(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-26
(45)【発行日】2022-06-03
(54)【発明の名称】ロボットの位置情報復元方法
(51)【国際特許分類】
B25J 9/10 20060101AFI20220527BHJP
【FI】
B25J9/10 A
(21)【出願番号】P 2018025566
(22)【出願日】2018-02-16
【審査請求日】2021-01-13
(73)【特許権者】
【識別番号】000002233
【氏名又は名称】日本電産サンキョー株式会社
(74)【代理人】
【識別番号】100123788
【氏名又は名称】宮崎 昭夫
(74)【代理人】
【識別番号】100127454
【氏名又は名称】緒方 雅昭
(72)【発明者】
【氏名】尾辻 淳
【審査官】臼井 卓巳
(56)【参考文献】
【文献】特開2014-034107(JP,A)
【文献】特開平10-080883(JP,A)
【文献】特開2012-040637(JP,A)
【文献】特開平04-306705(JP,A)
【文献】特開昭62-063303(JP,A)
【文献】特開平05-318352(JP,A)
【文献】特開2005-149299(JP,A)
【文献】特開2013-035054(JP,A)
【文献】特開2015-199192(JP,A)
【文献】特開2017-007026(JP,A)
【文献】米国特許出願公開第2007/0150100(US,A1)
【文献】韓国公開特許第10-2011-0022023(KR,A)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 9/00-13/08
(57)【特許請求の範囲】
【請求項1】
複数の処理室を有する処理装置において使用され、教示データに基づき、対象物を支持して前記複数の処理室の間で搬送するロボットの位置情報復元方法であって、
前記ロボットは、前記処理装置に設置される基台と、前記対象物を支持するハンドと、前記基台と前記ハンドとの間に介在する少なくとも1つのアームとを備えており、
前記ロボットの一部の交換、前記ロボットの一部または全部の再組み立て、もしくは前記ロボットの移設をロボット交換として、前記ロボット交換の実行前に、前記ロボットの原点オフセットと、前記ハンドを伸ばして所定位置に移動したときの前記ロボットの位置と姿勢を示す所定位置座標とを記憶する工程と、
前記ロボット交換ののち、前記ロボットの原点オフセットを取得し、前記ロボット交換前の前記原点オフセットと前記ロボット交換ののちの前記原点オフセットとの差である第1ずれ量を記憶する工程と、
前記ロボット交換ののち、前記ハンドを伸ばして前記ロボットを前記所定位置に移動させて前記所定位置座標を取得し、前記ロボット交換前の前記所定位置座標と前記ロボット交換ののちの前記所定位置座標との差に基づいて第2ずれ量を算出して記憶する工程と、
を有し、
前記第1ずれ量と前記第2ずれ量とを別個に管理
し、
前記処理装置に1つの基準マーカーを備え、前記ハンドに搭載された物体の少なくとも一部と前記基準マーカーとを視覚センサによって撮像して前記物体の位置を取得することにより、前記ロボットとは別個の座標系での前記所定位置座標を取得する、位置情報復元方法。
【請求項2】
前記ロボット交換ののちに、前記ロボットに設けられた原点センサによる粗調整と、前記ロボットに含まれる構造体の相互間の位置を規制する嵌合手段による微調整とによって、前記ロボットを原点位置に移動させ、前記原点オフセットを取得する、請求項
1に記載の位置情報復元方法。
【請求項3】
複数の処理室を有する処理装置において使用され、教示データに基づき、対象物を支持して前記複数の処理室の間で搬送するロボットの位置情報復元方法であって、
前記ロボットは、前記処理装置に設置される基台と、前記対象物を支持するハンドと、前記基台と前記ハンドとの間に介在する少なくとも1つのアームとを備えており、
前記ロボットの一部の交換、前記ロボットの一部または全部の再組み立て、もしくは前記ロボットの移設をロボット交換として、前記ロボット交換の実行前に、前記ロボットの原点オフセットと、前記ハンドを伸ばして所定位置に移動したときの前記ロボットの位置と姿勢を示す所定位置座標とを記憶する工程と、
前記ロボット交換ののち、前記ロボットの原点オフセットを取得し、前記ロボット交換前の前記原点オフセットと前記ロボット交換ののちの前記原点オフセットとの差である第1ずれ量を記憶する工程と、
前記ロボット交換ののち、前記ハンドを伸ばして前記ロボットを前記所定位置に移動させて前記所定位置座標を取得し、前記ロボット交換前の前記所定位置座標と前記ロボット交換ののちの前記所定位置座標との差に基づいて第2ずれ量を算出して記憶する工程と、
を有し、
前記第1ずれ量と前記第2ずれ量とを別個に管理し、
前記処理装置に2つの基準マーカーを備え、前記ハンドに搭載された物体の少なくとも一部と前記基準マーカーとを視覚センサによって撮像して前記物体の位置を取得することにより、前記ロボットとは別個の座標系での前記所定位置座標を取得する
