(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-20
(45)【発行日】2022-05-30
(54)【発明の名称】地絡保護装置
(51)【国際特許分類】
B60M 5/00 20060101AFI20220523BHJP
B60M 3/04 20060101ALI20220523BHJP
H02H 3/16 20060101ALI20220523BHJP
【FI】
B60M5/00 Z
B60M3/04 D
H02H3/16 A
(21)【出願番号】P 2017237919
(22)【出願日】2017-12-12
【審査請求日】2020-11-26
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】100081961
【氏名又は名称】木内 光春
(72)【発明者】
【氏名】頼 元駿
【審査官】岩田 健一
(56)【参考文献】
【文献】特開2017-159720(JP,A)
【文献】特開2010-273478(JP,A)
【文献】米国特許出願公開第2013/0193979(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B60M 5/00
B60M 3/04
H02H 3/16
(57)【特許請求の範囲】
【請求項1】
電車に直流を給電するき電システムにおける地絡電圧を検出する検出部と、
前記検出部が検出した地絡電圧に第2調波が含まれるか否かにより、発生した地絡が交流地絡か否かを判定する判定部と、
を有することを特徴とする地絡保護装置。
【請求項2】
前記き電システムは、電力系統に接続された変圧器と、前記変圧器に交流側が接続された交直変換器と、複数の分岐線を介して互いに並列に接続された一対の電車線のうち、一方の電車線と前記交直変換器の直流正極側との間に設けられた変換器用直流遮断器と、複数の前記分岐線毎に設けられた分岐用直流遮断器とを含む変電所を有し、
前記検出部が地絡電圧を検出すると、前記変換器用直流遮断器及び前記分岐用直流遮断器を開放させる信号を出力する遮断部と、
前記判定部が交流地絡と判定すると、前記遮断部による前記分岐用直流遮断器の開放を抑止する抑止部と、
を有することを特徴とする請求項1記載の地絡保護装置。
【請求項3】
前記判定部が交流地絡と判定すると、隣接する変電所の変換器用直流遮断器及び分岐用直流遮断器の開放を抑止する信号を出力する通知部を有することを特徴とする請求項1又は請求項2記載の地絡保護装置。
【請求項4】
前記き電システムは、電力系統に接続された変圧器と、前記変圧器に交流側が接続された交直変換器と、複数の分岐線を介して互いに並列に接続された一対の電車線のうち、一方の電車線と前記交直変換器の直流正極側との間に設けられた変換器用直流遮断器と、複数の前記分岐線毎に設けられた分岐用直流遮断器とを含む変電所を有し、
前記分岐線を流れる電流に基づいて、地絡事故点が自変電所内か自変電所外かを判定する事故点判定部と、
前記事故点判定部が、地絡事故点が自変電所内と判定すると、自変電所の前記変換器用直流遮断器及び自変電所の全ての前記分
岐用直流遮断器を開放する遮断部と、
前記事故点判定部が、地絡事故点が自変電所外と判定すると、自変電所の前記変換器用直流遮断器及び自変電所の全ての前記分
岐用直流遮断器の開放を抑止する抑止部と、
を有することを特徴とする請求項1記載の地絡保護装置。
【請求項5】
前記事故点判定部は、自変電所内の全ての分岐線の電流が自変電所に向かって流れている場合に、地絡事故点が自変電所内と判定し、少なくとも一つの分岐線の電流が自変電所から出て行く方向に流れている場合に、地絡事故点が自変電所外と判定することを特徴とする請求項4記載の地絡保護装置。
【請求項6】
前記事故点判定部は、少なくとも一つの分岐線の自変電所に流れ込む電流の増加率が、所定値以上の場合に、地絡事故点が自変電所内と判定し、前記増加率が所定値以上となる分岐線がない場合に、地絡事故点が自変電所外と判定することを特徴とする請求項5記載の地絡保護装置。
【請求項7】
前記事故点判定部が、地絡事故点が自変電所内と判定すると、隣接する変電所の変換器用直流遮断器及び分岐用直流遮断器の開放を抑止する信号を出力する通知部を有することを特徴とする請求項5乃至6のいずれかに記載の地絡保護装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、き電システムにおける地絡を保護する地絡保護装置に関する。
【背景技術】
【0002】
