(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-20
(45)【発行日】2022-05-30
(54)【発明の名称】顕微鏡試料のインサイチュー作製のための方法
(51)【国際特許分類】
G01N 1/28 20060101AFI20220523BHJP
G01N 1/32 20060101ALI20220523BHJP
【FI】
G01N1/28 F
G01N1/28 G
G01N1/32 B
【外国語出願】
(21)【出願番号】P 2018127572
(22)【出願日】2018-07-04
【審査請求日】2021-06-08
(31)【優先権主張番号】10 2017 212 020.7
(32)【優先日】2017-07-13
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】512158505
【氏名又は名称】カール ツァイス マイクロスコーピー ゲーエムベーハー
【氏名又は名称原語表記】Carl Zeiss Microscopy GmbH
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100202326
【氏名又は名称】橋本 大佑
(72)【発明者】
【氏名】アンドレアス シュマルツ
(72)【発明者】
【氏名】ホルガー デマー
【審査官】野田 華代
(56)【参考文献】
【文献】特開2000-146781(JP,A)
【文献】特開2007-163160(JP,A)
【文献】特開2010-230672(JP,A)
【文献】特開2017-26612(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 1/00-1/38
(57)【特許請求の範囲】
【請求項1】
- 荷電粒子の集束ビームを生成するための粒子ビームコラムと、
- 試料ブロックを収容するための試料容器と、
- 粒子ビームと試料材料との間の相互作用の相互作用生成物を検出するための検出器と
を含む粒子ビーム装置を用いて行われる、顕微鏡試料のインサイチュー作製のための方法であって、
a)露出され、かつ関心試料領域(ROI)を含む構造を有する試料ブロックを提供する工程と、
b)前記露出構造の少なくとも一部が前記入射粒子ビームの方向に整形されるように、前記粒子ビームの作用によって前記露出構造内に湾曲縁を生成する工程と、
c)前記試料ブロックが収容される前記試料容器を、前記整形された構造によって取り囲まれる試料領域が前記粒子ビーム装置内で観察可能および/または加工可能であるように移動させる工程と
を含む方法。
【請求項2】
前記粒子ビーム装置を用いて前記関心試料領域(ROI)を観測および/または加工する追加工程を含む、請求項1に記載の方法。
【請求項3】
前記湾曲縁を生成する工程は、前記露出構造の形状の所望のサイズを予め判断する工程と、前記所望の形状を生成する工程とを含む、請求項1または2に記載の方法。
【請求項4】
湾曲縁を生成する工程は、前記顕微鏡試料が複数の湾曲縁を有するように繰り返される、請求項1~3のいずれか一項に記載の方法。
【請求項5】
蒸着を適用することにより、前記湾曲縁の形状を安定化する工程を含む、請求項1~4のいずれか一項に記載の方法。
【請求項6】
前記粒子ビーム装置は、集束イオンビームを生成するためのイオンビームコラムを含む、請求項1~5のいずれか一項に記載の方法。
【請求項7】
前記粒子ビーム装置は、集束イオンビームを生成するためのイオンビームコラムと、集束電子ビームを生成するための電子ビームコラムとを含むマルチビーム装置として具現化される、請求項1~5のいずれか一項に記載の方法。
【請求項8】
前記粒子ビーム装置は、集束電子ビームを生成するための電子ビームコラムと、エッチングガスを導入するためのガス注入系とを含み、前記湾曲縁は、前記電子ビームおよびエッチングガスの作用によって生成される、請求項1~5のいずれか一項に記載の方法。
【請求項9】
前記露出構造の前記提供は、被覆の蒸着を含む、請求項1~8のいずれか一項に記載の方法。
【請求項10】
前記被覆は、白金を含む、請求項9に記載の方法。
【請求項11】
前記露出構造は、エッチングによって前記試料ブロックから露出される、請求項10に記載の方法。
【請求項12】
XeF
2前駆体は、エッチング目的のために供給される、請求項11に記載の方法。
【請求項13】
試料ブロックが提供され、前記関心試料領域は、前記試料ブロックの表面上に位置する粒子を有し、および蒸着を適用することにより、前記粒子は、蒸着材料中に埋め込まれ、および前記蒸着は、前記粒子による前記蒸着が前記露出構造を形成するようにエッチング時にアンダーカットされ、
前記湾曲縁は、前記蒸着において生成される、請求項10~12のいずれか一項に記載の方法。
【請求項14】
前記顕微鏡試料は、TEMラメラである、請求項1~12のいずれか一項に記載の方法。
【請求項15】
前記顕微鏡試料は、トモグラフィ試料である、請求項1~12のいずれか一項に記載の方法。
【請求項16】
前記露出構造は、電子部品の導体路として具現化される、請求項1~12のいずれか一項に記載の方法。
【請求項17】
前記粒子ビーム装置は、電子ビームコラムと、STEM検出器とを含み、および前記関心試料領域は、電子に対してトランスペアレントであり、
前記方法は、電子を、前記電子ビームコラムから前記関心試料領域を通過させる工程を含み、その結果として生じる前記相互作用生成物は、前記STEM検出器を使用して検出される、請求項1~14のいずれか一項に記載の方法。
【請求項18】
- 荷電粒子の集束ビームを生成するための粒子ビームコラムと、
- 試料ブロックを収容するための試料容器と、
- 粒子ビームと試料材料との間の相互作用の相互作用生成物を検出するための検出器と、
- 前記顕微鏡試料を収容するための移動可能な転送装置と
を含む粒子ビーム装置を用いて行われる、顕微鏡試料を転送する方法であって、
a)露出され、かつ作製される前記試料を含む構造を有する試料ブロックを提供する工程と、
b)前記転送装置を配置する工程と、
c)前記露出構造の少なくとも一部が前記入射粒子ビームの方向に整形されるように、前記粒子ビームの作用によって前記露出構造内に湾曲縁を生成する工程であって、前記整形された構造は、前記転送装置の近傍内へ移動される、工程と、
d)前記構造を前記転送装置に固定する工程と、
e)前記試料ブロックから前記構造を切り離す工程と
を含む方法。
【請求項19】
一連の制御コマンドを含むコンピュータプログラム製品であって、前記コンピュータプログラム製品により、粒子光学装置は、請求項1~18のいずれか一項に記載の方法の1つを行うように指示される、コンピュータプログラム製品。
