IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ノヴァレッド・アクチエンゲゼルシャフトの特許一覧

特許7082984電子半導体デバイスおよびその電子半導体デバイスの製造方法および化合物
<>
  • 特許-電子半導体デバイスおよびその電子半導体デバイスの製造方法および化合物 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-01
(45)【発行日】2022-06-09
(54)【発明の名称】電子半導体デバイスおよびその電子半導体デバイスの製造方法および化合物
(51)【国際特許分類】
   H01L 51/50 20060101AFI20220602BHJP
   H05B 33/10 20060101ALI20220602BHJP
   C07F 5/02 20060101ALI20220602BHJP
   C07F 19/00 20060101ALI20220602BHJP
   C07D 231/56 20060101ALN20220602BHJP
   C07D 231/12 20060101ALN20220602BHJP
   C07F 3/06 20060101ALN20220602BHJP
   C07F 1/02 20060101ALN20220602BHJP
【FI】
H05B33/14 B
H05B33/22 C
H05B33/10
C07F5/02 D
C07F19/00
C07D231/56 A CSP
C07D231/12 Z
C07D231/56 B
C07D231/56 C
C07F3/06
C07F1/02
【請求項の数】 18
(21)【出願番号】P 2019545368
(86)(22)【出願日】2018-02-16
(65)【公表番号】
(43)【公表日】2020-04-02
(86)【国際出願番号】 EP2018053954
(87)【国際公開番号】W WO2018150006
(87)【国際公開日】2018-08-23
【審査請求日】2020-12-14
(31)【優先権主張番号】17156906.4
(32)【優先日】2017-02-20
(33)【優先権主張国・地域又は機関】EP
(31)【優先権主張番号】17156902.3
(32)【優先日】2017-02-20
(33)【優先権主張国・地域又は機関】EP
(31)【優先権主張番号】17156904.9
(32)【優先日】2017-02-20
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】503180100
【氏名又は名称】ノヴァレッド ゲーエムベーハー
(74)【代理人】
【識別番号】110000338
【氏名又は名称】特許業務法人HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】ヘッゲマン,ウルリヒ
(72)【発明者】
【氏名】フンメルト,マルクス
【審査官】横川 美穂
(56)【参考文献】
【文献】国際公開第2018/135582(WO,A1)
【文献】特表2013-526636(JP,A)
【文献】特表2012-516560(JP,A)
【文献】特開2002-203683(JP,A)
【文献】特表2015-504446(JP,A)
【文献】特表2015-506094(JP,A)
【文献】特開2003-031365(JP,A)
【文献】国際公開第2006/087945(WO,A1)
【文献】特表2002-513440(JP,A)
【文献】Nuria Romero et al.,Highly fluorinated hydrotris(indazolyl)borate calcium complexes: the structure and reactivity heavily depend on the ligand's electronic properties,Dalton Transactions, An International Journal for Inorganic, Organometallic and Bioinorganic Chemistry,Royal Society of Chemistry,2014年07月14日,Vol.43, No.26,pp.10114-10119
