(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-27
(45)【発行日】2022-06-06
(54)【発明の名称】予測スコア提供装置、予測スコア提供方法及び予測スコア提供プログラム
(51)【国際特許分類】
G06Q 50/20 20120101AFI20220530BHJP
G06Q 10/04 20120101ALI20220530BHJP
【FI】
G06Q50/20
G06Q10/04
(21)【出願番号】P 2018135690
(22)【出願日】2018-07-19
【審査請求日】2021-06-21
(73)【特許権者】
【識別番号】504046278
【氏名又は名称】アルー株式会社
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】落合 文四郎
【審査官】松野 広一
(56)【参考文献】
【文献】特開平01-189679(JP,A)
【文献】特開2017-003673(JP,A)
【文献】特開2018-031828(JP,A)
【文献】特開2016-091306(JP,A)
【文献】特開2009-288486(JP,A)
【文献】米国特許出願公開第2015/0093737(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00-99/00
(57)【特許請求の範囲】
【請求項1】
語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別部と、
前記文法判別部により判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計部と、
前記解答ごとに、前記解答の正誤を判定する正誤判定部と、
前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習部と、
前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出部と、
前記目的変数算出部により算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供部と、
を備える予測スコア提供装置。
【請求項2】
前記機械学習モデルは、少なくとも、線形回帰モデル、ランダムフォレストによる分類モデル及びニューラルネットワークによる分類モデルのうち複数のモデルであり、
前記目的変数算出部により算出された複数の前記目的変数に基づいて、前記対象受講生に対応する一つの目的変数を算出する第2の目的変数算出部を、さらに備え、
前記予測スコア提供部は、前記第2の目的変数算出部により算出された前記一つの目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する、
請求項1記載の予測スコア提供装置。
【請求項3】
前記機械学習部は、前記構築した複数の前記機械学習モデルの前記目的変数を、それぞれ第2の説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を第2の目的変数とする第2の線形回帰モデルを、さらに構築し、
前記第2の目的変数算出部は、前記目的変数算出部により算出された複数の前記目的変数を、前記前記第2の線形回帰モデルの前記第2の説明変数にそれぞれ設定し、前記第2の目的変数を算出することで、前記一つの目的変数を算出する、
請求項2記載の予測スコア提供装置。
【請求項4】
プロセッサに実行させる予測スコア提供方法であって、
語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別ステップと、
前記文法判別ステップにおいて判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計ステップと、
前記解答ごとに、前記解答の正誤を判定する正誤判定ステップと、
前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習ステップと、
前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出ステップと、
前記目的変数算出ステップにおいて算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供ステップと、
を含む予測スコア提供方法。
【請求項5】
前記機械学習モデルは、少なくとも、線形回帰モデル、ランダムフォレストによる分類モデル及びニューラルネットワークによる分類モデルのうち複数のモデルであり、
前記目的変数算出ステップにおいて算出された複数の前記目的変数に基づいて、前記対象受講生に対応する一つの目的変数を算出する第2の目的変数算出ステップを、さらに含み、
前記予測スコア提供ステップは、前記第2の目的変数算出ステップにおいて算出された前記一つの目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する、
請求項4記載の予測スコア提供方法。
【請求項6】