【請求項20】
請求項1~17のいずれか一項に記載の方法によって取得可能な複数の湾曲縁を有する顕微鏡試料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電子顕微鏡による検査のための、試料ブロックから取得される試料のインサイチュー作製のための方法に関する。電子顕微鏡試料は、荷電粒子のビームの作用により、粒子ビーム装置内で整形され、かつ加工および/または観測される。
【背景技術】
【0002】
電子顕微鏡試料(以下では短縮して顕微鏡試料とも呼ばれる)は、サブミリメートル範囲(すなわち、数マイクロメートル(μm)またはナノメートル(nm)の範囲)に入る寸法を有する。通常、これらの試料は、電子顕微鏡(走査型電子顕微鏡または透過型電子顕微鏡、TEM)もしくはイオン顕微鏡または同様の解像度を有する他の装置内で検査される。
【0003】
このような試料は様々な構成を有し得る。多くの場合に使用される顕微鏡試料の例は、透過型電子顕微鏡法に必要なTEMラメラである。TEMラメラは非常に薄いため、少なくとも部分的に電子に対して透過性である。したがって、電子トランスペアレント試料領域は、透過された電子が検出されて画像生成目的のために使用され得るように、透過型電子顕微鏡(TEM)内の検査の範囲内で電子により通過され得る。
【0004】
TEMラメラが試料関心領域(ROI)を含むように、TEMラメラは、通常、全試料材料から(すなわち、試料ブロックから)作製されなければならない。TEMラメラは、異なる装置(好適にはTEM)内でその後検査されるように、いわゆるリフトアウトにより試料ブロックから切り離され除去される。
【0005】
一般的に、リフトアウトのタイプに依存して、エクスサイチュー方法とインサイチュー方法とでは顕微鏡試料作製が異なる。
【0006】
エクスサイチューリフトアウトの場合、試料ブロック内に依然として位置する試料関心領域は、最初に集束イオンビーム(FIB)装置内のFIBを使用することにより薄層化される。すなわち、試料が所望のラメラ厚さを有するまで材料がイオンビームにより除去され、前記試料は、電子トランスペアレントラメラとして存在する。次に、イオンビームは、TEMラメラが大きく露出されるようにTEMラメラの側縁を切り離すために使用される。次の工程では、試料ブロック全体は、TEMラメラと共にFIB装置から除去され、光学顕微鏡内へ転送される。そこでは、ガラスチップがマイクロマニピュレータを用いてTEMラメラへ固定される。ここで、TEMラメラは、試料ブロックから取り外され、マイクロマニピュレータによりTEMグリッドまたは任意の他の好適な試料保持器へ転送され得る。次に、TEMラメラを有するTEMグリッドは、別の検査のためにTEM内へ転送される。
【0007】
インサイチューリフトアウトの場合、将来のTEMラメラの領域は、最初に幅広ブラシ状イオンビームにより自由に作製される。TEMラメラは、FIB装置へ取り付けられたマイクロマニピュレータにより試料ブロックから解放され、FIB装置の試料室内に保持され、イオンビームにより所望のラメラ厚さまで薄層化される。最後に、TEMラメラは、TEMグリッドなどの上に置かれ、必要に応じて固定され、したがってFIB装置からTEM内へ転送され得る。
【0008】
エクスサイチューリフトアウトでは、したがって、試料ブロックは、顕微鏡試料が試料ブロックから切り離されるとFIB装置の外側に位置し、一方、これは、インサイチュー方法ではFIB装置内で発生する。両方の方法に共通のことは、マイクロマニピュレータ、マイクログリッパまたは針などの特別な操作ツールが必要とされることである。いくつかの方法は、作製された顕微鏡試料が、例えばガラスチップまたは金属針へ固定され得るようにする物質がターゲット方式で蒸着され得るように、プロセスガスを導入するための装置を追加的に必要とする。さらに、ユーザは、正当な時間量内に試料を問題なく作製するために、ツールを取り扱う一定量の経験および実験的スキルを有すべきである。
【0009】
したがって、電子顕微鏡法およびイオン顕微鏡法における多くの用途では、選択された小さい構造または試料領域を別の検査または加工へアクセス可能にするために取得された試料ブロックから、前記選択された小さい構造または試料領域を非接触方式で解放し得ることが有利であろう。
【0010】
様々なTEMラメラ作製方法が知られている。したがって、ウェハーの欠陥解析のための様々なタイプのFIBリフトアウト技術(エクスサイチューおよびインサイチュー)が説明されている((非特許文献1):(非特許文献2))。
【0011】
加えて、2ビーム装置を用いるTEM試料のインサイチューリフトアウトのための改良された方法((非特許文献3);(非特許文献4))が知られている。
【0012】
(特許文献1)は、反転台なしで済ますSEM-FIB組み合せ装置によるインサイチューSTEM試料作製のための方法について説明している。
【0013】
さらに、FIBによる熱可塑性ポリマの三次元ナノ製作のための方法が説明されている。
【0014】
(非特許文献5)は、TEMラメラ製造のためのカンチレバー技術を開示する。ここでは、試料ブロックは、作製されたカンチレバーを力の印可により試料ブロックから切り離すためにFIB装置から除去される。
【0015】
さらに、マイクロおよびナノツールにより極めて微小な構造を微整形するための方法(いわゆる「ナノ鍛造」)が説明されている。
【0016】
以下の文献は、従来技術であると考えるべきである。
- (特許文献1)
- (非特許文献6)
- (非特許文献7)
- (非特許文献8)
- (非特許文献9)
- (非特許文献10)
- (非特許文献11)
- (非特許文献12)
【先行技術文献】
【特許文献】
【0017】
【文献】欧州特許出願公開第1998356A2号明細書
【非特許文献】
【0018】
【文献】Giannuzzi et al.,2002
【文献】Giannuzzi&Stevie,1999
【文献】Langford&Rogers,2007
【文献】Tomus&Ng,2013
【文献】Langford et al.(2000)
【文献】Landefeld,A.,Roesler J(2014):Beilstein J.Nanotechnol.5:1066-1070
【文献】Giannuzzi et al(2002):Microelectronic Failure Analysis Desk Reference 2202 Supplement
【文献】Giannuzzi&Stevie(1999):Micron 30:197-204
