IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大王製紙株式会社の特許一覧

特許7079563セルロースナノファイバー成形体の製造方法
<>
  • 特許-セルロースナノファイバー成形体の製造方法 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-25
(45)【発行日】2022-06-02
(54)【発明の名称】セルロースナノファイバー成形体の製造方法
(51)【国際特許分類】
   D21H 11/16 20060101AFI20220526BHJP
   D21H 15/02 20060101ALI20220526BHJP
【FI】
D21H11/16
D21H15/02
【請求項の数】 3
(21)【出願番号】P 2016197243
(22)【出願日】2016-10-05
(65)【公開番号】P2018059237
(43)【公開日】2018-04-12
【審査請求日】2019-09-30
【審判番号】
【審判請求日】2021-03-04
(73)【特許権者】
【識別番号】390029148
【氏名又は名称】大王製紙株式会社
(74)【代理人】
【識別番号】100120329
【弁理士】
【氏名又は名称】天野 一規
(72)【発明者】
【氏名】大川 淳也
(72)【発明者】
【氏名】久保山 太一
【合議体】
【審判長】井上 茂夫
【審判官】西村 泰英
【審判官】柳本 幸雄
(56)【参考文献】
【文献】国際公開第2015/012626(WO,A1)
【文献】国際公開第2017/064559(WO,A1)
【文献】特表2016-532015(JP,A)
【文献】特表2018-534393(JP,A)
【文献】特開2014-146695(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
D21B 1/00-D21J 7/00
C08B 1/00-37/18
C08J 5/18
(57)【特許請求の範囲】
【請求項1】
メッシュ状部材を介してセルロースナノファイバーを含むスラリーを脱水する工程
を備え、
上記スラリーが、上記セルロースナノファイバーより繊維長が長い又は繊維径が太くかつ上記セルロースナノファイバーと水素結合可能な繊維を含み、
上記セルロースナノファイバーが水分散状態でレーザー回折法により測定される擬似粒度分布曲線において単一のピークを有し、上記単一のピークとなるセルロースナノファイバーの粒径が5μm以上50μm以下であり、
上記繊維が広葉樹クラフトパルプ及び/又は針葉樹クラフトパルプであり、
上記スラリーの固形分に占める上記セルロースナノファイバーの含有量が70質量%以上であり、
上記スラリーの固形分に占める上記繊維の含有量が3質量%以上30質量%以下であるセルロースナノファイバー成形体の製造方法。
【請求項2】
上記パルプが未叩解パルプである請求項1に記載のセルロースナノファイバー成形体の製造方法。
【請求項3】
上記脱水工程において、上記スラリーに対する加圧力を段階的又は連続的に高める請求項1又は請求項2に記載のセルロースナノファイバー成形体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セルロースナノファイバー成形体の製造方法に関する。
【背景技術】
【0002】
近年、物質をナノメートルレベルまで微細化し、物質が持つ従来の性状とは異なる新たな物性を得ることを目的としたナノテクノロジーが注目されている。化学処理、粉砕処理等によりセルロース系原料であるパルプから製造されるセルロースナノファイバー(以下、「CNF」と略記することもある)は、強度、弾性、熱安定性等に優れている。このCNFの成形体は、バイオマス由来の高強度材料として、各種用途への活用が期待されている。
【0003】
