IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

<>
  • 特許-光脳機能計測装置用ファントム装置 図1
  • 特許-光脳機能計測装置用ファントム装置 図2
  • 特許-光脳機能計測装置用ファントム装置 図3
  • 特許-光脳機能計測装置用ファントム装置 図4
  • 特許-光脳機能計測装置用ファントム装置 図5
  • 特許-光脳機能計測装置用ファントム装置 図6
  • 特許-光脳機能計測装置用ファントム装置 図7
  • 特許-光脳機能計測装置用ファントム装置 図8
  • 特許-光脳機能計測装置用ファントム装置 図9
  • 特許-光脳機能計測装置用ファントム装置 図10
  • 特許-光脳機能計測装置用ファントム装置 図11
  • 特許-光脳機能計測装置用ファントム装置 図12
  • 特許-光脳機能計測装置用ファントム装置 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-30
(45)【発行日】2022-06-07
(54)【発明の名称】光脳機能計測装置用ファントム装置
(51)【国際特許分類】
   A61B 10/00 20060101AFI20220531BHJP
   G01N 21/01 20060101ALI20220531BHJP
   G01N 21/17 20060101ALI20220531BHJP
   A61B 5/1455 20060101ALI20220531BHJP
【FI】
A61B10/00 E
G01N21/01 A
G01N21/17 625
A61B5/1455
【請求項の数】 12
(21)【出願番号】P 2020556612
(86)(22)【出願日】2019-08-22
(86)【国際出願番号】 JP2019032892
(87)【国際公開番号】W WO2020100370
(87)【国際公開日】2020-05-22
【審査請求日】2021-04-07
(31)【優先権主張番号】P 2018215790
(32)【優先日】2018-11-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】100104433
【弁理士】
【氏名又は名称】宮園 博一
(72)【発明者】
【氏名】山下 登
【審査官】松岡 智也
(56)【参考文献】
【文献】特開2013-146391(JP,A)
【文献】特開2009-195387(JP,A)
【文献】特開平8-150135(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06-5/22、10/00
G01N 21/01、21/17
(57)【特許請求の範囲】
【請求項1】
光を照射する光源部と、前記光源部からの前記光を検出する検出部とを備える光脳機能計測装置に用いる光脳機能計測装置用ファントム装置であって、
前記光源部からの前記光が照射され、前記光に対して第1吸収周波数分布を有する第1フィルタと、
前記光源部からの前記光が照射され、前記第1フィルタの前記第1吸収周波数分布とは吸収周波数分布が異なる第2吸収周波数分布を有するとともに、前記光源部からの前記光の光軸が延びる方向から見て、少なくとも一部が前記第1フィルタとオーバーラップするように設けられる第2フィルタと、を備え、
前記第1フィルタおよび前記第2フィルタは、前記光源部および前記検出部に対して相対的に移動可能に構成されているとともに、前記光源部および前記検出部に対する相対的な移動方向に沿った部分毎に前記光の吸収率が異なるように構成されている、光脳機能計測装置用ファントム装置。
【請求項2】
前記第1フィルタおよび前記第2フィルタの各々には、前記光源部からの近赤外光が照射され、
前記第1フィルタは、前記第1吸収周波数分布が、酸素化ヘモグロビンの吸収周波数分布と略等しくなるように構成され、
前記第2フィルタは、前記第2吸収周波数分布が、脱酸素化ヘモグロビンフィルタの吸収周波数分布と略等しくなるように構成されている、請求項1に記載の光脳機能計測装置用ファントム装置。
【請求項3】
前記光源部および前記検出部に対して、前記第1フィルタおよび前記第2フィルタを相対的に移動させる移動機構と、
前記移動機構を制御する制御部と、をさらに備え、
前記制御部は、前記第1フィルタと前記第2フィルタとがオーバーラップした部分に前記光が照射された状態で、前記移動機構を制御して、前記光源部および前記検出部に対して、前記第1フィルタおよび前記第2フィルタの各々を、前記光軸が延びる方向に直交する方向に沿って相対的に移動させるように構成されている、請求項1に記載の光脳機能計測装置用ファントム装置。
【請求項4】
前記第1フィルタは、前記光軸が延びる方向に直交する面における第1の方向に沿って、前記光の吸収率が連続的に変化するように構成され、
前記第2フィルタは、前記第1の方向に沿って、前記光の吸収率が連続的に変化するように構成されており、
前記制御部は、前記移動機構を制御して、前記光源部および前記検出部に対して、前記第1フィルタおよび前記第2フィルタを、前記第1の方向に沿って相対的に移動させるように構成されている、請求項3に記載の光脳機能計測装置用ファントム装置。
【請求項5】
前記移動機構は、前記光源部および前記検出部に対して、前記第1フィルタを相対的に移動させる第1移動機構と、前記光源部および前記検出部に対して、前記第2フィルタを相対的に移動させる第2移動機構とを含み、
前記制御部は、前記第1移動機構および前記第2移動機構を個別に制御して、前記第1フィルタおよび前記第2フィルタの各々を独立して移動させる制御を行うように構成されている、請求項4に記載の光脳機能計測装置用ファントム装置。
【請求項6】
前記第1フィルタは、前記光軸が延びる方向に直交する面における第1の方向に沿って、前記光の吸収率が連続的に変化するように構成され、
前記第2フィルタは、前記光軸が延びる方向に直交する面において前記第1の方向と交差する第2の方向に沿って、前記光の吸収率が連続的に変化するように構成されており、
前記制御部は、前記移動機構を制御して、前記光源部および前記検出部に対して、前記第1フィルタおよび前記第2フィルタを、前記光軸が延びる方向に直交する面に沿って相対的に移動させるように構成されている、請求項3に記載の光脳機能計測装置用ファントム装置。
【請求項7】
前記制御部は、前記移動機構を制御して、前記第1フィルタと前記第2フィルタとを一体的に移動させるように構成されている、請求項6に記載の光脳機能計測装置用ファントム装置。
【請求項8】
前記制御部は、前記移動機構を制御して、前記第1フィルタおよび前記第2フィルタを、前記光源部および前記検出部に対して相対的に移動させることにより、前記第1フィルタおよび前記第2フィルタの各々による前記光の吸収量の変化に基づく複数の波形を生成する制御を行うように構成されている、請求項3に記載の光脳機能計測装置用ファントム装置。
【請求項9】
前記光源部からの前記光を前記検出部に向かって反射する反射部をさらに備え、
前記第1フィルタおよび前記第2フィルタの各々は、前記光源部および前記検出部と前記反射部との間に配置されている、請求項1に記載の光脳機能計測装置用ファントム装置。
【請求項10】
前記第1フィルタおよび前記第2フィルタの各々は、カラーフィルタを含み、前記光源部および前記検出部に対する相対的な移動方向に沿った部分毎に色の濃淡が異なることにより、前記光源部および前記検出部に対する相対的な移動方向に沿った部分毎に前記光の吸収率が異なるように構成されている、請求項1に記載の光脳機能計測装置用ファントム装置。
【請求項11】
前記第1フィルタおよび前記第2フィルタの各々は、前記光源部からの前記光の前記光軸が延びる方向における厚みが、前記光源部および前記検出部に対する相対的な移動方向に沿った部分毎に異なることによって、前記光源部および前記検出部に対する相対的な移動方向に沿った部分毎に前記光の吸収率が異なるように構成されている、請求項1に記載の光脳機能計測装置用ファントム装置。
【請求項12】
前記光源部からの前記光の前記光軸が延びる方向において、前記第1フィルタおよび前記第2フィルタと並んで配置され、前記光の強度を減衰させる第3フィルタをさらに備える、請求項1に記載の光脳機能計測装置用ファントム装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光脳機能計測装置用ファントム装置に関し、特に、所定の吸収周波数分布を有するフィルタを備える光脳機能計測装置用ファントム装置に関する。
