(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-30
(45)【発行日】2022-06-07
(54)【発明の名称】燃料要素のための鉄をベースとした鋼組成物、燃料要素、燃料集合体の成分および鋼組成物を製造する方法
(51)【国際特許分類】
C22C 38/00 20060101AFI20220531BHJP
G21C 3/06 20060101ALI20220531BHJP
G21C 3/30 20060101ALI20220531BHJP
C21D 9/08 20060101ALI20220531BHJP
C22C 38/46 20060101ALI20220531BHJP
C21D 8/02 20060101ALI20220531BHJP
C21D 8/10 20060101ALI20220531BHJP
C22C 43/00 20060101ALN20220531BHJP
【FI】
C22C38/00 302L
G21C3/06 200
G21C3/06 320
G21C3/30 300
C21D9/08 E
C22C38/46
C21D8/02 D
C21D8/10 D
C22C43/00
【外国語出願】
(21)【出願番号】P 2018022083
(22)【出願日】2018-02-09
【審査請求日】2020-12-23
(32)【優先日】2017-02-09
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513313945
【氏名又は名称】テラパワー, エルエルシー
(74)【代理人】
【識別番号】110000338
【氏名又は名称】特許業務法人HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】マイカ ハケット
(72)【発明者】
【氏名】ロナルド クルー
【審査官】立木 林
(56)【参考文献】
【文献】特表2016-511325(JP,A)
【文献】米国特許出願公開第2014/0182749(US,A1)
【文献】特開平01-139717(JP,A)
【文献】特開平06-201872(JP,A)
【文献】特開平11-092881(JP,A)
【文献】中国特許出願公開第101956146(CN,A)
【文献】HACKETT, M.J. et al.,"HT9 development for the traveling wave reactor, invited",Transactions of the American Nuclear Society,2012年06月24日,Vol.106,pp.1133-1135
【文献】YANG, S. et al.,"Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel",Journal of Nuclear Materials,2017年03月02日,Vol.488,pp.215-221
【文献】ZHENG, C. et al.,"Radiation-induced swelling and radiation-induced segregation & precipitation in dual beam irradiated Ferritic/Martensitic HT9 steel",Materials Characterization,2017年10月18日,Vol.134,pp.152-162
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00
G21C 3/07
G21C 3/06
G21C 3/30
C21D 9/08
C22C 38/46
C21D 8/02
C21D 8/10
C22C 43/00
(57)【特許請求の範囲】
【請求項1】
鋼組成物であって、
10.0重量%か
ら13.0重量%の間でのCrと、
0.17重量%か
ら0.23重量%の間でのCと、
0.80重量%か
ら1.2重量%の間でのMoと、
0.5重量%以下のSiと、
1.0重量%以下のMnと、
0.25重量%か
ら0.35重量%の間でのVと、
0.40重量%か
ら0.60重量%の間でのWと、
0.005重量%から0.05重量%の間でのNと、
0.03重量%以下のPと、
0.3重量%以下のSと、
0.3重量%から0.7重量%の間でのNiと、
0.02重量%以下のCuと、
少なくとも80重量%のFeと、
付随的な不純物と、
からなり、
上記鋼組成物は、
損傷カスケードに対するK-Pオプションと40eVの変位エネルギーとを用いてStopping Range in Matterシミュレーションを用いて計算される場合に、460℃で0.2appm He/dpaにて188原子変位数(dpa)の線量までの二重ビームFe
++およびHe
++の放射線照射の後に、
上記鋼組成物が上記鋼組成物の表面の下の500-700nmの間の深さで0.9体積%より小さい膨張を示すように処理され、
上記二重ビームが、
(i)5MeVのFe
++イオンの焦点ぼけさせたビームと、
(ii)上記鋼組成物の放射線照射の深さで均質なHeプロフィールを生成するために、散乱およびエネルギー減少のためのAlホイルを通じて伝達される~2MeVのHe
++のラスター走査されたビームと、
からなる
ことを特徴とする鋼組成物。
【請求項2】
請求項1に記載の鋼組成物を製造する方法であって、
上記鋼組成物の処理が、上記鋼組成物を40~60時間、1100℃から1300℃までの温度に加熱することによって、上記鋼組成物のうちの少なくともいくらかをオーステナイト相に変態させることを含むことを特徴とする
方法。
【請求項3】
上記鋼組成物が0.75体積%より小さい膨張を示すことを特徴とする請求項1に記載の鋼組成物。
【請求項4】
上記鋼組成物が0.5体積%より小さい膨張を示すことを特徴とする請求項1に記載の鋼組成物。
【請求項5】
上記鋼組成物が0.3体積%より小さい膨張を示すことを特徴とする請求項1に記載の鋼組成物。
【請求項6】
上記鋼組成物がHT9鋼であることを特徴とする請求項1に記載の鋼組成物。
【請求項7】
請求項1に記載の鋼組成物から成る燃料要素。
【請求項8】
請求項1に記載の鋼組成物から成る燃料集合体の成分。
【請求項9】
鋼組成物であって、
(Fe)
a(Cr)
b(Mo,Ni,Mn,W,V)
cN
d
からなり、
a、b、cおよびdは、それぞれ、重量パーセントを表す0より大きい数であり、
bは11から13の間であり、
c
は0.25か
ら0.9の間であり、
d
は0.01か
ら0.04の間であり、
aによって釣り合いが取られ、
上記鋼組成物は、
損傷カスケードに対するK-Pオプションと40eVの変位エネルギーとを用いてStopping Range in Matterシミュレーションを用いて計算される場合に、460℃で0.2appm He/dpaにて188原子変位数(dpa)の線量までの二重ビームFe
++およびHe
++の放射線照射の後に、
上記鋼組成物が上記鋼組成物の表面の下の500-700nmの間の深さで0.9体積%より小さい膨張を示すように処理され、
上記二重ビームが、
(i)5MeVのFe
++イオンの焦点ぼけさせたビームと、
(ii)上記鋼組成物の放射線照射の深さで均質なHeプロフィールを生成するために、散乱およびエネルギー減少のためのAlホイルを通じて伝達される~2MeVのHe
++のラスター走査されたビームと、
からなる
ことを特徴とする鋼組成物。
【請求項10】
bが11.5から12.5であることを特徴とする請求項9に記載の鋼組成物。
【請求項11】
請求項9に記載の鋼組成物を製造する方法であって、
上記鋼組成物の処理が、上記鋼組成物を40~60時間、1100℃から1300℃までの温度に加熱することによって、上記鋼組成物のうちの少なくともいくらかをオーステナイト相に変態させることを含むことを特徴とする
方法。
【請求項12】
上記鋼組成物が0.75体積%より小さい膨張を示すことを特徴とする請求項9に記載の鋼組成物。
【請求項13】
上記鋼組成物が0.5体積%より小さい膨張を示すことを特徴とする請求項9に記載の鋼組成物。
【請求項14】
上記鋼組成物が0.3体積%より小さい膨張を示すことを特徴とする請求項9に記載の鋼組成物。
【請求項15】
上記鋼組成物がHT9鋼であることを特徴とする請求項9に記載の鋼組成物。
【請求項16】
請求項9に記載の鋼組成物から成る燃料要素。
【請求項17】
請求項9に記載の鋼組成物から成る燃料集合体の成分。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料集合体、燃料要素、被覆材、燃料要素の製造方法および燃料要素の使用方法に関するものである。
【0002】
〔関連出願への相互参照〕
この出願は、2016年3月21日に出願された米国出願第15/076,475号の一部継続出願である。米国出願第15/076,475号は、2013年3月11日に出願された米国出願第13/794,589号の継続出願であり、米国出願第13/794,589号は、2012年12月28日に出願された米国仮出願第61/747,054号の利益を主張し、これらの出願の全内容が参照により本明細書に組み込まれる。
【背景技術】
【0003】
本特許出願は、被覆材を含んでいる燃料要素と、当該燃料要素に関する方法とに関する。
【発明の概要】
【0004】
開示された実施形態は、燃料要素、燃料集合体、被覆材並びにこれらの製造方法および使用方法を包含している。
【0005】
上述した記載は概要であり、それゆえ、記載は単純化、一般化、包括、および/または詳細な記述の省略を含んでいる。その結果、当業者であれば、この概要は例証を提供するだけのものであって、いかなる限定も加える意図がないことを十分に理解するであろう。上記の任意の例証となる態様、実施形態、および特徴に加えて、さらに別の態様、実施形態、および特徴が、図面および以下の詳細な説明を参照することによって明らかになるであろう。装置および/または方法および/または本明細書中に記載した他の対象物の他の態様、特徴、および利点は、本明細書中で説明した教示において明らかになるであろう。
【0006】
