(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-27
(45)【発行日】2022-06-06
(54)【発明の名称】搬送波再生回路
(51)【国際特許分類】
H04L 27/38 20060101AFI20220530BHJP
H04L 27/227 20060101ALI20220530BHJP
【FI】
H04L27/38 100
H04L27/227 100
(21)【出願番号】P 2018175344
(22)【出願日】2018-09-19
【審査請求日】2021-09-03
(73)【特許権者】
【識別番号】000004330
【氏名又は名称】日本無線株式会社
(74)【代理人】
【識別番号】100126561
【氏名又は名称】原嶋 成時郎
(72)【発明者】
【氏名】田中 康英
【審査官】北村 智彦
(56)【参考文献】
【文献】特開2006-74314(JP,A)
【文献】特開2012-39259(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 27/00-27/38
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
入力信号の位相を回転する第1の位相回転器と、
前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する適応等化器と、
前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、
前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、
前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、
理想点と前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新する第1のタップ更新部と、
前記理想点を中心に等距離に配置された複数の仮理想点のなかから、所定の規則に従って選択した仮理想点と、前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新する第2のタップ更新部と、
所定の条件に基づいて前記第1のタップ更新部または前記第2のタップ更新部の一方のタップ係数を前記適応等化器に出力する切替部と、
を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、
ことを特徴とする搬送波再生回路。
【請求項2】
前記第2のタップ更新部は、前記複数の仮理想点のうち前記適応等化器の出力信号から最も遠くに位置する仮理想点を選択する、
ことを特徴とする請求項1に記載の搬送波再生回路。
【請求項3】
前記切替部は、前記適応等化器の出力信号の電力レベルに基づいて、前記一方のタップ係数を前記適応等化器に出力する、
ことを特徴とする請求項1または2のいずれか1項に記載の搬送波再生回路。
【請求項4】
入力信号の位相を回転する第1の位相回転器と、
前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する適応等化器と、
前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、
前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、
前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、
理想点と該理想点を中心に等距離に配置された複数の仮理想点とのなかから、所定の規則に従って選択した前記理想点または前記仮理想点と、前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新するタップ更新部と、
を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、
ことを特徴とする搬送波再生回路。
【請求項5】
前記タップ更新部は、前記理想点と前記複数の仮理想点のなかからランダムに、前記理想点または前記仮理想点を選択する、
ことを特徴とする請求項4に記載の搬送波再生回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、デジタル無線伝送において搬送波・受信波を再生する搬送波再生回路に関する。
