IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 荏原冷熱システム株式会社の特許一覧

<>
  • 特許-ターボ冷凍機 図1
  • 特許-ターボ冷凍機 図2
  • 特許-ターボ冷凍機 図3
  • 特許-ターボ冷凍機 図4
  • 特許-ターボ冷凍機 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-27
(45)【発行日】2022-06-06
(54)【発明の名称】ターボ冷凍機
(51)【国際特許分類】
   F25B 1/053 20060101AFI20220530BHJP
   F25B 39/02 20060101ALI20220530BHJP
   F25B 1/00 20060101ALI20220530BHJP
【FI】
F25B1/053 A
F25B39/02 M
F25B1/00 101Z
【請求項の数】 4
(21)【出願番号】P 2018212982
(22)【出願日】2018-11-13
(65)【公開番号】P2020079673
(43)【公開日】2020-05-28
【審査請求日】2021-03-26
(73)【特許権者】
【識別番号】503164502
【氏名又は名称】荏原冷熱システム株式会社
(74)【代理人】
【識別番号】100118500
【弁理士】
【氏名又は名称】廣澤 哲也
(74)【代理人】
【識別番号】100091498
【弁理士】
【氏名又は名称】渡邉 勇
(72)【発明者】
【氏名】福住 幸大
【審査官】関口 勇
(56)【参考文献】
【文献】特開2000-230760(JP,A)
【文献】特開2017-190926(JP,A)
【文献】特開2009-204258(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/053
F25B 39/02
F25B 1/00
(57)【特許請求の範囲】
【請求項1】
冷媒液を蒸発させて冷媒ガスを生成する蒸発器と、
前記冷媒ガスを圧縮する第1圧縮機および第2圧縮機と、
前記圧縮された冷媒ガスを凝縮させて前記冷媒液を生成する凝縮器を備え、
前記第1圧縮機および前記第2圧縮機は、前記蒸発器に並列に連結されており、
前記蒸発器は、前記冷媒液が導入される缶胴と、前記缶胴内に配置された伝熱管と、前記伝熱管に被冷却流体を導入する入口ポートと、前記第1圧縮機の吸込口に連結された第1冷媒ガス出口と、前記第2圧縮機の吸込口に連結された第2冷媒ガス出口を備え、
前記第1冷媒ガス出口は、前記缶胴の入口側領域に位置し、
前記第2冷媒ガス出口は、前記缶胴の反入口側領域に位置し、
前記入口側領域は、前記入口ポートに隣接しており、
前記缶胴の長手方向の長さをLとすると、前記入口側領域の長さは1/4Lであり、前記反入口側領域の長さは3/4Lであり、
前記第1冷媒ガス出口は、前記缶胴の長手方向において前記入口側領域の中心側に位置しており、
前記第2冷媒ガス出口は、前記缶胴の長手方向において前記反入口側領域の中心側に位置している、ターボ冷凍機。
【請求項2】
前記蒸発器は、前記缶胴の内部を塞ぐように配置されたデミスタをさらに備えており、前記デミスタは前記伝熱管の上方に位置している、請求項1に記載のターボ冷凍機。
【請求項3】
前記蒸発器は、前記缶胴に設けられた冷媒液導入口を有しており、
前記冷媒液導入口は、前記缶胴の長手方向における中心と、反入口ポート側の端壁との間に位置している、請求項1に記載のターボ冷凍機。
【請求項4】
冷媒液を蒸発させて冷媒ガスを生成する蒸発器と、
前記冷媒ガスを圧縮する第1圧縮機および第2圧縮機と、
前記圧縮された冷媒ガスを凝縮させて前記冷媒液を生成する凝縮器と、
前記凝縮器から前記蒸発器まで延びるホットガスバイパスラインを備え、