、位置情報復元方法。
【請求項4】
前記物体は四角形状であり、前記2つの基準マーカーは、前記ロボットが前記所定位置にあるときに前記物体の1つの対角線の両方の端部にそれぞれ対応する位置に設けられている、請求項
3に記載の位置情報復元方法。
【請求項5】
前記基準マーカーは、前記複数の処理室のうちのいずれか1つの処理室に設けられる、請求項1乃至
4のいずれか1項に記載の位置情報復元方法。
【請求項6】
前記所定位置は、前記基準マーカーが設けられる前記処理室において前記基台から前記ハンドが最も遠くにあるときの位置である、請求項
5に記載の位置情報復元方法。
【請求項7】
前記ロボットにおいて実際に使用される前記教示データに基づいて前記ロボットを前記所定位置に移動させる、請求項1乃至
6のいずれか1項に記載の位置情報復元方法。
【請求項8】
前記ロボット交換の前後での前記所定位置座標のずれが許容範囲以内となるまで、前記第1ずれ量と前記第2ずれ量とを用いて前記教示データを修正し修正後の前記教示データに基づいて前記ロボットを原点位置から前記所定位置に移動させて前記第2ずれ量を再計算することを繰り返す、請求項
7に記載の位置情報復元方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロボットにおける機器の交換、ロボットの再組み立てや移設などに際し、従前の教示データをそのロボットで利用できるようにする位置情報復元方法に関する。
【背景技術】
【0002】
教示(ティーチング)データに基づいて動作するロボットでは、必要に応じ、ロボットを構成するモータやアーム等の機器の交換、ロボット自体の再組み立てや移設などが行なわれることがある。機器の交換、再組み立て、移設などを行った場合、ロボットの組み立てや据え付けに関する誤差量が変化するから、再びそのロボットによって作業を行なう前に、ロボットに対する再教示を行なう必要がある。しかしながらロボットの教示には多大な時間と労力を要するから、機器の交換、ロボットの再組み立てや移設などを行なった場合であっても従前の教示データを利用できることが望まれている。特許文献1は、保持装置に保持されたワークに対して加工を行なうロボットに関し、ロボットの移設を行なう前後に、保持装置または保持装置に保持されたワークの3箇所の位置をロボットのアームに取り付けた視覚センサによって計測し、ロボットの移設前後での計測結果の変化に基づきロボットと保持装置との相対位置の変化が補償されるように教示データを修正することを開示している。
【0003】
ロボットではその各軸の位置(特に回転位置)をセンサ(例えばエンコーダ)によって求めているが、モータや減速機、アームを交換した場合には各軸の位置を決定するために用いられる基準位置がずれてしまう。このことも機器の交換後に従前の教示データを利用できないことの原因であるが、特許文献2は、ロボットの関節軸を構成する一対の構造体(例えはアームなど)にそれぞれピン孔を設け、各ピン孔に貫通するピンを挿入して基準位置を規定する方法や、関節軸を構成する一方の構造体にV字形の溝を設けて他方の構造体にはV字溝に対応する近接センサを設け、近接センサからの信号によって基準位置を特定する方法を開示している。
【0004】
機器の交換、ロボット自体の再組み立てや移設を行なった場合、さらには経時変化などに対応するために、ロボットにおいてはキャリブレーションが行われる。キャリブレーションを行なった場合にはロボットを運動学的に記述するために用いられる機構パラメータが変わってしまい、キャリブレーション前に用いていた教示データをそのままでは使用できなくなる。特許文献3は、キャリブレーション前の機構パラメータとキャリブレーション後の機構パラメータとに基づいて教示データを修正して使用することを開示している。
【0005】
ところで、各種のロボットのうち水平多関節ロボットは、例えば、半導体ウエハやガラス基板などの搬送に用いられている。半導体ウエハやガラス基板などを搬送対象物とした搬送用の水平多関節ロボットの例が特許文献4,5に示されている。水平多関節ロボットの搬送対象物の大型化や搬送対象物に対して行なわれる工程の複雑化に伴って、水平多関節ロボット自体も大型化し、かつ、搬送対象物の搬送距離も長くなっている。水平多関節ロボットが大型化すると、ロボットを出荷して需要先に据え付けるために、ロボットを完成させて調整した後、ロボットをいったん分解して輸送し、据え付け先において再組み立てを行なう必要も生じてきている。
【先行技術文献】
【特許文献】
【0006】
【文献】特許第3733364号公報
【文献】特許第4819957号公報
【文献】特開2017-213668号公報
【文献】特開2015-139854号公報