図面は、そもそも、説明に役立てる目的のためのものであり、本明細書中に記載した発明の対象物の範囲を限定する意図がないことを当業者は理解するであろう。図面は、必ずしも縮尺どおりではない。場合によっては、異なる特徴の理解を助けるために、本明細書中に開示された本発明の対象物の種々の態様は、図面において誇張または拡大して示されてもよい。図面において、類似した参照文字は、通常、類似した特徴(例えば、機能的に類似した要素および/または構造的に類似した要素)を参照している。
【図面の簡単な説明】
【0007】
【
図1a】一例となる実施形態において、例証となる(a)核燃料集合体における部分的に切断した斜視図を提供する。
【
図1b】一例となる実施形態において、例証となる燃料要素の概略的な形状における部分的に切断した斜視図を提供する。
【
図2a】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図2b】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図2c】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図2d】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図2e】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図2f】一例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図3a】一例となる実施形態における、異なる方法を経た鉄をベースとした組成物の異なる微細構造を示している光学顕微鏡写真を提供する。
【
図3b】一例となる実施形態における、異なる方法を経た鉄をベースとした組成物の異なる微細構造を示している光学顕微鏡写真を提供する。
【
図3c】一例となる実施形態における、異なる方法を経た鉄をベースとした組成物の異なる微細構造を示している光学顕微鏡写真を提供する。
【
図4a】他の例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図4b】他の例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図4c】他の例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図4d】他の例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図4e】他の例となる実施形態における、組成物の製造方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図5a】一例となる実施形態における、組成物の使用方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図5b】一例となる実施形態における、組成物の使用方法のフローチャートおよびその方法の例証となる詳細な記述を提供する。
【
図6a】加熱CHおよびDHのプレートおよび管の生成物を組み立てるのに用いられる主な処理の処理概略を示す。
【
図6b】加熱CHおよびDHのプレートおよび管の生成物を組み立てるのに用いられる主な処理の処理概略を示す。
【
図7】放射線照射によって生成される空隙に対する深さ効果を説明する代表的な透過型電子顕微鏡(TEM)画像を示す。
【
図8】保管されたACO-3に対して組成物の実施形態の空隙膨張性能の違いを説明する加熱に対する膨張結果を示す。
【
図9】0.2appm He/dpaにて480℃で188dpaまで放射線照射した後の4つの加熱における空隙微細構造のTEMコラージュを示し、ここでは、空隙は黒いポケット(袋)として現れている。
【
図10】0.015appm He/dpaにて460℃で188dpaまで放射線照射した後の4つの加熱における空隙微細構造のTEMコラージュを示す。
【発明を実施するための形態】
【0008】
〔詳細な説明〕
(序論)
以下の詳細な説明において、本明細書の一部を形成している添付の図面に対して言及される。当該図面において、文脈が他のことを指示している場合を除いて、異なる図面における類似の記号または同一の記号の使用は、通常、類似の項目または同一の項目を意図している。
【0009】
詳細な説明、図面、および請求項に記載した例証となる実施形態は、制限することを意図されていない。本明細書中に提示された主題の精神または範囲から逸脱しなければ、他の実施形態が利用されてもよく、そして、他の変更が行われてもよい。
【0010】
本明細書に記載した構成要素(例えば、操作)、装置、対象物、およびこれらに付随している解説が、概念を明確にする目的のための例として使用されること、並びに種々の形態の改変が検討されることを当業者は認識するであろう。従って、本明細書中で使用される場合、説明された具体的な例および付随している解説は、これらのより一般的なクラスを代表することを意図して使用される。一般に、任意の具体的な例の使用は、そのクラスを代表することを意図し、そして、特定の構成要素(例えば、操作)、装置、および対象物を含めないことが、限定的なものとして受け取られるべきではない。
【0011】
本出願は、提示を明確にするために、形式的なアウトライン見出しを使用する。しかし、当該アウトライン見出しは、提示目的のためであること、および異なる種類の主題がこの出願全体を通して議論されてもよいことが理解されるべきである(例えば、装置/構造は、方法/操作の見出しの箇所で説明されてもよく、および/または、方法/操作は、構造/方法の表題の見出しの箇所で説明されてもよい。および/または、単一のトピックの説明は、2つ以上のトピックの見出しの箇所に及んでいてもよい)。それゆえ、形式的なアウトライン見出しの使用は、何らかの制限をすることを意図されない。
【0012】
(概説)
概説の目的で、組成物の製造方法が一実施形態において提供され、当該方法は、以下を包含している:鉄をベースとした組成物を含有している物質を、第1の条件を満たす第1の温度にて熱処理する工程であって、当該第1の条件は、上記鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態する条件である工程;上記物質を、第2の条件を満たす冷却速度にて、当該第2の条件を満たす第2の温度まで冷却する工程であって、当該第2の条件は、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相に変態する条件である工程;および、上記物質を、第3の条件を満たす第3の温度にて熱処理する工程であって、当該第3の条件は、カーバイドが沈殿される条件である工程。
【0013】
組成物の製造方法が他の実施形態において提供され、当該方法は、以下を包含している:物質に、冷間引抜き(cold drawing)、冷間圧延(cold rolling)、およびピルガー圧延(pilgering)の内の少なくとも1つを受けさせる工程;鉄をベースとした組成物を含有している上記物質を、第1の条件を満たす第1の温度にて熱処理する工程であって、当該第1の条件は、上記鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態する条件である工程;上記物質を、第2の条件を満たす冷却速度にて、当該第2の条件を満たす第2の温度まで冷却する工程であって、当該第2の条件は、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相に変態する条件である工程;および、上記物質を、第3の条件を満たす第3の温度にて熱処理する工程であって、当該第3の条件は、カーバイドが沈殿する条件である工程。
【0014】
組成物が他の実施形態において提供され、当該組成物は、(Fe)a(Cr)b(M)c(当該式中、a、bおよびcは、それぞれゼロよりも大きい数であり、重量百分率を表しており;Mは、少なくとも1種の遷移金属元素であり;bは11から12の間であり;cは約0.25から約0.9の間であり;且つ、aによって釣合いが取れられている)を含有しており、且つ、当該組成物は、少なくともNを、約0.01重量%から約0.04重量%の間でさらに含有している。
【0015】
組成物が他の実施形態において提供され、当該組成物は、(Fe)a(Cr)b(Mo,Ni,Mn,W,V)c(当該式中、a、bおよびcは、それぞれゼロよりも大きい数であり、重量百分率を表しており;bは11から12の間であり;cは約0.25から約0.9の間であり;且つ、aによって釣合いが取れられている)を含有しており、当該組成物の少なくとも実質的に全てが、マルテンサイト相を有しており、且つ、当該組成物は、Nを、約0.01重量%から約0.04重量%の間で含有している。
【0016】
燃料集合体の使用方法が他の実施形態において提供され、当該使用方法は、燃料集合体、すなわち組成物を含有している燃料要素を使用して出力を発生させる工程を包含しており、当該組成物は、化学式(Fe)a(Cr)b(M)c(当該式中、a、bおよびcは、それぞれゼロよりも大きい数であり、重量百分率を表しており;Mは、少なくとも1種の遷移金属元素であり;bは11から12の間であり;cは約0.25から約0.9の間であり;且つ、aによって釣合いが取れられている)によって表され、且つ、当該組成物は、少なくともNを、約0.01重量%から約0.04重量%の間でさらに含有している。
【0017】
管状の組成物を含有している燃料要素が他の実施形態において提供され、当該管状の組成物は、以下を包含している方法によって作製される:鉄をベースとした組成物を含有している物質を、第1の条件を満たす第1の温度にて熱処理する工程であって、当該第1の条件は、上記鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態する条件である工程;上記物質を、第2の条件を満たす冷却速度にて、当該第2の条件を満たす第2の温度まで冷却する工程であって、当該第2の条件は、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相に変態する条件である工程;および、上記物質を、第3の条件を満たす第3の温度にて熱処理する工程であって、当該第3の条件は、カーバイドが沈殿する条件である工程。一実施形態において、窒素が存在している組成物において、カーバイドの上記沈殿は、窒化物および炭窒化物の沈殿に付随して起こってもよい。