前記第1圧縮機および前記第2圧縮機は、前記蒸発器に並列に連結されており、
前記蒸発器は、前記冷媒液が導入される缶胴と、前記缶胴内に配置された伝熱管と、前記伝熱管に被冷却流体を導入する入口ポートと、前記第1圧縮機の吸込口に連結された第1冷媒ガス出口と、前記第2圧縮機の吸込口に連結された第2冷媒ガス出口を備え、
前記第1冷媒ガス出口は、前記缶胴の入口側領域に位置し、
前記第2冷媒ガス出口は、前記缶胴の反入口側領域に位置し、
前記入口側領域は、前記入口ポートに隣接しており、
前記缶胴の長手方向の長さをLとすると、前記入口側領域の長さは1/4Lであり、前記反入口側領域の長さは3/4Lであり、
前記ホットガスバイパスラインは、前記缶胴に設けられたホットガス導入口に接続されており、
前記ホットガス導入口は、前記缶胴の長手方向における中心と、反入口ポート側の端壁との間に位置している、ターボ冷凍機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の圧縮機を備えたターボ冷凍機に関し、特に複数の圧縮機の吸込口が連結された蒸発器に関するものである。
【背景技術】
【0002】
冷凍空調装置などに利用されるターボ冷凍機は、冷媒を封入したクローズドシステムとして構成される。ターボ冷凍機は、一般に、被冷却流体から熱を奪って冷媒が蒸発して冷凍効果を発揮する蒸発器と、前記蒸発器で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスを生成する圧縮機と、高圧の冷媒ガスを冷却流体で冷却して凝縮させる凝縮器と、前記凝縮した冷媒を減圧して膨張させる膨張弁(膨張機構)とを、冷媒配管によって連結して構成されている。
【0003】
2台の圧縮機を備えたターボ冷凍機では、安定した運転を実現するために、各圧縮機への冷媒ガスの流量を均等にする必要がある。そこで、流量を均等にするために、図5に示すように、蒸発器200に接続された共通の冷媒ガス配管201から2つの吸込管202A,202Bを分岐させ、これら2つの吸込管202A,202Bに2台の圧縮機205A,205Bを接続する構成が採用されることがある。
【先行技術文献】
【特許文献】
【0004】
【文献】特公平5-67864号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、共通の冷媒ガス配管201を用いた上記構成は、2つの圧縮機205A,205Bを対称に配置する必要がある。対称的な2つの圧縮機205A,205Bを製造するためには、別々の鋳型を用意する必要があり、製造コストが上昇していた。
【0006】
特許文献1には、2つの圧縮機が同じ方向を向いて配置されている冷凍システムが開示されている。この配置によれば、同じ形状を持つ2台の圧縮機を使用できるので、圧縮機に掛かるコストを下げることは可能である。しかしながら、2台の圧縮機は、蒸発器の異なる箇所に接続されるため、2台の圧縮機が吸い込む冷媒ガスの流量は不均等となる。つまり、通常、蒸発器内内に存在する冷媒ガスの量は、蒸発器内の場所によって異なるため、2台の圧縮機は異なる流量で冷媒ガスを吸い込むこととなる。このような構成の冷凍システムにおいて冷媒ガスの流量をバランスさせるためには、複雑な制御が必要であった。
【0007】
そこで、本発明は、複数の圧縮機に流れる冷媒ガスの流量を均等にすることができる蒸発器を備えたターボ冷凍機を提供する。
【課題を解決するための手段】
【0008】