【文献】特許第5199117号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1-3は、ロボットにおける機器の交換、ロボット自体の再組み立てや移設、さらにはロボットの再キャリブレーションを行なった場合にも再教示を行なうことなく従前の教示データを利用できるようにする方法を開示している。特許文献1-3の方法は、いずれも1組の補正データ(特許文献1であれば移設前後での特定の保持装置に関する位置のずれに関するデータ、特許文献2であれば基準位置を補正するデータ、特許文献3であればキャリブレーション前後での機構パラメータのずれに関するデータ)に依拠するものである。しかしながら、搬送用の水平多関節ロボットのようにロボットが大型化し、かつ、その移動範囲も大きくなった場合には、特許文献1-3のやり方では、教示データの修正を十分には行なうことができず、その結果、再教示を余儀なくされることがある。また、教示データを修正するために用いる補正用データに不具合があった場合に不具合の原因に対処することが難しく、補正用データの妥当性の検証も難しいので、結局、ロボットの再稼動のために大きな労力を要することになる。
【0008】
本発明の目的は、搬送用の大型の水平多関節ロボットなどのロボットにおいて、ロボットを構成する機器の交換、ロボットの再組み立てや移設に際して再教示が不要であり、かつ、データにおける不具合の解消や妥当性の検証を容易に行なうことができる、位置情報復元方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明の位置情報復元方法は、複数の処理室を有する処理装置において使用され、教示データに基づき、対象物を支持して複数の処理室の間で搬送するロボットの位置情報復元方法であって、ロボットは、処理装置に設置される基台と、対象物を支持するハンドと、基台とハンドとの間に介在する少なくとも1つのアームとを備えており、ロボットの一部の交換、ロボットの一部または全部の再組み立て、もしくはロボットの移設をロボット交換として、ロボット交換の実行前に、ロボットの原点オフセットと、ハンドを伸ばして所定位置に移動したときのロボットの位置と姿勢を示す所定位置座標とを記憶する工程と、ロボット交換ののち、ロボットの原点オフセットを取得し、ロボット交換前の原点オフセットとロボット交換ののちの原点オフセットとの差である第1ずれ量を記憶する工程と、ロボット交換ののち、ハンドを伸ばしてロボットを所定位置に移動させて所定位置座標を取得し、ロボット交換前の所定位置座標とロボット交換ののちの所定位置座標との差に基づいて第2ずれ量を算出して記憶する工程と、を有し、第1ずれ量と第2ずれ量とを別個に管理する。
【0010】
本発明では、教示データの修正に用いる補正量を原点オフセットに基づく第1ずれ量と所定位置座標に基づく第2ずれ量の2つに分け、これらのずれ量を別個に管理するので、いずれかのずれ量において異常がある場合に、異常があることと、その異常がどちらのずれ量にあるのかを容易に判別することができるようにある。また、ずれ量の算出の過程でデータ損失などが発生しても、第1ずれ量の算出が完了していれば第1ずれ量はそのまま使用して第2ずれ量の算出を行なえばよいので、補正量算出のための時間を短縮できる。
【0011】
本発明の位置情報復元方法の第1の態様では、処理装置に1つの基準マーカーを備え、ハンドに搭載された物体の少なくとも一部と基準マーカーとを視覚センサによって撮像して物体の位置を取得することにより、ロボットとは別個の座標系、例えば処理装置の座標系での所定位置座標を取得する。ロボット交換後に所定位置に移動したときに所定位置座標に生ずるずれは、主として、ロボットを設置した平面内での位置のずれ(ロボットの設置平面をXY平面としてXY座標でのずれ)とロボットの向きのずれ(角度のずれ)によって生ずるが、大型のロボットでは位置のずれよりも向きのずれの影響の方が大きいので、向きのずれに着目して第2ずれ量を算出するのであれば、1つの基準マーカーのみの使用で十分であり、第2ずれ量の算出のための演算を簡潔なものとすることができる。
【0012】
本発明では、ロボット交換ののちに、ロボットに設けられた原点センサによる粗調整と、ロボットに含まれる構造体の相互間の位置を規制する嵌合手段による微調整とによって、ロボットを原点位置に移動させ、原点オフセットを取得することができる。原点オフセットの取得に際してこのような手順でロボットを原点位置に移動させることにより、ロボットにおける機械的な手段によって正確に原点位置に位置合わせすることができるようになる。これにより、基準マーカーを1つだけ用いる場合であっても、第1ずれ量及び第2ずれ量に基づいて教示データを修正した場合に、ロボットが教示データに基づいて所望の位置に正確に移動できるようになる。
【0013】