【0018】
(燃料集合体)
図1は、一実施形態に従って、核燃料集合体10の部分的な説明図を提示する。当該燃料集合体は、核分裂性の核燃料集合体(fissile nuclear fuelassembly)または核燃料親物質集合体(fertilenuclear fuel assembly)であってもよい。当該集合体は、燃料要素(すなわち、「燃料ロッド」もしくは「燃料ピン」)11を含んでいてもよい。
図1bは、一実施形態に従って、燃料要素11の部分的な説明図を提示する。この実施形態において示されたように、燃料要素11は、被覆材13、燃料14、および、場合によっては、少なくとも1つの空隙15を含んでいてもよい。
【0019】
燃料は、外側の被覆材13によって空洞内部に密封されてもよい。場合によって、
図1bにおいて示されたように、複数の燃料物質が軸方向に積み重ねられてもよいが、これは必ずしもそうである必要性はない。例えば、燃料要素は、1つの燃料物質のみを含有していてもよい。一実施形態において、空隙15は、燃料物質と被覆材との間に存在していてもよいが、必ずしも空隙が存在している必要性はない。一実施形態において、当該空隙は、例えば加圧されたヘリウム雰囲気等の加圧された雰囲気で満たされている。
【0020】
燃料は、任意の核分裂可能な物質を含有していてもよい。核分裂可能な物質は、金属および/または金属合金を含有していてもよい。一実施形態において、上記燃料は、金属燃料であってもよい。金属燃料は、比較的高い重金属負荷と優れた中性子経済をもたらすことができ、これは核分裂反応炉の増殖および燃焼工程にとって望ましいことが十分に理解され得る。用途に応じて、燃料は、U、Th、Am、NpおよびPuから選択される少なくとも1種の元素を含有していてもよい。当該用語「元素(element)」は、本明細書中で元素記号として表される場合、周期表において見出されるものをいう。すなわち、これは、「燃料要素(fuel element)」の「要素(element)」と混同されるべきではない。一実施形態において、上記燃料は、少なくとも約90重量%のUを含有していてもよい。すなわち、上記燃料は、例えば、少なくとも、95重量%、98重量%、99重量%、99.5重量%、99.9重量%、99.99重量%、またはこれより多いUを含有していてもよい。上記燃料は、耐熱物質をさらに含有していてもよい。当該耐熱物質は、Nb、Mo、Ta、W、Re、Zr、V、Ti、Cr、Ru、Rh、Os、IrおよびHfから選択される少なくとも1種の元素を含有していてもよい。一実施形態において、上記燃料は、例えば、ホウ素、ガドリニウム、またはインジウム等の追加のバーナブルポイズンを含有していてもよい。
【0021】
放射線照射の間の合金を寸法的に安定化させ、且つ被覆材の低温共融および腐食損傷を防ぐために、上記金属燃料は、約3重量%から約10重量%のジルコニウムと合金されてもよい。燃料の膨張を可能にし、且つ効率的な熱伝導をもたらすために、ナトリウムの熱結合剤が、当該合金燃料と被覆管の内壁との間に存在している空隙に満たされる。これによって、燃料の温度を低温に保ち得る。一実施形態において、燃料集合体18および20の筐体(冷却管としても機能する)内部において、冷却剤のスペースと、個々の燃料要素56の機械的な分離とをもたらすために、個々の燃料要素11は、被覆管の外周を囲むようにらせん状に巻きつけられた直径約0.8mmから直径約1.6mmの細いワイヤー12を有していてもよい。一実施形態において、被覆13、および/またはワイヤーラップ12は、実験データの本体によって示されたように、その放射線照射能の理由で、フェライト-マルテンサイト系鋼から組み立てられてもよい。
【0022】
(燃料要素)
出力発生反応炉の燃料集合体において、
図1a~
図1bにおいて示された要素11のような「燃料要素」は、通常、円筒型のロッドの形態をとってもよい。当該燃料要素は、原子力発電所の一部である出力発生反応炉の一部であってもよい。用途に応じて、上記燃料要素は、その長さおよび直径に関して任意の適切な寸法であってもよい。上記燃料要素は、被覆層13および被覆層13の内部に配置された燃料14を含んでいてもよい。原子炉の場合、上記燃料は、核燃料を含んでいてもよい(または核燃料であってもよい)。一実施形態において、当該核燃料は、環状の核燃料であってもよい。上記燃料要素は、核燃料14と被覆層13との間に配置されたライナーを追加で含んでいてもよい。当該ライナーは、複数の層を含んでいてもよい。
【0023】
上記燃料は、任意の形状を有していてもよい。一実施形態において、上記燃料は、環状の形状を有している。そのような実施形態において、燃料を環状の形状にすることで、ある水準の燃焼の後に、所望の水準の燃料密度が達成され得る。また、そのような環状の構造は、燃料と被覆との間の圧縮力を維持して熱輸送を促進し得る。用途に応じて、上記燃料は、種々の性質を有するように調整されてもよい。例えば、上記燃料は、任意の水準の密度を有していてもよい。一実施形態において、例えば、(ウランを含有している燃料の場合に)理論密度のウランに可能な限り近い密度のような、高密度の燃料を有していることが望ましい。他の実施形態において、高い空隙率(低い密度)を有していることは、放射線照射の間にさらに内部の空隙が形成されることを妨げる可能性があり、その結果、核燃料の操作中に、例えば被覆等の構造物質における燃料圧を低下させる。
【0024】
用途に応じて、被覆層13のための被覆材は、任意の適切な物質を含有していてもよい。一実施形態において、被覆層13は、金属、金属合金およびセラミックから選択される少なくとも1種の物質を含有していてもよい。一実施形態において、被覆層13は、Nb、Mo、Ta、W、Re、Zr、V、Ti、Cr、Ru、Rh、Os、Ir、NdおよびHfから選択される少なくとも1種の元素を含有している耐火金属のような、耐熱物質を含有していてもよい。他の実施形態において、上記被覆材は、例えば、炭化ケイ素または酸化アルミニウム(アルミナ)等のセラミック物質から選択されてもよい。
【0025】
被覆層13中の金属合金は、一例となる実施形態において、鋼であってもよい。当該鋼は、オーステナイト鋼、フェリチン-マルテンサイト系鋼、酸化物が分散された鋼、T91鋼、T92鋼、HT9鋼、316鋼および304鋼から選択される鋼であってもよい。当該鋼は、任意の種類の微細構造を有していてもよい。例えば、当該鋼は、マルテンサイト相、フェライト相およびオーステナイト相の内の少なくとも1種を含んでいてもよい。一実施形態において、上記鋼の実質的に全てが、マルテンサイト相、フェライト相およびオーステナイト相から選択される少なくとも1種の相を有している。用途に応じて、上記微細構造は、1つ以上の特定の相(または複数の特定の相)を有するように調整されてもよい。被覆層13は、以下に記載するような鉄をベースとした組成物を含んでいてもよい。
【0026】
上記燃料要素の少なくともある程度の量の成分は、結合されていてもよい。この結合は、物理的な結合(例えば、機械的な結合)または化学的な結合であってもよい。一実施形態において、上記核燃料と上記被覆とは、機械的に結合されている。一実施形態において、第1の層と第2の層とが機械的に結合されている。
【0027】
(鉄をベースとした組成物)
金属を含有している組成物が、本明細書中の一実施形態において提供される。当該金属は、金属、金属合金および金属間組成物(intermetalliccomposition)の内の少なくとも1種を含んでいてもよい。一実施形態において、当該金属は、鉄を含有している。一実施形態において、上記組成物は、鉄をベースとした組成物を含有している。一実施形態における上記用語「Xをベースとした」組成物は、かなりの量の元素X(例えば、金属元素)を含有している組成物といってもよい。その量は、例えば、少なくとも30%であってもよい。すなわち、その量は、例えば、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも99%、またはそれより多い量であってもよい。文脈によって、本明細書における百分率は、重量百分率または体積百分率(もしくは原子百分率)といってもよい。一実施形態において、上記鉄をベースとした組成物は、鋼を含有していてもよい。
【0028】
本明細書中に記載した上記組成物は、例えば、核燃料要素の被覆材等の核燃料要素の構成要素として使用されてもよい。しかし、上記金属を含有している組成物は、必ずしも被覆材に限定される必要性はなく、そのような組成物が使用される所はどこでも使用されてよい。例えば、組成物が一実施形態において提供され、当該組成物は、化学式(Fe)a(Cr)b(M)c(当該式中、a、bおよびcは、それぞれゼロよりも大きい数であり、重量百分率を表しており;状況によって、これらの数は、代わりに体積百分率を表してもよい)によって表される。一実施形態において、bは、11から12の間の数であり、cは、約0.25から約0.9の間であり、aによって釣合いが取れられている。一実施形態において、上記組成物は、少なくとも窒素(「N」)を、約0.005重量%から約0.05重量%の間で含有している。すなわち、上記組成物は、少なくとも窒素(「N」)を、例えば、約0.01重量%から約0.04重量%の間、約0.01重量%から約0.03重量%の間、約0.02重量%から約0.03重量%の間、等で含有している。上記元素Mは、少なくとも1種の遷移金属元素を表していてもよい。この鉄をベースとした組成物における当該元素Mは、周期表において見出される任意の遷移金属元素であってもよい。すなわち、当該元素Mは、例えば、周期表の3族~12族の元素であってもよい。一実施形態において、Mは、Mo、Ni、Mn、WおよびVの内の少なくとも1種を表している。
【0029】