CNFは、通常、水分散状態のパルプ等を微細化することにより得られる。従って、CNFのスラリー(水分散液)からCNFの成形体を得ようとする場合、スラリーを脱水し、成形する必要がある。このようにCNFのスラリーを脱水しCNF成形体を得る方法としては、型枠に充填されたCNF含有スラリーに荷重を加えると共に加熱及び/又は減圧する方法が提案されている(特開2016-94683号公報参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016-94683号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記特許文献1の方法はCNFスラリーを加熱及び/又は減圧することにより濃縮させており、多量の水分を除去する方法として初期段階から加熱及び/又は減圧することは経済性がよくない。そのため、機械的な加圧によって脱水を行うことが好ましいが、単に機械的に加圧して脱水すると、水と共にCNFが流出してしまう。なお、脱水の際にCNFの流出が生じると、設計どおりの密度、厚さ等を有する成形体を得ることができない。また、CNFが流出する場合、生産コストの上昇にも繋がる。
【0006】
本発明は、以上のような事情に基づいてなされたものであり、その目的は、セルロースナノファイバーの流出を抑制しつつ、効率的な脱水を行うことができるセルロースナノファイバー成形体の製造方法を提供することである。
【課題を解決するための手段】
【0007】
上記課題を解決するためになされた発明は、メッシュ状部材を介してセルロースナノファイバーを含むスラリーを脱水する工程を備え、上記スラリーが、上記セルロースナノファイバーより繊維長が長い又は繊維径が太くかつ上記セルロースナノファイバーと水素結合可能な繊維を含むセルロースナノファイバー成形体の製造方法である。
【0008】
当該製造方法においては、上記スラリー中に、CNFより繊維長が長い又は繊維径が太くかつCNFと水素結合可能な繊維を添加しておくことで、この繊維表面とCNFとが相互作用し、かつ、サイズの大きいこの繊維がメッシュ状部材を通過し難いため、CNFの流出を抑制することができる。このため、当該製造方法においては、比較的高い圧力で脱水を行ってもCNFの流出が抑制され、効率的な脱水を行うことができる。
【0009】
上記繊維がパルプであることが好ましい。パルプは、CNFと同様にセルロースを主成分とするものであり、CNFと高い親和性を有する。従って、上記繊維としてパルプを用いることで、CNFの流出をより効果的に抑えることができる。また、パルプを添加することでパルプが芯材となり、強度に優れる成形体を得ることができる場合がある。
【0010】
上記パルプが未叩解パルプであることが好ましい。パルプとして未叩解パルプを用いることで、脱水効率をさらに高めることができる。
【0011】
上記スラリーの固形分に占めるセルロースナノファイバーの含有量が50質量%以上であることが好ましい。当該製造方法によれば、このようにCNFの含有量が高く、脱水の際に原料の流出が生じやすい場合であっても、原料であるCNFの流出が抑えられ、所望するサイズ等を有するセルロースナノファイバー成形体を得ることができる。また、CNFは、1本1本が高強度、高弾性であり、かつナノサイズであることから、このようなCNFの含有量を高くすることで単位体積あたりの水素結合点が多くなり、強度等に優れる成形体を得ることができる。
【0012】
上記スラリーの固形分に占める上記繊維の含有量が0.1質量%以上70質量%以下であることが好ましい。パルプの含有量を上記範囲とすることで、CNFの流出抑制能をより高め、脱水効率をより高めることができる。
【0013】
上記加圧工程において、上記スラリーを脱水させながら、加圧力を段階的又は連続的に高めることが好ましい。CNFのスラリーはチキソトロピー性を有し、加圧に伴い流動性が高まるため、強い圧力をかけるとスラリーの流動性が高まり、CNFの流出が生じやすくなる傾向にある。そこで、このようにスラリーを脱水させながら次第に加圧力を高めることで、流動性を抑えたまま脱水をすることができるため、CNFの流出をより抑制することができる。
【0014】
ここで、「セルロースナノファイバー」とは、パルプ等の植物原料を解繊して得られる微細なセルロース繊維であって、繊維幅がナノサイズ(1nm以上1000nm以下)のものをいう。
【発明の効果】
【0015】
本発明によれば、セルロースナノファイバーの流出を抑制しつつ、効率的な脱水を行うことができるセルロースナノファイバー成形体の製造方法を提供することができる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施形態に係るセルロースナノファイバーの製造方法に用いる装置等を示す説明図である。
【発明を実施するための形態】
【0017】
以下、適宜図面を参照にしつつ、本発明の一実施形態に係るCNF成形体の製造方法について詳説する。
【0018】