本発明の位置情報復元方法の第2の態様では、処理装置に2つの基準マーカーを備え、ハンドに搭載された物体の少なくとも一部と基準マーカーとを視覚センサによって撮像して物体の位置を取得することにより、ロボットとは別個の座標系、例えば処理装置の座標系での所定位置座標を取得する。2つの基準マーカーを設ける場合には、第2ずれ量に含まれる位置のずれと角度のずれとを分離できるので、原点オフセットに多少の誤差があったとしても、第1ずれ量と第2ずれ量とに基づいて修正した教示データによって、ロボットを所望の位置に正確に移動させることができるようになる。基準マーカーを2つ設ける場合には、物体の形状を四角形状とし、ロボットが所定位置にあるときに物体の1つの対角線の両方の端部となる位置のそれぞれに対応して2つの基準マーカーを設けることが好ましい。対角線の両端に対応して基準マーカーを設けることにより、基準マーカー間の距離が大きくなって、ロボットにおける向きのずれを精度よく検出できるようになる。
【0014】
本発明では、複数の処理室のうちのいずれか1つの処理室に基準マーカーを設けることが好ましい。処理装置において、実際に使用される処理室に設けられた基準マーカーを使用することで、実際に使用される処理室でのずれに対して教示データの修正を行なうことができるようになる。このように処理室内に基準マーカーを設ける場合、所定位置は、その処理室において基台からハンドが最も遠くにあるときの位置とすることが好ましい。ロボットのアーム及びハンドが伸びて処理室内において基台からハンドが最も遠い位置を所定位置とすることによって、ロボットの向きのずれを大きな値として検出できるようになるので、精度よく教示データの修正を行なうことができるようになる。
【0015】
本発明では、ロボットにおいて実際に使用される教示データに基づいてロボットを所定位置に移動させることが好ましい。実際に使用される教示データに基づいて移動させることにより、ロボットの移動方向も考慮してずれ量が算出されることとなり、バックラッシの影響を低減することができる。このとき、ロボット交換の前後での所定位置座標のずれが許容範囲以内となるまで、第1ずれ量と第2ずれ量とを用いて教示データを修正し修正後の教示データに基づいてロボットを原点位置から所定位置に移動させて第2ずれ量を再計算することを繰り返すことができる。このような繰り返しの計算によって、教示データを修正する精度を高めることができる。
【発明の効果】
【0016】
本発明によれば、ロボットを構成する機器の交換、ロボットの再組み立てや移設に際して再教示が不要であり、かつ、データにおける不具合の解消や妥当性の検証を容易に行なうことができるようになる。
【図面の簡単な説明】
【0017】
【
図1】ロボットの一例を示す図であって、(a)は平面図、(b)は正面図、(c)は原点位置にあるロボットの正面図である。
【
図2】ロボット及びロボットコントローラの回路構成を示すブロック図である。
【
図3】
図1に示すロボットが設けられる処理装置を示す図であり、(b)は処理室の断面を模式的に示す図である。
【
図4】本発明に基づく位置情報復元方法の動作を示すフローチャートである。
【発明を実施するための形態】
【0018】
次に、本発明の好ましい実施の形態について、図面を参照して説明する。本発明に基づく位置情報復元方法を説明する前に、まず、位置情報復元方法の適用対象となるロボットの一例について説明する。
【0019】
図1は、本発明に基づく位置情報復元方法が適用されるロボットの一例を示している。
図1(a),(b)は、アームやハンドを伸ばした状態でのロボットを示す平面図及び正面図である。
図1に示されるロボットは、特許文献4に記載された搬送用の水平多関節ロボットと同様のものであって、基台11と、基台11に取り付けられた第1アーム12と、第1アーム12の先端に取り付けられた第2アーム13と、第2アーム13の先端に取り付けられたハンド14とを備えている。ハンド14は搬送対象物である半導体ウエハやガラス基板などを保持するものであって、フォーク(fork)状に形成されている。基台11に対して第1アーム12は軸Aの周りで回転可能であり、第1アーム12に対して第2アーム13は軸Bの周りを回転可能であり、第2アーム13に対してハンド14は軸Cの周りで回転可能である。ロボットの関節軸である軸A~Cの周りでの回転を可能にするために、ロボットには軸ごとにモータが備えられている。さらにロボットは、基台11に設けられて第1アーム12を図示Z方向で昇降する機構が設けられ、この昇降機構も昇降用のモータによって駆動される。軸A~Cは、いずれもZ方向に平行である。基台11、アーム12,13及びハンド14の各々は、ロボットに含まれる構造体である。
【0020】
図1に示すロボットには、ロボットの動作の基準となる原点位置が定められており、原点位置ではロボットはアームやハンドが所定の折り畳まれた姿勢となる。
図1(c)は原点位置でのロボットの姿勢を示しており、第1アーム12上に第2アーム13及びハンド14が重なるように、第2アーム13及びハンド14が折り畳まれている。
【0021】
図1に示すロボットを制御するためにロボットコントローラが設けられている。