一態様では、冷媒液を蒸発させて冷媒ガスを生成する蒸発器と、前記冷媒ガスを圧縮する第1圧縮機および第2圧縮機と、前記圧縮された冷媒ガスを凝縮させて前記冷媒液を生成する凝縮器を備え、前記第1圧縮機および前記第2圧縮機は、前記蒸発器に並列に連結されており、前記蒸発器は、前記冷媒液が導入される缶胴と、前記缶胴内に配置された伝熱管と、前記伝熱管に被冷却流体を導入する入口ポートと、前記第1圧縮機の吸込口に連結された第1冷媒ガス出口と、前記第2圧縮機の吸込口に連結された第2冷媒ガス出口を備え、前記第1冷媒ガス出口は、前記缶胴の入口側領域に位置し、前記第2冷媒ガス出口は、前記缶胴の反入口側領域に位置し、前記入口側領域は、前記入口ポートに隣接しており、前記缶胴の長手方向の長さをLとすると、前記入口側領域の長さは1/4Lであり、前記反入口側領域の長さは3/4Lである、ターボ冷凍機が提供される。
【0009】
入口ポートの付近では、被冷却流体の温度が高いために最も多くの冷媒ガスが発生する。本発明者は、1/4Lの長さの入口側領域内に存在する冷媒ガスの量と、3/4Lの長さの反入口側領域内に存在する冷媒ガスの量の比は、50:50となることを実験および計算により見出した。この知見に基づき、第1冷媒ガス出口は入口側領域に位置し、第2冷媒ガス出口は反入口側領域に位置している。このような配置によれば、第1圧縮機および第2圧縮機に流れる冷媒ガスの流量を均等にすることができる。結果として、第1圧縮機および第2圧縮機は、同じ条件下で運転することができ、第1圧縮機および第2圧縮機の運転をバランスさせるための複雑な制御を不要とすることができる。
【0010】
一態様では、前記第1冷媒ガス出口は、前記缶胴の長手方向において前記入口側領域の中心側に位置している。
一態様では、前記第2冷媒ガス出口は、前記缶胴の長手方向において前記反入口側領域の中心側に位置している。
本発明によれば、第1圧縮機に流入する冷媒ガスの流量と、第2圧縮機に流入する冷媒ガスの流量を等しくすることができる。
【0011】
一態様では、前記蒸発器は、前記缶胴の内部を塞ぐように配置されたデミスタをさらに備えており、前記デミスタは前記伝熱管の上方に位置している。
本発明によれば、缶胴内で上昇する冷媒ガスの流速はデミスタによって均等になり、冷媒ガスの均一な流れを缶胴内に形成することができる。結果として、第1圧縮機および第2圧縮機に向かう冷媒ガスの均等な流量を確保することができる。
【0012】
一態様では、前記蒸発器は、前記缶胴に設けられた冷媒液導入口を有しており、前記冷媒液導入口は、前記缶胴の長手方向における中心と、反入口ポート側の端壁との間に位置している。
一態様では、前記冷媒液導入口は、冷媒ガスを含む冷媒液が前記冷媒液導入口から前記缶胴内に導入されたときに、前記入口側領域内に存在する冷媒ガスの量と、前記反入口側領域内に存在する冷媒ガスの量の比が50:50となる位置にある。
本発明によれば、第1圧縮機および第2圧縮機に流れる冷媒ガスの流量を正確に均等にすることができる。
【0013】
一態様では、前記ターボ冷凍機は、前記凝縮器から前記蒸発器まで延びるホットガスバイパスラインをさらに備えており、前記ホットガスバイパスラインは、前記缶胴に設けられたホットガス導入口に接続されており、前記ホットガス導入口は、前記缶胴の長手方向における中心と、反入口ポート側の端壁との間に位置している。
一態様では、前記ホットガス導入口は、前記入口側領域内に存在する冷媒ガスの量と、前記反入口側領域内に存在する冷媒ガスの量の比が50:50となる位置にある。
本発明によれば、第1圧縮機および第2圧縮機に流れる冷媒ガスの流量を正確に均等にすることができる。
【発明の効果】
【0014】
本発明によれば、第1圧縮機および第2圧縮機に流れる冷媒ガスの流量を均等にすることができる。結果として、第1圧縮機および第2圧縮機は、同じ条件下で運転することができ、第1圧縮機および第2圧縮機の運転をバランスさせるための複雑な制御を不要とすることができる。
【図面の簡単な説明】
【0015】
図1】ターボ冷凍機の一実施形態を示す模式図である。
図2図1に示す蒸発器の一実施形態を示す断面図である。
図3】蒸発器の他の実施形態を示す断面図である。
図4図3に示す蒸発器の長手方向から見た断面図である。