当該CNF成形体の製造方法は、メッシュ状部材を介してCNFを含むスラリーを脱水する工程を備える。図1は、上記脱水工程の一例の状態を示す模式的な説明図である。まず、当該製造方法で用いられる装置、原料等について、図1を参照しつつ説明する。
【0019】
(装置、原料等)
図1の型枠11は、直方体状の内面形状を有する。また、型枠11は、底の無い枠体である。型枠11の材質は特に限定されるものではなく、金属、樹脂、木材等を挙げることができるが、高い圧力に対する耐久性等の観点からは金属が好ましい。
【0020】
型枠11は、例えば上面が平面である水平な台(図示しない)の上に載置されている。なお、型枠11が置かれた台は、脱水工程の際の加圧に耐えられる強度のものであれば特に限定されず、一般的な金属製、木製、樹脂製等のものを用いることができる。また、この台の少なくとも上面側は、効率的に排水がされるように、網状、メッシュ状、多孔質状などであってよい。
【0021】
型枠11の底(すなわち、型枠11内における図示しない台の上面)には、紙13が敷かれている。紙13は、和紙、洋紙、板紙等特に限定されるものではなく、公知のものを用いることができる。また、紙13は、1枚であってもよく、2枚以上を積層してもよい。
【0022】
紙13の厚さの下限としては、例えば0.05mmであり、0.1mmが好ましい。紙13の厚さを上記下限以上とすることで、より十分なクッション性が確保でき、脱水工程における急激な圧力上昇を緩和することによるCNFの流出抑制機能を高めることができる。一方、この厚さの上限としては、例えば2mmである。なお、この紙13の厚さは、複数枚の紙を積層して用いる場合は、積層状態の複数枚の紙全体の厚さをいう。
【0023】
また、この紙13が敷かれていることで、後述する充填されたスラリー15中の水分がメッシュ状シート14を通して紙13へ移行するため、脱水効率を高めることもできる。なお、紙13の厚さが上記上限以上である場合、紙13に移行した水分が圧力解放後に成形体に戻る量が多くなるため、脱水の効率性が低下することとなる。なお、クッション性及び脱水性のいずれの観点からも、紙13は低密度であることが好ましい。また、脱水性の観点からは、紙13はサイズ性が低いことが好ましい。このような観点からは、紙13としては、ろ紙を好適に用いることができる。
【0024】
紙13の上面には、メッシュ状部材の一例であるメッシュ状シート14が積層されている。このメッシュ状シート14の材質としては特に限定されず、金属、樹脂、その他繊維状材料などであってよい。すなわち、メッシュ状シート14は、金網、プラスチックワイヤー、ろ布(織布、不織布等)などであってよい。メッシュ状シート14のメッシュの形状は特に限定されず、平織、綾織、畳織、綾畳織等のいずれであってもよい。
【0025】
メッシュ状シート14の目数の下限としては、100メッシュが好ましく、200メッシュがより好ましい。上記下限以上とすることで、加圧以前に充填した時点でCNFが流出することを抑制することができる。また、上記下限以上でも目数が大きいと段階的に加圧する速度が遅くなるので、効率的には200メッシュ以上がよりよい。一方、この目数の上限としては、500メッシュが好ましく、400メッシュがより好ましい。上記上限以下とすることで、十分な目開きが確保でき、脱水の効率性を高めることができる。但し、上限以下でも脱水が遅くなったり、段階的な加圧制御がし難くなるため、400メッシュ以下がより好ましい。
【0026】
メッシュ状シート14の線径の下限としては、25μmが好ましく、30μmがより好ましい。一方、この線径の上限としては、100μmが好ましく、50μmがより好ましい。メッシュ状シート14の線径を上記下限以上とすることで、適度な小ささの目開き寸法を確保でき、脱水工程におけるCNFの流出をより抑制することができる。一方、メッシュ状シート14の線径を上記上限以下とすることで、目開き寸法が小さくなりすぎることを抑え、より効率的な脱水を行うことができる。
【0027】
このように、底に紙13及びメッシュ状シート14が順に積層された型枠11内に、CNFのスラリー15が充填されている。スラリー15は、CNF、このCNFより繊維長が長い又は繊維径が太くかつ上記CNFと水素結合可能な繊維、及び分散媒としての水を含み、さらにその他の成分が含有されていてもよい。
【0028】
CNFは、通常、植物原料(繊維原料)を公知の方法により解繊することにより得ることができる。このCNFの原料は、植物原料であれば特に限定されないが、パルプが好ましい。