前記機械学習ステップは、前記構築した複数の前記機械学習モデルの前記目的変数を、それぞれ第2の説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を第2の目的変数とする第2の線形回帰モデルを、さらに構築し、
前記第2の目的変数算出ステップは、前記目的変数算出ステップにおいて算出された複数の前記目的変数を、前記前記第2の線形回帰モデルの前記第2の説明変数にそれぞれ設定し、前記第2の目的変数を算出することで、前記一つの目的変数を算出する、
請求項5記載の予測スコア提供方法。
【請求項7】
コンピュータを、
語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別部、
前記文法判別部により判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計部、
前記解答ごとに、前記解答の正誤を判定する正誤判定部、
前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習部、
前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出部、
前記目的変数算出部により算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供部、
として機能させる予測スコア提供プログラム。
【請求項8】
前記機械学習モデルは、少なくとも、線形回帰モデル、ランダムフォレストによる分類モデル及びニューラルネットワークによる分類モデルのうち複数のモデルであり、
前記目的変数算出部により算出された複数の前記目的変数に基づいて、前記対象受講生に対応する一つの目的変数を算出する第2の目的変数算出部としてコンピュータをさらに機能させ、
前記予測スコア提供部は、前記第2の目的変数算出部により算出された前記一つの目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する、
請求項7記載の予測スコア提供プログラム。
【請求項9】
前記機械学習部は、前記構築した複数の前記機械学習モデルの前記目的変数を、それぞれ第2の説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を第2の目的変数とする第2の線形回帰モデルを、さらに構築し、
前記第2の目的変数算出部は、前記目的変数算出部により算出された複数の前記目的変数を、前記前記第2の線形回帰モデルの前記第2の説明変数にそれぞれ設定し、前記第2の目的変数を算出することで、前記一つの目的変数を算出する、
請求項8記載の予測スコア提供プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、予測スコア提供装置、予測スコア提供方法及び予測スコア提供プログラムに関する。
【背景技術】
【0002】
下記特許文献1には、コールセンターに配置されている語学講師用の端末と、ユーザが携帯する携帯電話機との間で、映像信号及び音声信号を双方向に送受信しながら、語学学習を進行する語学習得システムが開示されている。この語学習得システムでは、ユーザが受講したい授業を予約すると、その予約時間に、語学講師用の端末とユーザの携帯電話機とがネットワークサーバーを介して接続され、授業が始まる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の語学習得システムでは、語学レッスンでの内容や理解度に基づいてアセスメントを行い、そのアセスメントの結果を他の受講生と比較して、受講生の能力が伸びる可能性を予測する仕組みがない。
【0005】
本発明は、このような事情に鑑みてなされたものであり、受講生の能力の伸びを予測して提供することができる予測スコア提供装置、予測スコア提供方法及び予測スコア提供プログラムを提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様に係る予測スコア提供装置は、語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別部と、前記文法判別部により判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計部と、前記解答ごとに、前記解答の正誤を判定する正誤判定部と、前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習部と、前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出部と、前記目的変数算出部により算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供部と、を備える。
【0007】