【背景技術】
【0002】
従来、所定の吸収周波数分布を有するフィルタを備える光脳機能計測装置用ファントム装置が知られている。このような光脳機能計測装置用ファントム装置は、たとえば、特開2009-195387号公報に開示されている。
【0003】
上記特開2009-195387号公報の生体光計測装置の検査用ファントム装置には、主散乱体、補助散乱体、光吸収体(フィルタ)、および、駆動装置が設けられている。主散乱体および補助散乱体の各々は、光を反射する粉体が均等に混入された樹脂を平板上に成型した矩形の樹脂板により構成されている。また、主散乱体および補助散乱体の各々は、光透過性を有し、かつ、内部に入射された光を散乱させる。また、補助散乱体は、所定の間隔をおいて、主散乱体の一方側の面と対向している。また、光吸収体は、駆動装置により制御され、主散乱体と補助散乱体との間において移動するように構成されている。
【0004】
また、上記特開2009-195387号公報の生体光計測装置の検査用ファントム装置では、主散乱体の他方側の面には、光を照射する複数の照射プローブと、光を検出する複数の検出プローブが設けられている。照射プローブから照射された光は、主散乱体の一方側の面から出射され、一部が光吸収体に吸収され、残りの一部が補助散乱体に入射する。補助散乱体に入射された光は、補助散乱体内で拡散され、一部が再び主散乱体に入射する。そして、再び主散乱体に入射された光は検出プローブにより検出される。検出プローブにより検出された計測値に基づいた計測データと、予め設定されていた正常時のデータとを比較することにより、生体光計測装置が正常であるか否かを検知することが可能である。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2009-195387号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記特開2009-195387号公報に記載されている生体光計測装置の検査用ファントム装置では、上記特開2009-195387号公報には明記されていないが、主散乱体から出射された光は、光吸収体(フィルタ)によって吸収されることにより、光の周波数によらず一律に強度が減衰すると考えられる。ここで、人体(脳)には、光に対する吸収周波数分布(吸収スペクトル)が互いに異なる複数の生体物質が含まれている。また、複数の生体物質のうちの一の生体物質(以下、第1生体物質)および他の生体物質(以下、第2生体物質)の各々の濃度(量)は、脳活動に応じて、互いに異なる変化率で変化する場合がある。したがって、上記の光吸収体(フィルタ)を用いて一律に光の強度を減衰させる上記特開2009-195387号公報の検査用ファントム装置では、第1生体物質の濃度(量)および第2生体物質の濃度(量)が互いに異なる変化率で変化する実際の脳活動の動作を正確に模擬することが困難であるという不都合がある。このため、上記特開2009-195387号公報の検査用ファントム装置では、実際の脳の検査時とは異なる条件において生体光計測装置の検査が行われるため、生体光計測装置の検査が不適切になる場合があるという問題点がある。
【0007】
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、脳活動を正確に模擬することにより、光脳機能計測装置を適切に検査することが可能な光脳機能計測装置用ファントム装置を提供することである。
【課題を解決するための手段】
【0008】
上記目的を達成するために、この発明の一の局面における光脳機能計測装置用ファントム装置は、光を照射する光源部と、光源部からの光を検出する検出部とを備える光脳機能計測装置に用いる光脳機能計測装置用ファントム装置であって、光源部からの光が照射され、光に対して第1吸収周波数分布を有する第1フィルタと、光源部からの光が照射され、第1フィルタの第1吸収周波数分布とは吸収周波数分布が異なる第2吸収周波数分布を有するとともに、光源部からの光の光軸が延びる方向から見て、少なくとも一部が第1フィルタとオーバーラップするように設けられる第2フィルタと、を備え、第1フィルタおよび第2フィルタは、光源部および検出部に対して相対的に移動可能に構成されているとともに、光源部および検出部に対する相対的な移動方向に沿った部分毎に光の吸収率が異なるように構成されている。
【0009】
この発明の一の局面における光脳機能計測装置用ファントム装置では、上記のように、第1フィルタおよび第2フィルタは、光源部および検出部に対する相対的な移動方向に沿った部分毎に光の吸収率が異なる。これにより、光源部および検出部に対して、第1フィルタおよび第2フィルタを相対的に移動させることにより、第1フィルタおよび第2フィルタの各々による光の吸収量を変化させることができる。また、第1フィルタおよび第2フィルタの移動を制御することによって、第1フィルタおよび第2フィルタの各々による光の吸収量を異なる変化率で変化させることを容易に行うことができる。これらの結果、第1吸収周波数分布を有する生体物質の濃度(量)、および、第2吸収周波数分布を有する生体物質の濃度(量)が互いに異なる変化率で変化する実際の脳活動を正確に模擬することができる。これにより、脳活動を正確に模擬することにより、光脳機能計測装置を適切に検査することができる。
【0010】
また、光脳機能計測装置用ファントム装置により実際の脳活動を正確に模擬することができるので、ファントム装置を用いて得られた検査結果と、実際の脳のデータ(波形)とを比較することにより、光脳機能計測装置が正常であるか否かを判断することができる。これにより、特性(たとえば照射する光の波長数等)が互いに異なる装置間において、各装置における計測データ同士を比較する場合に比べて、各装置においてファントム装置を用いて得られた検査結果と実際の脳のデータ(波形)との比較を行うことにより、各装置の性能評価をより精度良く行うことができる。
【0011】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、第1フィルタおよび第2フィルタの各々には、光源部からの近赤外光が照射され、第1フィルタは、第1吸収周波数分布が、酸素化ヘモグロビンの吸収周波数分布と略等しくなるように構成され、第2フィルタは、第2吸収周波数分布が、脱酸素化ヘモグロビンフィルタの吸収周波数分布と略等しくなるように構成されている。このように構成すれば、酸素化ヘモグロビンの濃度(量)、および、脱酸素化ヘモグロビンの濃度(量)が互いに異なる変化率で変化する症状(たとえばうつ病)の脳活動を容易に模擬することができる。
【0012】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、光源部および検出部に対して、第1フィルタおよび第2フィルタを相対的に移動させる移動機構と、移動機構を制御する制御部と、をさらに備え、制御部は、第1フィルタと第2フィルタとがオーバーラップした部分に光が照射された状態で、移動機構を制御して、光源部および検出部に対して、第1フィルタおよび第2フィルタの各々を、光軸が延びる方向に直交する方向に沿って相対的に移動させるように構成されている。このように構成すれば、移動機構により第1フィルタおよび第2フィルタの各々を移動させることによって、手動で第1フィルタおよび第2フィルタを移動させる場合に比べて、第1フィルタおよび第2フィルタをより正確に移動させることができる。
【0013】
この場合、好ましくは、第1フィルタは、光軸が延びる方向に直交する面における第1の方向に沿って、光の吸収率が連続的に変化するように構成され、第2フィルタは、第1の方向に沿って、光の吸収率が連続的に変化するように構成されており、制御部は、移動機構を制御して、光源部および検出部に対して、第1フィルタおよび第2フィルタを、第1の方向に沿って相対的に移動させるように構成されている。このように構成すれば、第1フィルタおよび第2フィルタが光源部および検出部に対して相対的に移動する方向と、第1フィルタおよび第2フィルタの各々において光の吸収率が変化する方向とが揃っている。その結果、第1フィルタおよび第2フィルタを、光源部および検出部に対して相対的に移動させることによって、第1フィルタおよび第2フィルタによる光の吸収量を容易に変化させることができる。
【0014】