き電システムは、レール上の電車に、走行に必要な電力を供給するシステムである。き電システムには、直流により電車を走行させる直流のき電システムと、交流により電車を走行させる交流のき電システムがある。直流のき電システムは、電力会社又は送配電会社などから、電車線に電力を供給するための複数の変電所を含む。
【0003】
変電所には、交流電圧を、電車の走行に適した直流電圧に変換するために、変圧器及び交直変換器を有する。また、変電所は、事故時や点検時に回路を遮断するために、交流遮断器の他、各種の直流遮断器が設けられている。
【0004】
交流遮断器は、電力系統と変圧器との間に設けられている。直流遮断器は、交直変換器と電車線との間に設けられている。交直変換器から電車線、電車及びレールと、これらを経て交直変換器へ戻る帰線は、直流回路を構成している。
【0005】
電車線は、トロリー線、直流母線を含む。トロリー線は、電車のパンタグラフに接して電力を供給する架線である。直流母線は、トロリー線と平行に配置され、交直変換器の直流側に接続された電力線である。直流母線は、き電線とも呼ばれる。直流母線とトロリー線とは、複数の分岐線により並列に接続されている。
【0006】
上記の直流遮断器は、交直変換器及び直流母線の間、各分岐線に設けられている。以下、交直変換器及び直流母線の間の直流遮断器を、変換器用直流遮断器と呼ぶ。各分岐線の直流遮断器を、分岐用直流遮断器と呼ぶ。このように、直流のき電システムは、複数の直流遮断器を有している。
【0007】
直流のき電システムでは、直流回路で発生した地絡事故は、重大な事故の一つである。このため、地絡事故を検出した際には、速やかに事故部位を切り離す必要がある。このような地絡事故を検出するために、各変電所には、帰線とアース間に直流地絡継電器が設けられている。
【0008】
直流地絡継電器は、地絡事故が発生すると、帰線に対してアース電位が正となる電圧を検出する。すると、直流地絡継電器は、トリップ信号を出力することによって、変電所に設けられた全ての直流遮断器を開放することで、保護を行う。以下、各直流地絡継電器が所属する変電所を自変電所と呼ぶ。
【0009】
さらに、自変電所に隣接する隣接変電所には、自変電所の直流遮断器に対応する直流遮断器が存在する。これらの直流遮断器は、一方が遮断されると、保護連系、連絡遮断などと呼ばれる機能により、他方も遮断されるように設定されている。このため、自変電所の直流地絡継電器が作動すると、両隣の変電所を含む3変電所の全ての直流遮断器が遮断されるので、直流送電が停止する。
【先行技術文献】
【特許文献】
【0010】
【発明の概要】
【発明が解決しようとする課題】
【0011】
上記のように、地絡事故を検出すると、多数の変電所の直流遮断器が遮断されるので、停電する区間が長くなる。このため、事故点の捜索と復旧に長時間を要する。従って、電車の運行停止時間が長くなる。
【0012】
つまり、従来の直流地絡継電器は、き電システムのいずれの箇所で発生した地絡事故であっても、帰線~アース間の異常電圧を検出するものであり、どこで発生した地絡事故かは特定できなかった。このため、事故部位に関わらず、交流遮断器及び全ての直流遮断器を開放していた。このように、全ての遮断器を開放すると、上記のように、電車の運行停止時間が長くなるという問題が生じる。
【0013】
本発明の実施形態は、上記のような従来技術の問題点を解決するために提案されたものであり、その目的は、地絡事故が発生した場所を特定することにより、必要最小限の遮断器の開放を可能とする地絡保護装置を提供することにある。
【課題を解決するための手段】
【0014】
上記の課題を解決するために、本発明の実施形態である地絡保護装置は、電車に直流を給電するき電システムにおける地絡電圧を検出する検出部と、前記検出部が検出した地絡電圧に第2調波が含まれるか否かにより、発生した地絡が交流地絡か否かを判定する判定部とを有する。
【図面の簡単な説明】
【0015】
【
図1】実施形態が適用される直流き電システムの構成例を示す結線図
【
図3】第1の実施形態の直流地絡継電器のブロック図
【
図4】交直変換器に入力される三相交流電圧の波形を示す図
【
図7】地絡発生時に直流地絡継電器に現れる電圧波形を示す図
【
図10】地絡事故点の判定と開放する遮断器を示す説明図
【
図11】第2の実施形態の直流地絡継電器のブロック図
【
図12】地絡事故点の判定と複数の変電所間の連絡機能を示す結線図
【
図13】第3の実施形態の直流地絡継電器のブロック図
【
図14】直流地絡における事故電流の流れによる地絡事故点の判定と複数の変電所間の連絡機能を示す結線図
【発明を実施するための形態】
【0016】
[第1の実施形態]
[構成]