図2は、ロボットとロボットコントローラ40の電気的な回路構成を示している。ロボットには、上述したように軸A~Cと昇降機構のためにあわせて4個のモータ15が設けられているが、これらのモータ15には、モータ15の回転角を計測するエンコーダ16がそれぞれ取り付けられている。
【0022】
ロボットコントローラ40は、各種の信号やデータを伝送するために用いられるバス41と、モータ15ごとに設けられてそのモータ15を駆動するサーボ回路42と、ロボットの動作や制御に必要な演算を行い各サーボ回路42に指令を出力するCPU(中央処理装置)43と、CPU43による演算や制御に必要なデータを格納する記憶部44とを備えている。記憶部44には、記憶領域あるいはファイルとして、教示データを格納する教示データ格納部51と、原点オフセットを格納する原点オフセット格納部52と、所定位置座標を格納する所定位置座標格納部53とが設定されている。原点オフセット及び所定位置座標については後述する。サーボ回路42、CPU43及び記憶部44はバス41に接続している。エンコーダ16からの出力は、対応するモータ15を駆動するサーボ回路41に供給されるとともに、バス41を介してCPU43にも送られるようになっている。ロボットコントローラ40には、視覚センサであるカメラ23とロボットの教示に用いるティーチングペンダント60とが接続しており、これらは、不図示のインタフェース回路を介してバス41に接続している。
【0023】
次に、ここで説明するロボットの利用形態について、
図3を用いて説明する。ここでは、略長方形のガラス基板であるワーク31に対して成膜やエッチングなどの処理を行なうことによって液晶ディスプレイや有機EL(エレクトロルミネッセンス)ディスプレイを製造するために用いられる処理装置内でロボットが使用されるものとする。
図3(a)に示すように処理装置は、搬送室(トランスファーチャンバー)21と、搬送室21を取り囲むように配置された複数の処理室(プロセスチャンバー)22とを備えている。処理室22には、製造システム自体へのワーク31の搬入や搬出を行なうために設けられるものと、ワーク31に対して成膜やエッチング、その他の処理を行なうために設けられるものとがある。ロボットは、搬送室21に基台11が設置されることによって搬送室11内に設けられ、処理室22の間での搬送室21を介するワーク31の搬送を行なう。そのため、ロボットは搬送室21のほぼ中央に設けられており、ワーク31の受け渡し時には、ハンド14が処理室22内に入り込むように、アーム12,13を伸ばす。
【0024】
複数の処理室22のうち、例えば製造システムの外部とのワーク31の搬入搬出に用いられる処理室22の天井面には、
図3(b)に示すように、基準マーカー24が取り付けられており、基準マーカー24を撮影するようにその処理室22の床面にはカメラ23が設けられている。カメラ23は
図3(a)にも描かれている。カメラ23及び基準マーカー24は、ロボットのハンド14上に載置されたワーク31が、ハンド14での正しい位置に載置されているかどうかを判断するために用いられている。カメラ23及び基準マーカー24を備える処理室22に対して教示データに基づいてロボットを移動させ、そのときにカメラ23によってワーク31のエッジ(縁部)が写り込むように基準マーカー24を撮影することにより、ワーク31がハンド14に正しく載置されているかどうか、本来の位置からずれて載置して場合にはどの方向にどれだけずれているのかを知ることができる。ワーク31の載置位置が本来の位置からずれているときは、不図示の位置修正装置により、ワーク31の載置位置の修正を行なうことができるようになっている。
【0025】
次に、本発明の実施形態における位置情報復元方法について説明する。本実施形態の位置情報復元方法は、ロボットを構成するモータやアームなどの機器の交換があったときや、ロボット自体の再組み立てや移設があったときにおいて、それらの交換や再組み立て、移設の前にそのロボットにおいて使用していた教示データを、再教示を行なうことなく、交換や再組み立て、移設ののちにも使用できるようにするものである。以下では、ロボットにおける機器の交換、ロボット自体の再組み立てや移設を総称してロボット交換と呼ぶことにする。
【0026】
上述したように原点位置はロボットを移動させるときの位置及び姿勢の基準となるものであり、原点位置にあるロボットでは、そのロボットの各モータ15の回転位置がいずれもゼロであるとみなされる。モータ15の回転位置はそのモータ15に接続するエンコーダ16によって計測されてロボットコントローラ40に出力される。しかしながら、アーム12,13やハンド14に対するモータ15の組み付け状態、モータ15とエンコーダ16との間の組み付け状態に応じ、ロボットが原点位置にあるとしてもエンコーダ16から出力される回転位置の値はゼロになるとは限らない。ロボットが原点位置にあるときにエンコーダ16で計測される回転位置を原点オフセットと呼ぶ。教示データに基づいてロボットを移動するときは、教示データにおいては原点位置での回転位置がゼロであるとした上で原点オフセットによる補償を行なうか、あるいは、原点位置での回転位置は原点オフセットで示す値であるものとして教示データが記述されている必要がある。いずれにせよ、ロボット交換があったとき、例えばモータ15やハンド12,13の交換を行なった場合には、その交換の前後では一般に原点オフセットの値が異なることになる。したがって、再教示を行なうことなくロボット交換の前後で同一の教示データを使用するためには、ロボット交換による原点オフセットの変化に基づいて教示データを修正する必要がある。