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/50
H05B 33/10
C07F 5/02
C07F 19/00
C07D 231/56
C07D 231/12
C07F 3/06
C07F 1/02
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
第1の電極と第2の電極との間に少なくとも1つの第1の半導体層を含み、
前記第1の半導体層が、
(i)共有結合原子からなる少なくとも1つの第1の正孔輸送マトリックス化合物、および
(ii)ホウ酸金属塩錯体から選択される少なくとも1つの電気的p-ドーパントであって、前記ホウ酸金属塩錯体は、少なくとも1つの金属カチオンおよび少なくとも1つの陰イオン配位子からなり、前記陰イオン配位子は、少なくとも1つのホウ素原子を含む少なくとも6つの共有結合原子からなる、電気的p-ドーパント、
を含み、
前記第1の半導体層が、正孔注入層、電荷発生層の正孔注入部、または正孔輸送層である電子デバイス。
【請求項2】
前記第1の電極と前記第2の電極との間に少なくとも1つの発光層または少なくとも1つの吸光層をさらに含み、
前記第1の電極が、陽極であり、
前記第1の半導体層が、前記陽極と前記発光層との間、または前記陽極と前記吸光層との間に配置される、請求項1に記載の電子デバイス。
【請求項3】
前記第1の半導体層が、前記陽極に隣接している、請求項2に記載の電子デバイス。
【請求項4】
前記アニオン性配位子が、少なくとも7個の共有結合原子からなる、請求項1~3のいずれか1項に記載の電子デバイス。
【請求項5】
前記ホウ酸金属塩錯体が式(I)を有し、
【化1】

式中、Mは金属カチオンであり、
-Aはそれぞれ独立して、下記(i)~(x)から選択され、
(i)H、
(ii)F、
(iii)CN、
(iv)C~C60アリール、
(v)C~C60アリールアルキル、
(vi)C~C60アルキル、
(vii)C~C60アルケニル、
(viii)C60アルキニル、
(ix)C~C60シクロアルキルおよび
(x)C~C60ヘテロアリール
但し、ここで、炭素含有基中の炭素原子の総数は60未満であり、
(iv)、(v)、(vi)、(vii)、(viii)、(ix)および(x)から選択される任意の炭素含有基中の任意の水素原子は、F、Cl、Br、I、CN、非置換もしくはハロゲン化アルキル、非置換もしくはハロゲン化(ヘテロ)アリール、非置換もしくはハロゲン化(ヘテロ)アリールアルキル、非置換もしくはハロゲン化アルキルスルホニル、非置換もしくはハロゲン化された(ヘテロ)アリールスルホニル、非置換もしくはハロゲン化(ヘテロ)アリールアルキルスルホニル、非置換もしくはハロゲン化ホウ素含有炭化水素、非置換もしくはハロゲン化ケイ素含有炭化水素から独立して選択される置換基で置き換えられていてもよい;
nは金属カチオンの価数であり;かつ
~Aの少なくとも1つは、F、CN、または電子吸引炭素基であり、
前記電子吸引炭素基は、炭化水素、ホウ素含有炭化水素、ケイ素含有炭化水素およびヘテロアリールから選択され、その水素原子の少なくとも半分がF、Cl、Br、Iおよび/またはCNで置き換えられている、前記請求項1から4のいずれか1項に記載の電子デバイス。
【請求項6】
前記金属カチオンがアルカリ金属、アルカリ土類金属、希土類金属、遷移金属(銀、Al、Ga、In、Tl、Sn、Pb、Biまたはこれらの混合物を除く)から選択され、nが1、2または3である、請求項1~5のいずれか1項に記載の電子デバイス。
【請求項7】
前記電気的p-ドーパントが、標準量子化学法によって計算された最低空軌道のエネルギー準位を有し、前記最低空軌道のエネルギー準位は、標準量子化学法によって計算された第1の正孔輸送化合物の最高被占軌道のエネルギー準位よりも絶対真空尺度で少なくとも0.5eV高い、請求項1~6のいずれか1項に記載の電子デバイス。
【請求項8】