図5】従来のターボ冷凍機の蒸発器と圧縮機を示す側面図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を参照して説明する。
図1は、ターボ冷凍機の一実施形態を示す模式図である。図1に示すように、ターボ冷凍機は、冷媒液を蒸発させて冷媒ガスを生成する蒸発器2と、冷媒ガスを圧縮する第1圧縮機1Aおよび第2圧縮機1Bと、圧縮された冷媒ガスを凝縮させて冷媒液を生成する凝縮器3と、第1圧縮機1Aおよび第2圧縮機1Bをそれぞれ可変速駆動する第1インバータ5Aおよび第2インバータ5Bと、第1圧縮機1A、第2圧縮機1B、第1インバータ5A、および第2インバータ5Bの動作を制御する制御装置10を備えている。
【0017】
第1圧縮機1Aおよび第2圧縮機1Bは、蒸発器2に並列に連結されている。蒸発器2は、第1冷媒ガス出口2Aおよび第2冷媒ガス出口2Bを有している。第1圧縮機1Aの吸込口は、冷媒配管4Aによって第1冷媒ガス出口2Aに連結され、第2圧縮機1Bの吸込口は、冷媒配管4Bによって第2冷媒ガス出口2Bに連結されている。
【0018】
ターボ冷凍機は、凝縮器3と蒸発器2との間に配置されたエコノマイザ20をさらに備えている。第1圧縮機1Aおよび第2圧縮機1Bの排出口は、冷媒配管4C,4Dによって凝縮器3に連結されている。凝縮器3は冷媒配管4Eによってエコノマイザ20に連結され、エコノマイザ20は冷媒配管4Fによって蒸発器2に連結されている。さらに、エコノマイザ20は、冷媒配管4Gによって第1圧縮機1Aに連結され、冷媒配管4Hによって第2圧縮機1Bに連結されている。エコノマイザ20は、凝縮器3と蒸発器2との間に配置された中間冷却器である。凝縮器3からエコノマイザ20に延びる冷媒配管4Eには一次側膨張弁21が取り付けられ、エコノマイザ20から蒸発器2に延びる冷媒配管4Fには二次側膨張弁22が取り付けられている。
【0019】
ターボ冷凍機は、冷媒ガスを凝縮器3から蒸発器2に導くホットガスバイパスライン25と、このホットガスバイパスライン25を開閉するためのホットガスバイパス弁27とを備えている。ホットガスバイパスライン25は、エコノマイザ20をバイパスして凝縮器3から蒸発器2まで延びている。ホットガスバイパス弁27は、その開度が調整可能に構成されており、例えば開度可変な電動弁から構成されている。
【0020】
ホットガスバイパス弁27は、制御装置10に電気的に接続されており、ホットガスバイパス弁27の動作は制御装置10によって制御される。定常運転では、ホットガスバイパス弁27は閉じられている。制御装置10がホットガスバイパス弁27を開くと、第1圧縮機1Aおよび第2圧縮機1Bによって圧縮された冷媒ガスは、エコノマイザ20をバイパスしてホットガスバイパスライン25を通って凝縮器3から蒸発器2に送られる。
【0021】
本実施形態では、第1圧縮機1Aおよび第2圧縮機1Bは、多段ターボ圧縮機から構成されている。より具体的には、第1圧縮機1Aは、二段ターボ圧縮機からなり、一段目羽根車11Aと、二段目羽根車12Aと、これらの羽根車11A,12Aを回転させる電動機13Aとを備えている。第1インバータ5Aは電動機13Aに接続されており、第1インバータ5Aは商用電源30に接続されている。第1インバータ5Aは制御装置10に接続されている。羽根車11A,12Aは、電動機13Aに連結されている。電動機13Aは誘導電動機からなり、電動機13Aの回転速度は、第1インバータ5Aを介して制御装置10により制御される。
【0022】