上記態様において、前記機械学習モデルは、少なくとも、線形回帰モデル、ランダムフォレストによる分類モデル及びニューラルネットワークによる分類モデルのうち複数のモデルであり、前記目的変数算出部により算出された複数の前記目的変数に基づいて、前記対象受講生に対応する一つの目的変数を算出する第2の目的変数算出部を、さらに備え、前記予測スコア提供部は、前記第2の目的変数算出部により算出された前記一つの目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供することとしてもよい。
【0008】
上記態様において、前記機械学習部は、前記構築した複数の前記機械学習モデルの前記目的変数を、それぞれ第2の説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を第2の目的変数とする第2の線形回帰モデルを、さらに構築し、前記第2の目的変数算出部は、前記目的変数算出部により算出された複数の前記目的変数を、前記前記第2の線形回帰モデルの前記第2の説明変数にそれぞれ設定し、前記第2の目的変数を算出することで、前記一つの目的変数を算出することとしてもよい。
【0009】
本発明の他の態様に係る予測スコア提供方法は、プロセッサに実行させる予測スコア提供方法であって、語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別ステップと、前記文法判別ステップにおいて判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計ステップと、前記解答ごとに、前記解答の正誤を判定する正誤判定ステップと、前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習ステップと、前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出ステップと、前記目的変数算出ステップにおいて算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供ステップと、を含む。
【0010】
本発明の他の態様に係る予測スコア提供プログラムは、コンピュータを、語学レッスンに用いる複数の設問に対する受講生の解答を、前記設問ごとに単語に分解し、当該分解した単語の品詞の組み合わせに基づいて、前記設問に割り当てられた文法の種類を判別する文法判別部、前記文法判別部により判別された前記文法の種類に基づいて、前記受講生ごとに前記文法の種類別の設問数を集計する集計部、前記解答ごとに、前記解答の正誤を判定する正誤判定部、前記語学レッスンを受講した受講生全体における前記文法の種類別の設問数、前記受講生全体における前記解答の正誤、前記受講生全体における前記解答に用いられた単語及び前記受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、前記受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習モデルを構築する機械学習部、前記構築された前記機械学習モデルの前記説明変数に対し、アセスメントの対象となる対象受講生における前記文法の種類別の設問数、前記対象受講生における前記解答の正誤、前記対象受講生における前記解答に用いられた単語及び前記対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、前記機械学習モデルの前記目的変数を算出する目的変数算出部、前記目的変数算出部により算出された前記目的変数に基づいて、前記対象受講生におけるアセスメントの予測スコアを提供する予測スコア提供部、として機能させる。
【発明の効果】
【0011】
本発明によれば、受講生の能力の伸びを予測して提供することができる。
【図面の簡単な説明】
【0012】
【
図1】実施形態における英語学習システムの実施例の一つを示す図である。
【
図2】
図1に示す英語学習システムの機能構成を例示する図である。
【
図3】
図1に示す英語学習システムで実行される文法判別処理の流れを例示する模式図である。
【
図4】
図1に示す英語学習システムで実行される正誤判定処理の流れを例示する模式図である。
【
図5】
図1に示す英語学習システムで機械学習モデルを構築する際の手順を例示する模式図である。
【
図6】
図1に示す英語学習システムで目的変数であるスコアの予測変動値を算出する際の手順を例示する模式図である。
【
図7】予測スコアの変動範囲と信頼度とをグラフ化して提供する際の一例を示す図である。
【発明を実施するための形態】
【0013】
以下、添付図面を参照して、本発明に係る予測スコア提供装置の機能を含む英語学習システムの好適な実施形態について説明する。実施形態では、例示的に英語を学習する場合について説明するが、学習の対象は英語に限定されず、他の言語の学習にも本発明を適用することができる。
【0014】
まず、
図1を参照して、実施形態における英語学習システムについて説明する。英語学習システム1は、一つ又は複数のサーバ装置やデータベースを用いて構築することができる。英語学習システム1は、通信回線4a、4bを介してそれぞれ接続してきた受講生用端末2と講師用端末3とを電話回線5を利用して接続させる。英語学習システム1は、電話回線5により接続された受講生用端末2と講師用端末3とを利用して受講生と講師とが通話をしながら進める英語レッスンの進行を制御する。