前記第1の正孔輸送マトリックス化合物が、標準量子化学法によって計算された最高被占軌道のエネルギー準位を有し、絶対真空尺度で-3.0eV未満を示す、請求項1~7のいずれか1項に記載の電子デバイス。
【請求項9】
前記第1の半導体層において、前記p-ドーパントおよび前記第1の正孔輸送マトリックス化合物が、2つの隣接する副層を形成する、請求項1から8のいずれか1項に記載の電子デバイス。
【請求項10】
前記第1の正孔輸送マトリックス化合物が有機化合物である、請求項1~9のいずれか1項に記載の電子デバイス。
【請求項11】
第1の電極と前記第2の電極との間の全ての層、ならびに最後の有機層の上に堆積された電極が、1×10-3Pa未満の圧力での真空蒸着によって製造可能な、請求項1~10のいずれか1項に記載の電子デバイス。
【請求項12】
前記第1の正孔輸送マトリックス化合物および前記電気的p-ドーパントが50℃を超える温度で曝露され、相接する少なくとも1つの工程を含む、請求項1~11のいずれか1項に記載の電子デバイスの製造方法。
【請求項13】
減圧下で、前記p-ドーパントを蒸発させる工程をさらに含む、請求項12に記載の方法。
【請求項14】
式(Ia)を有する化合物;
【化2】

式中、AはHであり、
~Aは、式(IIa)または(IIb)を有する過フッ素化インダゾリルから独立して選択され、
【化3】

式中、破線の結合は、式(Ia)中のホウ素原子への結合を表し、
は過フッ素化C~C20炭化水素基であり、
MはLiであり、かつnは1であるか、または
Mは2価の金属であり、かつnは2である。
【請求項15】
前記2価の金属Mが、Mg、MnおよびZnから選択され、かつnが2である、請求項14に記載の化合物。
【請求項16】
式(Ib)を有する化合物;
【化4】

式中、AはHであり、
-Aは、式(III)を有するフッ素化ピラゾリルから独立して選択され、
【化5】

式中、破線の結合は、式(Ib)中のホウ素原子への結合を表し、
およびRは、過フッ素化C~C20炭化水素基から独立して選択され、
はH、F、CNからおよび過フッ素化C~C20炭化水素基から選択され、
MはLiであり、かつnは1であるか、または
Mは2価の金属であり、かつnは2である。
【請求項17】
前記Rおよび/またはRがトリフルオロメチルである、請求項16に記載の化合物。
【請求項18】
Mが、Mg、MnおよびZnから選択される2価の金属であり、かつnが2である、請求項16または17に記載の化合物。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、正孔注入層および/または正孔輸送層中に非酸化性p-ドーパントを含む電子半導体デバイス、電子半導体デバイスの製造方法および化合物に関する。
【背景技術】
【0002】
有機半導体材料をすでに利用している、広い範囲の最新技術を用いた電子デバイスでは、一見して類似しているデバイスで、例えば正孔注入および/または正孔輸送といった類似の機能を果たす必要がある特定のクラスの材料に対して、非常に異なった要件がしばしば設定される。より具体的な例として、例えば、OLEDでは、照明のための構造化されていない、単一のOLEDとして機能する場合と、もしくは複数のOLED画素を含む複雑なディスプレイデバイスの1つの画素として機能する場合とでは、正孔輸送層に適した材料の定義は、著しく異なり得る。1つの構造クラスの材料だけを用いてこのような種々の要件を満たすことは、化学的観点からは非常に困難であり得る。この事実は、多くの構造的に異なるクラスの材料について並行して研究し、開発する必要性をもたらすため、このような状況下では経済面だけでなく、技術面および科学面においても、商業上の成功は困難な課題となる。したがって、種々の特定の利用の広い範囲において、高い汎用性を有する任意の材料のクラスは、きわめて有用になり得る。
【0003】