他の実施形態において、上記組成物は、鋼組成物を含有している鉄をベースとした組成物を含有していてもよく、または鋼組成物を含有している鉄をベースとした組成物であってもよい。上記組成物は、化学式(Fe)a(Cr)b(Mo,Ni,Mn,W,V)c(当該式中、a、bおよびcは、それぞれゼロよりも大きい数であり、重量百分率を表しており;状況によって、これらの数は、代わりに体積百分率を表してもよい)によって表されてもよい。一実施形態において、上記数bは、11から12の間であり、cは約0.25から約0.9の間であり、aによって釣合いが取れられている。一実施形態において、上記組成物は、Nを、約0.01重量%から約0.04重量%の間で含有している。
【0030】
上記組成物は、少なくとも1種の追加の元素を含有していてもよい。当該追加の元素は、非金属元素であってもよい。一実施形態において、当該非金属元素は、Si、S、CおよびPから選択される少なくとも1種の元素であってもよい。上記追加の元素は、Cu、Cr、Mo、Mn、V、W、Ni等を包含している金属元素であってもよい。一実施形態において、上記組成物は、Crを約10重量%から約12.5重量%の間で、Cを約0.17重量%から約0.22重量%の間で、Moを約0.80重量%から約1.2重量%の間で、Siを約0.5重量%以下で、Mnを約1.0重量%以下で、Vを約0.25重量%から約0.35重量%の間で、Wを約0.40重量%から約0.60重量%の間で、Pを約0.03重量%以下で、およびSを約0.3重量%以下で、さらに含有している。他の実施形態において、上記組成物は、Niを約0.3重量%から0.7重量%の間でさらに含有している。他の実施形態において、上記組成物は、Crを約11.5重量%で、Cを約0.20重量%で、Moを約0.90重量%で、Niを約0.55重量%で、Mnを約0.65重量%で、Vを約0.30重量%で、Wを約0.50重量%で、Siを約0.20重量%で、およびNを約0.02重量%で、さらに含有している。他の元素もまた、任意の適切な量で存在していてもよい。場合によっては、ある種の付随的な不純物が存在していてもよい。
【0031】
上記組成物は、調整された微細構造を含んでいる鋼組成物を含有している、鉄をベースとした組成物を含有していてもよい。例えば、本明細書中で提供される上記組成物は、少量のデルタ-フェライト相を有していてもよい。一実施形態において、上記組成物は、デルタ-フェライト相を少なくとも実質的に有していない。他の実施形態において、上記組成物は、デルタ-フェライト相を全く有していない。フェライト相の代わりに、上記組成物は、マルテンサイト相(例えば、焼き戻しされたマルテンサイト)を含有していてもよい。一実施形態において、組成物の実質的に全てが、マルテンサイト相を有している。他の実施形態において、上記組成物の完全に全てが、マルテンサイト相を有している。以下に記載するように、(例えば、フェライト相の形成を軽減するために)上記微細構造を調整する1つの手法は、本明細書中で提供した範囲内で、窒素の含有量を制御することであってもよい。本明細書における軽減は、削減および/または阻止をいうが、必ずしも完全な消失をいう必要性はない。
【0032】
上記相を含有している、上記微細構造は、クロム当量の観点から記載されてもよい。一実施形態において、クロム当量(「Creq」)は、ステンレス鋼、すなわち溶接金属における相の推定のための状態図にプロットされたフェライト形成元素の和であり、種々の方程式から計算される。場合によっては、クロム当量は、オーステナイト形成元素の和であるニッケル当量と併用して使用されてもよい。上記方程式は、少なくとも物質の化学的性質に応じた、任意の適切な方程式であってもよい。一実施形態において、上記方程式は、正味クロム当量、正味Creqによって表されてもよい。正味クロム当量とは、クロム当量とニッケル当量との間の差である。正味Creq(重量%)=(%Cr)+6(%Si)+4(%Mo)+11(%V)+5(%Nb)+1.5(%W)+8(%Ti)+12(%Al)-4(%Ni)-2(%Co)-2(%Mn)-(%Cu)-40(%C)-30(%N)。一実施形態において、本明細書中に記載した上記組成物は、約10以下のCreqを有していてもよい。すなわち、上記組成物は、例えば、約9以下、約8以下、約7以下、約6以下、約5以下、約4以下、約3以下、約2以下、またはそれより少ないCreqを有していてもよい。一実施形態において、フェライトの形成を軽減するために、Creqは、9より少なく保たれてもよい。上記の方程式に基づき、N含有量は、Creqの値において重要な役割を担い得る。そして、N含有量は、それゆえフェライトの形成(またはその欠如)において重要な役割を担い得る。
【0033】
少なくとも一部の微細構造のために、本明細書中に記載した上記組成物は、調整された物性を有していてもよい。例えば、上記組成物は、高い熱安定性を有していてもよい。組成物の熱安定性は、一実施形態において、高温での他の相への分解(または解離)に対する上記組成物の特定の相の抵抗性といってもよい。一実施形態において、本明細書中に記載した上記組成物は、約500℃以上の温度において実質的に熱安定性である。すなわち、上記組成物は、例えば、約550℃、約600℃、またはそれより高い温度において、実質的に熱安定性である。
【0034】
本明細書中で提供された上記組成物は、追加の相または追加の物質を含有していてもよい。例えば、上記組成物が炭素を含有している場合は、当該炭素元素は、カーバイドの形態において存在していてもよい。一実施形態において、上記組成物は、当該組成物中に実質的に均質に分配されたカーバイドを含有していてもよい。用途に応じて、当該カーバイドは、任意の適切な大きさを有していてもよい。一実施形態において、上記カーバイドは、約2ミクロン以下の大きさを有していてもよい。すなわち、上記カーバイドは、例えば、約1ミクロン以下の大きさ、約0.5ミクロン以下の大きさ、約0.2ミクロン以下の大きさ、約0.1ミクロン以下の大きさ、またはそれよりも小さい大きさを有していてもよい。
【0035】
(鉄をベースとした組成物を製造/使用する方法)
本明細書中に記載された、上記鉄をベースとした組成物および当該組成物を含有している燃料要素は、種々の手法によって製造されてもよい。上記鉄をベースとした組成物は、本明細書中に記載された組成物の内の何れかであってもよい。例えば、当該組成物は、銅を含有していてもよい。本明細書中に記載された方法によって作製された管状の構造を有している燃料要素が、他の実施形態において提供される。例えば、
図2aを参照すると、組成物を製造する方法が、一実施形態において提供される。当該方法は、鉄をベースとした組成物を含有している物質を、第1の条件を満たす第1の温度にて熱処理する工程であって、当該第1の条件は、上記鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態する条件である工程(段階201);上記物質を、第2の条件を満たす冷却速度にて、当該第2の条件を満たす第2の温度まで冷却する工程であって、当該第2の条件は、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相に変態する条件である工程(段階202);および、上記物質を、第3の条件を満たす第3の温度にて熱処理する工程であって、当該第3の条件は、カーバイドが沈殿する条件である工程(段階203)を包含している。一実施形態において、段階201および段階202は、共に、焼きならしと称されてもよい。これに対して、段階203は、焼き戻しと称されてもよい。
【0036】
第1の温度は、第1の条件に適した任意の温度であってもよい。一例において、第1の温度は、上記組成物のオーステナイト化温度、すなわち、上記鉄をベースとした組成物のフェライト相の実質的に全てがオーステナイト相に変態する温度よりも高くてもよい。当該オーステナイト化温度は、物質の化学的性質によって変化する。一実施形態において、第1の温度は、約900℃から約1200℃の間である。すなわち、第1の温度は、例えば、約1000℃から約1150℃の間、約1025℃から約1100℃の間、等である。第1の温度は、物質に応じて、1200℃より高くてもよく、または900℃より低くてもよい。
【0037】
図2bを参照すると、第1の温度にて熱処理する工程は、物質を第1の温度まで加熱する工程(段階204)をさらに包含していてもよい。第1の温度にて熱処理する工程は、含有されている物質に応じて、任意の適切な長さの期間、実行されてもよい。この期間は、均質なオーステナイト固溶体の形成を促進するために長さが十分に長くなるように調整されてもよい。一実施形態において、上記熱処理は、およそ少なくとも3分間実行されてもよい。すなわち、上記熱処理は、例えば、およそ少なくとも、4分間、5分間、15分間、20分間、30分間、60分間、90分間、120分間、150分間、180分間、またはそれより長く実行されてもよい。より長い長さの期間またはより短い長さの期間も可能である。一実施形態において、第1の温度にて熱処理する工程は、約1分間から約200分間の間にわたって実行されてもよい。すなわち、第1の温度にて熱処理する工程は、例えば、約2分間から約150分間の間、約3分間から約120分間の間、約5分間から約60分間の間、等にわたって実行されてもよい。一実施形態において、第1の温度にて熱処理する工程の間に(例えば、当該処理の終わりに)、鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態されている。一実施形態において、上記組成物の実質的に全てが、オーステナイト相に変態されている。他の実施形態において、上記組成物の完全に全てがオーステナイト相に変態されている。一実施形態において、第1の条件は、上記鉄をベースとした組成物のデルタ-フェライト相の形成を軽減する。他の実施形態において、第1の条件は、上記鉄をベースとした組成物の実質的に全てがオーステナイト相に変態することを促進する。
【0038】
図2cを参照すると、第1の温度にて熱処理する工程(段階201)は、上記物質の上記鉄をベースとした組成物中にカーバイドが存在しているのであれば、カーバイドの少なくとも実質的に全てを分解する工程(段階205)をさらに含んでいてもよい。
【0039】