また、第1フィルタおよび第2フィルタの各々において光の吸収率が連続的に変化するので、光の吸収率がステップ状(非連続的)に変化する場合に比べて、より細かく(正確に)脳活動を模擬することができる。
【0015】
上記光源部および検出部に対して第1フィルタおよび第2フィルタを第1の方向に沿って相対的に移動させる光脳機能計測装置用ファントム装置において、好ましくは、移動機構は、光源部および検出部に対して、第1フィルタを相対的に移動させる第1移動機構と、光源部および検出部に対して、第2フィルタを相対的に移動させる第2移動機構とを含み、制御部は、第1移動機構および第2移動機構を個別に制御して、第1フィルタおよび第2フィルタの各々を独立して移動させる制御を行うように構成されている。このように構成すれば、第1移動機構および第2移動機構により、第1フィルタおよび第2フィルタの各々を独立して移動させることによって、光に対する第1フィルタによる吸収量と第2フィルタによる吸収量とを個別に調整するのを容易化することができる。
【0016】
上記移動機構を備える光脳機能計測装置用ファントム装置において、好ましくは、第1フィルタは、光軸が延びる方向に直交する面における第1の方向に沿って、光の吸収率が連続的に変化するように構成され、第2フィルタは、光軸が延びる方向に直交する面において第1の方向と交差する第2の方向に沿って、光の吸収率が連続的に変化するように構成されており、制御部は、移動機構を制御して、光源部および検出部に対して、第1フィルタおよび第2フィルタを、光軸が延びる方向に直交する面に沿って相対的に移動させるように構成されている。このように構成すれば、第1フィルタにおいて光の吸収率が変化する第1の方向と、第2フィルタにおいて光の吸収率が変化する第2の方向とが交差することによって、光軸が延びる方向から見て第1フィルタおよび第2フィルタがオーバーラップする部分の、第1フィルタにおける光の吸収率と第2フィルタにおける光の吸収率との組み合わせを2次元的に(第1の方向と第2の方向との面内の座標毎に)変化させることができる。その結果、光源部および検出部に対して、第1フィルタおよび第2フィルタを、光軸が延びる方向に直交する面に沿って相対的に、かつ、2次元的に移動させることによって、光に対する第1フィルタによる吸収量と第2フィルタによる吸収量とを容易に調整することができる。
【0017】
この場合、好ましくは、制御部は、移動機構を制御して、第1フィルタと第2フィルタとを一体的に移動させるように構成されている。このように構成すれば、第1フィルタと第2フィルタとを2次元的に移動させる場合において、第1フィルタと第2フィルタとを個別に移動させる場合に比べて、制御部の制御負荷を軽減することができる。
【0018】
上記移動機構を備える光脳機能計測装置用ファントム装置において、好ましくは、制御部は、移動機構を制御して、第1フィルタおよび第2フィルタを、光源部および検出部に対して相対的に移動させることにより、第1フィルタおよび第2フィルタの各々による光の吸収量の変化に基づく複数の波形を生成する制御を行うように構成されている。このように構成すれば、複数の波形を生成することにより、複数の症状の脳活動を模擬することができる。
【0019】
また、複数の脳の状態を模擬した複数の波形が生成されることによって、実際の脳の計測データと上記波形とをソフトウェアにより比較した場合に、複数の症状の脳活動を自動的に判別することができる。
【0020】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、光源部からの光を検出部に向かって反射する反射部をさらに備え、第1フィルタおよび第2フィルタの各々は、光源部および検出部と反射部との間に配置されている。ここで、光脳機能計測装置では、一般的に、脳に装着された装置から照射され、脳内において反射された光を、上記装置により検出することにより計測が行われる。したがって、第1フィルタおよび第2フィルタの各々が、光源部および検出部と反射部との間に配置されていることによって、光脳機能計測装置を用いた実際の脳の検査に近い条件(構成)での検査を行うことができる。
【0021】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、第1フィルタおよび第2フィルタの各々は、カラーフィルタを含み、光源部および検出部に対する相対的な移動方向に沿った部分毎に色の濃淡が異なることにより、光源部および検出部に対する相対的な移動方向に沿った部分毎に光の吸収率が異なるように構成されている。このように構成すれば、生体物質を用いなくても、カラーフィルタを用いることによって、実際の脳活動を容易に模擬することができる。
【0022】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、第1フィルタおよび第2フィルタの各々は、光源部からの光の光軸が延びる方向における厚みが、光源部および検出部に対する相対的な移動方向に沿った部分毎に異なることによって、光源部および検出部に対する相対的な移動方向に沿った部分毎に光の吸収率が異なるように構成されている。このように構成すれば、色の濃淡を調整することなく、厚みを調整するだけで、第1フィルタおよび第2フィルタの各々の光の吸収率を容易に調整することができる。
【0023】
上記一の局面における光脳機能計測装置用ファントム装置において、好ましくは、光源部からの光の光軸が延びる方向において、第1フィルタおよび第2フィルタと並んで配置され、光の強度を減衰させる第3フィルタをさらに備える。このように構成すれば、第3フィルタにより、脳内全体の光の減衰を模擬することができるので、脳活動をより一層正確に模擬することができる。
【発明の効果】
【0024】
本発明によれば、上記のように、脳活動を正確に模擬することにより、光脳機能計測装置を適切に検査することができる。
【図面の簡単な説明】
【0025】
図1】第1および第2実施形態による光脳機能計測装置の構成を示した図である。
図2】第1実施形態によるファントム装置の構成を示した断面図である。
図3】酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの吸収周波数分布を示した図である。
図4】第1実施形態によるファントム装置の酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタの平面図である。
図5】第1実施形態によるファントム装置の酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタの斜視図である。
図6】第1実施形態によるファントム装置の酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタのX方向における部分毎の近赤外光に対する吸収周波数分布を示した図である。(図6(A)は、酸素化ヘモグロビンフィルタの吸収周波数分布を示した図である。図6(B)は、脱酸素化ヘモグロビンフィルタの吸収周波数分布を示した図である。)
図7】第1実施形態によるファントム装置を用いて生成されたヘモグロビン濃度として算出される値の波形を示す図である。
図8】第2実施形態によるファントム装置の構成を示した断面図である。
図9】第2実施形態によるファントム装置の酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタの斜視図である。
図10】第2実施形態によるファントム装置の酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタの移動の一例を示した図である。
図11図10に示した移動が行われた場合に生成されるヘモグロビン濃度として算出される値の波形を示した図である。
図12】第1実施形態の第1変形例によるファントム装置の構成を示す図である。
図13】第1実施形態の第2変形例による酸素化ヘモグロビンフィルタおよび脱酸素化ヘモグロビンフィルタの構成を示した斜視図である。
【発明を実施するための形態】
【0026】
以下、本発明を具体化した実施形態を図面に基づいて説明する。
【0027】
[第1実施形態]
まず、図1図7を参照して、第1実施形態によるファントム装置10の全体構成について説明する。第1実施形態では、ファントム装置10は、近赤外分光法(NIRS)による光計測(脳機能計測)を行う光脳機能計測装置100に用いられるファントム装置である。なお、ファントム装置10は、請求の範囲の「光脳機能計測装置用ファントム装置」の一例である。
【0028】
