IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ハネウェル・インターナショナル・インコーポレーテッドの特許一覧

<>
  • 特許-モータ較正の方法およびシステム 図1
  • 特許-モータ較正の方法およびシステム 図2
  • 特許-モータ較正の方法およびシステム 図3
  • 特許-モータ較正の方法およびシステム 図4
  • 特許-モータ較正の方法およびシステム 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-20
(45)【発行日】2022-05-30
(54)【発明の名称】モータ較正の方法およびシステム
(51)【国際特許分類】
   G01P 3/487 20060101AFI20220523BHJP
【FI】
G01P3/487 G
G01P3/487 X
G01P3/487 C
【請求項の数】 3
【外国語出願】
(21)【出願番号】P 2017223257
(22)【出願日】2017-11-21
(65)【公開番号】P2018109609
(43)【公開日】2018-07-12
【審査請求日】2020-11-20
(31)【優先権主張番号】62/442,814
(32)【優先日】2017-01-05
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】15/622,837
(32)【優先日】2017-06-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500575824
【氏名又は名称】ハネウェル・インターナショナル・インコーポレーテッド
【氏名又は名称原語表記】Honeywell International Inc.
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【氏名又は名称】中西 基晴
(74)【代理人】
【識別番号】100162846
【弁理士】
【氏名又は名称】大牧 綾子
(72)【発明者】
【氏名】ロン・ストロング
(72)【発明者】
【氏名】トム・クレイダー
【審査官】岡田 卓弥
(56)【参考文献】
【文献】米国特許出願公開第2013/0300324(US,A1)
【文献】特開2000-197387(JP,A)
【文献】特開2008-157886(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01P 3/00- 3/80
G01P21/02
(57)【特許請求の範囲】
【請求項1】
永久磁石同期モータを含むモータを較正するための方法であって、
電圧ベクトルを使用して回転磁界を発生させるステップであって、前記回転磁界が、実際のロータ位置と無関係に一定の角速度で回転するように構成され、前記回転磁界が第1の方向に回転する、ステップと、
プロセッサによって、複数のデジタルホール効果センサに関連付けられるタイミングデータを識別するステップと、
第1の複数のタイムスタンプを識別するステップであって、前記第1の複数のタイムスタンプのそれぞれは、前記第1の方向の磁界の回転中、ロータ磁石の極性変化の1つにそれぞれに関連づけられる、識別するステップと、
前記回転磁界を逆転させて、前記第1の方向に反対の第2の方向に回転させるステップと、
第2の複数のタイムスタンプを識別するステップであって、前記第2の複数のタイムスタンプのそれぞれは、前記第2の方向への前記磁界の回転中発生する、前記極性変化の1つにそれぞれ関連づけられる、識別するステップと、
前記第1の複数のタイムスタンプに関連づけられる第1の複数の時間差値と、前記第2の複数のタイムスタンプに関連づけられる第2の複数の時間差値とを計算するステップであって、前記タイミングデータは、少なくとも前記第1の複数の時間差値と、前記第2の複数の時間差値とを含む、計算するステップと
前記プロセッサによって、前記タイミングデータおよび前記一定の角速度を使用して前記複数のデジタルホール効果センサ毎の正確な位置を計算するステップと、
前記プロセッサによってシステムメモリ内に参照表を作成するステップであって、前記参照表が、前記正確な位置を含む、ステップと、
前記モータの動作中、前記参照表を使用して前記モータの正確な角速度値を算出するステップと、
を含む方法。
【請求項2】
前記モータの回転中、前記複数のデジタルホール効果センサに対する前記ロータ磁石の前記極性変化を検出するステップをさらに含み、
前記タイミングデータが、前記極性変化に関連付けられる、
請求項1に記載の方法。
【請求項3】
前記タイミングデータを識別するステップが、
前記第1の複数の時間差値と前記第2の複数の時間差値とを使用して平均時間差値を算出するステップとをさらに含み、
前記複数のデジタルホール効果センサ毎の前記正確な位置の計算が、前記平均時間差値および前記一定の角速度を使用して実行される、