段階202における第2の温度は、第2の条件に適した任意の温度であってもよい。一実施形態において、第2の温度は、60℃以下である。すなわち、第2の温度は、例えば、50℃以下、40℃以下、30℃以下、20℃以下、10℃以下、またはそれより低い。一実施形態において、第2の温度は、およそ室温(例えば、20℃)である。冷却は、任意の適した手法を介して実行されてもよい。一実施形態において、冷却する工程は、空気および液体の内の少なくとも1つによって冷却する工程を含んでいる。一実施形態において、第2の条件は、上記鉄をベースとした組成物の実質的に全てがマルテンサイト相へと変態することを促進する。例えば、上記冷却する工程は、冷却する工程の間に(例えば、当該処理の終わりに)、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相へと変態するような十分な速度にて実行されてもよい。一実施形態において、この速度は、上記組成物の実質的に全てがマルテンサイト相へと変態するのに十分な速さである。他の実施形態において、この速度は、上記組成物の完全に全体がマルテンサイト相へと変態するのに十分な速さである。一実施形態において、冷却する工程の終わりに、上記組成物は、フェライト相およびオーステナイト相から選択される少なくとも1種の相を実質的に有していない。一実施形態において、冷却する工程の終わりに、上記組成物は、フェライト相およびオーステナイト相から選択される少なくとも1種の相を全く有していない。
【0040】
段階203における第3の温度は、第3の条件に適切な任意の温度であってもよい。第3の温度は、オーステナイトが形成し始める温度よりも低い温度であってもよい。一実施形態において、第3の温度は、第1の温度よりも低くてもよい。一実施形態において、第3の温度は、少なくとも500℃である。すなわち、第3の温度は、例えば、少なくとも550℃、少なくとも600℃、少なくとも650℃、少なくとも700℃、少なくとも750℃、少なくとも800℃、少なくとも850℃、少なくとも900℃、またはそれ以上である。一実施形態において、第3の温度は、約500℃から約900℃の間である。すなわち、第3の温度は、例えば、約550℃から約850℃の間、約600℃から約800℃の間、約650℃から約780℃の間、約700℃から約750℃の間、等である。より高い温度またはより低い温度もまた可能である。第3の温度は、カーバイドを沈殿させ且つカーバイドの高い温度安定性を与えるために十分に高くてもよいが、ボイドスエリング抵抗性のために、第3の温度は、カーバイドが均質に分配した状態でカーバイドの濃度が高く且つカーバイドの大きさが小さくなるように、十分に低くてもよい。
【0041】
図2dを参照すると、第3の温度にて熱処理する工程は、第3の温度まで上記物質を加熱する工程(段階206)を包含していてもよい。第3の温度にて熱処理する工程は、含有されている物質に応じて、任意の適切な長さの期間、実行されてもよい。一実施形態において、第3の温度にて熱処理する工程は、約0.1時間から約5時間の間にわたって実行されてもよい。すなわち、第3の温度にて熱処理する工程は、例えば、約0.2時間から約4時間の間、約0.5時間から約3時間の間、約1時間から約2時間の間、等にわたって実行されてもよい。より長い長さの期間またはより短い長さの期間も可能である。一実施形態において、第3の条件は、上記鉄をベースとした組成物のフェライト相および/またはオーステナイト相の形成を軽減してもよい。一実施形態において、上記組成物は、フェライト相および/またはオーステナイト相を実質的に有していない。この熱処理は、任意の適切な手法によって実行されてもよい。一実施形態において、第3の温度にて熱処理する工程は、垂直炉内で実行される。
【0042】
追加の工程が含まれていてもよい。例えば、
図2eを参照すると、上記方法は、第3の温度から第4の温度まで上記組成物を冷却する工程(段階207)をさらに包含していてもよい。第4の温度は、第3の温度よりも低くてもよい。例えば、第4の温度は、60℃以下であってもよい。すなわち、第4の温度は、例えば、50℃以下、40℃以下、30℃以下、20℃以下、10℃以下、またはそれより低い温度であってもよい。一実施形態において、第4の温度は、およそ室温(例えば、20℃)である。
図2fを参照すると、上記方法は、上記鉄をベースとした組成物のカーバイド相の増加を軽減するために、上記物質の上記鉄をベースとした組成物中のNの重量%を制御する工程(段階208)をさらに包含していてもよい。
【0043】
図3a~
図3cを参照すると、上記鉄をベースとした組成物の微細構造における違いが、これらの図面において説明される。
図3aは、通常の鋼において、塊状のデルタフェライト粒子を有する微細構造と、焼き戻しされたマルテンサイトの欠失と、且つ複雑なカーバイドの微細構造を欠いている多数の粒子とを示す。
図3bは、焼き戻しされたマルテンサイト粒子中のより均質なカーバイドの微細構造を有している、改質された微細構造を示す。なお、上記微細構造中には、いくつかの小さいデルタフェライト粒子がまだ存在している。
図3cは、鋼試料に、本明細書中に記載した方法を受けさせた結果を示す。この図面は、高密度の良好に分配されたカーバイドを有している最も多くの粒子領域を備えた、デルタフェライトを実質的に有していない改質された微細構造を示す。
【0044】
他の実施形態は、組成物を製造する別の方法を提供する。
図4aを参照すると、当該方法は、以下を包含している:物質に、冷間引抜き、冷間圧延およびピルガー圧延の内の少なくとも1つを受けさせる工程(段階401);鉄をベースとした組成物を含有している上記物質を、第1の条件を満たす第1の温度にて熱処理する工程であって、当該第1の条件は、上記鉄をベースとした組成物の少なくともある程度の量がオーステナイト相に変態する条件である工程(段階402);上記物質を、第2の条件を満たす冷却速度にて、当該第2の条件を満たす第2の温度まで冷却する工程であって、当該第2の条件は、上記鉄をベースとした組成物の少なくともある程度の量がマルテンサイト相に変態する条件である工程(段階403);および、上記物質を、第3の条件を満たす第3の温度にて熱処理する工程であって、当該第3の条件は、カーバイドが沈殿する条件である工程(段階404)。
【0045】
段階401において、上記物質は、冷間加工される。冷間引抜き、冷間圧延、およびピルガー圧延は、上記物質が受けてもよい処理のいくつかの例に過ぎない。冷間加工の1つの結果は、上記物質の寸法が所望の値に変更され得ることである。例えば、上記物質の厚さは、冷間加工の結果として減少してもよい。一実施形態において、厚さの減少は、例えば、少なくとも5%までであってもよい。すなわち厚さの減少は、例えば、少なくとも10%まで、少なくとも15%まで、少なくとも20%まで、少なくとも25%まで、またはそれより多くてもよい。一実施形態において、この減少は、約5%から約20%の間である。すなわち、この減少は、例えば、約8%から約16%の間、約10%から約15%の間、等である。より大きい値またはより小さい値もまた可能である。
【0046】
上記物質の寸法は、追加の工程を経て制御されてもよい。一実施形態において、最終的な所望の寸法を有している上記物質を形成するために、インゴットは熱機械的処理を受けてもよい。
図4bを参照すると、処理される出発物質は、ビレット、インゴット、鍛造等であってもよく、これらは円筒状の形状を有している(段階405)。当該出発物質は、その後、適切な管製造工程によって、機械的に加工される(例えば、冷間加工)(段階406)。当該管製造工程が、冷間加工を包含している場合に、加工中の製品は、オーステナイトが形成を始める温度よりも低い温度、つまりフェライト相からオーステナイト相への変態温度より低い温度にて、上記加工処理の後に焼きなましされてもよい(「中間焼きなまし」)(段階407)。一実施形態において、オーステナイトは、冷却工程において硬いマルテンサイトに変態して、軟化処理を相殺するので、オーステナイトは回避されることが必要である。段階406および407は、最終的な寸法が達成されるまで繰り返される。一実施形態において、最終的な寸法を有している管を提供する最終の冷間加工段階(段階408)の後に、当該管は、再び焼きなましされない。上述したように、当該管は、その後、焼きならしおよび焼き戻しを受けてもよい。
【0047】
上記方法は、追加の工程を包含していてもよい。
図4cを参照すると、当該方法は、上記組成物を含有しているインゴットを押し出す工程(段階409)をさらに包含していてもよい。
図4dを参照すると、上記方法は、上記物質に、冷間引抜き、冷間圧延およびピルガー圧延の内の少なくとも1つを受けさせる段階の前に、上記鉄をベースとした組成物を含有しているインゴットを形成する工程であって、当該形成する工程は、冷陰極誘導溶融、真空誘導溶融、真空アーク再溶融およびエレクトロスラグ再溶融から選択される少なくとも1つの処理を包含している工程(段階410)をさらに包含していてもよい。
図4eを参照すると、上記方法は、上記物質に、冷間引抜き、冷間圧延およびピルガー圧延の内の少なくとも1つを受けさせる段階の前に、上記鉄をベースとした組成物を含有しているインゴットを形成し、且つ不純物(例えば、P、S等)を除くために、インゴットを精製する工程(段階411)をさらに包含してもよい。上記形成および精製工程は、任意の適切な手法を包含していてもよい。前述の温度は、含まれている物質および/またはその用途に応じて変えてもよい。
【0048】
(例えば、被覆材として)上記組成物を含有している燃料要素(および燃料集合体)は、種々の用途において使用されてもよい。燃料集合体の使用方法が、一実施形態において提供される。
図5aを参照すると、当該方法は、燃料集合体、すなわち本明細書中に記載した上記鉄をベースとした組成物のいくつかを含有している燃料要素を使用して出力を発生させる工程(段階501)を包含している。
図5bを参照すると、上記出力の発生は、電気的出力および熱的出力の内の少なくとも1種を発生させる工程(段階502)を含んでいてもよい。
【0049】
(発電)
