特徴量の中央値についてMann-WhitneyのU検定を行った。CT値の平均値には差がなかったが、CT値-700HU以上あるいは-600HU以上のピクセルの占める割合はfNSIPの方が有意に多かった。また微分画像の平均値、元画像及び微分画像の標準偏差、微分画像で画素値が110および120以上のピクセルの占める割合もIPFで有意に大きかった。これはUIPパターンでは病変が不均一に分布し、正常肺が病変部分に混在するためと思われる。これらは2項ロジスティック解析でも有意な指標であった。
【0081】
CT値-700HU以上のピクセルの占める割合のみではNSIPパターン(fNSIP)とUIPパターン(IPF)の分類の正診率は67.3%であったが、CT値-700HU以上のピクセルの占める割合に微分画像の平均値を加えた場合72.3%、また微分画像の画素値が120以上のピクセルの占める割合を加えた場合76.8%と正診率が向上した。
【0082】
GHNCの解析でHの占める割合はIPFで大きく、逆にRはfNSIPで大きく、2項ロジスティック解析でもNSIPパターン、UIPパターンとの有意な関連が示された。Hの占める割合による正診率は76.8%であった。
【0083】
【表4】
【0084】
以上の結果より、CT値だけでなく、微分画像の画素値を用いることで、fNSIPとIPFの鑑別診断に役立つことが示された。CT値-700HU以上あるいは-600HU以上の占める割合、及び微分画像の画素値120以上の占める割合を用いることで、特発性間質性肺炎の診断に寄与することが考えられる。
【0085】
辺縁における微分画像の画素値の平均値、および辺縁に占める微分画像の画素値120以上の領域の割合についても検討した。fNSIPと比較してUIPパターン(IPF)では肺表面の微分画像の画素値の平均値は高く、微分画像の画素値120以上の占める割合も高かった。多変量解析では2mm、3mm、4mm、5mmまでは有意であった。ただし、ロジスティック解析の多変量解析で正診率が高かったのは、画素値平均値では辺縁3mm(正診率74.5%)、微分画像の画素値120以上の占める割合では辺縁2mm(正診率78.7%)だった。
【0086】
3. 辺縁解析の詳細検討
正常群(17例)、fNSIP群(25例)、IPF群(23例)を対象に、胸膜表面深度1mm~5mmの領域に占めるHパターンの割合、CT値-700HU以上の領域の割合、及び微分画像の画素値が120以上の領域の割合をまとめたグラフを図10図12に示す。またROC解析により閾値の設定を検討した結果を表5、表6、表8~11に示す。これらの表には、最も有意であった閾値、及びその閾値を採用した場合の正診率等を示している。また、表7には、Hパターンの割合に基づく診断の一例を、表12には、CT値強度(-700HU以上)及び微分画像の画素値強度(100以上、110以上、120以上)の組み合わせによる診断の一例を示した。
【0087】
H(蜂巣肺)パターンが占める割合は、3群を良好に分けることができた。CT値-700HU以上の割合は、fNSIP群とIPF群のグラフがほぼ重なっており、両群の区別は困難であるが、正常群とfNSIP+IPF群(慢性線維化性間質性肺炎群)との区別が可能であった。微分画像の画素値120以上の割合では、正常群と疾患群のグラフがクロスしており、正常と間質性肺炎との区別は困難であるが、ROC解析の結果をみるとfNSIP群とIPF群を有意に区別することができた。また、微分画像の画素値を用いる場合、画素値100以上の割合、及び画素値110以上の割合での診断も有意であることがROC解析により示された。
【0088】
以上から、辺縁領域におけるHパターンの割合という指標によると、正常、NSIP、IPFの識別が可能であり、当該指標のみで慢性線維化性間質性肺炎の診断やNSIPとIPFの識別診断が可能であることが示された。また、CT値と微分画像の画素値は組み合わせて使用することで正常、NSIP、IPFの識別が可能であることが示された。すなわち、まずCT値-700HU以上の割合を指標として慢性線維化性間質性肺炎か否かの診断を行い、慢性線維化性間質性肺炎と診断された症例について、微分画像の画素値100~120以上の割合を指標としてNSIPかIPFかを鑑別することにより、NSIPとIPFの鑑別診断も可能となることが示された。もっとも、間質性肺炎の画像の読影に習熟している医師であれば、微分画像の画素値のみでも十分にNSIPとIPFの鑑別に役立てることができる。