請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、2017年1月5日に出願された米国仮特許出願第62/442,814号の利益を主張するものである。
【0002】
[0002]本明細書で説明した主題の実施形態は、一般にモータの較正に関し、より詳細にはモータを較正するためにデジタルホール効果センサ位置を使用することに関する。
【背景技術】
【0003】
[0003]モータ駆動での転流および位置制御に使用される角度位置センサは、組み立て中の機械的なセンサ位置決めに関連する誤差を有する。高い位置精度が必要なシステムは通常、動作中に制御装置のフィードバック値を調整するために較正データを使用する。較正データは通常、システムの製造テスト中または試運転で収集され、一定の部品または搭載に特有のものである。このため較正データは、個別のモータに特有であり、モータを配備するコストを増加させる。
【発明の概要】
【発明が解決しようとする課題】
【0004】
[0004]したがって、モータ較正のためのさらなる方法およびシステムの提供が望まれる。さらに、他の望ましい特徴および特性が、添付図面ならびに前述の技術分野および背景技術に関連して、後続の詳細な説明および添付の請求項から明白になる。
【課題を解決するための手段】
【0005】
[0005]本開示のいくつかの実施形態は、永久磁石同期モータを含むモータの較正方法を提供する。本方法は、電圧ベクトルを使用して回転磁界を発生させ、回転磁界は実際のロータ位置に無関係に一定の角速度で回転するように構成され、回転磁界は第1の方向に回転し、本方法は、プロセッサによって複数のデジタルホール効果センサに関連するタイミングデータを識別し、本方法は、プロセッサによってタイミングデータおよび一定の角速度を使用して複数のデジタルホール効果センサ毎に正確な位置を計算し、プロセッサによってシステムメモリ内に参照表を作成し、参照表は正確な位置を含み、本方法は、モータの動作中、参照表を使用してモータの正確な角速度値を算出する。
【0006】
[0006]本開示のいくつかの実施形態は、永久磁石同期モータを含むモータの較正システムを提供する。本システムは、システム記憶構成要素と、モータの回転中に複数のデジタルホール効果センサに関連付けられるロータ磁石の極性変化を検出するように構成された複数のデジタルホール効果センサと、システム記憶構成要素および複数のホール効果センサに通信可能に結合された少なくとも1つのプロセッサとを備え、少なくとも1つのプロセッサは、電圧ベクトルを使用して回転磁界を発生させるように構成され、回転磁界は実際のロータ位置に無関係に一定の角速度で回転するように構成され、回転磁界は第1の方向に回転し、少なくとも1つのプロセッサは、複数のデジタルホール効果センサの検出された極性変化に関連付けられるタイミングデータを識別するよう構成され、タイミングデータおよび一定の角速度を使用して複数のデジタルホール効果センサ毎に正確な位置を計算するように構成され、システムメモリ内に参照表を作成し、参照表は正確な位置を含むように構成され、少なくとも1つのプロセッサは、モータの動作中、参照表を使用してモータの正確な角速度値を算出するように構成される。
【0007】
[0007]本開示のいくつかの実施形態は、プロセッサによって実行されたとき、方法を遂行する命令をその中に備える非一時的コンピュータ可読媒体を提供する。本方法は、永久磁石同期モータを含むモータの較正モードを開始し、電圧ベクトルを使用して回転磁界を発生させ、回転磁界は実際のロータ位置に無関係に一定の角速度で回転するように構成され、回転磁界は第1の方向に回転し、本方法は、モータの回転中複数のデジタルホール効果センサに関連するロータ磁石の極性変化を検出し、プロセッサによって複数のデジタルホール効果センサの極性変化に関連するタイミングデータを識別し、プロセッサによってタイミングデータおよび一定の角速度を使用して複数のデジタルホール効果センサ毎に正確な位置を計算し、正確な位置はデジタルホール効果センサ間の算出された距離を含み、本方法は、プロセッサによってシステムメモリ内に参照表を作成し、参照表は正確な位置を含み、本方法は、モータの較正モードを出て、モータの動作中に参照表を使用してモータの正確な角速度値を算出し、正確な角速度値は参照表に格納された算出距離を使用して算出される。
【0008】
[0008]本概要は、簡易化した形式の技術概念の抜粋の紹介を提供し、以下で詳細にさらに説明する。本概要は、権利を主張する主題の重要な特徴または本質的特徴を識別することを意図せず、権利を主張する主題の範囲の決定を支援するものとして使用されることも意図しない。
【0009】
[0009]本主題のさらに完全な理解が、以下の図に関して考慮するとき、詳細な説明および請求項を参照することにより導出可能であり、図全体にわたって同様の参照番号は、同様の構成要素を参照する。
【図面の簡単な説明】
【0010】