【0015】
受講生用端末2は、受講生が携帯する端末である。受講生用端末2としては、例えばスマートフォンや携帯電話機等の通話機能を有する携帯端末が該当する。講師用端末3は、講師が利用する端末である。講師用端末3としては、例えばパーソナルコンピュータ等の小型端末が該当し、この小型端末には、電話回線を利用する通話機能が組み込まれている。講師用端末3は、例えばコールセンター等の同一施設内に複数台配置されている。講師用端末3を収容する施設は、日本国内に設けられていてもよいし、外国に設けられていてもよい。
【0016】
なお、講師用端末3は、同一の施設内に複数台配置されている小型端末には限定されず、例えば、講師が所持するパーソナルコンピュータや、スマートフォン、携帯端末等であってもよい。
【0017】
英語学習システム1は、物理的な構成として、例えば、プロセッサと、記憶装置と、通信インタフェースとを含む。プロセッサは、算術論理演算ユニット及び各種レジスタから構成され、記憶装置に格納されているコンピュータプログラムを実行することで、後述する各種機能を実現する。
【0018】
記憶装置は、例えば、ディスクドライブ又は半導体メモリ等のコンピュータ読み取り可能な記録媒体である。通信インタフェースは、ネットワークに接続し、ネットワーク上の他の端末と通信をするためのハードウェアモジュールである。
【0019】
図2を参照して、英語学習システム1の機能的な構成について説明する。英語学習システム1は、例えば、宿題提供機能を有する。宿題提供機能は、例えば、文法判別部11と、集計部12と、正誤判定部13と、機械学習部14と、目的変数算出部15と、予測スコア提供部16と、を含む。なお、英語学習システム1の機能は、宿題提供機能に限定されず、例えば、レッスン進行機能、アセスメント機能等を有することができる。
【0020】
英語学習システム1は、記憶装置に構築されるデータベースとして、例えば、受講生情報データベース181、解答履歴情報データベース182及び設問情報データベース183を備える。
【0021】
受講生情報データベース181は、受講生に関する受講生情報を格納するデータベースである。受講生情報データベース181は、データ項目として、例えば、受講生ID項目、メールアドレス項目、氏名項目、電話番号項目、進捗状況項目及びグレード項目等を有する。
【0022】
進捗状況項目は、レッスンの進捗状況を格納する。レッスンの進捗状況として、例えば受講生が到達したカリキュラムの最新のモジュール番号を用いることができる。モジュールの詳細については後述する。グレード項目は、例えば受講生の理解力や会話力等の能力のレベルを格納する。この進捗状況項目及びグレード項目は、後述する評価項目ごとに設けられる。
【0023】
解答履歴情報データベース182は、受講生が受講したレッスンで用いられた設問に対する受講生の解答内容を格納するデータベースである。解答履歴情報データベース182は、例えば、受講生IDごとに、レッスンを受講した日時(時間は時間帯)を記録し、その日時ごとに、解答内容を記録する。
【0024】
設問情報データベース183は、レッスンで用いる設問の内容を格納するデータベースである。設問は、例えば、レイヤー、評価項目、グレード及びモジュールごとに設けることができる。レイヤーは、レッスンのレベルを示す。レイヤーとして、例えば、初級レベルである(1)“Basic”レイヤー、(2)中級レベルである“Intermediate”レイヤー、(3)上級レベルである“Advanced”レイヤー等を設けることができる。
【0025】
評価項目は、レイヤーごとに設ける評価の内容を示す。例えば、上記3つのレイヤーに対し、それぞれ以下の評価項目を設けることができる。(1)“Basic”レイヤー:“Attitude”、“Speaking”、“Listening”、“Grammar”及び“Vocabulary”の5つの評価項目。(2)“Intermediate”レイヤー:“Logical Speaking”、“Assertiveness”、“Active Listening”及び“Relationship Building”の4つの評価項目。(3)“Advanced”レイヤー:“Management Communication”、“Storytelling”、“Negotiation”及び“Facilitation”の4つの評価項目。
【0026】
グレードは、評価項目ごとの能力レベルを示す。グレードとして、例えば、6段階の能力レベルを設けることができる。その場合、能力レベルの低い方から順に、“E”、“D”、“C”、“B”、“A”、“S”のように、グレードを設定することができる。
【0027】
モジュールは、カリキュラムを構成する最小単位であり、受講生はモジュール単位にレッスンを受講する。受講生は、現時点のグレードに割り当てられている全てのモジュールをクリアすると、次のグレードに進むことができる。
【0028】
図2に示す文法判別部11は、対象となる受講生のレッスンに用いる設問に割り当てられた文法の種類を判別する。
図3を参照し、文法の種類を判別する文法判別処理について詳細に説明する。