【背景技術】
【0002】
近年、無線トラフィックが増々増加しており、周波数利用の高効率化の観点からデジタル無線伝送においては、高多値QAM(Quadrature Amplitude Modulation、直角位相振幅変調)方式による高速伝送の要求が高まっている。この高多値QAM方式では、送信装置や受信装置において生じる搬送波の位相ノイズ(位相誤差)などによって、復調性能が劣化する場合がある。このため、位相ノイズと熱雑音の影響度に基づいて復調性能(ビット誤り率)を向上させる、という搬送波再生回路が知られている(例えば、特許文献1参照。)。
【0003】
この搬送波再生回路は、位相誤差検出器が検出する位相誤差と振幅誤差検出器が検出する振幅誤差とに基づいて、ループフィルタ制御部がループフィルタの帯域幅を制御することで、位相ノイズや熱雑音に応じた適切な帯域幅に設定し、復調性能を向上させる、というものである。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、高多値化変調においては、搬送波・キャリア再生の位相誤差検出範囲が著しく狭くなる。すなわち、低多値の場合には、隣接する理想点間の距離が大きいため位相誤差検出範囲が広いが、高多値の場合には、隣接する理想点間の距離が小さいため位相誤差検出範囲が狭くなる。そして、位相誤差検出範囲が著しく狭くなるため、位相ノイズ環境下で
図10に示すような位相ジッタ(位相の揺らぎ)が増加する状況になると、搬送波再生の同期外れに至る可能性がある。
【0006】
この結果、従来のように、判定指向アルゴリズムのみでタップ係数を更新した場合に、意図しない信号点配置に収束してしまう事象が生じてしまう。すなわち、
図11に示すように、位相回転した出力信号点(図中黒丸)が理想信号点・基準信号点(図中白丸)の枠F1からはみ出た場合、はみ出た部分P1の出力信号点がこの枠F1に入るようにタップ係数が更新される。この結果、
図12に示すように、出力信号点群が小さく収束して電力が低減する。そして、このようなタップ係数の更新を繰り返すことで、例えば
図13に示すように、理想信号点を中心にして4つの出力信号点が集約するように収束してしまう(信号点配置サイズが小さい状態で最適状態に陥る)事象が生じる。
【0007】
一方、特許文献1に記載の搬送波再生回路では、熱雑音の軽減を優先するか、位相ノイズの軽減を優先するかによって、高多値時の搬送波再生ループの諸元を切り替えるものであり、高多値化に伴う位相誤差検出範囲の低下による不安定動作については考慮されていないため、低C/N環境における復調器の安定動作を実現することが困難であった。
【0008】
そこで本発明は、高多値においても安定した高い復調性能を実現可能な搬送波再生回路を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するために、請求項1に記載の発明は、入力信号の位相を回転する第1の位相回転器と、前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する適応等化器と、前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、理想点と前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新する第1のタップ更新部と、前記理想点を中心に等距離に配置された複数の仮理想点のなかから、所定の規則に従って選択した仮理想点と、前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新する第2のタップ更新部と、所定の条件に基づいて前記第1のタップ更新部または前記第2のタップ更新部の一方のタップ係数を前記適応等化器に出力する切替部と、を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、ことを特徴とする搬送波再生回路である。
【0010】
請求項2に記載の発明は、請求項1に記載の搬送波再生回路において、前記第2のタップ更新部は、前記複数の仮理想点のうち前記適応等化器の出力信号から最も遠くに位置する仮理想点を選択する、ことを特徴とする。
【0011】
請求項3に記載の発明は、請求項1または2に記載の搬送波再生回路において、前記切替部は、前記適応等化器の出力信号の電力レベルに基づいて、前記一方のタップ係数を前記適応等化器に出力する、ことを特徴とする。