図1】[0010]開示された実施形態によるモータ較正システムの機能ブロック図である。
図2】[0011]開示された実施形態による永久磁石同期モータおよびデジタルホール効果センサの図である。
図3】[0012]永久磁石同期モータの1回の電気的回転中に発生する事象を説明するグラフである。
図4】[0013]永久磁石同期モータを較正するためのプロセスの実施形態を説明するフローチャートである。
図5】[0014]デジタルホール効果センサの正確な位置を計算することに使用するためのタイミングデータを取得するためのプロセスの実施形態を説明するフローチャートである。
【発明を実施するための形態】
【0011】
[0015]以下の詳細な説明は、単に本質を例示するものにすぎず、本主題または本出願の実施形態、およびそのような実施形態の使用を限定することを意図しない。本明細書で使用される、用語「例示の」は、「具体例、特徴例、または実例としてはたらく」を意味する。例示として本明細書で説明する任意の実施態様は、必ずしも他の実施態様よりも好ましいまたは有利であると解釈されるべきではない。さらに、いかなる意図も、先述の技術分野、背景、発明の概要、または以下の詳細な説明で提示される任意の明示的または暗示的理論によって束縛されない。
【0012】
[0016]本明細書で提示する主題は、デジタルホール効果センサを使用して永久磁石同期モータを較正するための装置および方法に関する。本開示の実施形態では、デジタルホール効果センサは、6段階の、ブラシレスの、直流(DC)モータの転流のために使用される。ここで、さらにホール効果センサ遷移事象(すなわち、「ホール事象」)が、速度の決定に使用されてもよい。ホール効果センサは、モータが回転しているときのモータ位相毎の、ホール効果センサに対するロータ磁石の極性変化を検出する。速度は、ホール事象間の時間を測定することによって、決定される。しかし、ホール事象は、周期的でない。速度フィードバック更新レートは、モータ速度に依存し、フィードバックは、多くの場合、周期的デジタル制御装置によって使用される。低いモータ速度では、導出される速度測定値の更新レートは、最終的に制御装置のサンプルレートよりも低くなる。高速では、サンプルレートに対して更新数が豊富であるが、センサノイズが、モータ磁石位置決めにおける製造ばらつきにより問題となる。
【0013】
[0017]本明細書の意図は、速度範囲毎に適切なフィードバック信号を供給するマルチモード速度算出を使用して、デジタル速度制御に有用な広動作範囲にわたるモータ速度フィードバックを決定するためのシステムおよび方法である。本開示の例示的な実施形態は、低速においてはモータの回転当たり多数の更新を提供し、一方高速においては速度推定中にノイズがより少なくなる。本開示は、操作上のベクトル制御(FOC)または正弦波駆動で使用されるデジタルホール効果位置センサを較正するための方法を提供し、駆動用ホール効果センサ位置が、動作中、要求に応じて較正されることを可能にする。
【0014】
[0018]いくつかの技術用語が、本開示の多様な実施形態に関して使用される。6段階の、ブラシレスの、直流(DC)モータは、たとえば永久磁石同期モータ(PMSM)または永久磁石AC(PMAC)モータであり、一定の角速度で回転するように機能する。デジタルホール効果センサは、磁界に応じてその出力電圧を変化させる変換器である。デジタルホール効果センサによって検出される極性変化は、モータの複数のロータ磁石の検出極性が交番するとき発生する。ロータ磁石は、交番する極性に応じて配置され、検出された極性は、交番する極性を有する複数のロータ磁石がホール効果センサの前を通過するとき、交番する。
【0015】
[0019]ここで図を見ると、図1は、開示された実施形態によるモータ較正システム100の機能ブロック図である。モータ較正システム100は通常、デジタルホール効果センサの正確な位置の参照表を作成するために使用され、モータの将来の動作中、モータの角速度値をより正確に算出するために使用され得る。
【0016】
[0020]モータ較正システム100は通常、それだけには限らないが、少なくとも1つのプロセッサ102と、ある種のシステムメモリ104と、複数のデジタルホール効果センサ106と、永久磁石同期モータ108と、タイミングモジュール110と、計算モジュール112と、参照表作成モジュール114を含む。これらのモータ較正システム100の構成要素および特徴は、本明細書で説明したように、所望の機能性、特に永久磁石同期モータを較正することを支援する必要に応じて、互いに動作可能に関連付けられ、互いに結合され、またはそうでなければ互いに協働するように構成され得る。説明しやすく明確にするために、これらの構成要素および特徴の多様な物理的、電気的、かつ論理的結合および相互接続は、図1では示さない。その上、モータ較正システム100の実施形態は、協働して所望の機能性を支援する、他の構成要素、モジュール、および特徴を含むことになることを理解されたい。簡単にするために、図1は、以下でさらに詳細に説明するモータ較正技法に関する一定の構成要素のみを示す。