場合によっては、1つの同じデバイスに含まれる材料においてさえも、特定の機能を有する材料に矛盾する要件が課され得る。典型的な例としては、アクティブマトリックスOLEDディスプレイ(AMOLED)が挙げられる。共通の正孔輸送層を共有する複数のOLED画素を含むアクティブOLEDディスプレイにおいて、陽極と発光層との間に配置され、複数の画素によって共有される層に使用される半導体材料には、困難な要件が課せられる。一方では、前記材料は可能な限り低い作動電圧で、個々の画素の個々の駆動を可能にしなければならない。もう一方では、隣接する画素間のいわゆる電気的クロストークは回避されるべきである。参照により本明細書に援用されるWO2016/050834は、これらの矛盾する要件が、1×10-3S・m-1および1×10-8S・m-1、最も好ましくは1×10-5S・m-1および1×10-6S・m-1の間の導電率を有するp-ドープされた層によって満たされ得ることを教示する。このような低導電率のp-ドープされた正孔輸送層は、深いHOMO準位の観点から十分にドープされないマトリックスにおいて、強い電子受容性ラジアレン化合物のような通常の最新技術のレドックスドーパントを使用することで達成可能である。しかしながら、これらの基準を満たしつつ、例えば加工性および装置安定性の観点からの他のパラメータが改善されたp-ドーパントが、依然として求められている。
【0004】
WO2013/052096A1には、正孔注入層および正孔輸送層をドープする方法、ならびにOLEDなどの有機電子デバイスにおけるその使用が開示されている。
【0005】
Nuria et al. Dalton Transactions, 2014, 43, 10114-10119 には、高度にフッ素化されたヒドロトリス(インダゾリル)ホウ酸カルシウム錯体が開示されており、その構造および反応性が報告されている。
【発明の概要】
【0006】
本発明の目的は、p-ドーパントの1つの広いクラスに基づく、電気的にp-ドープされた正孔注入層および/または電気的にp-ドープされた正孔輸送層を含む、幅広い種々の最新技術の電子デバイスを提供することである。
【0007】
また別の目的は、p-ドーパントの前記広いクラス内で、デバイスで使用される際に、高い汎用性を有する特定の化合物を提供することである。種々のデバイスには、単純なデバイス、ならびに改善されたアクティブOLEDディスプレイが含まれる。一態様では、新しいp-ドーパントを含む単純なデバイスの性能は、最先端のp-ドーパントを含む類似の単純なデバイスに十分に匹敵するか、またはそれ以上である。別の一態様では、新しいp-ドーパントは、AMOLEDディスプレイなどの複雑なデバイス内の最新のドーパントが持ついくつかの欠点を克服する。一態様では、アクティブOLEDディスプレイの隣接する画素間の電気的クロストークが低減される。別の一態様では、単純なデバイスならびに複雑なディスプレイデバイスの個々のOLED画素において高性能である。別の一態様では、改善された材料が、例えば、高温でのデバイスまたはデバイスの特定の層の処理を含む、任意のプロセス段階の間のデバイスの安定性を改善することによって、堅牢なデバイスの製造を可能にする。
【0008】
前記目的は、
第1の電極と第2の電極との間に少なくとも1つの第1の正孔輸送層を含み、
前記第1の正孔輸送層が、
(i)共有結合原子からなる少なくとも1つの第1の正孔輸送マトリックス化合物、および
(ii)ホウ酸金属塩錯体から選択される少なくとも1つの電気的p-ドーパントであって、前記ホウ酸金属塩錯体は、少なくとも1つの金属カチオンおよび少なくとも1つの陰イオン配位子からなり、前記陰イオン配位子は、少なくとも1つのホウ素原子を含む少なくとも6つの共有結合原子からなる、電気的p-ドーパント、
を含み、
前記第1の半導体層が、正孔注入層、電荷発生層の正孔注入部、または正孔輸送層である電子デバイスによって達成される。
【0009】
一実施形態では、前記ホウ酸金属塩錯体において、金属が銀(Ag)であることは除外されてもよい。
【0010】
一実施形態では、電子デバイスが、前記第1の電極と前記第2の電極との間に少なくとも1つの発光層または少なくとも1つの吸光層をさらに含み、
前記第1の電極が、陽極であり、
前記第1の半導体層が、前記陽極と前記発光層との間、または前記陽極と前記吸光層との間に配置される。
【0011】
一実施形態では、前記第1の半導体層が、前記陽極に隣接している。
【0012】