(光脳機能計測装置の構成)
図1に示すように、光脳機能計測装置100は、光計測ユニット1と、制御ユニット2とから構成されている。光脳機能計測装置100は、送光ファイバ3と、受光ファイバ4とを備えている。また、光脳機能計測装置100は、光ファイバ5を介して接続された送光ファイバ3および受光ファイバ4を用いて、被験者(被検体)の脳活動を計測する機能を有する。なお、送光ファイバ3および受光ファイバ4は、それぞれ、請求の範囲の「光源部」および「検出部」の一例である。
【0029】
光脳機能計測装置100の送光ファイバ3および受光ファイバ4は、それぞれ、被験者の頭部に装着されたプローブ固定用のホルダ6に取り付けられることにより、被験者の頭部表面上の所定位置に配置される。そして、光脳機能計測装置100は、送光ファイバ3から照射される近赤外光の波長領域の計測光を照射し、被験者の頭内で反射した計測光を受光ファイバ4に入射させて検出することにより、計測光の強度(受光量)を取得する。取得した計測光の強度に基づいて、脳活動に伴うヘモグロビン量(酸素化ヘモグロビン、脱酸素化へモグロビンおよび総ヘモグロビン)の変化を取得することが可能である。これにより、光脳機能計測装置100は、脳活動に伴うヘモグロビン量の変化、すなわち血流量の変化や酸素代謝の活性化状態を非侵襲で取得することが可能である。光計測では、送光ファイバ3および受光ファイバ4のペアによって構成される計測点毎に、脳活動が計測される。計測データは、脳機能計測におけるレスト期間に対するタスク期間の相対的なヘモグロビン変化量として取得される。なお、近赤外光は、請求の範囲の「光」の一例である。
【0030】
また、光脳機能計測装置100では、受光ファイバ4により受光された近赤外光に基づいて取得された計測データが、通信により光計測ユニット1から制御ユニット2に送信される。そして、制御ユニット2において、光計測ユニット1から送信された計測データが解析される。なお、制御ユニット2は、液晶ディスプレイなどからなる表示部2aを備えている。
【0031】
(ファントム装置の構成)
図2に示すように、ファントム装置10により光脳機能計測装置100の検査を行う際には、送光ファイバ3および受光ファイバ4は、互いに対向するように直線状に並べて配置される。送光ファイバ3および受光ファイバ4が並ぶ方向を、第1実施形態ではZ方向とする。送光ファイバ3は、受光ファイバ4に対してZ1方向側に配置されている。なお、図2では、光計測ユニット1および制御ユニット2は、簡略化のため、図示を省略している。
【0032】
ファントム装置10は、酸素化ヘモグロビンフィルタ11と、脱酸素化ヘモグロビンフィルタ12と、ND(Neutral Density)フィルタ13とを備えている。酸素化ヘモグロビンフィルタ11、脱酸素化ヘモグロビンフィルタ12、および、NDフィルタ13の各々は、送光ファイバ3と受光ファイバ4との間において、Z方向に並んで配置されている。具体的には、送光ファイバ3側(Z1方向側)から順に、NDフィルタ13、酸素化ヘモグロビンフィルタ11、脱酸素化ヘモグロビンフィルタ12の順に配置されている。酸素化ヘモグロビンフィルタ11、脱酸素化ヘモグロビンフィルタ12、および、NDフィルタ13の並び順はこれに限られない。なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12は、それぞれ、請求の範囲の「第1フィルタ」および「第2フィルタ」の一例である。また、NDフィルタ13は、請求の範囲の「第3フィルタ」の一例である。
【0033】
これにより、酸素化ヘモグロビンフィルタ11、脱酸素化ヘモグロビンフィルタ12、および、NDフィルタ13の各々には、送光ファイバ3からの近赤外光が照射される。具体的には、酸素化ヘモグロビンフィルタ11には、NDフィルタ13を透過した近赤外光が照射される。また、脱酸素化ヘモグロビンフィルタ12には、NDフィルタ13および酸素化ヘモグロビンフィルタ11を透過した近赤外光が照射される。
【0034】
また、酸素化ヘモグロビンフィルタ11、脱酸素化ヘモグロビンフィルタ12、および、NDフィルタ13の各々は、Z方向に直交する平面(XY平面)に延びる平板形状を有している。また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、矩形形状(図4および図5参照)を有している。なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の形状は、これに限られない。
【0035】
また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12は、互いに略等しい大きさを有している。具体的には、酸素化ヘモグロビンフィルタ11のX方向の長さL1(図5参照)は、脱酸素化ヘモグロビンフィルタ12のX方向の長さL2(図5参照)と略等しい。また、酸素化ヘモグロビンフィルタ11のY方向の長さL3は、脱酸素化ヘモグロビンフィルタ12のY方向の長さL4と略等しい。なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、Y方向における位置が互いに揃う(図4参照)ように設けられている。なお、X方向およびY方向は、それぞれ、請求の範囲の「第1の方向」および「第2の方向」の一例である。
【0036】
ここで、第1実施形態では、図3に示すように、酸素化ヘモグロビンフィルタ11は、近赤外光に対して所定の吸収周波数分布(吸収スペクトル)(実線参照)を有する。酸素化ヘモグロビンフィルタ11の近赤外光に対する吸収周波数分布を、以下では酸素化ヘモグロビン吸収周波数分布とする。この酸素化ヘモグロビン吸収周波数分布は、酸素化ヘモグロビンの吸収周波数分布と略等しい。なお、酸素化ヘモグロビン吸収周波数分布は、請求の範囲の「第1吸収周波数分布」の一例である。
【0037】
また、脱酸素化ヘモグロビンフィルタ12は、近赤外光に対して、酸素化ヘモグロビン吸収周波数分布(図3の破線参照)とは異なる吸収周波数分布を有する。脱酸素化ヘモグロビンフィルタ12の吸収周波数分布を、以下では脱酸素化ヘモグロビン吸収周波数分布とする。この脱酸素化ヘモグロビン吸収周波数分布は、脱酸素化ヘモグロビンの吸収周波数分布と略等しい。なお、脱酸素化ヘモグロビン吸収周波数分布は、請求の範囲の「第2吸収周波数分布」の一例である。
【0038】
図3に示すように、酸素化ヘモグロビンフィルタ11と脱酸素化ヘモグロビンフィルタ12とでは、吸光係数が比較的大きい周波数帯が互いに異なっている。たとえば、近赤外光の周波数帯(たとえば750nm以上950nm以下)において、酸素化ヘモグロビン吸収周波数分布では、周波数が大きくなるほど吸光係数は大きくなる傾向にあるが、脱酸素化ヘモグロビン吸収周波数分布では、周波数が大きくなるほど吸光係数は小さくなる傾向にある。
【0039】
また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、カラーフィルタを含む。具体的には、酸素化ヘモグロビンフィルタ11は、酸素化ヘモグロビンを多く含む血液の色である鮮やかな赤色のカラーフィルタである。また、脱酸素化ヘモグロビンフィルタ12は、脱酸素化ヘモグロビンを多く含む血液の色である暗い赤色のカラーフィルタである。
【0040】
また、第1実施形態では、NDフィルタ13は、近赤外光の強度を減衰させる。すなわち、近赤外光の周波数によらず、NDフィルタ13を通過した近赤外光は、一律に強度が減衰される。
【0041】
また、図2に示すように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、送光ファイバ3および受光ファイバ4に対して相対的に移動可能に構成されている。具体的には、ファントム装置10は、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させる移動機構14を備える。なお、送光ファイバ3および受光ファイバ4の各々は、移動せずに固定されている。
【0042】
また、ファントム装置10は、移動機構14を制御する制御部15を備える。具体的には、制御部15は、後述する、モータ14aおよびモータ14bの各々を制御するように構成されている。
【0043】