上述したように、本明細書中に記載した上記燃料集合体は、発電器またはエネルギー発生器の一部であってもよい。これらの、発電器またはエネルギー発生器は、発電プラントの一部であってもよい。上記燃料集合体は、核燃料集合体であってもよい。一実施形態において、上記燃料集合体は、上述したような、燃料、複数個の燃料要素、および複数個の燃料管を含んでいてもよい。当該燃料管は、その内部に配置された複数個の燃料要素を含んでいてもよい。
【0050】
本明細書中に記載した上記燃料集合体は、少なくとも約50MW/m2の単位面積あたりのピーク出力密度を生じさせるように調整されてもよい。すなわち、上記燃料集合体は、例えば、少なくとも、約60MW/m2、約70MW/m2、約80MW/m2、約90MW/m2、約100MW/m2、またはそれよりも高い単位面積あたりのピーク出力密度を生じさせるように調整されてもよい。いくつかの実施形態において、上記燃料集合体は、1原子あたりのはじき出し数(原子変位数)(displacements per atom(「DPA」))が、少なくとも約120DPAの水準、すなわち、例えば、少なくとも、約150DPA、約160DPA、約180DPA、約200DPA、またはそれよりも高い水準で、照射損傷を受けてもよい。
【0051】
本明細書で言及され、且つ/または、任意の出願データシートに記載されている上述の米国特許、米国特許出願公開、米国特許出願、外国特許、外国特許出願、および、非特許公開物の全ては、本明細書と矛盾しない範囲内において、その全内容が参照により本明細書に組み込まれる。組み込まれた文献および類似の物質の1つ以上がこの出願と異なるか、またはこの出願と矛盾する場合に、限定されないが、定義づけられた用語、用語の用法、記載された手法または同様のものを含んでいれば、この出願が優先して適用される。
【実施例】
【0052】
上述の組成物の具体化がなされ、空隙膨張性能について試験された。上に挙げた仕様を満たすために、組成物の加熱FD、CHおよびDHと識別される3つの加熱が調製された。加熱FDおよびDHは、最終熱処理が少し変わっただけで、同じ組成物である。歴史的なHT9および上述の組成物の実施形態との間の相対的な比較のために、同じプロトコルを用いる膨張として、高速線束試験施設(FFTF)で用いられるACO-3管からの加熱84425の歴史的なHT9試料が試験された。
【0053】
分析によって、各加熱の最終プレート生成物の実際の組成物が決定され、表1に示されている。歴史的な試料の実際の組成物も決定され、同様に表1に示されている。
【0054】
【0055】
(加熱FDの調製)
加熱FD鋼の50kgのVIMインゴットを、1,200℃で48時間加熱して鋳造組織を均質化し、次いで、ほぼ70t×100w×450L(mm)に鋳造した。均質化のための炉の温度を、PID温度制御器によって、および、校正された熱電対を用いることによって制御した。鋳造されたプレートを、1,200℃で2時間浸漬し、70t×100w×450L(mm)からほぼ24t×110w×1,050L(mm)まで熱間圧延した。
【0056】
表面の機械加工を容易にするために、熱間圧延されたプレートの一部を800℃で1時間焼きなましし、酸化物膜を取り除くために、表面プレートから、側面あたりほぼ0.3mmを機械加工で除去した。次いで、プレートを冷間圧延し、複数段階によって厚みを5.4mmにした。冷間圧延の間の中間の動きのときに、冷却加工した構造を柔らかくするために、プレートを800℃で1時間焼きなましした。この場合もやはり、中間熱処理のための炉の温度を、PID温度制御器によって、および、校正された熱電対を用いることによって制御した。
【0057】
冷間圧延の後に、切り取りを容易にするために、プレートを800℃で1時間焼きなましし、最終熱処理のために、より小さい片へと切断した。
【0058】
切断の後に、当該より小さい片のうちの一つに、最終熱処理を行った。この片を加熱FDと名付け、1,000℃で30分間(他の鋼の片の群の一部として)熱処理し、次いで、マルテンサイト構造を得るために、室温まで空冷した。焼きならし熱処理のための炉の温度を、PID温度制御器によって、および、校正された熱電対を用いることによって制御した。さらに、熱処理群内の片のうちの一つにおける表面で、点膨張によって、新しい熱電対を取り付けた。熱電対に取り付けられた片を含む群を、焼きならし温度で炉に置いて、片に取り付けられた熱電対が焼きならし温度に達した後に、カウントのために、最終焼きならし熱処理時間が開始した。所定の時間の間保持した後、群を炉から取り出した。
【0059】
マルテンサイト構造を焼き戻しするために、加熱FDの焼きならしされた片を750℃で0.5時間熱処理し、次いで、室温まで空冷した。最終焼き戻し熱処理のための炉の温度を、PID温度制御器によって、および、校正された熱電対を用いることによって制御した。この場合もやはり、加熱FDを、上述の取り付けられた熱電対のある片を含む他の鋼片の群とした。群を、焼き戻し温度に保たれた炉に置いて、片に取り付けられた熱電対が焼き戻し温度すなわち750℃に達した後に、カウントのために、最終焼き戻し熱処理時間が開始した。30分間保持した後、焼き戻しした群を炉から取り出した。
【0060】
焼き戻しされた加熱FD片のビッカース硬度(Vickers hardness)を3回試験し、238、246および241と決定し、平均は242であった。
【0061】
(加熱CHおよびDHの調製)
図6aおよび
図6bは、加熱CHおよびDHのプレートおよび管の生成物を組み立てるのに用いられる主な処理の処理概略を示す。初期の処理段階(真空誘導溶融(VIM)、真空アーク再溶融(VAR)および均質化)は、両方の加熱に対して適用された。
【0062】
組み立て処理の一つの特性は、プレートの熱間圧延の後、または、管の第2または第3の冷間圧延段階の後のいずれか一方に、1180℃で48時間、第2の均質化熱処理を適用することである。
【0063】
(膨張試験)
組成物の膨張性能を決定するために、3つの加熱と歴史的な対照試料とのそれぞれにおいて、プレートに、重イオン放射線照射試験を行った。中性子環境における(n,α)反応およびそれに続く空隙形成からHeの生成をシミュレーションするために、二重イオン(Fe++およびHe++)を用いてイオンビーム研究所にて放射線照射を行った。440、460および480℃の温度で、鋼試料に、エネルギー5MeVのFe++および低電流(low current)のHe++イオンを、188dpaの放射線照射線量水準まで導いた(directed)。それらのエネルギーを下げて鋼の適切な深さにHe++を堆積するために、~3μmの厚みのAlホイルを通じて~2MeVのHe++イオンを伝達した。正確なHe++ビームエネルギーは、Alホイルの正確な厚みに依存する。ビームの入射角を変更するため、および、300から1000nmまでの範囲で鋼における注入の深さを修正するために、He++ビームに対してAlホイルを回転させる。入射角は、各入射角に対して異なる保持時間を有する5つの異なる間隔で、0から60°まで変化し、300から1000nmまででほぼ均質(±10%)なHe濃度を鋼中に累積的に提供する5つの個別の深さプロフィールを生成する。
【0064】
3MVのペレトロン加速器を用いて、3つの加熱と歴史的な対照試料とに放射線照射を行った。試料上で~100ないし400nAの典型的なビーム電流を有する焦点ぼけ(defocused)させた5MeVのFe++イオンビームと、xについて0.255kHz、yについて1.055kHzでラスター走査された直径3mmの焦点合わせ(focused)された~2MeVのHe++ビームと、の組み合わせを用いて、試料に放射線照射した。各放射線照射の前に、ステージを、1×10-7torrより小さい圧力にまでガス放出した。試料の直前のファラデーカップを用いて30ないし60分ごとにビーム電流が記録され、また、Quick Kinchin-Peaseモデルと40eVの変位エネルギーとを用いて、600nmの深さにおいて、www.srim.orgにて利用可能なSRIMソフトウェアを使用して、Stopping Range of Ions in Matter(SRIM)計算の損傷率(damage rate)出力に基づいて積分電荷(電流×時間)が線量に変換された。
【0065】
放射線照射の前に、SiC紙を用いて試料を#4000の細かなあら砂にまで研磨し、その後、ダイヤモンド溶液を用いて最終的に0.25μmにまで研磨し、0.02コロイダル・シリカ溶液の最終機械研磨を行った。機械研磨の後に、試料と白金メッシュカソードとの間に35Vの電位を印加して、-40℃ないし-50℃の温度にて、90%メタノールおよび10%過塩素酸溶液中で、20秒間、試料を電解研磨した。
【0066】
加熱される放射線照射試料に貼り付けられた一組の熱電対を用いて温度制御が達成され、その後、この温度制御は、放射線照射温度で、2次元画像化パイロメーターを校正するのに用いられた。温度は、放射線照射の間中ずっと、画像化パイロメーターを用いて、±10℃に制御された。
【0067】
各試料の放射線照射された表面からの横断面の焦点合わせしたイオンビーム(FIB)の引き上げ(liftouts)を用いて、放射線照射された試料の調製を完成させた。この引き上げ(liftout)法は、放射線照射損傷領域の全体を画像化することができ、空隙画像化分析が、常に所望の深さでのみ行える。
【0068】
図7は、放射線照射によって生成される空隙に対する深さ効果を説明する代表的な透過型電子顕微鏡(TEM)画像を示す。JEOL 2100F TEMに基づいて空隙画像化を行った。空隙測定は、
図7に示すように、試料中への300ないし700nmの損傷領域深さ以内にある空隙のみを含んだ。このように分析を行うことによって、表面効果および表面組成物の変化によって影響を受ける表面の空隙(0ないし300nm)はすべてカウントに入れられなかった。したがって、Fe
++イオンの自己侵入型注入によって影響を受けうる損傷曲線の端の空隙(>700nm)もすべて考慮されなかった。損傷曲線の端での自己侵入型イオンは、空隙核生成の原因となる空孔/自己侵入型バイアスに影響を与えることによって空隙核生成を抑制する傾向がある。
【0069】
ゼロエネルギー損失画分を測定して試料の厚みを決定するために、電子エネルギー損失分光法(EELS)を用いて試料の厚みを測定した。試料の厚みと画像面積を用いて、空隙の密度と膨張を測定することができる。