【文献】Langford&Rogers(2007)
【文献】Langford et al.(2000):J.Vac.Sci Technol.B 18(1)
【文献】Tomus&Ng(2013):Micron 44:115-119
【文献】Lee et al.(2012):Journal of Microscopy 224,129-139
【発明の概要】
【発明が解決しようとする課題】
【0019】
本発明の目的は、顕微鏡試料が非接触方式で整形され得、別の検査へアクセス可能にされ得る方法を提案することである。さらに、本発明は、非接触整形による顕微鏡試料の転送に関する。
【課題を解決するための手段】
【0020】
本発明によると、これらの目的は、請求項1および請求項18の特徴を有する方法により達成される。有利な構成は従属請求項により規定される。本発明は、本発明による方法を行うように粒子光学装置に指示するコンピュータプログラム製品にさらに関する。
【0021】
さらに、本発明の目的は、複数の湾曲縁を有し、かつ開示される方法の1つから取得可能な極微小湾曲物体を提案することである。本発明によると、この目的は、請求項20により達成される。
【0022】
多くの場合、全試料材料から(すなわち、試料ブロックから)顕微鏡試料を作製することが必要である。本発明による方法を使用することにより、試料ブロックへ接続されたままの選択された試料領域が粒子ビーム装置内(すなわち、インサイチュー)の試料ブロックから露出され得る。これは、試料領域が試料ブロックの表面の面から非接触方式で折り畳まれるカンチレバーとして具現化されるために引き起こされる。これに関連して、非接触は、整形される試料領域が整形ツールと直接接触せず、このようなツールへ間接的にも接続されない(例えば、材料を蒸着することにより、または電荷もしくは例えばファンデルワールス力などの他の力を理由とした蓄積により)ことを意味する。
【0023】
非接触整形の結果として、顕微鏡試料は、可塑的に、すなわち恒久的に変形される。変形は、内部張力をトリガーする電荷および/または熱的影響によって場合により引き起こされる。試料関心領域(カンチレバー状構造内にまたはカンチレバー状構造に位置する)は、整形により粒子ビーム装置内の別の検査または別の加工へアクセス可能になる。この方法の利点は、マイクロマニピュレータまたはガラス針などの保持ツールの必要性がないことである。さらに、作製および観測または加工は、同じ粒子光学装置内で行われ得るため、様々な装置間の転送(既知の方法では必要である)なしで済まされ得る。
【0024】
本発明による方法は、粒子光学装置内で行われる。これは、イオンビーム顕微鏡またはマルチビーム顕微鏡(すなわち、少なくとも2つの粒子ビーム装置を含む組み合せ装置)であり得る。一例として、本装置は、2ビーム顕微鏡(すなわち、イオンビーム顕微鏡と電子ビーム顕微鏡とを含む組み合せ装置)として、またはガス注入系を有する電子ビーム顕微鏡として具現化され得る。本方法は、イオンビーム顕微鏡および光学顕微鏡を含む組み合せ装置を使用することで行われることも考えられる。粒子ビーム装置はまた、X線装置を含み得る。
【0025】
本発明による方法を使用することにより、例えばTEMラメラを生成することが可能である。TEMラメラは、ラメラが少なくともいくつかの点において電子に対してトランスペアレントであるため、透過型電子顕微鏡における検査に好適な極薄試料である。これは、TEMラメラの試料材料がTEM内で生成される電子ビームの電子により横断され得ることを意味する。通常、TEMラメラは、その長さおよび幅が通常数マイクロメートル(μm)であるほぼ平坦な立方体の形状を有する。この立方体の厚さ(ラメラ厚さ)は、通常、100ナノメートル未満(nm)であるため、ラメラは電子透過性である。
【0026】
しかし、例えば円筒、ピラミッドまたは円錐の形状を有する他の試料形式も本発明による方法を使用して作製され得る。このような試料形式は、通常、X線トモグラフィまたは電子トモグラフィに使用される。
【0027】
さらに、本発明による方法の特別な実施形態を使用することにより、顕微鏡試料を試料ブロックから転送装置上へ転送することが可能である。一例として、転送装置は、マイクロマニピュレータ針または試料保持器として具現化され得る。
【0028】
さらに、開示される方法の実施形態は、電子トランスペアレント試料をインサイチューで作製することと、これらをSTEM(走査透過型電子顕微鏡法)検出器を使用することにより解析することとを可能にする。
【0029】
別の実施形態によると、試料ブロックの表面上に存在する粒子を検査および撮像することが可能である。この目的を達成するために、粒子は、塗布された被覆内に埋め込まれる。その後、蒸着層は、その中に固定された粒子が試料表面の面から持ち上げられて粒子ビーム装置内で解析されることができるように整形される。
【0030】
さらに、極微小湾曲物体が、本発明による方法を使用して非接触整形することにより設計され得る。これは、カンチレバー状構造が粒子ビームの作用により整形されるために発生する。ここで、生成される顕微鏡試料が2つ以上の湾曲縁を有することが可能である。さらに、これは、様々な三次元極微小湾曲物体が生成されることを可能にする。
【0031】
本発明の例示的実施形態が添付図面に基づいて以下に説明される。したがって、それぞれ先行および後続する説明全体は、構成素子について説明する目的のためにも同様に参照される。
【図面の簡単な説明】
【0032】
【
図2】試料ブロック(面部)の理想化断面図に基づく本発明による方法の構成の原理を示す。
【
図3】試料ブロック(断面部)の理想化断面図に基づく本発明による方法の別の構成の原理を示す。
【
図5】本方法を使用して生成された顕微鏡試料の電子顕微鏡記録を再生する。
【
図6】三次元湾曲物体である顕微鏡試料の製造中の様々な工程を示す。
【
図7】2つの湾曲縁を有する顕微鏡試料の製造中の様々な工程を示す。
【
図9】本発明による方法を行うのに好適である2ビーム装置の構造を概略的に示す。
【
図10】本発明による特別な方法の工程を概略的に示す。
【発明を実施するための形態】
【0033】
図1は、粒子ビーム装置内で行われる本発明による方法のフローチャートを示す。露出構造を有する試料ブロックが工程S1において提供される。この目的を達成するために、試料ブロックは、有利には、粒子ビーム装置の試料室内の試料容器により保持される。
【0034】