【0029】
CNFの原料となるパルプとしては、例えば
広葉樹晒クラフトパルプ(LBKP)、広葉樹未晒クラフトパルプ(LUKP)等の広葉樹クラフトパルプ(LKP)、針葉樹晒クラフトパルプ(NBKP)、針葉樹未晒クラフトパルプ(NUKP)等の針葉樹クラフトパルプ(NKP)等の化学パルプ;
ストーングランドパルプ(SGP)、加圧ストーングランドパルプ(PGW)、リファイナーグランドパルプ(RGP)、ケミグランドパルプ(CGP)、サーモグランドパルプ(TGP)、グランドパルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、晒サーモメカニカルパルプ(BTMP)等の機械パルプ;
茶古紙、クラフト封筒古紙、雑誌古紙、新聞古紙、チラシ古紙、オフィス古紙、段ボール古紙、上白古紙、ケント古紙、模造古紙、地券古紙、更紙古紙等から製造される古紙パルプ;
古紙パルプを脱墨処理した脱墨パルプ(DIP)などが挙げられる。これらは、本発明の効果を損なわない限り、単独で用いてもよく、複数種を組み合わせて用いてもよい。
【0030】
CNFの原料となるパルプとしては、これらの中で、高強度成形体を得ることができるなどの点から、化学パルプが好ましく、LKP及びNKPがより好ましい。
【0031】
CNFの製造方法としては、本発明の効果を損なわない限り特に限定されず、公知の方法を用いることができる。例えば水分散状態のパルプを機械的処理による解繊に付してよく、酵素処理、酸処理、TEMPO触媒酸化、リン酸エステル化等の化学的処理を施した後に解繊に付してもよい。
【0032】
機械的処理による解繊方法としては、例えばパルプを回転する砥石間で磨砕するグラインダー法、高圧ホモジナイザーを用いた対向衝突法、ボールミル、ロールミル、カッターミル等を用いる粉砕法などが挙げられる。
【0033】
なお、CNFの原料となるパルプは解繊の前に予備叩解に付してもよい。予備叩解(機械的前処理)は、特に限定されず、公知の方法を用いることができる。具体的な方法の例としては、例えば、リファイナーを用いる方法を挙げることができる。
【0034】
また、CNFの原料となるパルプには、解繊の前に化学的な前処理を施してもよい。この化学的な前処理としては、硫酸等の酸や、酵素などを用いた加水分解処理、オゾンなどの酸化剤を用いた酸化処理などを挙げることができる。このように化学的な前処理を施した後に解繊処理することにより、効率的にCNFを得ることができる。また、前処理として、TEMPO触媒等を用いた酸化や、リン酸エステル化などの処理を行ってもよい。
【0035】
CNFの保水度は、例えば250%以上500%以下である。このように保水度が高いCNFは脱水が非効率的ため、効果的に脱水を行うことができる当該製造方法を使用する利点が大きい。CNFの保水度(%)はJAPAN TAPPI No.26に準拠して測定される。
【0036】
CNFは、水分散状態でレーザー回折法により測定される擬似粒度分布曲線において単一のピークを有することが好ましい。このように、一つのピークを有するCNFは、十分な微細化が進行しており、CNFとしての良好な物性を発揮することができ、得られる成形体の強度をより高めることなどができる。なお、上記単一のピークとなるCNFの粒径(最頻値)としては、例えば5μm以上50μm以下が好ましい。CNFが上記サイズであることで、CNF特有の諸特性をより良好に発揮することができる。「擬似粒度分布曲線」とは、粒度分布測定装置(例えば堀場製作所の粒度分布測定装置「LA-960S」)を用いて測定される体積基準粒度分布を示す曲線を意味する。
【0037】
脱水工程に供せられるスラリー15におけるCNFの含有量としては、0.8質量%超が好ましく、1質量%以上がより好ましく、1.5質量%以上がさらに好ましい。スラリー中のCNF含有量を0.8質量%超とすることで、脱水工程におけるCNFの流出をより十分に抑制することができる。また、脱水工程に係る時間の短縮化を図ることもできる。また、CNF含有量が0.8質量%以下の場合、無加圧でも流動性が高く、充填時にメッシュ状シートからCNFが流出する場合があるが、含有量を0.8質量%超とすることで、このような不都合を解消することができる。一方、このCNFの含有量の上限としては、例えば10質量%であり、5質量%であってもよく、4質量%であってもよく、3質量%であってもよい。スラリー15におけるCNFの含有量を上記上限以下とすることで、良好な流動性を確保でき、型枠11への充填性等を高めることができる。また、CNFの含有量を上記上限以下とすることで、厚さや密度のムラを抑制でき、均一性の高い成形体を得ることができる。