【0027】
ロボット交換後の原点オフセットを求める場合には、ロボットを原点位置に移動させる必要がある。このとき、ロボット交換後の原点オフセットがまだ分かっていないので、ロボットに対する原点復帰コマンドなどによりロボットを原点位置に移動させることはできない。そこで、ロボットを目視しながらティーチングペンダントを用いてロボットを原点位置に移動させてもよい。より正確にロボットを原点位置に移動させるためには、例えば特許文献2に記載されるように、ロボットの姿勢を原点位置での姿勢に規制するためのピン孔をアーム12,13やハンド14に設け、ピン孔に治具ピンを差し込むことによってロボットを原点位置に固定すればよい。治具ピンを用いる場合、エンコーダ16とは別個に、関節軸を共有する2つの構造体(アーム12,13やハンド14)の一方に原点センサを設け、他方に原点センサが感知できる溝や突起を設け、原点センサの出力に基づいて粗調整を行い、その後、治具ピンがピン孔にはまる位置までロボットをゆっくり移動させる微調整を行なってロボットを機械的に原点位置に移動させることができる。治具ピンとピン孔は、ロボットに含まれる構造体(ここでは基台11、アーム12,13及びハンド14)の相互間の位置を規制する嵌合手段として機能する。
【0028】
ところで原点位置はロボットのアーム12,13やハンド14が折り畳まれた状態であり、搬送用のロボットのようにアームやハンドが長いロボットの場合、原点オフセットの変化を補償しただけでは、アーム12,13及びハンド14を伸ばして移動しようとした場合に、所望の位置に正確に移動できるとは限らない。これは、ロボット交換によりロボットの設置位置や向きがずれることがあるからである。そこで本実施形態では、教示データに基づいてロボットのアーム12,13及びハンド14を伸ばして所定位置に移動することをロボット交換の前と後とに実行する。そして、ロボット自体の座標系とは別個の外部座標系(例えば、処理室22において定義された座標系)において、ロボットの位置と姿勢を示す座標を求める。この座標を所定位置座標と呼ぶ。所定位置座標は、アーム12,13やハンド14を折り畳んだ状態で計測される原点オフセットでは補償しきれないずれを補償するためのものであるから、アーム12,13やハンド14をできるだけ伸ばした状態で、かつロボットの基台11からできるだけ離れた位置で計測することが好ましい。そこで、本実施形態では、処理室22に設けられたカメラ23及び基準マーカー24を用いて所定位置座標の計測を行う。カメラ23及び基準マーカー24は、処理室22内において搬送室21から遠い側に設けられることが好ましい。
【0029】
所定位置座標の計測では、ワーク31として測定用の治具をハンド14の正しい位置に載置し、測定用の治具を載せたまま、教示データに基づいてハンド14を処理室22に移動させ、測定用の治具が写り込むようにしてカメラ24により撮影する。本実施形態においては、測定用の治具としては例えば四角形状のものを使用し、カメラ24によって撮影された画像から治具のエッジを抽出し、基準マーカー24の像と治具のエッジの像との位置関係から治具のエッジの座標を求め、これをロボットの所定位置座標とする。このとき、四角形である測定用の治具の頂点の位置の座標を求めてもよいし、頂点の座標に加え、ロボットの姿勢を示すものとして、頂点につながる2つの辺の向きを取得してもよい。基準マーカー24は処理室22に固定されているので、ここで求められる治具のエッジの座標すなわち所定位置座標は、外部座標系でのロボットの位置を示すものとなる。所定位置座標の計測において教示データに基づいてロボットを移動させるのは、バックラッシの影響を排除するためである。
【0030】
本実施形態の位置情報復元方法では、ロボット交換の前後での原点オフセットの変化量を第1ずれ量とし、ロボット交換の前後での所定位置座標の変化量を第2ずれ量とする。特許文献1,3に記載された方法は、結局は、第1ずれ量と第2ずれ量との和に相当するものを計測して教示データの修正に用いる方法であり、特許文献2に記載された方法は、第1ずれ量の計測に関するものである。これに対して本実施形態では、ロボット交換後に教示データを再使用する際には、第1ずれ量と第2ずれ量の両方を用いて教示データの修正を行なうものの、第1ずれ量と第2ずれ量とを別々に管理する。記憶部44において、ロボット交換前後の原点オフセットとそれから算出される第1ずれ量は原点オフセット格納部52に記憶され、ロボット交換前後の所定位置座標とそれから算出される第2ずれ量は所定位置座標記憶部53に記憶される。