図1は、本実施形態が適用されるき電システムSの構成例である。き電システムSは、変電所100及び電車設備200を有している。変電所100は、電力を変換して、電車設備200に供給する設備である。
【0017】
[変電所]
変電所100は、変圧器1、交流遮断器2、交直変換器3、変換器用直流遮断器4、分岐用直流遮断器5、分岐用保護継電器9を有する。変圧器1は、交流をき電システムSに適した電圧に降圧する。交流の電力は、電力会社又は送配電会社などの提供する系統から供給される。交流遮断器2は、交流側の系統と変圧器1の1次側との間に接続され、開閉により変圧器1と交流系統の遮断、接続を行う。
【0018】
交直変換器3は、変圧器1が降圧した交流を直流に変換して出力する。交直変換器3の交流側は、変圧器1の2次側に接続されている。交直変換器3の直流側は、電車線に接続されている。電車線は、複数の分岐線Dを介して互いに並列に接続された直流母線Bと、後述するトロリー線6を有する。
【0019】
直流母線Bは、交直変換器3の直流正極側に接続された電線である。直流母線Bには、複数の分岐線Dが接続されている。各分岐線Dには、分岐用直流遮断器5、分岐用保護継電器9が設けられている。分岐用直流遮断器5は、分岐線Dを開閉する遮断器である。分岐用保護継電器9は、各分岐線Dを流れる事故電流を検知して、分岐用直流遮断器5を開閉させる継電器である。なお、図中、DCVTは直流計器用変圧器である。
【0020】
[電車設備]
電車設備200は、複数の変電所100から直流電力の供給を受けて、電車Eを走行させる設備である。電車設備200は、トロリー線6、レール7、帰線8を有する。トロリー線6は、電車Eのパンタグラフを介して、変電所100からの直流電力を供給する電線である。トロリー線6は、上記のように、複数の分岐線Dにより直流母線Bと並列に接続されている。
【0021】
レール7は、電車Eの車輪が走行する導体の軌道である。直流母線B、トロリー線6は、レール7の上方に沿って鉄塔等により懸架されている。帰線8は、レール7と交直変換器3の直流負極側を接続する電線である。なお、図中、8aは、帰線8を開閉する断路器である。
【0022】
なお、
図1に示す直流のき電システムSにおいて、地絡事故の場所は、その保護区分により大きく以下の3つに分けることができる。
(a)変圧器1~交直変換器3の交流部分
(b)交直変換器3~分岐用遮断器5間の直流回路
(c)分岐用遮断器5の出力側の直流回路
そして、(b)は変電所内、(c)は変電所外とする。
【0023】
このようなき電システムSを簡略化した原理図を、
図2に示す。ここでは、変圧器1の2次側を3相の交流電源として示している。交直変換器3は、複数のSR(Silicon Rectifier)により構成されている。1対のSRは、それぞれ変圧器1の2次側の両端と直流母線Bとの間に接続され、正側Pの電流のみを通過させる。また、他の1対のSRは、それぞれ変圧器1の2次側の両端と帰線8との間に接続され、負側Nの電流のみを通過させる。
【0024】
[地絡保護装置]
さらに、き電システムSは、本実施形態の地絡保護装置として、直流地絡継電器10を有する。直流地絡継電器10は、地絡事故が発生した場合に、各種遮断器を開放して保護する継電器である。その基本構成は、一般的に使用されている地絡過電圧継電器64Pと同様である。
【0025】
直流地絡継電器10は、帰線8とアースとの間に設けられている。直流地絡継電器10は、変電所100毎に設けられている。各直流地絡継電器10が所属し、交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開閉を行う変電所100を、それぞれの自変電所と呼ぶ。
【0026】
直流地絡継電器10は、
図3に示すように、検出部10a、遮断部10b、判定部10c、抑止部10d、記憶部10eを有する。検出部10aは、地絡電圧を検出する。つまり、
図1における、(a)(b)(c)の範囲で地絡事故が発生した際に、
図2のに示すように、アース電位が正となる方向の地絡電圧V
NEを検出する。検出部10aは、所定の時間間隔でサンプリングした電圧データに基づいて検出を行う。
図2は、地絡事故発生時の等価回路でもある。遮断部10bは、検出部10aが地絡電圧V
NEを検出すると、自変電所の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5を開放させるトリップ信号を出力する。
【0027】
判定部10cは、検出部10aが検出した地絡電圧VNEに基づいて、地絡事故が交流地絡か否かを判定する。例えば、判定部10cは、地絡電圧VNEに、第2調波が含まれるか否かにより交流地絡か否かを判定する。
【0028】