移動機構14は、酸素化ヘモグロビンフィルタ11を移動させるモータ14aを含む。また、移動機構14は、脱酸素化ヘモグロビンフィルタ12を移動させるモータ14bを含む。モータ14aおよびモータ14bは、それぞれ、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12をX方向(X1方向およびX2方向)に移動させるように構成されている。なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の移動速度は、たとえば1cm/秒程度である。また、モータ14aおよびモータ14bは、それぞれ、請求の範囲の「第1移動機構」および「第2移動機構」の一例である。
【0044】
ここで、第1実施形態では、制御部15は、モータ14aおよびモータ14bを個別に制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を独立して移動させる制御を行う。具体的には、制御部15は、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の移動量、移動する方向、および、移動の有無を個別に制御する。
【0045】
なお、脱酸素化ヘモグロビンフィルタ12は、近赤外光の光軸が延びる方向(Z方向)から見て、少なくとも一部が酸素化ヘモグロビンフィルタ11とオーバーラップ(図4参照)するように設けられている。
【0046】
また、第1実施形態では、制御部15は、酸素化ヘモグロビンフィルタ11と脱酸素化ヘモグロビンフィルタ12とがオーバーラップした部分(図4の斜線部分)に近赤外光が照射された状態で、移動機構14(モータ14a、モータ14b)を制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を、X方向に移動させるように構成されている。すなわち、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々が移動した場合でも、送光ファイバ3からの近赤外光は、必ず、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の両方を通過する。
【0047】
ここで、第1実施形態では、図5に示すように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、移動方向(X方向)に沿った部分毎に近赤外光の吸収率(吸光係数、図3参照)が異なるように構成されている。具体的には、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、X方向に沿って、近赤外光の吸収率が連続的(たとえば線形的)に変化するように構成されている。すなわち、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、移動方向と近赤外光の吸収率が変化する方向とが共通である。
【0048】
詳細には、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、X1方向側からX2方向側に向かって、近赤外光の吸収率が連続的に小さくなるように構成されている。たとえば、図6に、X1方向側から順にXa点(図5参照)、Xb点(図5参照)、および、Xc点(図5参照)の各々における、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の吸収率(図6(A)および図6(B)参照)を示す。図6に示すように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々おいて、Xa点、Xb点、Xc点の順に、近赤外光の吸収率(吸光係数)が高い。なお、図6では、簡略化のために、図3で示した周波数帯のうちの一部の周波数帯について図示している。
【0049】
また、第1実施形態では、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、移動方向(X方向)に沿った部分毎に色の濃淡が異なることにより、移動方向(X方向)に沿った部分毎に近赤外光の吸収率が異なるように構成されている。すなわち、酸素化ヘモグロビンフィルタ11では、X1方向側の部分の方がX2方向側の部分に比べて、鮮やかな赤色がより濃く着色されている。また、脱酸素化ヘモグロビンフィルタ12では、X1方向側の部分の方がX2方向側の部分に比べて、暗い赤色がより濃く着色されている。なお、図5では、斜線の密度により色の濃さを表現している。
【0050】
また、図5に示すように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、移動方向(X方向)と直交する方向(Y方向およびZ方向)においては、近赤外光の吸収率(色の濃淡)が一様に構成されている。すなわち、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々において、移動方向(X方向)における位置(座標)が同一であれば、Y方向およびZ方向における位置(座標)によらず、近赤外光の吸収率(色の濃淡)が一定である。
【0051】
そして、第1実施形態では、図7に示すように、制御部15は、移動機構14(モータ14a、モータ14b)を制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させることにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々による近赤外光の吸収量の変化に基づく複数の波形を生成する制御を行うように構成されている。具体的には、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を移動させることにより、近赤外光が通過する、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の部分の近赤外光に対する吸収率(色の濃淡)が変化する。これにより、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの各々の濃度として算出される値(図7の縦軸参照)が、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々の移動に伴って(時間の経過に伴って)推移する。
【0052】
たとえば、図7の波形A1および波形A2は、それぞれ、健常者の脳を模擬するように酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を移動させた場合の酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの各々の濃度の推移の波形である。また、波形B1および波形B2は、それぞれ、うつ病患者の脳を模擬するように酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を移動させた場合の酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの各々の濃度の推移の波形である。また、波形C1および波形C2は、それぞれ、双極性障害者の脳を模擬するように酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を移動させた場合の酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの各々の濃度の推移の波形である。なお、図7は、脳の状態によって互いに異なる波形になることを説明するために模式的に図示した図であり、実際の波形とは異なっている場合がある。
【0053】
なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、脳の状態毎に応じて制御部15において予め設定されたプログラムに基づいて移動される。上記の3パターン(健常者、うつ病、および、双極性障害)の脳の状態に対応するプログラム以外にも、任意の脳の状態に対応するプログラムを準備することにより、任意の脳の状態に対しても容易に適応可能である。
【0054】
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
【0055】