露出構造を有する試料ブロックを生成するための様々な方法が考えられる。関心領域(ROI)が最初に識別され、試料ブロック内のその位置が判断された後、この領域を囲む試料材料が除去される。この材料除去は、例えば、いわゆる溝がイオンビームを使用すること(いわゆるミリング)により除去されるために、またはこの材料が階段状方式で除去されるために様々な方法で行われ得る。電子ビーム誘起エッチングにより材料除去を引き起こすことも考えられる。この目的を達成するために、電子ビームが加工対象試料部位上に向けられている間にエッチングガスが試料表面の近傍内に誘導される。試料材料は、エッチングガスと電子ビームとの相互作用により除去される。エッチングガスの導入と電子ビームによる照射とは、好適には、より高いエッチング速度を得ると共に、特定の試料領域をターゲット方式で加工することができるようにするために同時に行われる。しかし、さらに、機械的加工(例えば、マイクロトームまたは超マイクロトームによる切削)により、レーザ加工により、または他の方法により、露出構造を有する好適な試料ブロックを生成することも考えられる。
【0035】
いずれにせよ、関心領域(ROI)は、カンチレバー状構造内にまたはカンチレバー状構造に位置する程度に露出され、これは露出構造と呼ばれる。したがって、露出構造は、さらに詳細に検査されるべき試料領域であって、顕微鏡試料として作製されるべき試料領域を含む。以下に説明される方法工程は、このようにして作製された試料ブロックを使用して行われる。
【0036】
湾曲縁が荷電粒子のビームの作用により工程S2で生成される。一例として、粒子ビームは集束イオンのビームであり得る。イオンビームは、試料材料がミリングにより除去されて湾曲縁が生じるように露出構造全体にわたって誘導される。代替的に、ビームが電子ビームであり、湾曲縁が電子ビーム誘起エッチングにより生成されることも考えられる。露出構造は、湾曲縁をノッチングする結果として湾曲縁に沿って整形されるため、露出構造は別の空間位置へ移動される。
【0037】
通常、湾曲縁は、試料材料が粒子ビームにより直線に沿って除去されるために生じる。湾曲縁はカンチレバーの露出領域内に生成される。結果として、露出構造は、その構造が、元の面から、元の面に対して一定の角度で配置される面内に移動されるように湾曲縁に沿って湾曲される。湾曲縁が生成される際に限られた量の材料が除去されるため、整形は、露出構造が試料ブロックから切り離されることなく起こる。
【0038】
本発明は、顕微鏡試料の観測された整形挙動が試料作製および非接触の試料転送に使用され得るという驚くべき発見に基づく。本発明者らは、提案される方法が、そのカンチレバーが数十ナノメートル~数マイクロメートルの範囲内の断面厚さを有する露出構造によって行われ得ると判断した。一例として、本発明による方法は、20μm×2μmの面積と、約1μmの厚さとを有する典型的なTEMラメラにより行われると考えられる。ここで、湾曲縁が生成されるカンチレバーの断面厚さは0.1μm~2μmであり得る。
【0039】
露出構造は、入射粒子ビームに向かう方向に湾曲縁を生成することにより整形される。ユーザは、粒子ビームの作用を停止するために整形過程を停止し得る。しかし、整形過程はまた、粒子ビームが湾曲縁上に再び作用すれば再び継続され得る。次に、露出構造は、入射粒子ビームの方向にさらに整形される。このようにして、ユーザは整形の広がりを判断し得る。
【0040】
工程S3では、試料ブロックが収容される試料容器が移動される。これは、好適には、試料容器を、試料表面と平行に延伸する軸を中心に試料ブロックと共に回転することにより行われる。結果として、整形された構造内にまたは整形された構造に当然位置する関心領域は、この目的を達成するために試料ブロックから露出構造を切り離す必要なしに粒子ビーム装置内で検査され得る。同様に、試料ブロックが粒子ビーム装置から除去される必要がない。露出構造が試料ブロックの本体から移動されたため、関心試料領域は、ここで、試料ブロックの外側からアクセス可能であり、粒子ビーム装置内で観察可能および/または加工可能である。
【0041】
任意選択的に、本方法は、整形された構造内の試料領域が粒子ビーム装置を用いて観測および/または加工される追加工程S4により行われ得る。これは、インサイチューで(すなわち、粒子ビーム顕微鏡から別の装置内への試料の転送の必要なしに)起こり得る。一例として、整形された構造の領域は、粒子ビーム装置により含まれ得る検出器を用いて撮像され得る。ここで、粒子ビームと試料材料との間の相互作用の相互作用生成物が検出され、画像が生成される。ここで、検出器は、二次電子検出器として、後方散乱電子検出器として、EBSD(電子後方散乱回折)検出器として、陰極ルミネセンス検出器として、X線検出器として、または任意の他の好適な検出器として具現化され得る。さらに、例えば粒子ビームによる照射により(すなわち、材料を局所的にまたは面的に除去するか、または材料を蒸着することにより)、整形された構造をインサイチューで加工することが可能である。
【0042】
特に有利な実施形態では、湾曲縁の形状は、材料を蒸着することにより安定化される。この目的を達成するために、材料(例えば、Pt含有層)が、プロセスガスの導入により、かつ必要に応じて電子および/またはイオンビーム照射による活性化により湾曲縁へ付着される。結果として、湾曲縁をミリングする際に生じた溝は埋められ、湾曲縁に隣接する2つの領域は互いに接続される。
【0043】
図2は、露出構造25を含む例示的試料ブロック26の断面を示す。これは、一方の側のみで試料ブロックに当接するかまたは接続されるカンチレバーの形式の構造であると理解される。カンチレバー状構造が関心試料領域(すなわち、さらに詳細に検査されるべき試料領域)を含む場合に特に有利である。
【0044】
本例では、カンチレバーは立方体の形状を有する。これは、露出構造25が、この場合には6つの境界面を有し、そのうちの5つが露出される(すなわち、試料ブロック26との面的接触を有しない)ことを意味する。カンチレバーは、1つの境界面においてまたは1つの立方体縁に沿ってのみ試料ブロック26の材料へ接続される。
【0045】
露出構造は、2つの境界面または2つの縁において試料ブロックと依然として当接する橋の形式を最初に有するとも考えられる。橋の縦方向に主に横断的に延伸する分離線をイオンビームミリングまたはエッチングすることにより、橋状構造を2つのカンチレバーに分割することが可能であり、これにより、次に本発明による方法を行うことが可能である。切断角度は、露出構造の縦方向に対して正確に横断的(90°)に配置されないことも考えられるが、代わりに0~90°の異なる角度をとる。
【0046】
さらに、露出構造が電子部品の導体路として具現化されることが可能である。一例として、露出構造は、その後、キャパシタまたはマイクロスイッチとしての役割を果たし得るような方法で具現化され得る。