【0017】
[0021]少なくとも1つのプロセッサ102は、1つまたは複数の汎用プロセッサ、連想メモリ、デジタルシグナルプロセッサ、特定用途向け集積回路、フィールドプログラマブルゲートアレイ、任意の適切なプログラマブル論理デバイス、個別のゲートまたはトランジスタロジック、個別のハードウェア構成部分、または本明細書で説明した機能を実行するために設計された任意の組合せ、を用いて実装または実現されてもよい。具体的には、少なくとも1つのプロセッサ102は、1つまたは複数のマイクロプロセッサ、制御装置、マイクロコントローラ、または状態機械として実現されてもよい。さらに、少なくとも1つのプロセッサ102は、コンピュータデバイスを組み合わせたものとして実施されてもよく、たとえば、デジタルシグナルプロセッサとマイクロプロセッサとを組み合わせたもの、複数のマイクロプロセッサ、デジタルシグナルプロセッサコアに結合された1つまたは複数のマイクロプロセッサ、または任意の他のこのような構成であってもよい。
【0018】
[0022]少なくとも1つのプロセッサ102は、システムメモリ104と通信する。システムメモリ104は、本実施形態の必要に応じて、任意のいくつかのデバイス、構成部分、またはモジュールを使用して実現され得る。さらに、モータ較正システム100は、具体的な実施形態の必要に応じて、その中に統合されたシステムメモリ104、および/またはそれに動作可能に結合されたシステムメモリ104を含み得る。実際には、システムメモリ104は、RAMメモリ、フラッシュメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、取外し可能ディスク、または当技術分野で知られている記憶媒体の他の任意の形式として実現され得る。いくつかの実施形態では、システムメモリ104は、モータ較正システム100の機能を支援するためにも使用され得るハードディスクを含む。システムメモリ104は、少なくとも1つのプロセッサ102に結合され、少なくとも1つのプロセッサ102がシステムメモリ104に情報を読み書きできるようにされてもよい。別法として、システムメモリ104は、少なくとも1つのプロセッサ102と一体化され得る。一例として、少なくとも1つのプロセッサ102およびシステムメモリ104は、適切に設計された特定用途向け集積回路(ASIC)内に存在してもよい。
【0019】
[0023]複数のデジタルホール効果センサ106は、永久磁石同期モータ108の定義された近傍内に配置され、磁石極性に関連付けられる出力電圧を供給するように構成される(図2に示すように)。複数のデジタルホール効果センサ106の出力電圧は、永久磁石同期モータ108の検出された極性変化に基づいた「高」または「低」である。高から低、または低から高の出力電圧の各々変化は、「ホール事象」と呼ばれ得る。永久磁石同期モータ108の回転中、ホール事象のタイミングが、タイミングモジュール110によって取得され、計算モジュール112によって複数のデジタルホール効果センサ106の各々の正確な位置を算出するために使用され得る。
【0020】
[0024]永久磁石同期モータ108は、多くの場合ベクトル制御(FOC)方式を使用して制御される、永久磁石同期モータ(PMSM)または永久磁石AC(PMAC)モータを使用して実装され得る。永久磁石同期モータ108は、一定の角速度で回転動作可能であり、その結果、タイミングモジュール110、計算モジュール112、および参照表作成モジュール114は、特定のホール事象(複数のデジタルホール効果センサ106によって発生したホール事象)のタイミングを検出し、タイミングに基づいてホール効果センサ106の位置決めを算出し、ホール効果センサ106の位置を記憶する参照表を作成するように機能する。
【0021】
[0025]タイミングモジュール110は、永久磁石同期モータ108の回転中に発生する極性変化に関連付けられるタイミングデータを取得するように適切に構成される。そのようなタイミングデータは、極性変化で発生するタイムスタンプまたは別のタイミングの値もしくは事象、時間差値、および/または平均タイムディスタンス値を含み得る。
【0022】
[0026]計算モジュール112は、タイミングモジュール110によって取得されたタイミングデータを使用して、デジタルホール効果センサ106の正確な位置を算出するように構成される。通常、デジタルホール効果センサ106の位置は、既知の値である。しかし、これらの既知の値は、不正確であり得、算出が、デジタルホール効果センサ毎の正確な位置を決定するために、実行され得る。
【0023】
[0027]参照表作成モジュール114は、システムメモリ104内の参照表または他のデータ構造にこれらの正確な算出位置を格納することによって、計算モジュール112によって提供された正確な位置を登録する。