第1実施形態では、上記のように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12が、移動可能に構成されているとともに、移動方向に沿った部分毎に近赤外光の吸収率が異なるように、ファントム装置10を構成する。これにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させることにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々による近赤外光の吸収量を変化させることができる。また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の移動を制御することによって、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々による光の吸収量を異なる変化率で変化させることを容易に行うことができる。これらの結果、酸素化ヘモグロビンの濃度(量)、および、脱酸素化ヘモグロビンフィルタの濃度(量)が互いに異なる変化率で変化する実際の脳活動を正確に模擬することができる。これにより、脳活動を正確に模擬することにより、光脳機能計測装置100を適切に検査することができる。
【0056】
また、ファントム装置10により実際の脳活動を正確に模擬することができるので、ファントム装置10を用いて得られた検査結果と、実際の脳のデータ(波形)とを比較することにより、光脳機能計測装置100が正常であるか否かを判断することができる。これにより、特性(たとえば照射する光の波長数等)が互いに異なる装置間において、各装置における計測データ同士を比較する場合に比べて、各装置においてファントム装置10を用いて得られた検査結果と実際の脳のデータ(波形)との比較を行うことにより、各装置の性能評価をより精度良く行うことができる。
【0057】
また、第1実施形態では、上記のように、酸素化ヘモグロビンフィルタ11は、酸素化ヘモグロビン吸収周波数分布が、酸素化ヘモグロビンの吸収周波数分布と略等しくなるように構成され、脱酸素化ヘモグロビンフィルタ12は、脱酸素化ヘモグロビン吸収周波数分布が、脱酸素化ヘモグロビンの吸収周波数分布と略等しくなるように構成されている。これにより、酸素化ヘモグロビンの濃度(量)、および、脱酸素化ヘモグロビンの濃度(量)が互いに異なる変化率で変化する症状(たとえばうつ病)の脳活動を容易に模擬することができる。
【0058】
また、第1実施形態では、上記のように、制御部15が、酸素化ヘモグロビンフィルタ11と脱酸素化ヘモグロビンフィルタ12とがオーバーラップした部分に光が照射された状態で、移動機構14を制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を、X方向に沿って移動させるように、ファントム装置10を構成する。これにより、移動機構14により酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を移動させることによって、手動で酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させる場合に比べて、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12をより正確に移動させることができる。
【0059】
また、第1実施形態では、上記のように、酸素化ヘモグロビンフィルタ11は、X方向に沿って、近赤外光の吸収率が連続的に変化するように構成され、脱酸素化ヘモグロビンフィルタ12は、X方向に沿って、近赤外光の吸収率が連続的に変化するように構成されている。そして、制御部15が、移動機構14を制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を、X方向に沿って移動させるように、ファントム装置10を構成する。これにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12が移動する方向と、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々において近赤外光の吸収率が変化する方向とが揃っている。その結果、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させることによって、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12による近赤外光の吸収量を容易に変化させることができる。
【0060】
また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々において光の吸収率が連続的に変化するので、光の吸収率がステップ状(非連続的)に変化する場合に比べて、より細かく(正確に)脳活動を模擬することができる。
【0061】
また、第1実施形態では、上記のように、制御部15が、モータ14aおよびモータ14bを個別に制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を独立して移動させる制御を行うように、ファントム装置10を構成する。これにより、モータ14aおよびモータ14bにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々を独立して移動させることによって、近赤外光に対する酸素化ヘモグロビンフィルタ11による吸収量と脱酸素化ヘモグロビンフィルタ12による吸収量とを個別に調整するのを容易化することができる。
【0062】
また、第1実施形態では、上記のように、制御部15が、移動機構14を制御して、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12を移動させることにより、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々による近赤外光の吸収量の変化に基づく複数の波形を生成する制御を行うように、ファントム装置10を構成する。これにより、複数の波形を生成することにより、複数の症状の脳活動を模擬することができる。
【0063】
また、複数の脳の状態を模擬した複数の波形が生成されることによって、実際の脳の計測データと上記波形とをソフトウェアにより比較した場合に、複数の症状の脳活動を自動的に判別することができる。
【0064】
また、第1実施形態では、上記のように、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々が、カラーフィルタを含み、移動方向に沿った部分毎に色の濃淡が異なることにより、移動方向に沿った部分毎に近赤外光の吸収率が異なるように、ファントム装置10を構成する。これにより、生体物質を用いなくても、カラーフィルタを用いることによって、実際の脳活動を容易に模擬することができる。
【0065】
また、第1実施形態では、上記のように、近赤外光の光軸が延びる方向(Z方向)において、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12と並んで配置され、光の強度を減衰させるNDフィルタ13を備えるように、ファントム装置10を構成する。これにより、NDフィルタ13により、脳内全体の光の減衰を模擬することができるので、脳活動をより一層正確に模擬することができる。
【0066】
[第2実施形態]
次に、図1、および、図8図11を参照して、第2実施形態によるファントム装置20の構成について説明する。この第2実施形態のファントム装置20は、上記第1実施形態のファントム装置10とは異なり、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の各々において、近赤外光の吸収率が変化する方向が互いに異なる。なお、上記第1実施形態と同様の構成は、第1実施形態と同じ符号を付して図示するとともに説明を省略する。また、ファントム装置20は、請求の範囲の「光脳機能計測装置用ファントム装置」の一例である。
【0067】
(ファントム装置の構成)
図8に示すように、光脳機能計測装置200(図1参照)に用いられるファントム装置20は、酸素化ヘモグロビンフィルタ21と、脱酸素化ヘモグロビンフィルタ22と、移動機構24と、制御部25と、を備えている。移動機構24は、モータ24aを含んでいる。なお、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22は、それぞれ、請求の範囲の「第1フィルタ」および「第2フィルタ」の一例である。
【0068】