【0038】
スラリー15の固形分に占めるCNFの含有量の下限としては、例えば30質量%であってもよいが、50質量%が好ましく、70質量%であってもよく、90質量%であってもよく、95質量%であってもよく、99質量%であってもよい。スラリー15中の固形分におけるCNFの含有量を上記下限以上とすることで、得られる成形体中のCNFの含有比率が高まり、得られる成形体の強度等を高めることができる。一方、このCNFの含有量の上限は、99.9質量%であってよく、90質量%であってよく、70質量%であってもよく、50質量%であってもよい。
【0039】
スラリー15は、CNFより繊維長が長い又は繊維径が太く、かつCNFと水素結合可能な繊維をさらに含む。スラリー15中に、このような繊維を含有させておくことで、この繊維表面とCNFとが相互作用し、CNFの流出を抑制することができる。このため、CNFの流出が抑制され、効率的な脱水を行うことができる。
【0040】
このような繊維としては、パルプ、綿繊維、絹繊維、麻、羊毛、獣毛、レーヨン繊維、キュプラ繊維等を挙げることができるが、パルプが好ましい。パルプは、CNFと同様にセルロースを主成分とするものであり、CNFと高い親和性を有する。従って、上記繊維としてパルプを用いることで、CNFの流出をより効果的に抑えることができる。また、パルプを添加することでパルプが芯材となり、強度に優れる成形体を得ることができる場合がある。なお、パルプの繊維径は通常、1μm超であり、好ましくは10μm以上である。
【0041】
上記パルプとしては、LKP及びNKPが好ましい。なお、CNFの原料となっているパルプを上記繊維として用いることも好ましい。例えば、LKPを原料としたCNFとLKPとを組み合わせて用いること、あるいはNKPを原料としたCNFとNKPとを組み合わせて用いることが好ましい。このようにCNFの原料となっているパルプを用いることで、CNFとパルプとの親和性がより高まり、CNFの流出をより抑制することができる。但し、CNFの原料パルプと、CNFに混合するパルプとが異なる種類であってもよい。
【0042】
上記パルプは未叩解パルプであってもよいし、叩解パルプであってもよい。未叩解パルプを用いることで、脱水効率を高めることができる。一方、叩解パルプを用いることで、CNFが絡まりやすくなりCNFの流出をより抑制することができ、かつ、水素結合点の増加により得られる成形体の高強度化を図ることができる。
【0043】
スラリー15の固形分に占める上記繊維の含有量の下限としては、0.1質量%が好ましく、1質量%がより好ましく、3質量%がさらに好ましい。上記繊維の含有量を上記下限以上とすることで、CNFの流出抑制機能を高め、脱水効率を高めることができる。一方、この含有量の上限としては、例えば70質量%であり、50質量%が好ましく、30質量%がより好ましく、10質量%であってもよい。上記繊維の含有量を上記上限以下とすることで、得られる成形体の強度を高めることができる。
【0044】
スラリー15中には、本発明の効果に影響を与えない範囲で、CNF及び上記繊維以外の他の固形分がさらに含有されていてもよい。但し、スラリー15の固形分に占める上記他の固形分の含有量の上限は、10質量%が好ましく、3質量%がより好ましく、1質量%がさらに好ましい。他の固形分の含有量が上記上限以下であることで、得られる成形体の強度、熱安定性等を高めることなどができる。
【0045】
型枠11内に充填されたスラリー15には、板状の蓋体16が積層されている。蓋体16の長さ及び幅は、型枠11の内寸と略同一、あるいは一回り小さい大きさとなっている。この蓋体16、型枠11及び型枠11を置いた図示しない台から構成される空間内に、スラリー15は実質的に密閉されることとなる。すなわち、台の上面並びに型枠11及び蓋体16の内面形状が得られる成形体の外面形状となる。
【0046】
この蓋体16の材質は特に限定されるものではなく、金属、樹脂、木材等を挙げることができるが、高い圧力に対する耐久性等の観点からは金属が好ましい。なお、蓋体16の材質は、型枠11の材質と同一であってもよいし、異なっていてもよい。
【0047】
(準備工程)