【0047】
しかし、本方法は、立方体の露出構造に限定されない。原理的に、例えば円筒状もしくは円錐状構造、または一端においてのみ試料ブロックへ接続される任意の他の形状などの他の構造を整形することも考えられる。これは、本発明による方法により三次元物体を生成する際に特に有用である。組み立てられた形状が上記方法を使用して生成されることも考えられる。一例として、露出構造は、関心点を含む円筒状試料領域が接続される立方体として具現化され得る。
【0048】
図2に示す試料ブロック26は、粒子ビーム装置の試料室内に位置する試料容器(不図示)により保持される。粒子ビーム装置は、光軸22を有する粒子光学コラム21を含む。動作中、集束粒子ビーム23として試料ブロック26上へ加速されて導かれる荷電粒子が粒子光学コラム21内に生成される。この過程で、荷電粒子は、ほぼ光軸22に沿って移動する。粒子光学コラム21は、光軸22にほぼ垂直に延伸する観測および加工面24を有する。これは、粒子ビームが試料表面にほぼ90°の角度γで入射するという点で有利である。しかし、粒子が90°から逸脱するように試料に入射する角度γおよび0°~90°(例えば、好適には80°または70°)で試料に入射する角度γも考えられる。有利には、露出構造25の第1の境界面は観測および加工面24内にあるため、露出構造25の加工はより単純にされる。
【0049】
本発明による方法では、集束粒子ビーム23は、ここで、湾曲縁28が生成されるような方法で露出構造25の第1の境界面上へ導かれる。一例として、これは、試料材料が加工線280に沿って除去されるように粒子ビーム23が加工線280に沿った第1の境界面の上に誘導されるために実現される。結果として、湾曲縁28が生じ、露出構造25は入射粒子ビーム23の方向に整形される。これは、整形後、構造25の第1の境界面が、観測および加工面24内にもはや存在しないが、代わりに、観測および加工面24に対して零から逸脱する角度βをとることを意味する。
【0050】
露出構造は、粒子ビームが湾曲縁に作用する限りにおいてのみ整形される。粒子ビームを非活性化または偏向(いわゆるブランキング)することにより、整形はまた停止される。これは、整形の所望の広がりが実現されると整形過程を停止することを可能にする。したがって、ユーザは、露出構造25の整形の所望の広がりを予め判断し得、粒子ビームの作用を停止させ、かつ必要に応じて粒子ビームが再び作用し得るようにすることにより、ターゲット方式で露出構造を整形し得る。
【0051】
すなわち、ユーザは、整形された露出構造27が観測および加工面24に対してとる角度βを判断し得る。最大でも、角度βは、整形に使用される粒子ビーム23が試料表面に入射する角度γの値をとり得る。これは、露出構造が最大限で入射粒子ビームまで整形され得ることを意味する。しかし、全体として達成可能な角度βは、試料ブロックを移動させ、および/または試料ブロックを傾斜させることにより(すなわち、試料容器を移動させることにより)、かつ整形を繰り返すことにより増加され得る。
【0052】
原理的に、関心試料領域は、試料ブロックの第1の境界面と平行な面(面部)または第1の境界面に垂直に延伸する面(断面部)内に延伸し得る。
【0053】
図2aおよび
図2bの例は、面部として切り出された試料を示す。別の検査または別の加工のために、粒子ビームはほぼ垂直な方法で、整形された構造27の表面に入射すべきである。すなわち、粒子ビーム29は、
図2bに示すように図の面内に延伸すべきである。この目的を達成するために、試料ブロックを有する試料容器は適切に移動および/または回転され得る。
【0054】
図3a~3cは、どのように断面試料が作製されるかを示す。これは、STEMまたはTEMにより検査されるべき試料にとって特に興味がある。
【0055】
断面試料は、試料ブロック31の内部に埋め込まれた関心試料細部32を試料ブロック31の容積から持ち上げて出すことを可能にし、前記試料細部を粒子ビーム装置における別の検査へアクセス可能にする。ここで、試料細部32は試料ブロック31の内部で最初に識別され、試料細部32を含む露出構造33が作製される。集束粒子ビーム34は、粒子ビーム34の焦点面内に存在する境界面36内に湾曲縁35を生成するために使用され、試料細部32は、整形中に前記湾曲縁を中心に入射粒子ビーム34の方向に回転する。
【0056】
この過程では、露出構造33は、試料ブロックの境界面36の面を越して移動され、その結果、試料細部32は、同様に境界面36の面を越して移動され、ここで、前記試料細部を粒子ビーム装置により加工および/または検査することが可能である。
図3の例では、関心試料細部32の面的広がりは、主として第1の境界面36に垂直(すなわち、試料表面に垂直)に延伸する面内である。これは、関心領域32が、多くの場合にTEMラメラでそうであるように試料ブロックの断面も表すことを意味する。
【0057】
特に有利な実施形態では、露出構造33は、TEMラメラとして作製されるべきであり、したがって非常に平坦な直方体として具現化される試料領域を含む。後続の検査または加工中に粒子ビームが試料細部32の表面に垂直に入射する(すなわち、粒子ビームが同図の面に垂直に延伸する)場合に有利である。この目的を達成するために、試料ブロックを有する試料容器は適切に移動および/または回転され得る。
【0058】
図3d、3eは、開示される方法がまた、X線または電子トモグラフィのためのトモグラフィ試料を作製するために使用され得ることを明らかにする。
【0059】
この場合の参照符号31、33、35、36は、
図3a~3cで説明したものと同じ意味を有する。顕微鏡トモグラフィ試料を作製するために、関心試料細部は、カンチレバー状露出構造33へ接続される筒状構造37(
図3d)により含まれるような方法で作製される。代替的に、関心試料細部はまた、円錐状構造38(
図3e)により含まれ得る。いずれにせよ、露出構造33は、トモグラフィにより検査される領域が試料ブロック31の内部から跳ね出され、結果的に試料ブロック31の外側からアクセス可能となるように上記方法により整形される。この結果、トモグラフィ試料は、インサイチューでさらに加工および/または検査され得るか、または別の装置内へ転送され得るような方法で作製される。本発明による方法を使用してトモグラフィ試料を作製する場合に有利なことは、保持ツールなしにまたは別の装置内への転送の必要なしに、別の検査の目的のための様々な側面から侵入され得る円筒状または円錐状構造(「柱」とも呼ばれる)が得られることである。
【0060】