図9に示すように、酸素化ヘモグロビンフィルタ21は、X方向に沿って近赤外光の吸収率(色の濃淡)が連続して変化するように構成されている。具体的には、酸素化ヘモグロビンフィルタ21は、X2方向側の部分に比べて、X1方向側の部分の方が、鮮やかな赤色がより濃く着色されているとともに近赤外光の吸収率が高くなっている。
【0069】
また、脱酸素化ヘモグロビンフィルタ22は、X方向と直交するY方向に沿って近赤外光の吸収率(色の濃淡)が連続して変化するように構成されている。具体的には、脱酸素化ヘモグロビンフィルタ22は、Y2方向側の部分に比べて、Y1方向側の部分の方が、暗い赤色がより濃く着色されているとともに近赤外光の吸収率が高くなっている。
【0070】
また、酸素化ヘモグロビンフィルタ21は、X方向と直交する方向(Y方向およびZ方向)においては、近赤外光の吸収率(色の濃淡)が一様に構成されている。また、脱酸素化ヘモグロビンフィルタ22は、Y方向と直交する方向(X方向およびZ方向)においては、近赤外光の吸収率(色の濃淡)が一様に構成されている。
【0071】
また、図10に示すように、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の各々は、近赤外光の光軸が延びる方向(Z方向)から見て、たとえば略正方形形状を有している。なお、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の各々の形状は、これに限られない。
【0072】
ここで、第2実施形態では、制御部25は、移動機構24を制御して、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を、近赤外光の光軸が延びる方向(Z方向)に直交する面(XY平面)に沿って移動させるように構成されている。具体的には、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の各々は、XY平面において、X方向、Y方向、および、斜め方向に移動可能である。
【0073】
また、制御部25は、移動機構24を制御して、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を一体的に移動させるように構成されている。詳細には、移動機構24のモータ24aは、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の両方に共通するモータであり、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を一体的に移動するように構成されている。なお、一体的に移動とは、移動するタイミング、移動方向、および、移動量の各々が、互いに共通であることを意味する。
【0074】
また、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22は、Z方向から見て、互いに略等しい大きさを有している。具体的には、酸素化ヘモグロビンフィルタ21のX方向の長さL11(図9参照)は、脱酸素化ヘモグロビンフィルタ22のX方向の長さL12(図9参照)と略等しい。また、酸素化ヘモグロビンフィルタ21のY方向の長さL13は、脱酸素化ヘモグロビンフィルタ22のY方向の長さL14と略等しい。
【0075】
なお、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、X方向およびY方向における位置が互いに揃う(図4参照)ように設けられている。すなわち、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22は、Z方向から見て、互いの全体同士がオーバーラップした状態で一体的に移動する。
【0076】
ここで、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の移動の一例を説明する。たとえば、制御部25は、モータ24aにより、送光ファイバ3からの近赤外光が図10のa点、b点、c点、d点、e点の順に通過するように(図10の破線に沿うように)、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を一体的に移動させる。なお、a点およびe点は、同一の地点である。
【0077】
この場合、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの濃度として算出される値の推移の波形は、それぞれ、図11の波形D1および波形D2のようになる。また、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の移動を制御することにより、任意の波形を生成することが可能である。なお、第2実施形態では説明のためにa点~e点の5点を例に説明したが、a点~e点の5点だけではなく、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22の移動中に連続的に取得された複数(5点以上)の計測データから上記波形が生成されてもよい。
【0078】
第2実施形態のその他の構成は、上記第1実施形態と同様である。
【0079】
(第2実施形態の効果)
第2実施形態では、以下のような効果を得ることができる。
【0080】
第2実施形態では、上記のように、酸素化ヘモグロビンフィルタ21は、X方向に沿って、近赤外光の吸収率が連続的に変化するように構成され、脱酸素化ヘモグロビンフィルタ22は、Y方向に沿って、近赤外光の吸収率が連続的に変化するように構成されている。そして、制御部25が、移動機構24(モータ24a)を制御して、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を、XY平面に沿って移動させるように、ファントム装置10を構成する。これにより、酸素化ヘモグロビンフィルタ21において近赤外光の吸収率が変化するX方向と、脱酸素化ヘモグロビンフィルタ22において近赤外光の吸収率が変化するY方向とが交差(直交)することによって、光軸が延びる方向(Z方向)から見て酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22がオーバーラップする部分の、酸素化ヘモグロビンフィルタ21における近赤外光の吸収率と脱酸素化ヘモグロビンフィルタ22における近赤外光の吸収率との組み合わせを2次元的に(XY平面内の座標毎に)変化させることができる。その結果、酸素化ヘモグロビンフィルタ21および脱酸素化ヘモグロビンフィルタ22を、XY平面に沿って2次元的に移動させることによって、近赤外光に対する酸素化ヘモグロビンフィルタ21による吸収量と脱酸素化ヘモグロビンフィルタ22による吸収量とを容易に調整することができる。
【0081】
また、第2実施形態では、上記のように、制御部25が、移動機構24(モータ24a)を制御して、酸素化ヘモグロビンフィルタ21と脱酸素化ヘモグロビンフィルタ22とを一体的に移動させるように、ファントム装置10を構成する。これにより、酸素化ヘモグロビンフィルタ21と脱酸素化ヘモグロビンフィルタ22とを2次元的に移動させる場合において、酸素化ヘモグロビンフィルタ21と脱酸素化ヘモグロビンフィルタ22とを個別に移動させる場合に比べて、制御部25の制御負荷を軽減することができる。
【0082】
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
【0083】
(変形例)
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく、請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
【0084】
たとえば、上記第1および第2実施形態では、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)は、送光ファイバ3(光源部)と受光ファイバ4(検出部)との間に設けられている例を示したが、本発明はこれに限られない。
【0085】
たとえば、図12に示すように、ファントム装置30は、全反射ミラー31を備えている。全反射ミラー31は、送光ファイバ3からの近赤外光を受光ファイバ4に向かって反射する。また、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々は、送光ファイバ3および受光ファイバ4と全反射ミラー31との間に配置されている。なお、図12では、説明に不要な部材は、簡略化のため、図示を省略している。また、全反射ミラー31およびファントム装置30は、それぞれ、請求の範囲の「反射部」および「光脳機能計測装置用ファントム装置」の一例である。