【0029】
最初に、文法判別部11は、対象受講生のレッスンに用いる複数の設問のうち、最初の設問に対する受講生の解答を単語に分解する(ステップS11)。例えば、最初の設問に対する受講生の解答が“I have been to America.”である場合、文法判別部11は、5つの単語“I”、“have”、“been”、“to”、“America”に分解する。
【0030】
続いて、文法判別部11は、上記ステップS11で分解した単語の品詞を判別する(ステップS12)。文法判別部11は、品詞を判別する際に、連続する複数の品詞を一つの品詞に統合できる場合、その連続する複数の品詞を一つの品詞に置き換える。連続する複数の品詞が一つの品詞に統合できるものとして、例えば、“前置詞”の後に“名詞”が続く場合や、“前置詞”の後に“冠詞”、“名詞”が続く場合がある。
【0031】
具体的に、“to America”は、“to”が“前置詞”であり、“America”が“名詞”である。この場合、“to”と“America”が統合され、その品詞が“副詞”に置き換えられる。また、“in the park”は、“in”が“前置詞”であり、“the”が冠詞であり、“park”が名詞である。この場合、“in”と“the”と“park”が統合され、その品詞が“副詞”に置き換えられる。
【0032】
続いて、文法判別部11は、上記ステップS12で判別した品詞の組み合わせに基づいて、設問に割り当てられた文法の種類を判別する(ステップS13)。例えば、品詞の組み合わせが、名詞+助動詞(have)+動詞(過去分詞)である場合には、文法の種類が“G1:現在完了”と判別される。同様に、品詞の組み合わせが、名詞+be動詞+動詞(過去分詞)である場合には、文法の種類が“G2:受動態”と判別される。品詞の組み合わせが、名詞+be動詞+動詞(現在分詞)である場合には、文法の種類が“G3:進行形”と判別される。
【0033】
続いて、文法判別部11は、対象受講生のレッスンに用いる複数の設問のうち次の設問に対して、上記ステップS11~ステップS13の処理を行う。一方、上記ステップS11~ステップS13の処理が、対象受講生のレッスンに用いる全ての設問に対して終了した場合には、この文法判別処理を終了する。
【0034】
図2に示す集計部12は、文法判別部11により判別された文法の種類に基づいて、受講生ごとに、文法の種類別の設問数を集計する。例えば、受講生のレッスンに用いる設問が10問であった場合に、現在完了が4問、受動態が4問、進行形が2問のように集計される。
【0035】
正誤判定部13は、受講生の解答ごとに、解答の正誤を判定する。
図4を参照し、解答の正誤を判定する正誤判定処理について詳細に説明する。
【0036】
最初に、正誤判定部13は、受講生の解答である“I have been to America.”から助動詞“have”を除外し、動詞“been”を現在形にした“I am to America.”をマトリクス化する(ステップS21)。助動詞を除外して動詞を現在形にすることで、判定対象を単純化することができる。
【0037】
続いて、正誤判定部13は、be動詞である“am”の前後にあるそれぞれの単語の品詞が名詞であるか形容詞であるかを判定し、2行2列の行列を生成する(ステップS22)。例えば、“am”の前にある“I”は、名詞であるため、行列の1行1列に“1”を設定し、行列の2行1列に“0”を設定する。“am”の後ろにある“to America”は、副詞であるため、行列の1行2列及び2行2列にそれぞれ“0”を設定する。なお、動詞の前後に複数の単語が存在する場合にはそれぞれの判定結果を加算して行列に設定する。
【0038】
続いて、正誤判定部13は、上記ステップS22で生成した行列と、予め登録されている正しいパターンの行列とを比較し、生成した行列と一致する正しいパターンの文型及び判定対象の動詞に基づいて、受講生の解答が正しいかどうかを判定する(ステップS23)。例えば、生成した行列と一致した正しいパターンの文型が、第1文型であった場合、判定対象の動詞である“am”は、第1文型の動詞として使用できる動詞である。したがって、受講生の解答は正しいと判定する。動詞ごとに、使用できる文型を定めたテーブルを予め準備しておき、そのテーブルを参照して対象文型に使用できる動詞であるか否かを判定することが好ましい。
【0039】
ここで、解答に、複数の動詞が含まれる場合には、それぞれの動詞ごとに、上記ステップS21~ステップS23の処理を行い、全ての動詞で正しいと判定された場合に、受講生の解答が正しいと判定する。一方、いずれかの動詞で誤っていると判定された場合に、受講生の解答は誤りであると判定する。
【0040】
図2に示す機械学習部14は、語学レッスンの内容や受講生の解答を機械学習させることで、機械学習モデルを構築する。本実施形態では、機械学習モデルとして、線形回帰モデル、ランダムフォレストによる分類モデル(以下、「ランダムフォレストモデル」ともいう。)及びニューラルネットワークによる分類モデル(以下、「ニューラルネットワークモデル」ともいう。)を用いる。
【0041】