判定部10cによる判定処理の一例を、以下に示す。まず、所定の時間間隔でサンプリングした電圧データから第2調波(V2f)を抽出する。そして、抽出された第2調波から二値加算などにより振幅値を算出する。振幅値があらかじめ設定されたしきい値を超える場合に、第2調波有りと判定する。
【0029】
第2調波(V2f)の抽出は、例えば、以下の式1により行う。ここで、Vmは現時点の電圧データ、Vm-3が電気角90°前の電圧データを示す。
V2f=Vm-Vm-3…式1
この結果、判定部10cは、第2調波有りとした場合には、交流側地絡、すなわち、地絡事故が発生した箇所は、地絡点(a)であると判定する。
【0030】
抑止部10dは、判定部10cが交流地絡と判定すると、遮断部10bによる分岐用直流遮断器5の開放を抑止する。つまり、判定部10cが交流地絡と判定した場合、遮断部10bによる交流遮断器2、変換器用直流遮断器4へのトリップ信号の出力は許容するが、各分岐用直流遮断器5へのトリップ信号を出力させない。
【0031】
記憶部10eは、直流地絡継電器10の処理に必要な情報を記憶する。記憶される情報は、検出部10aが検出する電圧データ、第2調波を抽出するための演算式、第2調波の有無を判定するためのしきい値、継電器の基本的な整定等を含む。
【0032】
[動作]
以上のような本実施形態の動作は、以下の通りである。まず、き電システムSの通常の運転を説明する。電力会社又は送配電会社などからの交流電力は、交流遮断器2を経由して、変圧器1で電車Eの運転に適した電圧に降圧され、交直変換器3に入力される。
図4は、交直変換器3に入力される3相交流電圧(u)(v)(W)の波形を、単位法[PU]により表したものである。入力された交流電力は、交直変換器3で直流電力に変換される。
図5は、交直変換器3内のSRの3相(u)(v)(W)の電圧波形より生成される直流電圧波形Pを表したものである。
【0033】
変換された直流の電力は、変換器用直流遮断器4、分岐用直流遮断器5を経由して、トロリー線6に供給される。この直流は、負荷である電車E、レール7、帰線8を経由して、交直変換器3に戻る。このように、交直変換器3を電力の供給源とする直流回路によって、電車Eの電動機が駆動され、電車Eがレール7上を走行する。
【0034】
以上のようなき電システムSにおいて、地絡事故が発生した場合の交流地絡の判定手順を、
図6のフローチャートを参照して説明する。検出部10aは、
図1において、(a)(b)(c)の範囲で地絡事故が発生した際に、
図2に示すように、アース電位が正となる方向の地絡電圧V
NEを検出する(ステップ101)。
【0035】
判定部10cは、地絡事故が交流地絡か否かを、以下の手順で判定する。まず、上記の式1で示す演算により、第2調波(V2f)を抽出する(ステップ102)。抽出した第2調波(V2f)の振幅値を演算する(ステップ103)。演算した振幅値が、しきい値(Vset)以上の場合には(ステップ104のYES)、交流地絡と判定する(ステップ105)。しきい値(Vset)未満の場合には(ステップ104のNO)、交流地絡でないと判定する(ステップ106)。
【0036】
図7は、
図1における(a)、(b)のそれぞれで地絡事故が発生した場合の直流地絡継電器10に現れる電圧を表している。このように、変圧器1と交直変換器3の間の(a)点で地絡が発生した場合と、交直変換器3の出力側(b)で地絡が発生した場合で、直流地絡継電器10に現れる電圧波形は異なる。
図7において、V
NEm(Va地絡)は、(a)点で地絡が発生(交流地絡)した場合の対地間電圧である。V
NEm(P地絡)は、(b)点で地絡が発生(直流地絡)した場合の対地間電圧である。Rfは、地絡点抵抗、Rqは、レール大地間抵抗である。
【0037】
図8は、交流地絡の場合の地絡電圧V
NEm、第2調波2fの含有率、抽出された第2調波(V
m-V
m3)を示す。また、
図9は、交流地絡の場合の地絡電圧V
NEm、第2調波2fの含有率、抽出された第2調波(V
m-V
m3)を示す。このように、交流地絡と直流地絡における地絡電圧V
NEmは、第2調波2fに着目すると、その相違が明らかとなる。このため、しきい値を適切に設定することにより、上記のような手順によって、交流地絡を識別することができる。
【0038】
図10は、交流地絡か否かの判定に応じた地絡事故点及び開放する遮断器を示す。なお、図中、判定の項目では、直流地絡と交流地絡の有無とのANDをとって処理している。これは、通常の地絡事故では交流及び直流の全ての遮断器を開放するが(β)、交流地絡を検出した場合にのみ分岐用直流遮断器5は開放しない(α)、という継電器の整定を示すもので、直流地絡のみを直接検出して判定しているわけではない。