【0089】
以下、閾値の検討結果について説明する。表5は、正常と慢性線維化性間質性肺炎(fNSIP + IPF)とを区別できるHパターンの割合の閾値をROC解析により調べた結果である。辺縁2mm~辺縁5mmのいずれでも有意な閾値の設定が可能であった。例えば、辺縁2mmの領域を解析する場合には、Hパターンの割合が20%以下であれば正常、20%を超えたら特発性間質性肺炎(慢性線維化性間質性肺炎)であると診断することができる。
【0090】
【表5】
【0091】
表6は、IPFとfNSIPを区別できるHパターンの割合の閾値をROC解析により調べた結果である。辺縁5mmでは有意な閾値の設定ができなかったが、辺縁2mm~4mmでは有意な閾値の設定が可能であった。今回の解析に用いた症例は、IPFかfNSIPか画像では判断できないために外科的生検に付された症例であり、このことを考えると、正診率60~70%は極めて良好な数字ということができる。
【0092】
【表6】
【0093】
表5及び表6の結果から、Hパターンの割合に基づく診断は、例えば下記表7のような基準で実施することができる。もっとも、より多数の症例を対象にして各閾値を求めた場合には、各閾値に±数%程度の変動が生じ得るので、本発明はこれらの閾値に限定されるものではない。
【0094】
【表7】
【0095】
表8は、正常と慢性線維化性間質性肺炎(fNSIP + IPF)とを区別できるCT値-700HU以上(表8-1)及び-600HU以上(表8-2)の割合の閾値をそれぞれROC解析により調べた結果である。辺縁2mm~辺縁5mmのいずれでも有意な閾値の設定が可能であった。例えば、辺縁2mmの領域を解析する場合には、CT値-700HU以上の領域の割合が60%以下であれば正常、60%を超えたら特発性間質性肺炎(慢性線維化性間質性肺炎)、あるいは、CT値-600HU以上の領域の割合が42%以下であれば正常、42%を超えたら特発性間質性肺炎(慢性線維化性間質性肺炎)であると診断することができる。
【0096】
【表8-1】
【0097】
【表8-2】
【0098】
表9~表11は、微分画像の画素値が100以上、110以上、及び120以上の領域の割合に基づいてIPFとNSIPを識別する場合の閾値をROC解析により調べた結果である。いずれにおいても、辺縁2mm~辺縁5mmの全てで有意な閾値の設定が可能であった。正診率は、Hパターンの割合による診断(表6)と同等ないしはそれ以上であった。CT値-700HU以上の割合に基づく診断で特発性間質性肺炎(慢性線維化性間質性肺炎)と診断された症例において、表9~表11に示した閾値と対比することで、該症例がIPFかNSIPかを鑑別することができる。もっとも、上述した通り、間質性肺炎の画像の読影に習熟している医師であれば、表9~表11に示した閾値のみでも十分にNSIPとIPFの鑑別に役立てることができる。
【0099】
【表9】
【0100】
【表10】
【0101】
【表11】
【0102】
表8~表11の結果から、CT値-700HU以上の割合及び微分画像の画素値100~120以上の割合に基づく診断は、例えば下記表12のような基準で実施することができる。もっとも、より多数の症例を対象にして各閾値を求めた場合には、各閾値に±数%程度の変動が生じ得るので、本発明はこれらの閾値に限定されるものではない。
【0103】
【表12】
【符号の説明】
【0104】
10 本発明の診断支援装置
110 画像取得部
120 辺縁領域抽出部
130 特徴量取得部
140 病変識別部
150 出力部
160 教師パターン取得部
170 フィルター処理部
20 撮像装置
30 入力装置
40 表示装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12