当該製造方法は、脱水工程を行う前に、図1の状態を用意する準備工程を有していてもよい。この準備工程は、図1の状態となるように、台の上に置かれた型枠11の底に紙13及びメッシュ状シート14を順に積層し、その上にスラリー15を充填する工程である。さらに、充填後のスラリー15上に蓋体16が配置される。なお、後述するように、スラリー15を充填した段階で脱水が始まった場合は、蓋体16はこのタイミングではスラリー15上に載せなくてよい。
【0048】
また、当該製造方法は、準備工程として、CNFを含むスラリーの調製工程を有していてもよく、CNFと上記繊維との混合工程を有していてもよい。
【0049】
(脱水工程)
以下、脱水工程の手順を具体的に詳説する。この脱水工程においては、スラリー15に対する加圧力を段階的又は連続的に高めることが好ましい。この脱水工程において、スラリー15中の水分は、メッシュ状シート14及び紙13を介して、型枠11の底(図1における下側)から流出していく。
【0050】
脱水工程は、まず、2.5kPa以下で加圧を行う初期工程を有することが好ましい。初期に2.5kPaを超える圧力をかけると、CNFがメッシュ状シート14を介して流出しやすくなる。なお、目開きの細かいメッシュ状シート14を用いれば、初期に2.5kPaを超える圧力をかけてもCNFの流出が抑制できるが、この場合、全体的な脱水効率が低下し得る。この初期工程における加圧は実質的に0kPa、あるいは大気圧であってよい。また、蓋体16の自重のみによる加圧であってもよい。例えば、CNF15を紙13及びメッシュ状シート14を介して型枠11内に投入(充填)した時点で、メッシュ状シート14を介して水が流出した場合(脱水が開始した場合)はこの状態で暫く放置し、水の流出が収まった時点で蓋体16をスラリー15上に載せることができる。
【0051】
上記初期工程の加圧で脱水がある程度進んだ後、加圧力を高めていくことが好ましい。この加圧力の制御方法は特に限定されず、公知のプレス機で制御してもよいし、蓋体16に重しを載せていくことによって行うなどしてもよい。また、脱水の進行度(脱水量)に応じて加圧力を高めていってもよいし、スラリー15の組成と加圧力との関係等をデータベース化しておき、時間によって加圧力を制御してもよい。
【0052】
上記脱水工程においては、このように加圧力を高めていき、最終工程として、20MPa以上で加圧を行うことが好ましく、30MPa以上がより好ましく、40MPa以上がさらに好ましい。この最終工程を経ることで、十分に脱水がなされたCNF成形体を得ることができる。なお、この最終工程の加圧力の上限としては、例えば200MPaとすることができ、100MPaであってもよい。
【0053】
(後工程)
なお、上記脱水工程の後は、更なる脱水を施してもよい。更なる脱水としては、得られた成形体(脱水されたスラリー15)を型枠11から取り出し、加熱しながらプレス機によりプレスする方法、乾燥機により乾燥する方法などが挙げられる。これらの中でも、加熱しながらプレスする方法が好ましい。これにより、CNF成形体の更なる高密度化及び高強度化を図ることができる。
【0054】
(利点等)
当該製造方法によれば、このようにスラリー中に、CNFに加えて、CNFより繊維長が長い又は繊維径が太くかつCNFと水素結合可能な繊維を添加しておくことで、この繊維表面とCNFとが相互作用し、CNFの流出を抑制することができる。このため、当該製造方法においては、比較的高い圧力で脱水を行ってもCNFの流出が抑制され、効率的な脱水を行うことができる。
【0055】
また、脱水工程において脱水させながら加圧力を高めることで、当初の圧力は非常に弱いため、スラリーは高粘度に保たれ、CNFの流出を抑えることができる。脱水が進むとスラリーの濃度が上昇し、流動性が低下するため、ある程度圧力を高めてもCNFは流出し難くなり、次第に圧力を高めていくことで、CNFの流出を抑えながら、効率的に脱水を行うことができる。なお、加圧力を段階的に高める場合、この段数は特に限定されず、2段階以上であれば良い。段数の上限も特に限定されず、100段階の制御を行ってもよく、10段階であってもよく、3段階であってもよい。また、連続的に加圧力を高める場合、一定の比率で加圧力を高めなくてもよく、一定の加圧力で保持された時間があってもよい。
【0056】
なお、本実施形態のように、型枠11内にスラリーを充填して脱水を行うことで、脱水と共に所望する形状への成形を容易に行うことなどができる。本実施形態においては、直方体の成形体を得ることができる。
【0057】