【0039】
判定部10cが交流地絡と判定した場合、変換器用直流遮断器4よりも上位の事故であることが明確である。このため、抑止部10dは、遮断部10bによる交流遮断器2、変換器用直流遮断器4の開放は許容するが、各分岐用直流遮断器5を開放させない。これにより、隣接する変電所100など、共通の電車線に対して複数台並列に設けられている交直変換器3のいずれかにより、トロリー線6への給電を継続できる。
【0040】
判定部10cが交流地絡でないと判定した場合、従来と同様に、遮断部10bは、自変電所における交流遮断器2、変換器用直流遮断器4及び全ての分岐用直流遮断器5を開放し、保護を行う。
【0041】
[作用効果]
以上のような本実施形態では、直流地絡継電器10が、電車Eに直流を給電するき電システムSにおける地絡電圧を検出する検出部10aと、検出部10aが検出した地絡電圧に第2調波が含まれるか否かにより、発生した地絡が交流地絡か否かを判定する判定部10cを有する。
【0042】
このため、簡単な演算処理により交流地絡を検出できるので、地絡事故が発生した場所を特定することにより、必要最小限の遮断器の開放が可能となる。これにより、電車Eの運行停止時間を短縮できる。
【0043】
さらに、本実施形態は、き電システムSが有する変電所100が、電力系統に接続された変圧器1と、変圧器1に交流側が接続された交直変換器3と、複数の分岐線Dを介して互いに並列に接続された一対の電車線のうち、一方の直流母線Bと交直変換器3の直流正極側との間に設けられた変換器用直流遮断器4と、複数の分岐線D毎に設けられた分岐用直流遮断器5とを含む変電所100を有している。
【0044】
そして、直流地絡継電器10は、検出部10aが地絡電圧を検出すると、変換器用直流遮断器4及び分岐用直流遮断器5を開放させる信号を出力する遮断部10bと、判定部10cが交流地絡と判定すると、遮断部10bによる分岐用直流遮断器5を開放させる信号の出力を抑止する抑止部10dとを有する。
【0045】
このため、判定部10cが交流地絡と判定した場合には、分岐用直流遮断器5が開放しない。すると、共通の電車線に対して複数台並列に設けられている交直変換器3のいずれかにより、トロリー線6への送電を継続できる。従って、停電区間を最小限に抑えて、電車運休区間と復旧時間の短縮に寄与する。
【0046】
[第2の実施形態]
[構成]
本実施形態は、基本的には、上記の実施形態と同様の構成である。但し、本実施形態の直流地絡継電器10は、
図11に示すように、通知部10fを有する。通知部10fは、判定部10cが交流地絡と判定すると、隣接する変電所の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する。
【0047】
[動作]
以上のような本実施形態の動作を、
図12を参照して説明する。一般的に、直流の電気鉄道におけるレール7は、大地に対して、枕木やバラストなどの漏れ抵抗により接続されている。しかし、漏れ抵抗が大きい場合や、モノレールのようにレール7が大地に対して完全に絶縁されている場合がある。この場合には、地絡電流が分流するルートが存在せず、全ての地絡電流がレール7を流れてしまう。このため、レール7とアース間の漏れ抵抗による地絡電圧の減衰が無い。
【0048】
すると、1つの変電所、例えば、B変電所で発生した地絡事故であっても、共通の路線内に存在する全ての変電所、例えば、A変電所の直流地絡継電器10’、C変電の直流地絡継電器10が、地絡電圧を検知して動作してしまう。このため、直流地絡継電器10、10’の保護動作により、路線全体が運行停止となることがある。つまり、電車設備200に電力を供給する複数の変電所100が存在している場合に、地絡事故が発生した変電所100のみならず、隣接する変電所100も停止する。
【0049】
本実施形態では、例えば、
図12に示すように、B変電所の変圧器1と交直変換器3との間で地絡事故が発生した場合は、交流地絡であるため、上記の実施形態で述べた通り、B変電所の交流遮断器2と変換器用直流遮断器4が開放する。
図12において、×印を付した遮断器が開放する遮断器である。
【0050】
このとき、上記のような理由から、隣接するA変電所の直流地絡継電器10’とC変電所における直流地絡継電器10でも、地絡電圧を検出する場合がある。すると、A変電所の直流地絡継電器10’の遮断部10bは、自変電所内における交流遮断器2、変換器用直流遮断器4及び全ての分岐用直流遮断器5を開放してしまう。このため、A変電所~B変電所の区間における電車線が停電となる。
【0051】