【0070】
上述の通り、放射線照射は、上述の組成物の実施形態との相対的な膨張比較のために、FFTFからの保管されたACO-3管のHT9材料からの試料を含んだ。異なる加熱の間の膨張の振る舞いの相対的な比較を生成するために、上述の4つの加熱(CH、DH、FDおよびACO-3)について、重イオン放射線照射を行った。膨張反応は、443℃で155dpaの線量まで放射線照射された、FFTFプログラムからのACO-3管からのHT9のアーカイブ(加熱84425)とも比較可能であり、これは、空隙のTEM画像化に基づき、~0.3%の膨張を示した。O. Anderoglu, et al.,Journal of Nuclear Materials 430 (2012)pp. 194-204による論文「PhaseStability of an HT-9 Duct Irradiate in FFTF」に、FFTFプログラムからのHT9の歴史的な加熱に関する情報を見出すことができる。
【0071】
本発明の組成物の実施形態と、歴史的なACO-3鋼との間の膨張性能の差異を定量するために、E. Getto, et al.,Journal of Nuclear Materials 480 (2016)pp. 159-176による論文「VoidSwelling And Microstructure Evolution At Very High Damage Level In Self-IonIrradiated Ferritic-Martensitic Steels」の第2.2節(Section 2.2)で確認されている処理を用いて、
図8の膨張%データが決定され、この節は、参照によりここに組み込まれる。本明細書中で膨張%が用いられるときは必ず、その膨張%は、この組み込まれた節で確認されている処理によって計算されている。
【0072】
図8は、加熱に対する膨張結果を示す。
図8は、保管されたACO-3に対して組成物の実施形態の空隙膨張性能の違いを明確に示す。低温側と高温側、440℃および500℃では、いずれの加熱でも、膨張はほとんど検出不可能であった。しかしながら、460℃および480℃では、本組成物の3つの加熱のそれぞれが、歴史的なACO-3鋼に対して膨張の著しい改善を示している。
【0073】
図9は、0.2appm He/dpaにて480℃で188dpaまで放射線照射した後の4つの加熱における空隙微細構造のTEMコラージュを示し、ここでは、空隙は黒い特徴として現れている。ACO-3試料は、不均質な空隙分配を示したが、多くの空隙の大きな塊を有していた。本組成物の加熱はそれぞれ、ACO-3に対して明らかな改善を示している。ACO-3と本組成物の加熱との間の違いは、著しく、また、ACO-3とここで述べた鋼組成物の実施形態との間の空隙インキュベーションの違いを反映している。
【0074】
図10は、0.015appm He/dpaにて460℃で188dpaまで放射線照射した後の4つの加熱における空隙微細構造のTEMコラージュを示す。この場合もやはり、本組成物の加熱はそれぞれ、ACO-3に対して明らかな改善を示している。
【0075】
上で提供した例は、
約10.0重量%から約13.0重量%の間でのCrと、
約0.17重量%から約0.23重量%の間でのCと、
約0.80重量%から約1.2重量%の間でのMoと、
約0.5重量%以下のSiと、
約1.0重量%以下のMnと、
約0.25重量%から約0.35重量%の間でのVと、
約0.40重量%から約0.60重量%の間でのWと、
少なくとも80重量%のFeと、
を含む鋼組成物が、
損傷カスケードに対するK-Pオプションと40eVの変位エネルギーとを用いてStopping Range in Matterシミュレーションを用いて計算される場合に、460℃で0.2appm He/dpaにて188原子変位数(dpa)の線量までの二重ビームFe++およびHe++の放射線照射の後に、
上記鋼組成物が上記鋼組成物の表面の下の500-700nmの間の深さで0.9体積%より小さい、ある場合には0.75%より小さい、0.5%より小さい、および、0.3%よりさえ小さい、膨張を示すように処理され、
上記二重ビームが、
(i)5MeVのFe++イオンの焦点ぼけさせたビームと、
(ii)上記鋼組成物の放射線照射の深さで均質なHeプロフィールを生成するために、散乱およびエネルギー減少のためのAlホイルを通じて伝達される~2MeVのHe++のラスター走査されたビームと、
からなるように、製造可能であることを示している。
【0076】
本明細書における、実質的に任意の複数形および/または単数形の用語の使用に関し、当業者であれば、文脈および/または用途に適切であるように、複数形を単数形に置き換える、および/または、単数形を複数形に置き換え得る。本明細書においては、種々の単数形/複数形の置換について、明瞭にするために特別に説明しない。
【0077】
本明細書に記載されている主題は、異なる他の構成要素の内部に含まれる異なる構成要素、または、異なる他の構成要素と連結された異なる構成要素を説明していることがある。そのように描写された構造は単に例示的なものであり、実際、同じ機能性を実現可能な多くの他の構造が導入されてもよいことが理解されるべきである。概念的な意味では、同じ機能性を実現するための複数の構成要素の任意の配置が、所望の機能性が実現されるように効果的に「連携される」。従って、特定の機能性を実現するために本明細書において組み合わせられる任意の2つの構成要素は、構造または中間部品とは無関係に、所望の機能性が実現されるように互いに「連携する」ように見える。同様に、そのように連携された任意の2つの構成要素は、所望の機能性を実現するために、互いに、「動作可能に接続されている」または「動作可能に結合されている」ように見え、そして、そのように連携されることが可能な任意の2つの構成要素は、所望の機能性を実現するために、互いに、「動作可能に結合可能である」ように見える。動作可能に結合可能な構成要素の具体例は、これらに限定されないが、物理的に対にすることが可能な構成要素および/または物理的に相互作用している構成要素、および/または無線で相互作用可能な構成要素、および/または無線で相互作用している構成要素、および/または論理的に相互作用している構成要素、および/または論理的に相互作用可能な構成要素を包含している。
【0078】
いくつかの例では、1以上のコンポーネントは、「~するように構成される」、「~によって構成される」、「~するように構成可能な」、「~するように動作可能な/動作する」、「~に適合する/適応可能な」、「~可能な」、「~するのに一致可能な/一致する」等と、本明細書において表現されてもよい。当業者であれば、そのような用語(例えば、「~するように構成される」)は、文脈上そうでないことが明らかでない限り、通常は、活性化状態の構成要素および/または非活性化状態の構成要素および/またはスタンバイ状態の構成要素を包含し得ることを認識するであろう。
【0079】
本明細書中に記載した本主題の具体的な態様を図示および説明したが、本明細書中に記載した主題および当該主題のより範囲の広い態様から逸脱せずに、変更および改変がなされ、それゆえ、付属の請求項は、その範囲内に、さらに明細書中に記載した主題の真の精神および範囲内に、全ての変更および改変を含むべきであることを、当業者は本明細書中の教唆に基づいて自ずと理解できるはずである。当業者であれば、一般的に、本明細書中で使用した用語、特に添付の特許請求の範囲(例えば、添付の特許請求の範囲の本文)において使用した用語が、通常は、「オープン」な用語であることを意図したものである(例えば、用語「~を含んでいる」は、「~を含んでいるが、これらに限定されるものではない」と解釈されるべきであり、用語「~を有している」は、「少なくとも~を有している」と解釈されるべきであり、用語「~を備えた」は、「~を備えているが、これらに限定されるものではない」と解釈されるべきである)ことが理解できるであろう。さらに、導入された請求項の記載中に具体的な個数が意図されているのであれば、そのような意図が請求項中で明示的に記載されるのであって、そのような明示的な記載が無い場合には、そのような意図は存在しないことを、当業者は理解できるであろう。理解の一助として例を挙げると、請求項の記載を導入するために、下記の添付の特許請求の範囲において、「少なくとも1つの」および「1つ以上の」といった導入句が使用されてもよい。しかし、たとえこのような語句を使用していたとしても、不定冠詞「a」または「an」によって請求項の記載を導入することが、当該導入された請求項の記載を含む任意の特定の請求項を、当該請求項の記載を1つしか含まないものに限定していることを暗示しているのだと、解釈されるべきではない。同様に、たとえ同一請求項中に「1つ以上の」または「少なくとも1つの」という導入句と、例えば「a」または「an」等の不定冠詞とが含まれていても、このような解釈はされるべきではない(例えば、「a」および/または「an」は、通常、「少なくとも1つの」または「1つ以上の」を意味すると解釈されるべきである)。同じことが、請求項の記載を導入するために使用された定冠詞の使用についても当てはまる。さらに、たとえ導入された請求項の記載について具体的な個数が明示的に記載されていたとしても、当業者であれば、このような記載は、通常、少なくとも記載された個数が含まれていることを意味していると解釈されるべきであることを理解できるであろう(例えば、他の修飾語を使用せずに、単に「2つの構成要素」と記載されている場合、通常、当該構成要素が少なくとも2つまたは2つ以上含まれていることを意味する)。さらに、「A、B、およびC等のうちの少なくとも1つ」に類似の表現形式が使用されている場合、一般に、このような文構造は、当業者がその表現形式を理解するであろうという意味が意図されている(例えば、「A、BおよびCのうちの少なくとも1つを有するシステム」には、Aだけを有するシステム、Bだけを有するシステム、Cだけを有するシステム、AおよびBを共に有するシステム、AおよびCを共に有するシステム、BおよびCを共に有するシステム、および/またはA、BおよびCを共に有するシステム等が含まれるが、これらに限定されない)。「A、BまたはCなどのうちの少なくとも1つ」に類似の表現形式が使用されている場合、一般に、このような文構造は、当業者がその表現形式を理解するであろうという意味が意図されている(例えば、「A、BまたはCのうちの少なくとも1つを有するシステム」には、Aだけを有するシステム、Bだけを有するシステム、Cだけを有するシステム、AおよびBを共に有するシステム、AおよびCを共に有するシステム、BおよびCを共に有するシステム、および/またはA、BおよびCを共に有するシステム等が含まれるが、これに限定されるものではない)。さらに、当業者であれば、通常、2つ以上の代替用語を表す離接語および/または離接句は、それが明細書中、特許請求の範囲中、または図面中の何れであっても、文脈と矛盾しない限りにおいて、複数の用語のうちの一つを含んでいる可能性、複数の用語のうちの一方を含んでいる可能性、または複数の用語を共に含んでいる可能性を考慮しているものであると理解すべきことが理解できるであろう。例えば、語句「AまたはB」は、通常、「A」である可能性または「B」である可能性または「AおよびB」である可能性を含んだものであると理解されるであろう。