【0024】
[0028]実際には、タイミングモジュール110、計算モジュール112、および/または参照表作成モジュール114は、本明細書でさらに詳細に説明される機能および動作の少なくともいくつかを実行するために、少なくとも1つのプロセッサ102と共に実装され(または協働して)てもよい。この点に関連して、タイミングモジュール110、計算モジュール112、および/または参照表作成モジュール114は、適切に書き込まれた処理ロジック、アプリケーションプログラムコードなどとして実現され得る。
【0025】
[0029]図2は、開示された実施形態による、永久磁石同期モータ202および複数のデジタルホール効果センサ204を含む構造200の図である。図2は、簡易化した構造200の実施形態を示し、構造200のいくつかの実施態様は、特定の用途が所望されるとき、さらなる構成要素または構成部分が含まれ得ることを理解されたい。たとえば、コンピュータデバイス、ディスプレイ、および/またはユーザ入力構成部分などのさらなる構成部分は、本開示の範囲から逸脱することなく利用され得る。
【0026】
[0030]示したように、永久磁石同期モータ202は、モータ202の円周の周りに配置された複数の磁石を備え、磁石は、各々の磁石が第1の磁石のすぐ左およびすぐ右に磁石の反対の極性を呈するように配置される。したがって、磁石は、モータ202の円周の周りで極性が交番する。極性変化206は、モータ202が時計方向で回転するとき、ホール効果センサ「ホールC」において、検出される「S」極から「N」極への遷移を示す。複数のデジタルホール効果センサ204は、永久磁石同期モータ202の外部に配置される。
【0027】
[0031]動作中、永久磁石同期モータ202が回転し、この回転中、交番する極性を有する磁石の各々は、ホール効果センサ204の近傍内を通過する。本技法は、実際のロータ位置と無関係な一定の速度で回転する固定された大きさのステータ電流を使用して、回転磁界を発生させるものである。デジタルホール効果遷移事象のタイムスタンプは、ロータが、モータの正逆両方向に強制的に回転させられる間に、収集される。収集された事象のタイムスタンプおよび既知の一定の角速度は、単純な数学的演算を使用して全ホールセンサの正確な位置を決定するために使用される。これらの正確なホールセンサ位置は、較正データとして扱われ、運用メモリに記憶される。較正データは、モータの動作中、位置検知精度を向上させるために、各々の運用ホール効果センサのエッジ事象への微小オフセットを決定するために使用される。
【0028】
[0032]図3は、永久磁石同期モータの1回の電気的回転312中に発生する事象を説明するグラフ300である。グラフ300は、時間304に対する3つのホール効果センサの出力電圧302を、出力電圧信号306、308、310の形式で示している。示したように、出力電圧信号310のために、電気的回転毎に1つの立上がりエッジがある(参照316を参照のこと)。電気的回転312毎に6回のホール状態変化314がある。ホール状態変化314の各々は、出力電圧信号306、308、310の立上りまたは立下りエッジであり、ホール状態変化(すなわち、ホール事象314)が、5V出力信号から0V出力信号への、または0V出力信号から5V出力信号への急激な変化であることを示している。
【0029】
[0033]いくつかの実施形態では、各々のホール効果センサに関連付けられるタイミングデータは、ホール事象314毎のタイムスタンプを含む。言い換えると、タイムスタンプは、デジタルホール効果センサ毎の出力電圧信号306、308、310の各立上りエッジおよび各立下りエッジにて取得される。ホール事象314の各々に関連付けられるタイムスタンプは、平均時間差値を決定するために使用され、次にデジタルホール効果センサの正確な位置を算出するために使用される。
【0030】
[0034]図4は、永久磁石同期モータを較正するためのプロセス400の実施形態を説明するフローチャートである。説明しやすく明確にするために、プロセス400は、実際のロータ位置フィードバックと無関係な一定の角速度で回転するように構成された回転磁界を発生させることによって、開始することとし、また、回転磁界は、第1の方向に回転することとする(402)。プロセス400の実施形態は、電圧ベクトルまたは電流ベクトルを使用して、回転磁界を発生させることもできる。
【0031】
[0035]次に、プロセス400は、プロセッサによって、複数のデジタルホール効果センサに関連付けられるタイミングデータを識別する(ステップ404)。タイミングデータは、プロセス400を実行するモータ制御装置から取得されるタイムスタンプなどの時刻値の表示を含み得、モータ制御装置は、デジタルホール効果センサと通信する。ここで、プロセス400は、1つまたは複数の定義される「ホール事象」に関連付けられるタイミングデータを取得する。いくつかの実施形態では、プロセス400は、ステップ406の算出での使用に適切なタイミングデータを決定するために、タイムスタンプを調整すること、またはタイムスタンプを使用して算出することを実行する。複数のデジタルホール効果センサに関連付けられるタイミングデータを識別するための1つの例示的な実施形態は、さらなる詳細を含んで図5に関連して以下に説明する。