第1圧縮機1Aの吸込口には、冷媒ガスの羽根車11A,12Aへの吸込流量を調整する第1ガイドベーン16Aが配置されている。第1ガイドベーン16Aは一段目羽根車11Aの吸込側に位置している。第1ガイドベーン16Aは放射状に配置されており、各第1ガイドベーン16Aが自身の軸心を中心として互いに同期して所定の角度だけ回転することにより、第1ガイドベーン16Aの開度が変更される。第1ガイドベーン16Aの開度は、制御装置10によって制御される。蒸発器2から送られた冷媒ガスは、第1ガイドベーン16Aを通過し、その後、回転する羽根車11A,12Aによって順次昇圧される。昇圧された冷媒ガスは、凝縮器3に送られる。
【0023】
第1圧縮機1Aと同様に、第2圧縮機1Bは、二段ターボ圧縮機からなり、一段目羽根車11Bと、二段目羽根車12Bと、これらの羽根車11B,12Bを回転させる電動機13Bと、第2圧縮機1Bの吸込口に配置された第2ガイドベーン16Bを備えている。第2インバータ5Bは電動機13Bに接続されており、第2インバータ5Bは商用電源30に接続されている。第2インバータ5Bは制御装置10に接続されている。第2圧縮機1Bの特に説明しない構成および動作は、第1圧縮機1Aの構成および動作と同じであるので、その重複する説明を省略する。
【0024】
蒸発器2は、被冷却流体(例えば冷水)から熱を奪って冷媒液が蒸発して冷凍効果を発揮する。第1圧縮機1Aおよび第2圧縮機1Bは、蒸発器2で蒸発した冷媒ガスを圧縮して高圧の冷媒ガスを生成し、凝縮器3は、高圧の冷媒ガスを冷却流体(例えば冷却水)で冷却して凝縮させることで、冷媒液を生成する。冷媒液は、一次側膨張弁21を通過することによって減圧される。減圧された冷媒液中に存在する冷媒ガスはエコノマイザ20によって分離され、第1圧縮機1Aの一段目羽根車11Aと二段目羽根車12Aとの間に設けた中間吸込み口17A、および第2圧縮機1Bの一段目羽根車11Bと二段目羽根車12Bとの間に設けた中間吸込み口17Bに送られる。エコノマイザ20を通過した冷媒液は、二次側膨張弁22を通過することによって減圧され、さらに冷媒配管4Fを通って蒸発器2に送られる。このように、ターボ冷凍機は、冷媒を封入したクローズドシステムとして構成される。
【0025】
第1インバータ5Aおよび第2インバータ5Bの動作は、制御装置10によって制御される。制御装置10は、第1インバータ5Aおよび第2インバータ5Bに同一の制御信号を送信し、第1インバータ5Aおよび第2インバータ5Bを同じように動作させる。具体的には、制御装置10は、第1インバータ5Aおよび第2インバータ5Bを同じように動作させることで、第1圧縮機1Aおよび第2圧縮機1Bを互いに同じ速度で回転させる。
【0026】
図2は、図1に示す蒸発器2の断面図である。蒸発器2は、冷媒液が導入される缶胴40と、缶胴40内に配置された伝熱管43と、伝熱管43に被冷却流体(例えば冷水)を導入する入口ポート46と、伝熱管43を流れた被冷却流体を排出する出口ポート47と、第1圧縮機1Aの吸込口に連結された第1冷媒ガス出口2Aと、第2圧縮機1Bの吸込口に連結された第2冷媒ガス出口2Bを備えている。図示しないが、本実施形態では、第1圧縮機1Aおよび第2圧縮機1Bは、蒸発器2の缶胴40上に配置されている。
【0027】
蒸発器2は、冷媒液導入口51およびホットガス導入口52をさらに備えている。冷媒液導入口51およびホットガス導入口52は、缶胴40の下部に位置している。冷媒液導入口51は図1に示す冷媒配管4Fに接続され、ホットガス導入口52は、ホットガスバイパスライン25に接続されている。凝縮器3によって生成された冷媒液は、冷媒液導入口51を通じて缶胴40内に流入される。本実施形態では、冷媒液は、凝縮器3からエコノマイザ20を経由して蒸発器2に流れる。
【0028】
伝熱管43の一端は入口ポート46に連通し、伝熱管43の他端は出口ポート47に連通している。伝熱管43は、缶胴40の全長に亘って延びており、かつ折り返している。よって、本実施形態では、入口ポート46および出口ポート47は、缶胴40の同じ側に配置されている。図2では、伝熱管43は模式的に描かれている。一実施形態では、伝熱管43は複数回折り返してもよいし、あるいは折り返さなくてもよい。出口ポート47は、入口ポート46から見て缶胴40の反対側に配置されることもある。