本発明による方法を使用して調整可能キャパシタを生成することも考えられる。この目的を達成するために、平行に延伸し導体路として具現化される2つのカンチレバーを含む試料ブロックが提供される。前記カンチレバーは、それぞれキャパシタプレートとしての役割を果たすことができるプレート状突起を有する。キャパシタの容量は、2つのキャパシタプレートの互いからの距離とキャパシタプレートの実効領域のサイズとにより決定される。実効領域は、キャパシタ効果を得るために、関連する反対方向に充電されたキャパシタプレート(対向プレート)と相互作用するキャパシタプレート領域であると理解される。キャパシタプレートを有する少なくとも1つのカンチレバーを整形することにより、キャパシタプレートの位置が対向プレートに対して修正されるため、実効領域のサイズが修正される。このようにして、キャパシタの容量は修正可能であるため、キャパシタ効果は調整可能である。代替的に、キャパシタはまた、第1のキャパシタプレートがカンチレバーとして具現化され、一方で第2のキャパシタプレートが試料ブロックの壁面により形成されるような実施形態を有し得る。
【0061】
別の実施形態では、キャパシタは円筒キャパシタ(すなわち、2つの導電性同心円筒状ジャケットの形式)として具現化される。ここで、内側の円筒状ジャケットは露出導体路として具現化され、カンチレバーへ接続される。カンチレバー内に湾曲縁を生成することにより、内側の円筒状ジャケットの位置を修正することが可能であるため、キャパシタの長さ(したがって、その容量)は修正可能である。結果的に、この円筒キャパシタも調整可能である。
【0062】
電気的マイクロスイッチが本方法の別の実施形態により生成および操作され得る。ここで、切り替えは、スイッチを介した電流流れが遮断されるように構造を整形するために、湾曲縁が本発明によるカンチレバー状構造内に導入されることより引き起こされる。
【0063】
湾曲縁28、35がカンチレバーの長手軸に沿って生成される場所に依存して、露出構造25、33全体または露出構造25、33の一部のみが整形される。有利には、湾曲縁28、35は、露出構造25、33を全体として整形するためにカンチレバーの支持体近傍まで延伸すべきである。さらに、湾曲縁28、35が露出構造25、33の長手軸に多少垂直に延伸する場合に有利であることが分かった。好適には、湾曲縁の位置およびプロファイルは、露出構造25、33が試料ブロック26、31と整形中に接触しないような方法で選択される。
【0064】
図4は、本発明による方法の別の特殊構成を例示的方法で示す。この意図は、その表面上に位置してさらに詳細に検査されるべき粒子48を有する試料ブロック41を作製することである。一例として、試料ブロック41はケイ素を含む。
【0065】
例えば、白金を含む被覆42がイオンビーム蒸着により試料ブロック41上に塗布される(
図4a)。この被覆42は、その下に位置するケイ素含有試料材料の層を覆い、覆われた試料領域の保護材としての役割を果たす。試料表面上に位置する粒子48が被覆材料内に埋め込まれる。しかし、被覆を生成することは、白金含有層を蒸着することに限定されない。むしろ、被覆は他の金属(例えば、タングステン)を蒸着することにより、または炭素もしくは他の好適な物質を蒸着することにより行われ得る。イオンビーム蒸着の代案として、ガス支援電子ビーム蒸着の使用もなされ得る。
【0066】
被覆42は、ここで、エッチング時にアンダーカットされるために自由となるように作製される(
図4b)。これは、二フッ化キセノン(XeF
2)を使用するイオンビームエッチングにより引き起こされ得る。XeF
2は、イオンビームの影響なしでも試料材料をエッチングすることができるため、白金蒸着物下のケイ素が除去される。すなわち、被覆42は、自立したままであり、除去された領域43の上に橋状構造を形成する。
【0067】
次に、橋状被覆42は、イオンビームを用いて切断される(
図4c)。この例に示すように、これは、多かれ少なかれ中央で行われ得るため、ほぼ同じサイズの2つのカンチレバーが切断用切れ目45を経由した露出構造44として生じる。
【0068】
次に、被覆42は、少量の材料が除去されるように粒子ビームにより加工線に沿って加工され、構造44が整形される湾曲縁47が生じる(
図4d)。したがって、加工線(したがって、湾曲縁47)の位置は、露出領域内で必要に応じて選択され得る。一例として、30kVの加速電圧および50pAのビーム電流を有するガリウムイオンビームが湾曲縁47を生成するために使用され得る。
【0069】
整形の結果として、露出された被覆42が入射イオンビームの方向に折り畳まれるため、その中に含まれる粒子48を有する蒸着層42は、湾曲縁47を中心として回転し、前記蒸着層は、加工面からかつしたがって試料表面の面から持ち上げられる。
【0070】
ここでもまた、整形は徐々に行われ、整形は、イオンビームを非活性化または脱旋回(いわゆる「ブランキング」)することにより遮断され得る。整形は後に継続され得る。結果として、整形された構造が粒子ビーム装置の観察面に対してとる角度がユーザにより判断され得る。最大角度は、粒子ビーム装置の光軸のプロファイルにより制限される。すなわち、蒸着物は、最大で構造が入射イオンビームの軌道に達する程度まで整形され得る。
【0071】
説明した整形は第2のカンチレバーにおいて反復されるため、
図4dに示す試料形状が生じる。
【0072】
図5は、本発明による方法を使用して作製された試料ブロック51の電子顕微鏡画像を示す。試料ブロック51はケイ素を含む。試料ブロック51は、2つの露出された金含有構造52を生成するためにXeF
2を使用してエッチングされた。露出構造52は、湾曲縁53を生成することにより整形された。
【0073】
図6は、極微小三次元湾曲物体の製造を概略的に示す。最初に、例えばケイ素を含み得る試料ブロック61が提供され、その上に初期構造62が蒸着される。一例として、これは、ガス誘起イオンビーム蒸着(例えば、白金含有層の)またはガス支援電子ビーム蒸着により引き起こされ得る。
【0074】
次に、初期構造62は、初期構造62を露出するために、例えばXeF2によるエッチング時にアンダーカットされる。XeF2は、放射を活性化する影響すらなしにケイ素をエッチングすることができるため、材料は、粒子ビームにより直接照射され得ない位置でも除去され得る。本例では、4つの露出カンチレバー構造63がこのようにして生じる。湾曲縁64は、粒子ビームの作用により露出構造63のそれぞれにおいて生成されるため、構造63は整形される。したがって、複数の湾曲縁64を有する三次元物体65が生じる。
【0075】