しかし、本実施形態では、B変電所の直流地絡継電器10の判定部10cが交流地絡を検出すると、通知部10fが、交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する。出力された信号は、
図12の一点鎖線の矢印に示すように、図示しない通信装置によって、隣接するC変電所の直流地絡継電器10に送信される。これを受信したC変電所の直流地絡継電器10の遮断部10bは、交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5を開放することを抑止し、C変電所からの送電を継続する。
【0052】
なお、A変電所については、本実施形態との対比説明のために、従来のように停電する態様とした。但し、A変電所も直流地絡継電器10を備え、C変電所と同様に、通知部10fからの信号を受信することにより、交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5を開放することを抑止して、送電を継続できる。
【0053】
[作用効果]
以上のような本実施形態は、判定部10cが交流地絡と判定すると、隣接する変電所100の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する通知部10fを有する。
【0054】
このため、レール7と大地との間の漏れ抵抗が大きいか、完全に絶縁されているために、地絡事故により全変電所100の直流地絡継電器10が動作する可能性がある場合であっても、事故が発生した変電所100の遮断器の開放を優先する。これにより、全変電所100の停電を避け、電車Eの運休区間と復旧時間の短縮に寄与する。
【0055】
[第3の実施形態]
[構成]
本実施形態は、基本的には、上記の第2の実施形態と同様の構成である。但し、本実施形態の直流地絡継電器10は、
図13に示すように、事故点判定部10gを有する。事故点判定部10gは、地絡事故が発生した場合に、分岐線Dを流れる電流に基づいて、地絡事故点が自変電所内か否かを判定する。
【0056】
例えば、事故点判定部10gは、分岐用保護継電器9が検出する分岐線Dの電流が、全て自変電所に向かって流れ込んでいる場合に、地絡事故点が自変電所内であると判定する。また、事故点判定部10gは、分岐用保護継電器9が検出する分岐線Dの電流のうち、少なくとも一つの分岐線Dを流れる電流が自変電所から出て行く方向に流れていると判定した場合に、地絡事故点が自変電所外であると判定する。
【0057】
遮断部10bは、事故点判定部10gが地絡事故点が自変電所内と判定すると、自変電所の交流遮断器2、変換器用直流遮断器4及び自変電所の全ての分岐用直流遮断器5を開放する。抑止部10dは、事故点判定部10gが地絡事故点が自変電所外と判定すると、交流遮断器2、自変電所の変換器用直流遮断器4及び自変電所の全ての分岐用直流遮断器5の開放を抑止する。
【0058】
また、通知部10fは、事故点判定部10gが地絡事故点が自変電所内と判定すると、隣接する変電所100の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する。
【0059】
[動作]
図14は、交直変換器3の直流側で地絡が発生した場合の事故電流の流れ方の一例を示したものである。同図において、点線の矢印で示すように、B変電所の直流母線Bで地絡事故が発生した場合、B変電所の交直変換器3からの直流電流に加え、A変電所、C変電所からも分岐用直流遮断器5を介して電流が流入してくる。この事故は、直流側で起きているため、B変電所の直流地絡継電器10は、交流地絡の検出はしない。
【0060】
しかし、B変電所の直流地絡継電器10の事故点判定部10gは、これらの分岐線の電流の向きから、事故点がB変電所内、つまり、自変電所の分岐用直流遮断器5の直流母線B側であると判定する。この場合、遮断部10bは、
図10の(β)のように、B変電所の交流遮断器2、変換器用直流遮断器4と、全ての分岐用直流遮断器5を開放する。これにより、事故点を系統から切り離すことができる。
【0061】
一方、隣接するA変電所の直流地絡継電器10’及びC変電所の直流地絡継電器10でも、異常電圧を検出する。このとき、従来は、
図14に示すように、A変電所の直流地絡継電器10’は、交流遮断器2、変換器用直流遮断器4と、全ての分岐用直流遮断器5を開放していた。
【0062】
しかし、本実施形態では、
図14に示すように、分岐用保護継電器9が検出する分岐線Dの電流のうち、少なくとも一つの分岐線Dを流れる電流が、自変電所から出て行く方向に流れている。このため、C変電所の直流地絡継電器10は、地絡事故点が自変電所外であると判定する。すると、抑止部10dは、自変電所の交流遮断器2、変換器用直流遮断器4及び全ての分