【0029】
第1冷媒ガス出口2Aは、缶胴40の入口側領域40Aに位置し、第2冷媒ガス出口2Bは、缶胴40の反入口側領域40Bに位置している。入口側領域40Aは缶胴40の入口側に位置した領域であり、反入口側領域40Bは缶胴40の反入口側に位置した領域である。すなわち、入口側領域40Aは、入口ポート46に隣接しており、反入口側領域40Bは入口側領域40Aを挟んで缶胴40の反対側に位置している。入口側領域40Aは、入口ポート46と反入口側領域40Bとの間に位置している。缶胴40の長手方向の長さをLとすると、入口側領域40Aの長さは1/4Lであり、反入口側領域40Bの長さは3/4Lである。
【0030】
第1冷媒ガス出口2Aは、入口側領域40Aの頂部に位置し、第2冷媒ガス出口2Bは、反入口側領域40Bの頂部に位置している。本実施形態では、第1冷媒ガス出口2Aは、入口側領域40Aの中心側に位置しており、第2冷媒ガス出口2Bは、反入口側領域40Bの中心側に位置している。冷媒液導入口51およびホットガス導入口52は、反入口側領域40Bに位置している。
【0031】
冷媒液は、冷媒液導入口51から缶胴40内に導入される。被冷却流体は、入口ポート46から伝熱管43内に流入し、伝熱管43を流れ、出口ポート47から流出する。伝熱管43内を流れる被冷却流体の熱は、缶胴40内の冷媒液に伝達される。冷媒液は蒸発して、冷媒ガスとなり、その一方で、被冷却流体は冷媒液によって冷却される。被冷却流体は、入口ポート46から缶胴40内に流入するので、入口ポート46に近い入口側領域40Aで、冷媒液はより激しく蒸発し、大量の冷媒ガスが発生する。一方、入口ポート46から離れた反入口側領域40Bでは、入口側領域40Aよりも少ない量の冷媒ガスが発生する。
【0032】
入口ポート46の付近では、被冷却流体の温度が高いために最も多くの冷媒ガスが発生する。本発明者は、1/4Lの長さの入口側領域40A内に存在する冷媒ガスの量と、3/4Lの長さの反入口側領域40B内に存在する冷媒ガスの量の比は、50:50となることを実験および計算により見出した。この知見に基づき、第1冷媒ガス出口2Aは入口側領域40Aに位置し、第2冷媒ガス出口2Bは反入口側領域40Bに位置している。このような配置によれば、第1圧縮機1Aおよび第2圧縮機1Bに流れる冷媒ガスの流量を均等にすることができる。結果として、第1圧縮機1Aおよび第2圧縮機1Bは、同じ条件下で運転することができ、第1圧縮機1Aおよび第2圧縮機1Bの運転をバランスさせるための複雑な制御を不要とすることができる。
【0033】
特に、本実施形態によれば、第1冷媒ガス出口2Aは、強沸騰領域である入口側領域40Aの中心側に位置しており、第2冷媒ガス出口2Bは、弱沸騰領域である反入口側領域40Bの中心側に位置しているので、第1圧縮機1Aに流入する冷媒ガスの流量と、第2圧縮機1Bに流入する冷媒ガスの流量を等しくすることができる。第1圧縮機1Aおよび第2圧縮機1Bに流入する冷媒ガスの流量を等しくする観点から、第1冷媒ガス出口2Aは入口側領域40Aの中心上にあるのが好ましく、第2冷媒ガス出口2Bは反入口側領域40Bの中心上にあるのが好ましい。
【0034】
冷媒液導入口51は、缶胴40の長手方向における中心と、缶胴40の反入口ポート側の端壁41との間に位置している。反入口ポート側の端壁41は、入口ポート46とは反対側に位置している。蒸発器2に流入する冷媒液は、通常、冷媒ガスからなる気泡を伴う。この冷媒液に含まれる気泡は、反入口側領域40Bに供給され、蒸発器2内で発生する冷媒ガスに混合される。よって、冷媒液導入口51の位置は、入口側領域40A内に存在する冷媒ガスの量と、反入口側領域40B内に存在する冷媒ガスの量の比に影響を与える。