具体的に、機械学習部14は、対象となる語学レッスンを受講した受講生全体における文法の種類別の設問数、受講生全体における解答の正誤、受講生全体における解答に用いられた単語及び受講生全体におけるアセスメントの前回スコアを、それぞれ説明変数とし、受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習アルゴリズムを用いて、機械学習させることで、第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルをそれぞれ構築する。
【0042】
また、機械学習部14は、上記構築した第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルからの出力(目的変数)を、それぞれ説明変数とし、受講生全体におけるアセスメントのスコア変動値を目的変数とする機械学習アルゴリズムを用いて、機械学習させることで、第2の線形回帰モデルを構築する。
【0043】
図5を参照して、機械学習モデルを構築する際の手順について詳細に説明する。
【0044】
図5のIaは、受講生ごとの入力データであり、具体的には、機械学習する対象レッスンの全てのスクリプト及び連続するアセスメントの結果が含まれる。スクリプトは、例えば一センテンスの英文から構成される。連続するアセスメントの結果は、例えば、前回及び今回のアセスメントの結果である。
【0045】
Taは、集計部12により集計される文法の種類別の設問数を示すテーブルである。Tbは、正誤判定部13により判定される解答の正誤を示すテーブルである。Laは、受講生の解答に用いられた単語に基づいて分析された、解答に用いられた延べの単語、解答に用いられたユニークな単語等を示すリストである。Saは、前回のアセスメントのスコアであり、Sbは、今回のアセスメントのスコアの変動値である。今回のアセスメントのスコアの変動値Sbは、今回のアセスメントのスコアから前回のアセスメントのスコアSaを減算することで算出できる。
【0046】
最初に、集計部12及び正誤判定部13が、入力データIaに基づいて、テーブルTa、Tbを生成し、さらに、リストLa、スコアSa及びスコアの変動値Sbを生成する(ステップS31)。
【0047】
続いて、機械学習部14は、上記ステップS31で生成されたテーブルTa、Tb、リストLa及びスコアSaの各値を、それぞれ説明変数とし、スコアの変動値Sbを目的変数とする機械学習アルゴリズムを用いて、機械学習させることで、第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルをそれぞれ構築する(ステップS32)。
【0048】
続いて、機械学習部14は、ステップS32で構築する第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルからの出力を、それぞれ説明変数とし、スコアの変動値Sbを目的変数とする機械学習アルゴリズムを用いて、機械学習させることで、第2の線形回帰モデルを構築する(ステップS33)。
【0049】
図2に示す目的変数算出部15は、アセスメントの対象となる対象受講生のデータを、機械学習モデルの説明変数に設定して、目的変数を算出することで、スコアの予測変動値を算出する。
【0050】
具体的に、目的変数算出部15は、機械学習部14により構築された第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルの説明変数に対し、対象受講生における文法の種類別の設問数、対象受講生における解答の正誤、対象受講生における解答に用いられた単語及び対象受講生におけるアセスメントの前回スコアを、それぞれ設定し、第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルの目的変数をそれぞれ算出する。
【0051】
また、目的変数算出部(第2の目的変数算出部)15は、算出した三つの目的変数を、第2の線形回帰モデルの説明変数にそれぞれ設定し、目的変数を算出することで、対象受講生に対応する一つの目的変数を算出する。
【0052】
図6を参照して、目的変数であるスコアの予測変動値を算出する際の手順について詳細に説明する。
【0053】
図6のIbは、対象受講生の入力データであり、具体的には、対象受講生の対象期間の全てのスクリプト及び前回のアセスメントの結果が含まれる。対象期間は、前回のアセスメントの結果に基づいて、今回のアセスメントのスコアを予測する際に必要となるデータを確保できる期間を考慮して、任意に設定することができる。テーブルTa、Tb、リストLa及びスコアSa、スコアの変動値Sbは、
図5と同様であるため、説明を省略する。
【0054】
最初に、集計部12及び正誤判定部13が、入力データIbに基づいて、テーブルTa、Tbを生成し、さらに、リストLa及びスコアSaを生成する(ステップS41)。
【0055】
続いて、目的変数算出部15は、上記ステップS41で生成されたテーブルTa、Tb、リストLa及びスコアSaの各値を、第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルの説明変数にそれぞれ設定し、三つの目的変数を算出する(ステップS42)。