【0032】
[0036]プロセス400は次に、プロセッサによって、タイミングデータおよび一定の角速度を使用して、複数のデジタルホール効果センサ毎の正確な位置を計算する(ステップ406)。各々のデジタルホール効果センサは、位置(θ)を有し、2つのホール効果センサ間の各々の距離値は、Δθとして定義される。モータは、ステップ402で説明したように、一定の角速度(ω)で回転していて、一定の角速度(ω)は、またモータ速度と呼ばれることもある。速度(ω)および(ステップ404で取得されるタイミング情報に基づいた)時刻値は、プロセス400に知られている。
【0033】
[0037]式、ω=(Δθ)/Δtが、プロセス400によって使用され、ホール効果センサの各々間の正確な距離値(Δθ)を算出する。ここでΔtは、ホール事象に関連付けられるタイミングデータである。個々のホール効果センサ毎に、ホール事象に関連付けられるタイミングデータが、収集され得、タイミングデータおよび速度(ω)を使用して、プロセス400は、個々のホール効果センサの位置(θ)を算出する。ホール効果センサ毎の位置(θ)が、算出された後、プロセス400は、ホール効果センサの各々間の正確な距離値(Δθ)を算出する。
【0034】
[0038]次に、プロセス400は、プロセッサによって、システムメモリ内の参照表を作成し、参照表は、デジタルホール効果センサ毎の正確な位置を含む(ステップ408)。正確な位置は、デジタルホール効果センサの各々間の算出された距離値(Δθ)を含み、モータの較正で使用される。
【0035】
[0039]その後、モータの動作中、プロセス400は、参照表を使用してモータの正確な角速度値を算出する(ステップ410)。ここで、デジタルホール効果センサの正確な位置は、デジタルホール効果センサ間の算出された距離(Δθ)であり、正確な角速度値は、参照表内に記憶された算出された距離(Δθ)を使用して、算出される。正確なホール効果センサ位置は、運用メモリに記憶され、モータの較正データとして扱われる。較正データは、モータの動作中、位置検知精度を向上させるために、各々の運用ホール効果センサのエッジ事象の位置決めを決定するために使用される。
【0036】
[0040]プロセス400は、デジタル処理素子(たとえば、中央処理装置(CPU)、マイクロコントローラユニット(MCU)、デジタルシグナルプロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、など)を使用するモータドライバの一部として動作する。プロセス400は、当技術分野で知られているソフトウェアまたはデジタルロジック技法を使用した演算モードとしての制御システムの一部として実施される。
【0037】
[0041]プロセス400は、モータを較正するように機能し、いくつかの実施形態では、回転磁界を発生させる前に、プロセス400は、モータの較正モードを開始する。参照表を作成した後(ステップ408)、プロセス400は、モータの較正モードを出る。ここで、モータの動作が、較正が実行された後発生し、較正は、較正モード中に完了される。
【0038】
[0042]図5は、デジタルホール効果センサの正確な位置を計算することに使用するためのタイミングデータを取得するためのプロセス500の実施形態を説明するフローチャートである。プロセス500は、さらなる詳細を含む、上述した図4のステップ404の1つの例示的な実施形態である。まず、プロセス500は、モータの回転中、複数のデジタルホール効果センサに対するロータ磁石の極性変化を検出する(ステップ502)。
【0039】
[0043]次に、プロセス500は、磁界の回転中、複数のタイムスタンプを識別し、複数のタイムスタンプの各々は、極性変化の各々に関連付けられる(ステップ504)。いくつかの実施形態では、プロセス500は、プロセッサまたは制御装置によって実行され、タイムスタンプは、各々のホール事象(たとえば、ホール効果センサによって検出される極性の変化)が発生する時点で、プロセッサまたは制御装置のクロックから取得される。
【0040】
[0044]プロセス500は次に、回転磁界を第2の方向に回転させるように逆転させ、ここで第2の方向は、第1の方向の反対である(ステップ506)。次に、プロセス500は、第2の複数のタイムスタンプを識別し、第2の複数のタイムスタンプの各々は、第2の方向の磁界の回転中発生する極性変化のうちの1つにそれぞれ関連付けられる(ステップ508)。ここで、プロセス500は、回転磁界を逆転させ、ステップ512の平均時間差値の算出での誤差に相当するタイムスタンプの第2のグループを収集する。