【0035】
本実施形態では、冷媒液に含まれる気泡は、弱沸騰領域である反入口側領域40Bに供給されるので、缶胴40内の全体における冷媒ガスの量がバランスされる。特に、冷媒液導入口51は、冷媒ガスからなる気泡を含む冷媒液が冷媒液導入口51から缶胴40内に導入されたときに、入口側領域40A内に存在する冷媒ガスの量と、反入口側領域40B内に存在する冷媒ガスの量の比が50:50となる位置にある。本実施形態によれば、第1圧縮機1Aおよび第2圧縮機1Bに流れる冷媒ガスの流量を正確に均等にすることができる。
【0036】
ホットガス導入口52は、缶胴40の長手方向における中心と、反入口ポート側の端壁41との間に位置している。より具体的には、ホットガス導入口52は、冷媒液導入口51と反入口ポート側の端壁41との間に位置している。ホットガスバイパス弁27は、冷凍負荷が低いときに開かれ、冷媒ガスが凝縮器3から蒸発器2に供給される。冷媒ガスは反入口側領域40Bに供給され、蒸発器2内で発生する冷媒ガスに混合される。よって、ホットガス導入口52の位置も、入口側領域40A内に存在する冷媒ガスの量と、反入口側領域40B内に存在する冷媒ガスの量の比に影響を与える。
【0037】
本実施形態では、冷媒ガスは、弱沸騰領域である反入口側領域40Bに供給されるので、缶胴40内の全体における冷媒ガスの量がバランスされる。特に、ホットガス導入口52は、冷媒ガスがホットガス導入口52から前記缶胴40内に導入されたときに、入口側領域40A内に存在する冷媒ガスの量と、反入口側領域40B内に存在する冷媒ガスの量の比が50:50となる位置にある。本実施形態によれば、第1圧縮機1Aおよび第2圧縮機1Bに流れる冷媒ガスの流量を正確に均等にすることができる。
【0038】
図3は、蒸発器2の他の実施形態を示す断面図であり、図4は、図3に示す蒸発器2をその長手方向から見た断面図である。特に説明しない本実施形態の構成は、図2に示す実施形態と同じであるので、その重複する説明を省略する。本実施形態では、蒸発器2は、缶胴40の内部を塞ぐように配置されたデミスタ60をさらに備えている。このデミスタ60は伝熱管43の上方に位置しており、伝熱管43の全体を覆っている。デミスタ60は、缶胴40の内部の一端から他端まで延びている。
【0039】
デミスタ60は、冷媒ガスの通過を許容する、メッシュなどから構成された多孔部材である。デミスタ60は、伝熱管43の上方であって、第1冷媒ガス出口2Aおよび第2冷媒ガス出口2Bの下方に配置されている。
【0040】
缶胴40内に存在する冷媒ガスは、上方に流れ、デミスタ60を通過し、そして第1冷媒ガス出口2Aおよび第2冷媒ガス出口2Bに流入する。冷媒ガスがデミスタ60を通過するとき、冷媒ガスの流速は均一化される。結果として、第1圧縮機1Aおよび第2圧縮機1Bに向かう冷媒ガスの均等な流量を確保することができる。
【0041】
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
【符号の説明】
【0042】
1A 第1圧縮機
1B 第2圧縮機
2 蒸発器
2A 第1冷媒ガス出口
2B 第2冷媒ガス出口
3 凝縮器
4A,4B,4C,4D,4E,4F,4G,4H 冷媒配管
5A 第1インバータ
5B 第2インバータ
10 制御装置
11A,11B 一段目羽根車
12A,12B 二段目羽根車
13A,13B 電動機
16A 第1ガイドベーン
16B 第2ガイドベーン
20 エコノマイザ
21 一次側膨張弁
22 二次側膨張弁
25 ホットガスバイパスライン
27 ホットガスバイパス弁
30 商用電源
40 缶胴
40A 入口側領域
40B 反入口側領域
41 端壁
43 伝熱管
46 入口ポート
47 出口ポート
51 冷媒液導入口
52 ホットガス導入口
60 デミスタ
図1
図2
図3
図4
図5