図7a、7bは、本発明による方法の別の実施形態を概略的に示す。試料ブロック71内には、第1の湾曲縁73を有する露出構造72が存在する。構造72は、本発明による方法を使用して第1の湾曲縁73に沿って整形された。ここで、整形された構造は、あらためて整形され得る。第2の湾曲縁74が粒子ビームの作用により生成されるため、整形された構造72は、ここで、2つの湾曲縁73、74を有する。
【0076】
図8a、8bは、本方法の別の特に有利な構成を示す。ここで、顕微鏡試料が本発明による方法によりインサイチューで作製され、整形された露出構造はSTEM検出器を使用して検査される。STEM(走査型透過電子顕微鏡法)検出器は、少なくともいくつかの点で電子的にトランスペアレントである試料を通過した電子を検出し、通常、走査型電子顕微鏡またはSEM-FIB組み合せ装置へ取り付けられる。
【0077】
STEM検出器88を含む2ビーム装置を使用して、本方法のこの実施形態が行われる場合に特に有利である。このような2ビーム装置は、電子ビームコラム81とイオンビームコラム83とを含む。両方のコラム81、83は、それぞれ光軸82、84を有し、前記軸は、コラムが互いに対して傾斜されて配置されるため、互いに対して角度αをとる。一例として、角度αの絶対値は54°であり得る。しかし、角度αの大きさが0°~90°または10°~90°の範囲内の値をとることも考えられる。角度αが40°~80°の範囲、45°~70°の範囲、または50°~60°(例えば、52°、55°)の範囲内の値をとる場合に特に有利であり得る。
【0078】
露出構造を有する試料ブロック85が、試料台860に配置された試料容器86上に収容される。試料容器86は、移動可能かつ回転可能な(傾斜可能な)実施形態を有する。試料容器86の回転軸は、電子ビームコラムの光軸82とイオンビームコラムの光軸84とに架かる面に垂直に延伸する。換言すると、試料容器86の回転軸は、
図8の例における図の面に垂直に延伸する。
【0079】
通常、回転軸は試料容器86の傾斜軸とも呼ばれる。この傾斜軸を中心とする回転により、試料容器86は、光軸82、84に対して様々な角度をとり得る。さらに、試料容器86が、試料台860に対して回転する方法で配置され、結果的に試料台860の基部に対して様々な角度をとることができる場合に有利であり得る。
【0080】
最初に、試料容器は、露出構造の第1の境界面89がイオンビームコラム83の光軸84にほぼ垂直に延伸するような方法で回転される。これは、第1の境界面89がイオンビームコラム83の焦点面内に配置されることを意味する。この配置は、試料ブロック85がイオンビームにより加工され、同時に、電子ビームと、電子と試料材料との間の相互作用の生成物を検出するための検出器とを用いて観測され得るという点で有利である。
【0081】
STEM検出器を使用して観測を行う際、試料がラメラのような形状を有する場合に有利である。ラメラは、その長さおよび幅広がりが通常わずか数マイクロメートル(μm)である平坦な直方体を意味するものと理解される。直方体の厚さ(ラメラ厚さ)は、ラメラが電子に対して透過性であるように、したがって厚さが通常100ナノメートル(nm)未満であるように選択されるべきである。ラメラは、2辺において(すなわち、一辺側および試料ブロックに対向する辺において)自由にされるような方法で作製される。すなわち、ラメラ(露出構造を表す)は、第2の端側においてのみ試料ブロックへ依然として接続される。
【0082】
次に、湾曲縁が、イオンビームを使用して露出構造内に生成される。有利には、湾曲縁は、試料材料が線に沿って除去されるために試料ブロックへ依然として接続される第2の端面内にまたは第2の端面に生成される。これは、露出構造が整形され、イオンビームに向かう方向にイオンビームの焦点面から屈折されることに至る。ラメラの関心領域が依然として電子的にトランスペアレントでないか、または十分に電子的にトランスペアレントでない場合、この領域は、ここで、領域が十分に薄くなるまでイオンビームにより薄層化され得る。
【0083】
次に、試料ブロック85を有する試料容器86は、整形された露出構造87が電子ビームコラム81の光軸82に垂直に配置されるように回転され、(必要に応じて)その空間位置という意味で修正される。
【0084】
整形された構造87内の関心試料領域は、ここで、電子ビームコラム81からの電子により侵入される。電子の伝搬方向に対し、STEM検出器88は試料の下流に配置されるため、試料が侵入されたときに生じた相互作用生成物は、STEM検出器88により検出され得る。有利には、STEM検出器88は、使用のために試料室内に挿入され得、使用後に再びそれから待避され得るような方法で構成される。
【0085】
有利には、本発明による方法の様々な実施形態は、
図9に示すガス注入系を有する2ビーム装置(FIB-SEM組み合せ装置)により行われ得る。2ビーム装置91は、2つの粒子ビームコラム(すなわち、電子ビームを生成するための電子ビームコラム93およびイオンビームを生成するためのイオンビームコラム108)を含む。両方の粒子ビームは、試料103上の加工位置(有利には、両方の粒子ビームの一致点に位置する)へ向けられる。試料103は、試料容器104内に収容され、2ビーム装置の試料室92(真空状態が優勢である)内に位置する。
【0086】
有利には、試料容器104は5軸試料台として具現化される。これは、試料容器104がx、yおよびz方向に(すなわち、3つの互いに垂直な空間的方向に)移動され得、傾斜軸と回転軸とを中心に回転され得ることを意味する。光軸96、107に架かる面に垂直(すなわち、図の面に垂直)に延伸する傾斜軸のまわりの回転は、荷電粒子により照射されるように意図された試料の表面が、光軸96、107に対して様々な調整可能な角度をとることを許容することを可能にする。
【0087】
動作中、一次電子が電子源94内で生成され、電子ビームコラム93の光軸96に沿って加速され、レンズ素子系95、97により集束され、少なくとも1つの開口紋り98により微調整される。さらに、電子ビームコラム93は、一次電子ビームがラスタ型方式で試料103全体にわたって誘導され得る偏向系99を含む。さらに、FIB-SEM組み合せ装置91は、粒子ビームと試料103との間の相互作用の相互作用生成物を検出するための少なくとも1つの検出器100を含む。
【0088】
さらに、2ビーム装置91は、イオン源109、偏向系106、および集束レンズ素子105を有するイオンビームコラム108を含む。イオン源109内で生成されたイオンは、イオンビームコラム108の光軸107に沿って加速され、試料103に集束して入射して試料103から材料を除去し、および/または試料を撮像するために使用され得るように集束される。