また、本実施形態のように、メッシュ状シート14の外側(メッシュ状シート14の下)に紙13が積層されていることで、加圧力の変化の際のクッション性が高まり、急激な圧力変化が緩和される。これにより、徐々に圧力を高めることができるため、CNFの流出をより抑制することなどができる。また、スラリー15中の水分がメッシュ状シート14を通して紙へ移行するため、脱水効率を高めることもできる。なお、メッシュ状シート14(メッシュ状部材)の外側とは、メッシュ状シート14(メッシュ状部材)においてスラリー15中の水分が流れ出る側であり、メッシュ状シート14(メッシュ状部材)のスラリー15が接触する側とは反対側をいう。
【0058】
(他の実施形態)
本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、メッシュ状部材は、シート状に限定されるものではなく、型枠の少なくとも一部がメッシュ状部材であったり、蓋体がメッシュ状部材であったりしてもよい。また、図1とは異なり、台の上に紙13及びメッシュ状シート14を順に積層し、その上に型枠11を置くように配置してもよい。
【0059】
また、型枠の形状も直方体に限定されるものではなく、任意の形状であってよい。型枠は、底板を有するものであってもよい。型枠が底板を有する場合、型枠には脱水のための排水口が設けられていてよい。この場合、この排水口を覆うようにメッシュ状部材を配置することが好ましい。また、この場合、型枠とメッシュ状部材との間に紙を配置することが好ましい。このようにすることで、クッション性が高まり、急激な圧力変化が緩和されると共に、紙による脱水効率を高めることができる。
【0060】
さらに、上記実施の形態においては、特に加熱等を行わずに脱水工程を行っているが、加熱させながら脱水(加圧)を行うこともできる。なお、上記実施の形態のように、加熱を行わずに脱水工程を行うことで、低コストで、ある程度の含水量になるまで効率的に脱水を行うことができる。加圧のみでは脱水が進行しなくなった後、後工程として加熱しつつ脱水を行うことで、時間的、エネルギー的、コスト的に効率的な脱水を行うことができる。
【0061】
さらに、当該製造方法においては、脱水工程において、スラリーに対する加圧力を段階的又は連続的に高めなくともよい。このように一定の圧力で脱水を行っても、CNFを含むスラリーに上記繊維が添加されていることで、CNFの流出を抑制しつつ、効率的な脱水を行うことができる。
【0062】
また、図1とは異なり、スラリー15の上面に第2のメッシュ状シートを積層し、この第2のメッシュ状シートの上面に第2の紙を積層し、この第2の紙の上面に蓋体16を置いてもよい。このように、スラリー15に対して上面側にも紙を積層する(スラリー15に対して、一対の紙で挟んだ状態とする)ことで、クッション性がより高まり、加圧に伴うCNFの流出をより抑制することができる。また、スラリー15に対して、上面側のみに紙を積層してもよい。なお、上側に積層させた第2のメッシュ状シートは、スラリー15と第2の紙とが直接接することを防ぐ役割などを担う。すなわち、CNFの成形体と紙とは親和性が高いため、スラリーと紙とが直接接した状態で加圧し、脱水させると、得られたCNF成形体に紙が貼り付き、この紙を剥がすことが困難になる。そこで、スラリーと紙との間にメッシュ状シートを積層しておくことにより、得られたCNF成形体から紙等を容易に剥がすことができる。また、スラリー中の水分がメッシュ状部材を通して紙へ移行するため、脱水効率を高めることもできる。
【実施例
【0063】
以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0064】
<評価方法>
以下の各種物性は、以下の評価方法に準じて測定した。
【0065】
(擬似粒度分布曲線)
ISO-13320(2009)に準拠して、粒度分布測定装置(堀場製作所の粒度分布測定装置「LA-960S」)を用いて体積基準粒度分布を示す曲線を測定した。
【0066】
(保水度(%))
セルロースナノファイバーの保水度(%)は、JAPAN TAPPI No.26:2000に準拠して測定した。
【0067】
[製造例1]
原料パルプ(LBKP)に対し、予備叩解としてリファイナー処理し、次いで高圧ホモジナイザーで解繊(微細化)処理し、CNFのスラリー(水分散液:濃度2.2質量%)を得た。なお、リファイナー処理及び高圧ホモジナイザー処理は、いずれも複数回の循環処理を行った。得られたスラリーに含まれるCNFは、レーザー回折を用いた粒度分布測定の疑似粒度分布において1つのピークを有し(最頻値45μm)、保水度は343%であった。