【0012】
請求項4に記載の発明は、入力信号の位相を回転する第1の位相回転器と、前記第1の位相回転器によって位相が回転された入力信号である位相回転信号の周波数特性を補償する適応等化器と、前記適応等化器によって補償された位相回転信号に含まれる位相誤差を検出する位相誤差検出器と、前記位相誤差に基づいて位相回転制御信号を生成する回転信号生成部と、前記位相回転制御信号に基づいて前記入力信号の位相を回転する第2の位相回転器と、理想点と該理想点を中心に等距離に配置された複数の仮理想点とのなかから、所定の規則に従って選択した前記理想点または前記仮理想点と、前記適応等化器の出力信号との誤差に基づくアルゴリズムで、前記適応等化器に対するタップ係数を更新するタップ更新部と、を備え、前記第1の位相回転器は、前記位相回転制御信号に基づいて前記入力信号の位相を回転する、ことを特徴とする搬送波再生回路である。
【0013】
請求項5に記載の発明は、請求項4に記載の搬送波再生回路において、前記タップ更新部は、前記理想点と前記複数の仮理想点のなかからランダムに、前記理想点または前記仮理想点を選択する、ことを特徴とする。
【発明の効果】
【0014】
請求項1および4に記載の発明によれば、適応等化器で周波数特性が補償された位相回転信号の位相誤差に基づいて、位相回転制御信号が生成され入力信号の位相が回転されるため、フェージングによる波形歪がある場合でも、搬送波の位相ノイズを高精度に推定して高い復調性能・搬送波再生を実現することが可能となる。さらに、適応等化器で位相回転信号の周波数特性が補償されるため、熱雑音の影響も軽減することが可能となる。
【0015】
また、理想点のみならず、該理想点を中心に等距離に配置された複数の仮理想点と、適応等化器の出力信号との誤差に基づいて適応等化器に対するタップ係数が更新されるため、適応等化器から安定した出力を得ることが可能となる。すなわち、1つの理想点のみでは意図しない信号点配置に収束してしまうおそれがあり、また、仮理想点のみでは信号点配置の正確な配置までは収束できないおそれがあるが、理想点と仮理想点とを併用してタップ係数を更新することで、安定した適応等化器出力を得ることが可能となる。この結果、高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。
【0016】
請求項2に記載の発明によれば、第2のタップ更新部においては、適応等化器の出力信号から最も遠い仮理想点と、適応等化器の出力信号との誤差、つまり、最も大きい誤差に基づいてタップ係数が更新されるため、意図しない信号点配置に収束してしまうのをより効果的に防止することが可能となる。
【0017】
請求項3に記載の発明によれば、適応等化器の出力信号の電力レベルに基づいて、理想点に基づいてタップ係数を更新するか仮理想点に基づいてタップ係数を更新するかが切り替えられるため、適応等化器の出力電力レベルに適したアルゴリズムでタップ係数を更新して、安定した適応等化器出力を得ることが可能となる。
【0018】
請求項5に記載の発明によれば、ランダムに選択された理想点または仮理想点と、適応等化器の出力信号との誤差に基づいてタップ係数が更新されるため、1つの理想点または仮理想点に固定されることで意図しない信号点配置に収束してしまうのを、簡易な構成で効果的に防止することが可能となる。
【図面の簡単な説明】
【0019】
【
図1】この発明の実施の形態1に係る搬送波再生回路を示す概略構成ブロック図である。
【
図2】
図1の搬送波再生回路を備えるマイクロ波無線システムを示す概略構成図である。
【
図3】
図1の搬送波再生回路の適応等化器周辺を示す概略構成ブロック図である。
【
図4】
図1の搬送波再生回路において、受信信号と理想点との位置関係例を示す図である。
【
図5】
図1の搬送波再生回路における理想点と仮理想点の配置関係を示す図である。
【
図6】
図1の搬送波再生回路の第2のタップ更新部によるタップ更新方法を示す説明図である。
【
図7】
図6の第2のタップ更新部によるタップ更新用誤差を示す図である。
【
図8】この発明の実施の形態2に係る搬送波再生回路の適応等化器周辺を示す概略構成ブロック図である。
【
図9】
図8の搬送波再生回路における理想点と仮理想点の配置関係を示す図である。
【
図10】この発明において、高多値化による位相ジッタが生じた状態を示す概念図である。