一実施形態では、前記アニオン性配位子が少なくとも7個、好ましくは少なくとも8個、より好ましくは少なくとも9個、さらにより好ましくは少なくとも10個、さらにより好ましくは11個、最も好ましくは少なくとも12個の共有結合原子からなる。
【0013】
共有結合とは、2つの評価された原子間の電子密度共有を伴う任意の結合相互作用だと理解されたい。ここで、前記結合は、ファンデルワールス分散相互作用よりも強く、便宜上、結合エネルギー10kJ/molを任意の下限とみなすことができる。この意味では、前記用語「結合」は、配位結合または水素結合も含む。しかし、水素結合を含むアニオンおよび/またはアニオン性配位子は、特に好ましくない。
【0014】
一実施形態では、前記アニオン性配位子がハロゲン化アルキル、ハロゲン化(ヘテロ)アリール、ハロゲン化(ヘテロ)アリールアルキル、ハロゲン化アルキルスルホニル、ハロゲン化(ヘテロ)アリールスルホニル、ハロゲン化(ヘテロ)アリールアルキルスルホニル、シアノから選択される少なくとも1つの電子求引基を含む。簡潔にするために、ハロゲン化(ヘテロ)アリールは「ハロゲン化アリールまたはハロゲン化ヘテロアリール」を意味し、ハロゲン化(ヘテロ)アリールアルキルは「ハロゲン化ヘテロアリールアルキルまたはハロゲン化アリールアルキル」を意味し、ハロゲン化(ヘテロ)アリールスルホニルは「ハロゲン化ヘテロアリールスルホニルまたはハロゲン化アリールスルホニル」を意味し、およびハロゲン化(ヘテロ)アリールアルキルスルホニル「ハロゲン化ヘテロアリールアルキルスルホニルまたはハロゲン化アリールアルキルスルホニル」を意味することを理解されたい。
【0015】
一実施形態では、前記電子求引基が過(per)ハロゲン化基である。用語「ハロゲン化された」とは末端水素原子または内部水素原子を含む基の少なくとも1つの水素原子がF、Cl、BrおよびIから選択される原子で置き換えられていることを意味すると理解されたい。さらに、過ハロゲン化基において、置換されていない基に含まれる全ての水素原子がF、Cl、BrおよびIから独立して選択される原子で置き換えられていることと理解されたい。したがって、過フッ素化基のもとでは、水素原子を置き換える全てのハロゲン原子が、フッ素原子だと理解されたい。
【0016】
一実施形態では、前記電気デバイスに含まれる前記ホウ酸金属塩錯体が式(I)を有し、
【0017】
【化1】
【0018】
式中、Mは金属イオンであり、
-Aはそれぞれ独立して、下記(i)~(x)から選択され、
(i)H、
(ii)F、
(iii)CN、
(iv)C~C60アリール、
(v)C~C60アリールアルキル、
(vi)C~C60アルキル、
(vii)C~C60アルケニル、
(viii)C60アルキニル、
(ix)C~C60シクロアルキルおよび
(x)C~C60ヘテロアリール
但し、ここで、炭素含有基中の炭素原子の総数は60未満であり、
(iv)、(v)、(vi)、(vii)、(viii)、(ix)および(x)から選択される任意の炭素含有基中の任意の水素原子は、F、Cl、Br、I、CN、非置換もしくはハロゲン化アルキル、非置換もしくはハロゲン化(ヘテロ)アリール、非置換もしくはハロゲン化(ヘテロ)アリールアルキル、非置換もしくはハロゲン化アルキルスルホニル、非置換もしくはハロゲン化された(ヘテロ)アリールスルホニル、非置換もしくはハロゲン化(ヘテロ)アリールアルキルスルホニル、非置換もしくはハロゲン化ホウ素含有炭化水素、非置換もしくはハロゲン化ケイ素含有炭化水素から独立して選択される置換基で置き換えられていてもよい;
nは金属イオンの価数であり;かつ
~Aの少なくとも1つは、F、CN、または電子吸引炭素基であり、
前記電子吸引炭素基は、炭化水素、ホウ素含有炭化水素、ケイ素含有炭化水素およびヘテロアリールから選択され、その水素原子の少なくとも半分がF、Cl、Br、Iおよび/またはCNで置き換えられている。
【0019】
一実施形態では、前記Mがアルカリ金属、アルカリ土類金属、希土類金属、遷移金属、またはAg、Al、Ga、In、Tl、Sn、Pb、Biまたはこれらの混合物を除く遷移金属から選択され、nが1、2または3であり;
好ましくは、MはLi、Na、K、Rb、Cs、Cuまたはこれらの混合物から選択され、nは1であり;