【0068】
[比較例1]
図1に示した直方形状の金属製の型枠11の底に紙13を敷き、次いでメッシュ状シート14を敷いた。紙13とメッシュ状シート14とは、共に型枠11の底面と同じ大きさにして用いた。紙13は、厚さ0.28mmのろ紙を用いた。メッシュ状シートは、目数300メッシュ、線径40μmのSUS316製のものを用いた。
【0069】
次いで、製造例1で得たCNFのスラリーをそのまま型枠11内に充填し、その上に、メッシュ状シート、紙及び金属製の板状の蓋体16(底面積0.067m、質量8.0kg)をこの順に置いた。スラリーの上に重ねたメッシュ状シート及び紙は、先に敷いたメッシュ状シート及び紙と同じものである。この蓋体16の重さにより、スラリー15は1.2kPaで加圧され、水が底から流出し始めた(脱水が開始された)。なお、この水は透明であり、CNFが流出していないことを目視にて確認した。この蓋体16の自重による加圧を初期工程とした。
【0070】
その後、水の流出が弱まってきたタイミングで、蓋体16の上に重しを載せていき加圧力を高めていった。最終的にスラリー15に対して50MPaで加圧し、最終工程とした。初期工程から最終工程までの全脱水時間は180分であった。これにより、含水率54.2質量%に脱水されたCNF成形体が得られた。なお、初期工程から最終工程まで、CNFは流出していないことを目視にて確認した。
【0071】
[実施例1]
スラリーとして、CNFとパルプとを95:5の質量比で混合した固形分濃度2.3質量%のスラリーを用いたこと以外は比較例1と同様にして、実施例1を行った。なお、パルプは、濃度21.6質量%、フリーネス580mLの未叩解パルプ(LBKP)を使用した。初期工程から最終工程までの全脱水時間は90分であった。なお、初期工程から最終工程まで、CNFは流出していないことを目視にて確認した。
【0072】
[実施例2]
スラリーとして、CNFとパルプとを80:20の質量比で混合した固形分濃度2.7質量%のスラリーを用いたこと以外は比較例1と同様にして、実施例2を行った。なお、パルプは、濃度21.6質量%、フリーネス580mLの未叩解パルプ(LBKP)を使用した。初期工程から最終工程までの全脱水時間は60分であった。なお、初期工程から最終工程まで、CNFは流出していないことを目視にて確認した。
【0073】
[実施例3]
スラリーとして、CNFとパルプとを80:20の質量比で混合した固形分濃度2.0質量%のスラリーを用いたこと以外は比較例1と同様にして、実施例3を行った。なお、パルプは、濃度1.5質量%、フリーネス460mLの叩解パルプ(LBKP)を使用した。初期工程から最終工程までの全脱水時間は75分であった。なお、初期工程から最終工程まで、CNFは流出していないことを目視にて確認した。
【0074】
[比較例2]
蓋体16の上に重しを載せ、加圧力2.6kPaで初期工程を行ったこと以外は、比較例1と同様にして比較例2を行った。白濁した水が流出した。CNFが流出していることが確認できた。
【0075】
[比較例3]
蓋体16の上に重しを載せ、初期工程の加圧力をそのまま維持し、加圧力を高めなかったこと以外は、比較例1と同様にして比較例3を行った。十分な脱水を行うことができなかった。
【0076】
上記実施例及び比較例の一覧を表1に示す。
【0077】
【表1】
【0078】
表1に示されるように、実施例1~3のように、CNFにパルプを添加したスラリーを用いることで、CNFを流出させずに効率的な脱水ができることが分かる。これに対し、パルプを添加していないこと以外は実施例1~3と同じ条件である比較例1は、CNFを流出させずに、ある程度の速度で脱水を行うことができるが、実施例1~3と比べると脱水速度が遅い。また、パルプを添加せず、かつ初期工程から加圧力の高い比較例2は、CNFの流出が生じ、パルプを添加せず、かつ初期工程の加圧力のままの比較例3は、十分な脱水を行うことができなかった。
【産業上の利用可能性】
【0079】
本発明のCNF成形体の製造方法は、高強度を有するCNF成形体の製造に好適に用いることができる。このCNF成形体は、強度、弾性、熱安定性等に優れ、金属成形体、樹脂成形体、木材等に替わる材料等として用いることができる。
【符号の説明】
【0080】
11 型枠
13 紙
14 メッシュ状シート
15 スラリー
16 蓋体
図1