【0080】
添付の特許請求の範囲に関して、当業者であれば、特許請求の範囲中に記載の動作は、一般に、任意の順序で実施されてもよいことを十分に理解できるであろう。また、種々の動作の流れが一連の流れとして提示されているが、この種々の動作が、説明された順序とは別の順序で実施されても、または同時に実施されてもよいことが理解されるべきである。このような別の順序付けの例には、文脈と矛盾しない限りにおいて、重複した、交互的な、割り込んだ、再度順序づけされた、逐次的な、前置きの、付加的な、同時に起こる、逆の順序の、または他の異なる順序付けを含んでいてもよい。また、「~に応答して」、「~に関連して」などの用語、または、他の過去分詞から派生した形容詞は、文脈上そうでないことが明らかでない限り、そのような変形例を排除することは通常意図されない。
【0081】
当業者は、前述の具体的な例証となる方法および/または装置および/または手法は、例えば、本明細書に添付して出願された特許請求の範囲および/または本願における他のどこか等の本明細書の他のどこかで教示されたより一般的な方法および/または装置および/または手法を代表していることを十分に理解するであろう。
【0082】
種々の態様および実施形態が本明細書において開示されたが、その他の態様およびその他の実施形態は、当業者に明らかである。本明細書に開示された上記種々の態様および実施形態は、説明を目的とするものであって、限定することを意図するものではなく、その真の範囲および精神は、特許請求の範囲によって示されている。
【0083】
本明細書中で記載された方法の一部は、自動化されてもよい。この自動化は、少なくとも1つのコンピュータを含むことによって達成されてもよい。この自動化は、コンピュータによって読み取り可能な少なくとも1つの持続性の媒体に保存されているプログラムによって実行されてもよい。当該媒体は、例えば、CD、DVD、USB、ハードドライブ等であってもよい。上記集合体を含んでいる燃料要素の構成の選択および/またはデザインはまた、コンピュータおよび/またはソフトウェアプログラムを用いることによって最適化されてもよい。
【0084】
本発明の上記の実施形態は、多数の方法の何れかにおいて実行され得る。例えば、いくつかの実施形態は、ハードウェア、ソフトウェアまたはこれらの組み合わせを用いることによって実行されてもよい。実施形態の任意の態様が、ソフトウェアにおける少なくとも一部において実行される場合、当該ソフトウェアコードは、単一のコンピュータにおいて提供されていようと、または複数のコンピュータ間に分配されていようと、任意の適切なプロセッサまたはプロセッサの一群において実行され得る。
【0085】
また、本明細書中に記載した手法は、少なくとも1つの例が提供されている方法として具体化されてもよい。当該方法の一部として実施された行為は、任意の適切な方法で順序付けされてもよい。従って、実施形態は、説明された順序とは異なる任意の順序で実施される行為において構成されてもよく、例証された実施形態において連続的な行為として示されているとしても、いくつかの行為を同時に実施することを含んでいてもよい。
【0086】
本明細書中で定義付けされ且つ使用される全ての定義は、辞書の定義、参考によって組み込まれた文献中の定義、および/または定義付けされた用語の通常の意味に優先して適用されると理解されるべきである。
【0087】
不定冠詞「a」および「an」は、本明細書中および特許請求の範囲中で使用される場合、明細書および請求項において、それとは反対にはっきりと表示される場合を除いて、「少なくとも1つ」の意味であると理解されるべきである。
【0088】
語句「および/または」は、本明細書中および特許請求の範囲中で使用される場合、そのように連結された要素、すなわち、ある場合において連続して存在し、且つ他の場合において分離して存在している要素の内の「何れかまたは両方」を意味すると理解されるべきである。「および/または」を用いて記載された複数の要素は、同じ方法、すなわち、そのように連結された要素の「1つ以上」で構成されるべきである。具体的に特定されたこれらの要素に関連していようと、関連していなくとも、この「および/または」節によって具体的に特定された要素以外の他の要素が任意で存在してもよい。それゆえ、限定されない例として、「Aおよび/またはB」への言及は、例えば「~を含んでいる」等のオープンエンドな言葉との接続において使用される場合に、一実施形態において、Aのみ(任意でB以外の要素を含有している);他の実施形態において、Bのみ(任意でA以外の要素を含有している);さらに他の実施形態において、AとBとの両方(任意で他の要素を含有している);等を言及し得る。
【0089】
本明細書中および特許請求の範囲中で使用される場合、「または」は、上記で規定したように「および/または」と同じ意味を有していると理解されるべきである。例えば、一覧中に項目を分離する場合に、「または」もしくは「および/または」は、包括的であると解釈されるべきである。すなわち、「または」もしくは「および/または」は、多くの要素の内の少なくとも1つまたは要素の一覧の内の少なくとも1つを含むことのみならず、多くの要素の内の1つより多くまたは要素の一覧の内の1つより多くと、任意で一覧に記載されていない追加の項目と、も含んでいると解釈されるべきである。例えば、「~の内のただ1つ」もしくは「~の内の厳密に1つ」、または特許請求の範囲中で使用される場合の「~からなる」等のそれとは反対にはっきりと表示された用語のみが、多くの要素の内の厳密に1つまたは要素の一覧の内の厳密に1つを含んでいることに言及している。一般に、用語「または」は、本明細書中で使用される場合、排他的な選択肢を意図している(すなわち、「何れか1つであって両方ではない」)と解釈されるべきであり、「~のどちらか」、「~の内の1つ」、「~の内のただ1つ」もしくは「~の内の厳密に1つ」、または特許請求の範囲中で使用される場合の「本質的に~からなる」等の排他性の用語に先行された場合に、特許法の分野において使用される場合に、その通常の意味を有しているべきである。
【0090】
本明細書中および特許請求の範囲中で使用される場合、語句「少なくとも1つ」は、1つ以上の要素の一覧を参照して、当該要素の一覧中の任意の1以上の要素から選択された少なくとも1つの要素を意味するが、上記要素の一覧中に具体的に挙げられたあらゆる要素の少なくとも1つを必ずしも含有しておらず、且つ上記要素の一覧中の要素の任意の組み合わせを排除しないと理解されるべきである。この定義はまた、具体的に特定されたこれらの要素に関係あろうと関係なかろうと、上記語句「少なくとも1つ」が言及する要素の一覧中に具体的に特定された要素以外の要素が任意で存在していてもよいことを可能にする。それゆえ、限定されない例として、「AおよびBの内の少なくとも1つ」(または、同等に、「AまたはBの内の少なくとも1つ」、または、同等に、「Aおよび/またはBの内の少なくとも1つ」)は、一実施形態において、少なくとも1つのA、任意で1つよりも多いAを含有しており、Bは存在しない(且つ任意でB以外の要素を含有している);他の実施形態において、少なくとも1つのB、任意で1つよりも多いBを含有しており、Aは存在しない(且つ任意でA以外の要素を含有している);さらに他の実施形態において、少なくとも1つのA、任意で1つより多いAを含有している、且つ少なくとも1つのB、任意で1つより多いBを含有している(且つ任意で他の要素を含有している);等を言及し得る。
【0091】
本明細書中で言及された任意の範囲は、包括的である。用語「実質的に」および用語「約」は、この明細書全体にわたって使用され、小さい変動を表現し且つ説明するために使用される。例えば、これらの用語は、±5%以下、例えば±2%以下、例えば±1%以下、例えば±0.5%以下、例えば±0.2%以下、例えば±0.1%以下、例えば±0.05%以下を言及し得る。
【0092】
特許請求の範囲において、明細書における場合と同様に、例えば、「~を含有している」、「~を備えている」、「~を有している」、「~を含んでいる」、「~を伴っている」、「~を保持している」、「~を含んでいる」等の全ての移行句は、オープンエンドであると理解されるべきである。すなわち、これらの移行句は、含んでいるが限定されない意味であると理解されるべきである。移行句「~からなる」および「本質的に~からなる」のみが、それぞれ、米国特許庁特許審査便覧(United States PatentOffice Manual of Patent Examining Procedures)2111.03節において説明されているように、クローズドなまたはセミクローズドな移行句であるべきである。
【0093】
その効果を規定している場合を除いて、特許請求の範囲は、記載した順序または記載した要素に限定して読まれるべきではない。形態および細部における種々の変更は、添付の特許請求の範囲の精神および範囲から逸脱しないように、当業者によって行われてもよいと理解されるべきである。以下の特許請求の範囲の精神および範囲内にある全ての実施形態およびその同等物が主張される。