【
図11】この発明において、1つの理想点のみに基づいてタップ更新した場合の第1の信号状態を示す概念図である。
【発明を実施するための形態】
【0020】
以下、この発明を図示の実施の形態に基づいて説明する。
【0021】
(実施の形態1)
図1~
図7は、この実施の形態を示し、
図1は、この実施の形態に係る搬送波再生回路1を示す概略構成ブロック図である。この搬送波再生回路1は、デジタル無線伝送において搬送波を再生する回路であり、
図2に示すマイクロ波無線システムの受信装置102に設けられている。ここで、マイクロ波無線システムについてまず簡単に説明すると、送信装置101においてマッピングおよび変調された送信信号がアナログ変換され、搬送波W1で乗算されてアンテナから送信される。そして、マルチパスフェージング環境を経て受信装置102のアンテナで受信されると、搬送波W2で乗算され、周波数変換されたのち、ADCでデジタル変換され、搬送波再生回路1で復調されてデマッピングされるものである。
【0022】
搬送波再生回路1は、主として、第1の位相回転器2と、適応等化器3と、位相誤差検出器4と、LPF5と、NCO(回転信号生成部)6と、第2の位相回転器7と、等化器8と、を備える。
【0023】
第1の位相回転器2は、入力信号の位相を回転する回転器・乗算器であり、後述するNCO6の位相回転制御信号に基づいて入力信号の位相を回転する。具体的には、デジタル信号に変換されたIチャネルのベースバンド信号およびQチャネルのベースバンド信号の各々に対して、NCO6の位相回転制御信号の正弦波および余弦波に基づいて位相回転を行うものである。
【0024】
適応等化器3は、第1の位相回転器2によって位相が回転された入力信号である位相回転信号の周波数特性を補償する、つまり、位相回転信号の波形歪やデータ誤りを解消する等化器である。ここで、適応等化器3は、判定帰還型等化器(DFE:Decision Feedback Equalizer)や線形等化器で構成され、後述するようにして、タップ係数を更新するようになっている。
【0025】
位相誤差検出器4は、適応等化器3によって補償された位相回転信号に含まれる位相誤差を検出する検出器である。具体的な検出方法は周知の技術であり、例えば、送受信装置101、102間で用いられる変調方式の信号点配列のなかから、出力信号に応じた信号点を選択し、選択した信号点の座標と入力信号点の座標とを比較して、位相誤差値を算出する。
【0026】
LPF5は、位相誤差検出器4で検出された位相誤差の高周波成分を、所定の帯域幅に応じて除去するフィルタであり、ローパスフィルタ(Low Pass Filter)で構成されている。
【0027】
NCO6は、LPF5で高周波成分が除去された位相誤差に基づいて、位相回転制御信号を生成する生成部であり、NCO(Numerically Controlled Oscillator、数値制御発振器)で構成されている。具体的には、LPF5からの位相誤差に基づいて逆位相の正弦波および余弦波を生成し、第1の位相回転器2に出力することで、第1の位相回転器2による位相回転を制御するものである。さらに、生成した位相回転制御信号を第2の位相回転器7に出力する。
【0028】
第2の位相回転器7は、入力信号の位相を回転する回転器・乗算器であり、NCO6からの位相回転制御信号に基づいて入力信号の位相を回転して、周波数特性を補償する等化器8に出力する。すなわち、適応等化器3によって周波数特性補償(波形歪等が解消)されて検出された位相誤差に基づくNCO6からの正弦波および余弦波に基づいて、入力信号の位相を回転する。このように、搬送波再生ループ(第1の位相回転器2、位相誤差検出器4、LPF5およびNCO6のループ)のなかに適応等化器3が実装されており、これにより、周波数特性を補償した後に推定した位相誤差値に基づいて、入力信号の位相ノイズをキャンセルする。
【0029】
次に、適応等化器3に対するタップ係数の更新方法について説明する。この実施の形態では、
図3に示すように、適応等化器3に対してタップ係数メモリ30と、第1のタップ更新部31と、第2のタップ更新部32と、電力検出器(切替部)33と、タップ係数切替器(切替部)34と、を備える。タップ係数メモリ30は、後述するタップ係数切替器34からのタップ係数を記憶するメモリであり、記憶されたタップ係数を第1のタップ更新部31と第2のタップ更新部32に入力する。