【0041】
[0045]第1の複数のタイムスタンプを識別し(ステップ504)、第2の複数のタイムスタンプを識別した(ステップ508)後、プロセス500は、(1)複数のタイムスタンプに関連付けられる複数の時間差値、および(2)第2の複数のタイムスタンプに関連付けられる第2の複数の時間差値を算出する(ステップ510)。時間差値は、第1のタイムスタンプから第2のタイムスタンプまでの時間での変化である。
【0042】
[0046]プロセス500が、複数の時間差値および第2の複数の時間差値を算出した(ステップ510)後、プロセス500は、複数の時間差値および第2の複数の時間差値を使用して平均時間差値を算出し、ここで複数のデジタルホール効果センサ(図4のステップ406を参照のこと)毎の正確な位置の計算は、平均時間差値および角速度を使用して実行される(ステップ512)。
【0043】
[0047]ここで、プロセス500は、同一のホール効果センサに関連付けられるホール事象間の時間差の各々を平均する。たとえば、ホール効果センサAおよびホール効果センサBは、永久磁石同期モータの外部に配置され得る。回転磁界が、第1の方向で回転するとき、第1の極性変化は、ホール効果センサAとホール効果センサBとの間で発生する。プロセス500は、第1の極性変化を生じさせる磁石に関連付けられるタイムスタンプを識別し、ホール効果センサAとホール効果センサBとの間の第1の時間差値を決定する。プロセス500は次に、回転磁界を第2の方向に回転させるように逆転させ、第2の極性変化は、ホール効果センサBとホール効果センサAとの間で発生する。プロセス500は、第2の極性変化を生じさせる磁石に関連付けられる第2のセットのタイムスタンプを識別し、ホール効果センサBとホール効果センサAとの間の第2の時間差値を決定する。プロセス500の次に、ホール効果センサAとホール効果センサBとの間の平均時間差値を決定するために、(第1の方向で回転中のホール効果センサAとホール効果センサBとの間の)第1の時間差値、および(第2の方向で回転中のホール効果センサBとホール効果センサAとの間の)第2の時間差値を平均する。ホール効果センサAおよびホール効果センサBの正確な位置は次に、平均時間差値を使用して計算される。
【0044】
[0048]プロセス400~500に関連して実行される多様なタスクは、ソフトウェア、ハードウェア、ファームウェア、または任意のその組合せによって実行され得る。例示の目的のために、先述のプロセス400~500の説明は、図1~3に関連して上述した構成要素を参照してもよい。実際には、プロセス400~500の一部分は、説明したシステムの異なる構成要素によって実行され得る。プロセス400~500は、任意の数の追加の、または代替のタスクを含むことができ、図4~5で示したタスクは、図示された順序で実行される必要はなく、プロセス400~500は、本明細書で詳細には説明されない追加の機能を有するさらに包括的な手順またはプロセスに組み込まれ得ることを理解されたい。さらに、図4~5で示した1つまたは複数のタスクは、意図された全体の機能が損なわれないままである限り、プロセス400~500の実施形態から省略され得る。
【0045】
[0049]技法および技術が、機能的および/または論理的ブロック構成部分によって、多様な演算構成部分またはデバイスによって実行され得る動作、処理タスク、および機能の象徴的表現を用いて、本明細書で説明され得る。そのような動作、タスク、および機能は、コンピュータで実行される、コンピュータ化された、ソフトウェアが実装された、またはコンピュータが実装された、と表される場合がある。実際には、1つまたは複数のプロセッサデバイスは、他の信号処理と同様に、システムメモリのメモリ位置のデータビットを表す電気的信号を操作することによって、説明した動作、タスク、および機能を実行することができる。データビットが維持されるメモリ位置は、データビットに対応する特定の電気的、磁気的、光学的、または有機的特性を有する物理的位置である。図において示される多様なブロック構成部分は、指定された機能を実行するように構成された任意の数のハードウェア、ソフトウェア、および/またはファームウェア構成部分によって実現され得ることを理解されたい。たとえば、システムまたは構成部分の実施形態は、1つまたは複数のマイクロプロセッサまたは他の制御デバイスの制御下で、種々の機能を実行できる多様な集積回路構成要素、たとえば、メモリ素子、デジタル信号処理素子、論理素子、ルックアップ表などを利用することができる。
【0046】