岐用直流遮断器5の開放を抑止する。
【0063】
さらに、B変電所の直流地絡継電器10の通知部10fは、事故点判定部10gが自変電所内の地絡事故と判定した場合に、C変電所の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する。出力された信号は、
図14の一点鎖線の矢印に示すように、図示しない通信装置によって、隣接するC変電所の直流地絡継電器10に送信される。すると、C変電所の直流地絡継電器10の抑止部10dは、自変電所の交流遮断器2、変換器用直流遮断器4及び全ての分
岐用直流遮断器5の開放を抑止する。
【0064】
[作用効果]
以上のような本実施形態は、分岐線Dを流れる電流に基づいて、地絡事故点が自変電所内か否かを判定する事故点判定部10gを有する。そして、事故点判定部10gが、地絡事故点が自変電所内であると判定すると、遮断部10bが自変電所の変換器用直流遮断器4及び自変電所の全ての分岐用直流遮断器5を開放する。また、事故点判定部10gが、地絡事故点が自変電所内でないと判定すると、抑止部10dが、自変電所の変換器用直流遮断器4及び自変電所の全ての分岐用直流遮断器5の開放を抑止する。
【0065】
事故点判定部10gは、自変電所内の全ての分岐線Dの電流が自変電所に向かって流れている場合に、地絡事故点が自変電所内と判定し、少なくとも一つの分岐線Dの電流が自変電所から出て行く方向に流れている場合に、地絡事故点が自変電所外と判定する。
【0066】
このため、C変電所のように、隣接する変電所100で直流地絡継電器10が異常電圧を検出していても、地絡事故点でない変電所100においては、遮断器の開放を抑止し、事故復旧を待つ。このように、開放する遮断器を最小限に抑えることで、停電区間を限定し、電車運休区間と復旧時間の短縮に寄与する。これは、先行技術文献に記載されたように、変電所のメッシュアースとは別に、第2の設置極を用意するような施工上の煩わしさもない。
【0067】
さらに、事故点判定部10gが、地絡事故点が自変電所内と判定すると、隣接する変電所の変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する通知部20fを有する。
【0068】
このため、地絡事故点でないC変電所においては、遮断器の開放を抑止することができ、開放する遮断器を最小限に抑えることで、停電区間を限定し、電車運休区間と復旧時間の短縮に寄与する。さらに、事故点判定部10gの自変電所外の判定による遮断の抑止と、隣接する変電所100からの信号の通知による遮断の抑止との双方により、より確実に遮断器の開放を抑止することができる。但し、事故点判定部10gの自変電所外の判定による遮断の抑止と、隣接する変電所100からの信号の通知による遮断の抑止のいずれか一方のみを行ってもよい。
【0069】
なお、A変電所については、本実施形態との対比説明のために、従来のように停電する態様とした。但し、A変電所も直流地絡継電器10を備え、C変電所と同様に、事故点判定部10gの自変電所外の判定、通知部10fからの信号の受信により交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5を開放することを抑止して、送電を継続できる。
【0070】
[第4の実施形態]
[構成]
本実施形態は、基本的には、上記の第3の実施形態と同様の構成である。但し、本実施形態の事故点判定部10gは、少なくとも一つの分岐線Dの自変電所に流れ込む電流の増加率が、所定値以上の場合に、地絡事故点が自変電所内と判定する。また、事故点判定部10aは、増加率が所定値以上となる分岐線Dがない場合に、地絡事故点が自変電所外と判定する。所定値は、記憶部10eに記憶されている。
【0071】
[動作]
実際の地絡事故発生時には、電車負荷が存在する可能性が高く、地絡事故点の抵抗が大きければ、地絡事故電流よりも負荷電流の方が大きくなることもある。すると、地絡事故時においても、全ての分岐線Dの電流が、自変電所に向かって流れない場合がある。
【0072】
本実施形態は、このようなケースに対応するため、事故電流が負荷電流に対して電流増加率が高いという点に着目している。つまり、事故点判定部10gは、全分岐線Dに流れる電流の単位時間当たりの変化量(ΔI)を監視する。変化量のデータは、分岐用保護継電器9又は変化量を監視する継電器から得ることができる。
【0073】
そして、直流地絡継電器10の検出部10aが異常電圧を検出しており、且つ、少なくとも1つの分岐線Dの電流の変化量ΔIが、自変電所に向かう方向で所定の値以上となっている場合に、事故点判定部10gは、自変電所内の地絡と判定する。