【0030】
第1のタップ更新部31は、理想点(基準信号)と適応等化器3の出力信号との誤差に基づくアルゴリズム(通常の判定指向アルゴリズム)で、適応等化器3に対するタップ係数を更新する(タップ係数メモリ30から入力されたタップ係数を更新する)更新部である。すなわち、
図4に示すような受信信号(出力信号)Sと理想点Rとの位置関係の場合に、最小平均二乗誤差(MMSE:Minimum Mean Square Error)を規範とする判定指向アルゴリズムを利用して、出力信号と基準信号との誤差電力が最小になるようにタップ係数を算出、更新するものであり、判定指向アルゴリズムとして、LMS(Least Mean Square)アルゴリズムやRLS(Recursive Least Square)アルゴリズムが採用される。
【0031】
第2のタップ更新部32は、理想点Rを中心に等距離に配置された複数の仮理想点Kのなかから、所定の規則に従って選択した仮理想点Kと、適応等化器3の出力信号との誤差に基づくアルゴリズムで、適応等化器3に対するタップ係数を更新する更新部である。この際、複数の仮理想点Kのうち適応等化器3の出力信号から最も遠くに位置する仮理想点Kを選択して、タップ係数を更新する。
【0032】
具体的にこの実施の形態では、
図5に示すように、理想点Rが正四角形の中心になるように4つの仮理想点Kが該正四角形の角部に配置されている。ここで、全領域において隣接する仮理想点K間の距離が同一になるように、仮理想点Kが配置されている。このように配置された仮理想点Kのうち、適応等化器3の出力信号(受信信号)Sから最も遠くに位置する仮理想点Kを選択する。例えば、
図6に示すような出力信号Sの場合、出力信号Sに最も近い仮理想点Kは第1の仮理想点K1であり、この第1の仮理想点K1の対角に位置する(理想点Rを中心に点対象な)第3の仮理想点K3を最も遠くに位置する仮理想点Kとして選択する。このような選択を
図7に示すように全領域において行い、選択した仮理想点Kと適応等化器3の出力信号Sとのタップ更新用誤差に基づいて、第1のタップ更新部31と同様にして判定指向アルゴリズムでタップ係数を更新する。
【0033】
電力検出器33とタップ係数切替器34は、所定の条件に基づいて第1のタップ更新部31または第2のタップ更新部32の一方のタップ係数を適応等化器3に出力する切替部であり、この実施の形態では、適応等化器3の出力信号Sの電力レベルに基づいて、一方のタップ係数を適応等化器3に出力する。具体的には、電力検出器33において、適応等化器3の出力信号Sの電力レベルを検出し、その検出結果に基づいて、タップ更新部31、32のどちらのタップ係数を採用するかを示す「切替」信号をタップ係数切替器34に伝送する。これを受けてタップ係数切替器34においてスイッチを切り替え、第1のタップ更新部31あるいは第2のタップ更新部32のタップ係数を適応等化器3に出力する。
【0034】
ここで、どのような電力レベル(検出結果)のときに、第1のタップ更新部31または第2のタップ更新部32に切り替えるかは、適応等化器3の特性や所望の精度などに基づいて適宜設定される。例えば、通常時は第1のタップ更新部31のタップ係数を出力し、電力レベルが所定の閾値以下に達した場合に第2のタップ更新部32に切り替える。
【0035】
以上のように、この搬送波再生回路1によれば、適応等化器3で周波数特性が補償(波形歪等が解消)された位相回転信号の位相誤差に基づいて、位相回転制御信号が生成され入力信号の位相が回転されるため、フェージングによる波形歪がある場合でも、搬送波の位相ノイズを高精度に推定(位相誤差検出器4で検出)して高い復調性能・搬送波再生を実現することが可能となる。さらに、適応等化器3で位相回転信号の周波数特性が補償されるため、熱雑音の影響も軽減することが可能となる。
【0036】
また、理想点Rのみならず、該理想点Rを中心に等距離に配置された複数の仮理想点Kと、適応等化器3の出力信号Sとの誤差に基づいて適応等化器3に対するタップ係数が更新されるため、適応等化器3から安定した出力を得ることが可能となる。すなわち、1つの理想点Rのみでは意図しない信号点配置に収束してしまうおそれがあり、また、仮理想点Kのみでは信号点配置の正確な配置までは収束できないおそれがある。しかしながら、理想点Rと仮理想点Kとを併用してタップ係数を更新することで、安定した適応等化器出力を得ることが可能となる。
【0037】