[0050]ソフトウェアまたはファームウェアに実装されるとき、本明細書で説明したシステムの多様な構成要素は、本質的に多様なタスクを実行するコードセグメントまたは命令である。プログラムまたはコードセグメントは、プロセッサ読み出し可能媒体内に記憶され、または伝送媒体または通信パスを介した搬送波内で具現化されるコンピュータデータ信号によって送信され得る。「コンピュータ読み出し可能媒体」、「プロセッサ読み出し可能媒体」、または「機械読み出し可能媒体」は、情報を格納または転送可能な任意の媒体を含み得る。プロセッサ読み出し可能媒体の例は、電子回路、半導体メモリデバイス、ROM、フラッシュメモリ、消去可能ROM(EROM)、フロッピーディスク、CD-ROM、光ディスク、ハードディスク、光ファイバ媒体、無線周波数(RF)リンクなどを含む。コンピュータデータ信号は、電子ネットワーク通信路、光ファイバ、空気、電磁的パス、またはRFリンクなどの伝送媒体上を伝播することができる任意の信号を含み得る。コードセグメントは、インターネット、イントラネット、LANなどのコンピュータネットワークを介してダウンロードされ得る。
【0047】
[0051]以下の説明は、互いに「接続される」もしくは「結合される」構成要素またはノードまたは特徴に言及する。本明細書で使用されるように、別段示されない限り、「結合される」は、1つの構成要素/ノード/特徴が直接的または間接的に別の構成要素/ノード/特徴につながれる(または直接的もしくは間接的に通信する)ことを意味し、それは必ずしも機械的に行われない。同様に、別段示されない限り、「接続される」は、1つの構成要素/ノード/特徴が直接的に別の構成要素/ノード/特徴につながれる(または直接的に通信する)ことを意味し、それは必ずしも機械的に行われない。したがって、図Xで示した図式は、構成要素の1つの例示的構成を示すが、付加的な介在する構成要素、デバイス、特徴、または構成部分が、示された主題の実施形態内に存在し得る。
【0048】
[0052]簡潔のために、システムの信号処理、データ転送、信号方式、ネットワーク制御、および他の機能的態様(ならびにシステムの単独動作構成部分)に関する従来の技法は、本明細書で詳細に説明されないこともある。さらに、本明細書に含まれる多様な図で示される接続線は、多様な構成要素間の例示の機能的関係性、および/または物理的結合を表現することを意図する。なお、多数の代替の、または付加的な機能的関係性もしくは物理的接続が、主題の実施形態内に存在し得ることに留意されたい。
【0049】
[0053]本明細書で説明した機能単位のいくつかは、それらの実施の独立性をより具体的に強調するために「モジュール」と呼んできた。たとえば、モジュールとして本明細書で呼ばれる機能は、全体的に、または部分的に、カスタムVLSI回路、ゲートアレイ、および論理チップ、トランジスタ、または他の個別の構成部品などの既製の半導体を含むハードウェア回路として実施され得る。モジュールはまた、フィールド・プログラマブル・ゲートアレイ、プログラマブル・アレイ・ロジック、プログラマブル・ロジック・デバイスなどのプログラム可能なハードウェアデバイスで実施され得る。モジュールはまた、多様なタイプのプロセッサによる実行のためのソフトウェアで実施され得る。たとえば、実行可能なコードの識別されるモジュールは、たとえばオブジェクト、プロシージャ、またはファンクションとして組織化され得る、コンピュータ命令の1つまたは複数の物理的または論理的モジュールを備え得る。それにもかかわらず、識別されるモジュールの実行可能なものは、物理的に同一の位置に配置されることを必要とせず、しかし論理的に共に結合されたとき、モジュールを構成し、モジュールの所定の目的を達成する、異なる位置に格納された異種の命令を含み得る。実際、実行可能なコードのモジュールは、単一の命令または多数の命令であり得て、いくつかの異なるコードセグメントにわたり、異なるプログラムの間で、およびいくつかのメモリデバイスにわたり、分散化されることさえあり得る。同様に、運用データは、任意の適切な形式で具体化され、任意の適切なタイプのデータ構造内部で組織化され得る。運用データは、単一のデータセットとして収集されることもあり、または異なる記憶装置にわたることも含み異なる位置にわたって分散化されていることもあり、システムまたはネットワーク上に、少なくとも部分的に、単に電子信号として存在し得る。
【0050】
[0054]前述の詳細な説明で、少なくとも1つの例示的な実施形態が提示されたことに対して、膨大な数の変形形態が存在することを理解されたい。例示的な実施形態または本明細書で説明した実施形態は、権利を主張する主題の範囲、適用可能性、または構成を何ら制限することを意図しないこともさらに理解されたい。むしろ、前述の詳細な説明は、当業者に、説明した実施形態または実施形態群を実行するための有用なロードマップを提供するであろう。構成要素の機能および構成において、本特許出願が出願された時点における周知の等価物および予測可能な等価物を含む請求項によって定義される範囲から逸脱することなく、多様な変更がなされ得ることを理解されたい。
【符号の説明】
【0051】
100 モータ較正システム
110 タイミングモジュール
112 計算モジュール
114 参照表作成モジュール
図1
図2
図3
図4
図5