【0074】
この場合、遮断部10bは、自変電所の交流遮断器2、変換器用直流遮断器4と、全ての分岐用直流遮断器5を開放する。これにより、事故点を系統から切り離すことができる。
【0075】
一方、隣接する変電所100でも、直流地絡継電器10が異常電圧を検出する。このとき、従来は、隣接する変電所100の直流地絡継電器10は、交流遮断器2、変換器用直流遮断器4と、全ての分岐用直流遮断器5を開放していた。
【0076】
しかし、本実施形態では、隣接する変電所100では、分岐用保護継電器9が検出する分岐線Dの電流のうち、いずれの分岐線Dの電流の変化量ΔIも、変電所100に向かう方向で所定の値以上にならない。このため、隣接する変電所100の直流地絡継電器10は、地絡事故点が自変電所外であると判定する。すると、隣接する変電所100では、抑止部10dが、自変電所の交流遮断器2、変換器用直流遮断器4及び全ての分岐用直流遮断器5の開放を抑止する。
【0077】
また、自変電所の直流地絡継電器10の通知部10fは、事故点判定部10gが自変電所内の地絡事故と判定した場合に、自変電所の交流遮断器2、変換器用直流遮断器4及び分岐用直流遮断器5の開放を抑止する信号を出力する。出力された信号は、図示しない通信装置によって、隣接する変電所100の直流地絡継電器10に送信される。すると、隣接する変電所100の直流地絡継電器10の抑止部10dは、自変電所の交流遮断器2、変換器用直流遮断器4及び全ての分岐用直流遮断器5の開放を抑止する。
【0078】
[作用効果]
以上のような本実施形態は、事故点判定部10gが、少なくとも一つの分岐線の自変電所に流れ込む電流の増加率が、所定値以上の場合に、地絡事故点が自変電所内と判定し、増加率が所定値以上となる分岐線がない場合に、地絡事故点が自変電所外と判定する。
【0079】
このため、電車負荷が存在するために、負荷電流が大きく、事故電流の方向のみで地絡事故点を判定できない場合があっても、事故電流の増加率により、地絡事故点を判定することができる。これにより、より確実に地絡事故点を判定して、遮断器開放を最小限に抑えて、停電区間を限定できる。
【0080】
なお、上記の実施形態と同様に、事故点判定部10gの自変電所外の判定による遮断の抑止と、隣接する変電所100からの信号の通知による遮断の抑止のいずれか一方のみを行ってもよい。
【0081】
[他の実施形態]
本実施形態は、上記の態様には限定されない。
(1)上記の第3及び第4の実施形態は、交流地絡か否かを判定する第1及び第2の実施形態を含む構成であった。但し、自変電所内の地絡か否かを判定する第3及び第4の実施形態であって、交流地絡か否かを判定しない実施形態も構成可能である。
【0082】
(2)地絡保護装置は、CPUを含むコンピュータを所定のプログラムで制御することによって実現できる。この場合のプログラムは、コンピュータのハードウェアを物理的に活用することで、上記のような各部の処理を実現するものである。このため、上記の処理を実行する方法、プログラム及びプログラムを記録した記録媒体も、実施形態の一態様である。また、ハードウェアで処理する範囲、プログラムを含むソフトウェアで処理する範囲をどのように設定するかは、特定の態様には限定されない。たとえば、上記の各部のいずれかを、それぞれの処理を実現する回路として構成することも可能である。
【0083】
なお、上記の実施形態では、地絡保護装置を、直流地絡継電器10として構成したが、地絡保護装置の構成の全部又は一部を、直流地絡継電器10とは別の継電器、制御回路等に構成することも可能である。これらを共通の制御盤に設けるか否かも自由である。
【0084】
(3)実施形態において、設定した各種の値に対する大小判断、一致不一致の判断等において、以上、以下として値を含めるように判断するか、より大きい、上回る、超える、より小さい、下回る、未満として値を含めないように判断するかの設定は自由である。なお、第2調波の抽出、振幅値の算出のための演算手法は、上記の例には限定されず、電圧データから第2調波の有無を判定できる手法であればよい。
【0085】
(4)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0086】
1 変圧器
2 交流遮断器
3 交直変換器
4 変換器用直流遮断器
5 分岐用直流遮断器
6 トロリー線
7 レール
8 帰線
9 分岐用保護継電器
10 直流地絡継電器
10a 検出部
10b 遮断部
10c 判定部
10d 抑止部
10e 記憶部
10f 通知部
100 変電所
200 電車設備
S き電システム