具体的には、適応等化器3の出力信号Sの電力レベルに基づいて、理想点Rに基づいてタップ係数を更新するか仮理想点Kに基づいてタップ係数を更新するかが切り替えられるため、適応等化器3の出力電力レベルに適したアルゴリズムでタップ係数を更新して、安定した適応等化器出力を得ることが可能となる。この結果、高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。
【0038】
しかも、第2のタップ更新部32においては、適応等化器3の出力信号Sから最も遠い仮理想点Kと、適応等化器3の出力信号Sとの誤差、つまり、最も大きいタップ更新用誤差に基づいてタップ係数が更新されるため、意図しない信号点配置に収束してしまうのをより効果的に防止することが可能となる。
【0039】
(実施の形態2)
図8は、この実施の形態に係る搬送波再生回路1の適応等化器3周辺を示す概略構成ブロック図である。この実施の形態では、タップ係数を更新するタップ更新部35が実施の形態1と構成が異なり、実施の形態1と同等の構成については、同一符号を付することでその説明を省略する。
【0040】
タップ更新部35は、理想点Rと該理想点Rを中心に等距離に配置された複数の仮理想点Kとのなかから、所定の規則に従って選択した理想点Rまたは仮理想点Kと、適応等化器3の出力信号Sとの誤差に基づくアルゴリズムで、適応等化器3に対するタップ係数を更新する更新部である。この際、理想点Rと複数の仮理想点Kのなかからランダムに、理想点Rまたは仮理想点Kを選択する。
【0041】
具体的にこの実施の形態では、
図9に示すように、理想点Rが円の中心になるように6つの仮理想点K1~K6が円周上に配置されている。ここで、全領域において各理想点Rに対する仮理想点K1~K6の距離が同一になるように、仮理想点Kが配置されている。そして、このように配置された仮理想点K1~K6と理想点Rのなかから、無作為・ランダムに1つの理想点Rまたは仮理想点Kを選択する。次に、選択した理想点Rまたは仮理想点Kと適応等化器3の出力信号Sとのタップ更新用誤差に基づいて、判定指向アルゴリズムでタップ係数を更新する。
【0042】
例えば、理想点Rが選択された場合、理想点Rと適応等化器3の出力信号Sとのタップ更新用誤差に基づいてタップ係数を更新し、次に、仮理想点K3が選択された場合、仮理想点K3と適応等化器3の出力信号Sとのタップ更新用誤差に基づいてタップ係数を更新する。このように、タップ係数の更新時ごとに、タップ更新用誤差の基準となる理想点Rおよび仮理想点Kがランダムに変わるものである。
【0043】
このような実施の形態によれば、実施の形態1と同様に、理想点Rと仮理想点Kとを併用してタップ係数を更新するため、安定した適応等化器出力を得ることが可能となり、その結果、高精度かつ安定した復調性能・搬送波再生を実現することが可能となる。しかも、ランダムに選択された理想点Rまたは仮理想点Kと、適応等化器3の出力信号Sとの誤差に基づいてタップ係数が更新されるため、1つの理想点Rまたは仮理想点Kに固定されることで意図しない信号点配置に収束してしまうのを、簡易な構成で効果的に防止することが可能となる。
【0044】
以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、上記の実施の形態1では、適応等化器3の出力信号Sの電力レベルに基づいて、理想点Rに基づいてタップ係数を更新するか仮理想点Kに基づいてタップ係数を更新するかを切り替えているが、位相の揺らぎ(位相回転)に基づいて切り替えたり、所定時間ごとに切り替えたりしてもよい。
【0045】
同様に、上記の実施の形態2では、ランダムに理想点Rまたは仮理想点Kを選択しているが、規則的に選択するようにしてもよい。例えば、理想点Rを複数回選択した後に第1の仮理想点K1を選択し、次に、理想点Rを複数回選択した後に第2の仮理想点K2を選択する、というように、常時は理想点Rを選択して所定の間隔で仮理想点K1~K6を順次選択するようにしてもよい。
【0046】
1 搬送波再生回路
2 第1の位相回転器
3 適応等化器
30 タップ係数メモリ
31 第1のタップ更新部
32 第2のタップ更新部
33 電力検出器(切替部)
34 タップ係数切替器(切替部)
35 タップ更新部
4 位相誤差検出器
5 LPF
6 NCO(回転信号生成部)
7 第2の位相回転器
8 等化器
S 出力信号(受信信号)
R 理想点
K 仮理想点