【0089】
粒子ビーム装置がガス注入系(GIS)102をさらに有する場合に有利である。後者は、通常、加工位置近傍で終わる線を介して制御された方法で試料103へ供給され得るプロセスガスのための貯蔵槽を含む。プロセスガスは前駆体ガスとして具現化され得る。前駆体ガスは、イオンビームまたは電子ビームにより最初に活性化され、したがって試料材料を除去するか、または材料を試料に蒸着することができる反応性形式のものに変換される。一例として、試料材料がエッチングされるように活性化により反応性二フッ化キセノンに変換される二フッ化キセノン(XeF2)の前駆体ガスが供給され得る。試料の加工進捗は、電子ビームコラム93および接続された検出器100を用いて同時にまたは連続的に観測され得る。
【0090】
さらに、粒子ビーム装置91は評価および制御ユニット101を含む。評価および制御ユニットの101は、コンピュータプログラム製品内に含まれる一連の制御コマンドを行い得る。制御コマンドを行うことにより、粒子ビーム装置は、本発明による方法を行うように指示される。
【0091】
図10a~dに示される特別な実施形態では、本方法は、作製された試料のマニュピレータ針1001または試料キャリア上への転送なしに済ますために使用され得る。この目的を達成するために、粒子ビーム装置は、マニュピレータ針1001または試料を収容するための同様のツールを有するマイクロマニピュレータを有利に含む移動可能転送装置を含む。露出された(すなわち、カンチレバー状)試料1003は、粒子ビーム1002の作用により上述したように整形される(
図10a)。この過程では、露出構造およびそれと共に関心試料領域1005は、露出構造がマニュピレータ針1001と接触するまでマニュピレータ針1001の方向に移動する。これは、ユーザが、いつ試料材料がマニュピレータ針1001に実際に当接するか(特にいつ整形運動がマイクロマニピュレータ針1001(
図10b)の抵抗の理由で停止されるか)を認識するという点で有利である。この過程で試料材料にかけられる力は非常に小さいため、いかなる損傷もない。対照的に、試料は、多くの場合、従来方法ではマニュピレータ針の運動によって損傷される。その後、整形された構造はマニュピレータ針1001へ固定される(
図10c)。一例として、これは、イオンまたは電子ビームによる白金含有層のガス支援蒸着により行われ得る(
図10c)。この目的を達成するために、前駆物質が、例えば中空針1006を用いてマニュピレータ針1001および試料材料1003へ塗布され、粒子ビーム1002を用いて蒸着される材料へ変換された。次に、露出構造は、関心試料領域1005が、次にマニュピレータ針1001を移動させることにより任意の位置内に移動され得るように試料ブロック1004から切り離される(
図10d)。
【0092】
一例として、このようにして転送される試料は、TEMラメラ、顕微鏡トモグラフィ試料または電子部品の導体路であり得る。有利には、採用された粒子ビーム装置は、集束イオンビームを生成するためのイオンビームコラムを含む。粒子ビーム装置が、集束イオンビームを生成するためのイオンコラムと、集束電子ビームを生成するための電子コラムとを含むマルチビーム装置として具現化される場合に特に有利である。構造がガス支援エッチングにより加工され得るか、または被覆が蒸着され得るように、粒子ビーム装置は、エッチングガスを導入するためのガス注入系を含むことも考えられる。
【0093】
関心試料領域が本発明による方法を用いて試料キャリア(例えば、ガラスチップまたはマイクロマニピュレータ針)上へ転送されることも考えられる。この目的を達成するために、試料キャリアは、マイクロマニピュレータにより試料室内に導入され、自由であるように作製される構造(関心試料領域を含む)の上に保持される。本発明に従って露出構造を整形することにより、構造は、試料キャリアに当接するまで試料キャリアの方向に移動され、例えば白金含有層のガス支援蒸着により試料キャリアへ固定される。次に、試料キャリアは、関心試料領域と共に別の位置内に持ち込まれ得るか、または別の装置内へ転送され得る。試料キャリアが孔を有し、かつ関心領域が孔内に配置されるような方法で露出構造が整形される場合に特に有利であり得る。
【0094】
試料を転送するための説明された方法は、いつ試料がマイクロマニピュレータ針または試料キャリアに当接するか(特にいつ針または試料キャリアの抵抗が整形運動を停止するか)をユーザがある確実性をもって認識し得るという点で有利である。さらに、試料を損傷するリスクが最小化されるように小さい力のみが試料に作用するため、この方法は非常に敏感な試料にも好適である。
【符号の説明】
【0095】
S1 試料ブロックを提供する工程
S2 湾曲縁を生成する工程
S3 試料容器を移動させる工程
S4 整形された構造を観測および/または加工する工程
21 粒子光学コラム
22 光軸
23 集束粒子ビーム
24 観測および加工面
25 露出構造
26 試料ブロック
27 整形された露出構造
28 湾曲縁
29 別の検査のための粒子ビーム
280 加工線
31 試料ブロック
32 関心試料細部
33 露出構造
34 粒子ビーム
35 湾曲縁
36 境界面(断面図)
37 筒状構造
38 円錐状構造
41 試料ブロック
42 被覆
43 除去された領域
44 露出構造
45 切断用切れ目
46 整形された露出構造
47 湾曲縁
48 粒子
51 試料ブロック
52 露出構造
53 湾曲縁
61 試料ブロック
62 初期構造
63 露出構造
64 湾曲縁
65 三次元物体
71 試料ブロック
72 整形された露出構造
73 第1の湾曲縁
74 第2の湾曲縁
81 電子ビームコラム
82 電子ビームコラムの光軸
83 イオンビームコラム
84 イオンビームコラムの光軸
85 試料ブロック
86 試料容器
87 整形された露出構造
88 STEM検出器
89 第1の境界面
860 試料台
91 粒子ビーム装置
92 試料室
93 電子ビームコラム
94 電子源
95 第1の集束レンズ素子系
96 電子ビームコラムの光軸
97 第2の集束レンズ素子系
98 開口紋り
99 偏向系
100 検出器
101 制御および偏向ユニット
102 ガス注入系
103 試料ブロック
104 試料容器
105 集束レンズ素子
106 偏向系
107 イオンビームコラムの光軸
108 イオンビームコラム
109 イオン源
1001 マイクロマニピュレータ針
1002 粒子ビーム
1003 カンチレバー状構造
1004 試料ブロック
1005 関心試料領域(ROI)
1006 中空針