【0031】
本実施形態において第1ずれ量と第2ずれ量とを別々に管理するのは、両者を1つのものとして管理した場合には、これらのずれ量に異常があったとしてもその異常を発見することが難しくなり、また、どちらのずれ量に異常が生じたかを判別することが難しくなることがあるためである。交換前後でのアームの長さの差などが第2ずれ量に影響する可能性はあるが、アームの長さにおける考え得る差よりもロボットの設置位置や向きの違いによる影響の方が大きいから、第2ずれ量は外部座標系に対するロボットの位置に関するずれ量であると考えて差し支えない。これに対して第1ずれ量はロボット自体の座標に関するずれ量である。したがってこれらのずれ量を別々に管理することに不都合は生じない。さらに、第1ずれ量及び第2ずれ量を取得する途中の過程で、例えば電圧異常などによりデータの欠落が発生したとしても、第1ずれ量の算出までが終わっているのであれば、再度最初からやり直す必要はなく、既に算出した第1ずれ量をそのまま利用して、第2ずれ量の算出から行なうことができる。
【0032】
ここで第2ずれ量について検討する。第2ずれ量には、ロボットが設置される平面におけるロボットの設置位置のずれと、ロボットの向きのずれとによって生ずる成分がある。本実施形態の目標は、ロボット交換後に再教示を行なうことなく教示データを再利用することであり、教示データを再利用したときに各処理室22におけるハンド14の位置の誤差を所定値以内とすることである。ロボットの設置位置における例えば1mmのずれは、ハンド14の位置における1mmのずれになるのに過ぎないが、ロボットのアーム12,13及びハンド14の長さの和が3mにもなるような大型の搬送ロボットを考えると、ロボットの向きでの0.1°のずれは、伸ばしたハンド14の位置での約5mmのずれに相当する。設置位置の誤差(ロボットの中心位置のずれ)を1mm以下とすることは容易であるが、向きの誤差を0.1°以下とすることは難しい。したがって、第2ずれ量はロボット交換後のロボットの向きのずれを補正するものであると考えることができ、そうであれば、1個の基準マーカー24を用いて簡潔な演算により第2ずれ量を求めることができることになる。そして正確に求めた第1ずれ量と、1個の基準マーカー24を用いて算出した第2ずれ量とを用いて、ロボット交換より前に使用していた教示データを修正することにより、その教示データを再利用することができる。
【0033】
本実施形態では、いずれかの処理室22に設けられたカメラ23及び基準マーカー24を用いて第2ずれ量を決定しているが、カメラ23及び基準マーカー24を設ける処理室22は、教示データに基づいてロボットを移動させるときに実際に使用する処理室22であることが好ましい。また、所定位置座標から第2ずれ量を求めたら第1ずれ量と第2ずれ量とを用いて教示データを修正し、いったん原点位置に戻ってから再度、上記の所定位置に移動して所定位置座標を求め、前回求めた所定位置座標と今回求めた所定位置座標との差が許容値以内であれば第2ずれ量を確定し、そうでなければ今回求めた所定位置座標によって第2ずれ量を更新することを繰り返すことにより、教示データを再利用するときの補正精度を高めることができる。
【0034】
図4は、本実施形態の位置情報復元方法による処理の一例を示している。まず、ステップ101において、ロボット交換を行なう前の原点オフセットを原点オフセット格納部52内に記憶する。ロボットを設置したときには、通常、そのロボットの原点合わせを行なって原点オフセットを求めているはずであるから、その値を利用すればよい。次にステップ102において、ロボットにワーク31として測定用の治具を取り付け、教示データに基づいて上述した所定位置にロボットを移動させ、カメラ23及び基準マーカー24を用いて治具のエッジを検出して所定位置座標を求める。ここで求めた所定位置座標を位置Pとし、所定位置座標格納部53内に記憶する。ここまでがロボット交換を行なう前の準備段階であり、続いてステップ103において、ロボット交換、すなわちロボットにおけるモータやアームなどの機器の交換、ロボット自体の再組み立てや移設を行なう。
【0035】
ロボット交換の終了後、ステップ104において、上述したようにロボットを機械的に原点位置に移動させてロボット交換後の原点オフセットを求めて原点オフセット格納部52内に記憶し、ステップ105において、原点オフセット格納部52内に記憶されているロボット交換前後での原点オフセットの差を第1ずれ量として求めて原点オフセット格納部52内に記憶する。続いてステップ106において、ステップ102で用いたものと同じ測定用の治具をロボットに搭載し、第1ずれ量に基づいて修正した教示データを用いてロボットを所定位置に移動させ、上述と同様にして所定位置座標を求め、このときの所定位置座標を位置Qとして所定位置座標格納部53内に記憶する。ステップ107において、位置Pと位置Qとの差から第2ずれ量を求めて所定位置座標格納部53内に記憶する。