【0056】
続いて、目的変数算出部15は、ステップS42で算出した三つの目的変数を、第2の線形回帰モデルの説明変数にそれぞれ設定し、一つの目的変数を算出する(ステップS43)。この一つの目的変数が、対象受講生のスコアの予測変動値となる。
【0057】
図2に示す予測スコア提供部16は、目的変数算出部15により算出された一つの目的変数に基づいて、対象受講生におけるアセスメントの予測スコアを提供する。具体的に、予測スコア提供部16は、一つの目的変数として算出されたスコアの予測変動値を、前回のアセスメントのスコアSaに加算することで、予測スコアを算出する。
【0058】
予測スコア提供部16は、予測スコアを提供する際に、予測スコアの変動範囲と信頼度とを提供することとしてもよい。例えば、予測スコア提供部16は、予測スコアが“280点”である場合に、“280点±30点(信頼度70%)”、“280点±50点(信頼度90%)”等の情報を提供することとしてもよい。予測スコアの変動範囲と信頼度とを提供する際に、上記のように文字情報として提供してもよいし、
図7に例示するようにグラフ化して提供することとしてもよい。
図7のGaは、予測スコア(280点)を示すグラフであり、Gbは、予測スコア(280点)±30点(信頼度70%)の範囲を示す指標であり、Gcは、予測スコア(280点)±50点(信頼度90%)の範囲を示す指標である。
【0059】
上述したように、実施形態における英語学習システム1によれば、アセスメントの対象となる対象受講生の解答に含まれる単語の品詞の組み合わせから判明する文法の種類に従って、対象受講生が解いた文法の種類別の設問数及び各設問に対する解答の正誤を求めることができるため、対象受講生のレッスンの理解度や語学の能力を文法の種類ごとに把握することが可能となる。
【0060】
また、英語学習システム1によれば、受講生全体のデータを用いて機械学習させた第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルの説明変数に対し、対象受講生における文法の種類別の設問数、解答の正誤、解答に用いられた単語及びアセスメントの前回スコアを、それぞれ設定して三つの目的変数を算出するとともに、第1の線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルからの出力データを用いて機械学習させた第2の線形回帰モデルの説明変数に対し、三つの目的変数をそれぞれ設定してスコアの予測変動値である目的変数を算出することができる。したがって、受講生全体のスコアの変動傾向を理解度や能力と組み合わせて分析し、その分析結果に対象受講生のデータを当てはめて、対象受講生のスコアの予測変動値を算出することが可能となる。
【0061】
さらに、英語学習システム1によれば、対象受講生のスコアの予測変動値に基づいて、対象受講生のアセスメントの予測スコアを算出して提供することができる。
【0062】
それゆえ、実施形態における英語学習システム1によれば、受講生の能力の伸びを予測して提供することができる。
【0063】
[変形例]
なお、本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、他の様々な形で実施することができる。このため、上記実施形態はあらゆる点で単なる例示にすぎず、限定的に解釈されるものではない。例えば、上述した各処理ステップは処理内容に矛盾を生じない範囲で任意に順番を変更し、又は並列に実行することができる。
【0064】
上述した実施形態では、機械学習モデルとして、線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルを用いて機械学習しているが、これに限定されない。例えば、線形回帰モデル、ランダムフォレストモデル及びニューラルネットワークモデルのうち、いずれか一つ又は二つの機械学習モデルを用いて機械学習することとしてもよい。機械学習モデルが一つである場合には、複数の目的変数を一つにまとめる第2の線形回帰モデルを省略することができる。
【0065】
また、上述した実施形態では、受講生用端末2と講師用端末3とが電話回線5を介して接続しているが、この構成には限定されない。例えば、受講生用端末2と講師用端末3とが、電話回線5を利用せずに、通信回線を介して接続することとしてもよい。通信回線としては、例えば、Skype(登録商標)を含むVoIP(Voice over Internet Protocol)技術を適用した通信回線が該当する。この場合、VoIPのアカウントとして受講生用端末2に割り当てられる識別IDを、受講生情報の受講生IDとして用いることができる。
【符号の説明】
【0066】
1…英語学習システム、2…受講生用端末、3…講師用端末、4a、4b…通信回線、5…電話回線、11…文法判別部、12…集計部、13…正誤判定部、14…機械学習部、15…目的変数算出部、16…予測スコア提供部、181…受講生情報データベース、182…解答履歴情報データベース、183…設問情報データベース