【0086】
この場合、送光ファイバ3からの近赤外光は、NDフィルタ13、酸素化ヘモグロビンフィルタ11、および、脱酸素化ヘモグロビンフィルタ12を通過して全反射ミラー31により反射される。そして、全反射ミラー31により反射された近赤外光は、脱酸素化ヘモグロビンフィルタ12、酸素化ヘモグロビンフィルタ11、および、NDフィルタ13を通過して受光ファイバー4により受光される。なお、上記第2実施形態の構成においても、全反射ミラー31を設けた構成にしてもよい。
【0087】
ここで、光脳機能計測装置では、一般的に、脳に装着された装置から照射され、脳内において反射された近赤外光を、上記装置により検出することにより計測が行われる。したがって、酸素化ヘモグロビンフィルタ11および脱酸素化ヘモグロビンフィルタ12の各々が、送光ファイバ3および受光ファイバ4と全反射ミラー31との間に配置されていることによって、光脳機能計測装置を用いた実際の脳の検査に近い条件(構成)での検査を行うことができる。
【0088】
また、上記第1および第2実施形態では、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)の各々は、平板形状を有している例を示したが、本発明はこれに限られない。
【0089】
たとえば、図13に示すように、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、Z方向における厚みが、移動方向(X方向)に沿った部分毎に異なる。すなわち、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、くさび形状を有している。具体的には、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、X1方向側の部分の方が、X2方向側の部分よりも、Z方向の厚みが大きい。詳細には、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42は、それぞれ、近赤外光の光軸が延びる方向(Z方向)に対して傾斜する傾斜面41aおよび傾斜面42aを有している。なお、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42は、それぞれ、請求の範囲の「第1フィルタ」および「第2フィルタ」の一例である。また、上記第2実施形態の構成においても、各フィルタが傾斜面を有する構成にしてもよい。
【0090】
これにより、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、移動方向(X方向)に沿った部分毎に近赤外光の吸収率が異なる。すなわち、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、Z方向における厚みが大きいX1方向側の部分の方が、Z方向における厚みが小さいX2方向側の部分よりも、近赤外光の吸収率が大きい。
【0091】
この場合、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々は、部分毎に色の濃淡は一様に構成されている。なお、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42のうちの少なくとも一方を、Y方向において厚みが変化するように構成してもよい。
【0092】
これにより、色の濃淡を調整することなく、厚みを調整するだけで、酸素化ヘモグロビンフィルタ41および脱酸素化ヘモグロビンフィルタ42の各々の近赤外光の吸収率を容易に調整することができる。
【0093】
また、上記第2実施形態では、酸素化ヘモグロビンフィルタ(21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(22)(第2フィルタ)を移動させる例を示したが、本発明はこれに限られない。酸素化ヘモグロビンフィルタ(21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(22)(第2フィルタ)を固定した状態で、送光ファイバ3(光源部)および受光ファイバ4(検出部)を移動させてもよい。
【0094】
また、上記第1および第2実施形態では、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)が、それぞれ、酸素化ヘモグロビンおよび脱酸素化ヘモグロビンの吸収周波数部分と略等しい例を示したが、本発明はこれに限られない。酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)が、それぞれ、酸素化ヘモグロビンおよび脱酸素化ヘモグロビン以外の生体物質と略等しい吸収周波数分布を有していてもよい。
【0095】
また、上記第1および第2実施形態では、モータ(14a、14b、24a)によって酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)の各々を移動する例を示したが、本発明はこれに限られない。たとえば、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)の各々を、手動で移動させる構成であってもよい。
【0096】
また、上記第1実施形態では、酸素化ヘモグロビンフィルタ11(第1フィルタ)および脱酸素化ヘモグロビンフィルタ12(第2フィルタ)の各々が、X1方向側の方が近赤外光(光)の吸収率が高い例を示したが、本発明はこれに限られない。たとえば、酸素化ヘモグロビンフィルタ11(第1フィルタ)および脱酸素化ヘモグロビンフィルタ12(第2フィルタ)のうちの少なくとも一方が、X2方向側の方が近赤外光(光)の吸収率が高くてもよい。
【0097】
また、上記第2実施形態では、酸素化ヘモグロビンフィルタ21(第1フィルタ)における近赤外光の吸収率が変化する方向と、脱酸素化ヘモグロビンフィルタ22(第2フィルタ)における近赤外光の吸収率が変化する方向とが直交する例を示したが、本発明はこれに限られない。たとえば、酸素化ヘモグロビンフィルタ21(第1フィルタ)における近赤外光の吸収率が変化する方向と、脱酸素化ヘモグロビンフィルタ22(第2フィルタ)における近赤外光の吸収率が変化する方向とが直交せずに交差していてもよい。
【0098】
また、上記第2実施形態では、酸素化ヘモグロビンフィルタ21(第1フィルタ)と脱酸素化ヘモグロビンフィルタ22(第2フィルタ)とが、一体的に移動する例を示したが、本発明はこれに限られない。たとえば、酸素化ヘモグロビンフィルタ21(第1フィルタ)および脱酸素化ヘモグロビンフィルタ22(第2フィルタ)の各々を、独立して移動させてもよい。
【0099】
また、上記第1および第2実施形態では、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)の各々が、カラーフィルタである例を示したが、本発明はこれに限られない。たとえば、酸素化ヘモグロビンフィルタ(11、21)(第1フィルタ)および脱酸素化ヘモグロビンフィルタ(12、22)(第2フィルタ)の各々が、カラーフィルタ以外であってもよい。
【0100】
また、上記第2実施形態では、移動機構24が1つのモータ24aを含んでいる例を示したが、本発明はこれに限られない。たとえば、移動機構24は、酸素化ヘモグロビンフィルタ21(第1フィルタ)および脱酸素化ヘモグロビンフィルタ22(第2フィルタ)の各々に対応するように、モータを2つ含んでいてもよい。
【符号の説明】
【0101】
3 送光ファイバ(光源部)
4 受光ファイバ(検出部)
10、20、30 ファントム装置(光脳機能計測装置用ファントム装置)
11、21、41 酸素化ヘモグロビンフィルタ(第1フィルタ)
12、22、42 脱酸素化ヘモグロビンフィルタ(第2フィルタ)
13 NDフィルタ(第3フィルタ)
14、24 移動機構
14a モータ(第1移動機構)
14b モータ(第2移動機構)
15、25 制御部
31 全反射ミラー(反射部)
100、200 光脳機能計測装置
A1、A2、B1、B2、C1、C2、D1、D2 波形
X 方向(第1の方向)
Y 方向(第2の方向)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13