【0036】
次に、ステップ108においてロボットコントローラ40に対するコマンド入力によってロボットを原点位置に移動させ、その後、第1ずれ量及び第2ずれ量とに基づいて修正した教示データを用いてロボットを原点位置から所定位置に移動させ、上述と同様にして所定位置座標を求め、このときの所定位置座標を位置Rとして所定位置座標格納部53内に記憶する。そしてステップ109において、ロボット交換前に求めた位置Pと今回求めた位置Rとの差が許容値を超えるか否かを判定する。許容値を超えるときは、第2ずれ量が精度よく求められていない場合であるから、ステップ110において、位置Pと位置Rと差に基づいて第2ずれ量を再計算し、所定位置座標格納部53内に記憶する。第2ずれ量の再計算では、再計算前の第2ずれ量では位置Pと位置Rに許容値を超えるずれが生じていたのであるから、このずれを解消するように第2ずれ量を修正する値を求める演算を行なう。ステップ110の実行後は、ステップ108に戻り、位置Pと位置Rとの差が許容値以内となるまでステップ108からステップ110の処理を繰り返す。ステップ109において位置Pと位置Rとの差が許容値以内であれば、第2ずれ量が確定したものとして、処理を終了する。
【0037】
上述のように第1ずれ量及び第2ずれ量が決定し、原点オフセット格納部52及び所定位置座標格納部53にそれぞれ記憶された後は、ロボット交換前に使用していた教示データに対して第1ずれ量及び第2ずれ量に基づく修正を施すことにより、ロボット交換後もその教示データを利用し続けることができることになる。
【0038】
以上説明した実施形態によれば、原点オフセットに基づく第1ずれ量と所定位置座標に基づく第2ずれ量とを別個に算出して記憶し、管理することにより、ずれ量における異常値の検出を確実に行なえるようになるとともに、第1ずれ量及び第2ずれ量を用いて教示データを修正することによって、再教示を行なうことなく、ロボット交換前に使用していた教示データをロボット交換後にも使用できるようになる。また、
図2に示すロボットコントローラ40は、原点オフセットと所定位置座標とを別個に管理できるようにしたものであるが、ハードウェア構成としては一般的なロボットコントローラと異なることはないので、本実施形態の位置情報復元方法は、一般的なロボットコントローラを用いて実現することができる。
【0039】
以上説明した本実施形態の位置情報復元方法では、処理室22に設けられた1つの基準マーカー24を用いて所定位置座標を求めているが、処理室22に設けられた2つの基準マーカー24を用いることにより、設置位置のずれと向きのずれとを分離して取得することができるようになり、第2ずれ量を短時間で精度よく求めることができるようになる。
図5は処理室22に2つの基準マーカー24を設けるとして、2つの基準マーカー24のそれぞれに対応してカメラ23を配置した例を示している。2つの基準マーカー24を用いて所定位置座標を求める場合には、設置位置のずれと向きのずれとを分離して得られるので、第1ずれ量については原点センサによる粗調整だけを行なって取得した値を用いても、教示データを再利用したときに十分な精度でロボットを移動させることができる。十分な広い視野を有するカメラ23を使用できるのであれば、単一のカメラ23を用いて測定用の治具が写り込むように2つの基準マーカー24を撮影することができ、その撮影画像から、設置位置のずれと向きのずれとを分離して取得することができる。四角形の測定用の治具を用いるのであれば、2つの基準マーカー24を用いるときは、治具の1つの対角線の両側の頂点の各々に対応して基準マーカー24を配置すればよい。このようにすることにより、治具のエッジを検出する2つの位置の間を距離を長くすることができるので、向きのずれを精度よく検出できるようになる。
【0040】
図1に示すロボットは、基台11に対してアーム12,13とハンド14とがこの順で連結した水平多関節ロボットであるが、本発明の位置情報復元方法が適用可能なロボットはこれに限られるものではない。特許文献5に示されたロボットは、基台と、基台に接続する基台側リンクと、基台側リンクの先端に接続するアーム側リンクと、アーム側リンクの先端に接続するアームと、アームの先端に接続するハンドと、基台に設けられて基台側リンクを昇降する機構と、を備え、リンク機構によってアーム側リンクの先端の動きが規制された水平多関節ロボットであるが、このようなロボットにも本発明は適用可能である。さらには、垂直多関節ロボットなどにも本発明は適用可能である。
【符号の説明】
【0041】
11…基台;12,13…アーム;14…ハンド;15…モータ;16…エンコーダ;21…搬送室;22…処理室;23…カメラ;24…基準マーカー;31…ワーク;40…ロボットコントローラ;41…バス;42…サーボ回路;43…CPU;44…記憶部;51…教示データ格納部;52…原点オフセット格納部;53…所定位置座標格納部;60…ティーチングペンダント。