また好ましくは、MはBe、Mg、Ca、Sr、Ba、Mn、Fe、Co、Ni、Cu、Zn、Cdまたはこれらの混合物から選択され、nは2であり;
より好ましくは、MはLi、Na、Cuまたはこれらの混合物から選択され、nは1であり;
またさらにより好ましくは、MはMg、Ca、Mn、Zn、Cuまたはこれらの混合物から選択され、nは2であり;
最も好ましくは、MはLiであり、nは1、または、MはMg、Mn、Znまたはこれらの混合物から選択され、nは2である。
【0020】
一実施形態では、前記p-ドーパント分子において、前記金属カチオンに最も近い前記アニオンおよび/または前記アニオン性配位子の原子が、C原子またはN原子である。
【0021】
一実施形態では、1,2-ジクロロエタン中の1つ以上のプロトンの添加によって前記アニオンおよび/またはアニオン性配位子から形成される電気的に中性の共役酸の酸性度がHClの酸性度よりも高く、好ましくはHBrの酸性度よりも高く、より好ましくはHIの酸性度よりも高く、さらにより好ましくはフルオロ硫酸の酸性度よりも高く、最も好ましくは過塩素酸の酸性度よりも高い。
【0022】
一実施形態では、前記電気的p-ドーパントが、標準量子化学法によって計算された最高空軌道のエネルギー準位を有し、標準量子化学法によって計算された共有結合正孔輸送化合物の最高被占軌道のエネルギー準位を超え、絶対真空尺度で少なくとも、0.5eV、好ましくは少なくとも0.6eV、より好ましくは少なくとも0.8eV、さらにより好ましくは少なくとも1.0eV、最も好ましくは少なくとも1.2eVを示す。
【0023】
前記標準量子化学法は、基底系def2-TZVPを有するDFT機能B3LYPを使用するソフトウェアパッケージTURBOMOLEであってもよい。
【0024】
一実施形態では、前記第1の正孔輸送マトリックス化合物が、標準量子化学法によって計算された最高被占軌道のエネルギー準位を有し、絶対真空尺度で-3.0eV未満、好ましくは-3.5eV未満、より好ましくは-4.0eV未満、さらにより好ましくは-4.5eV未満、最も好ましくは-5.0eV未満を示す。
【0025】
一実施形態では、前記第1の正孔輸送マトリックス化合物が有機化合物であり、好ましくは少なくとも6個、より好ましくは少なくとも10個の非局在化電子の共役系を含む有機化合物であり、また好ましくは前記第1の正孔輸送マトリックス化合物が少なくとも1個のトリアリールアミン構造部分を含み、より好ましくは第1の正孔輸送マトリックス化合物が少なくとも2個のトリアリールアミン構造部分を含む。
【0026】
一実施形態では、前記第1の半導体層内において、前記p-ドーパントおよび前記第1の正孔輸送マトリックス化合物が、2つの隣接する副層を形成する。
【0027】
一実施形態では、前記第1の電極と前記第2の電極との間の全ての層、ならびに最後の有機層の上に堆積された電極が、1×10-3Pa未満の圧力、好ましくは5×10-4Pa未満の圧力、より好ましくは1×10-4Pa未満の圧力での真空蒸着によって製造可能である。
【0028】
前記目的はさらに、前述の実施形態のいずれかに記載のディスプレイデバイスの製造方法によって達成される。前記方法は、前記正孔輸送マトリックス化合物および前記電気的p-ドーパントが50℃を超える温度に曝露され、相接する少なくとも1つの工程を含む。
【0029】
「相接」は、1つの凝縮相中に両方の成分が存在すること、または共通の相界面を共有する2つの凝縮相中にそれらの成分が存在することを意味すると理解されたい。
【0030】
一実施形態では、前記方法は以下の工程を含んでもよい、
(i)前記p-ドーパントおよび前記第1の正孔輸送マトリックス化合物を溶媒中に分散させる工程、
(ii)基板上に、当該分散液を堆積させる工程、および
(iii)前記溶媒を高温で蒸発させる工程。
【0031】
前記方法は、減圧下、好ましくは1×10-2Pa未満の圧力および50℃を超える温度、より好ましくは5×10-2Pa未満の圧力および80℃を超える温度、さらにより好ましくは1×10-3Pa未満の圧力および120℃を超える温度、最も好ましくは5×10-4Pa未満の圧力および150℃を超える温度で、前記p-ドーパントを蒸発させる少なくとも1つの工程をさらに含んでもよい。
【0032】
一実施形態では、前記p-ドーパントが固体水和物の形態で使用されてもよい。
【0033】
別の一実施形態では、前記p-ドーパントが、0.10重量%未満の水、好ましくは0.05重量%未満の水を含む無水固体として使用されてもよい。
【0034】
前記目的は、式(Ia)を有する化合物によってさらに達成される;
【0035】
【化2】
【0036】
式中、AはHであり、
~Aは、式(IIa)または(IIb)を有する過フッ素化インダゾリルから独立して選択され、
【0037】
【化3】
【0038】
式中、破線の結合は、式(Ia)中のホウ素原子への結合を表し、
は過フッ素化C~C20炭化水素基であり、
MはLiであり、かつnは1であるか、または
Mは2価の金属であり、かつnは2である。
【0039】
一実施形態では、前記式(Ia)を有する化合物は固体の化合物である。
【0040】
一実施形態では、Mがカルシウムであり、Rがトリフルオロメチルである化合物は除外することができる。
【0041】
一実施形態では、前記式(Ia)中の2価の金属Mが、Mg、MnおよびZnから選択され、nが2である。
【0042】
前記目的は、式(Iaa)を有する化合物によってさらに達成される;
【0043】
【化4】
【0044】
式中、AはHであり、
~Aは、式(IIa)または(IIb)を有する過フッ素化インダゾリルから独立して選択され
【0045】
【化5】
【0046】
式中、破線の結合は式(Ia)中のホウ素原子への結合を表し、
は過フッ素化C~C20炭化水素基であり、
MはLiであり、かつnは1であるか、または
MはMg、MnおよびZnから選択される2価の金属であり、かつnは2である。
【0047】
前記目的は、式(Ib)を有する化合物によってさらに達成される;
【0048】
【化6】
【0049】
式中、AはHであり、A-Aは、式(III)を有するフッ素化ピラゾリルから独立して選択され、
【0050】
【化7】
【0051】
式中、破線の結合は式(Ib)中のホウ素原子への結合を表し、RおよびRは過フッ素化C-C20炭化水素基から独立して選択され、RはH、F、CNからおよび過フッ素化C-C20炭化水素基から選択され;
MはLiであり、nは1であるか、または
Mは2価の金属であり、nは2である。
【0052】
一実施形態では、式(Ib)中のRおよび/またはRがトリフルオロメチルである。
【0053】
一実施形態では、前記式(Ib)中の2価の金属Mが、Mg、MnおよびZnから選択され、かつnが2である。
【発明の効果】
【0054】
有機半導体デバイスに含まれる材料の重要な特性は、それらの導電率である。WO2016/050834に記載されているように、構造化された陽極、および少なくとも1つの正孔輸送層および/または正孔注入層を共有する少なくとも2つの画素を有するディスプレイデバイスでは、共有される層の制限された導電率が、ディスプレイにおいて望ましくない電気的クロストークを低準位とするために有利に働く場合がある。一方、共有される層の導電率が非常に低いと、ディスプレイの動作電圧が増加する可能性がある。WO2016/050834では、これらの矛盾する要件の間における折り合いを表す導電率範囲を教示している。
【0055】
しかしながら、本願の著者らは驚くべきことに、特定の金属塩および金属錯体を基にした電気的p-ドーパントが、特定の条件下で、純粋なマトリックスで観察される伝導率に対応する準位を超えて自由電荷キャリアの濃度を実質的に増加させることなく、最新技術の陽極から最新技術の正孔輸送マトリックスへの安定した正孔注入を提供するp-ドープされた材料および/またはp-ドープされた層を製造することを可能にすることを見出した。
【0056】
この驚くべき発見は、WO2016/05083に開示される1×10-5S・m-1~1×10-6S・m-1の間の最適範囲未満の導電率を有するとしても、十分に匹敵する電圧で動作するWO2016/050834のディスプレイを構築する機会を提供した。本願のドーパントは、利用可能な測定手段での検出限界付近か、またはそれ未満である多数の画素によって共有されるp-ドープされた層における電気導電率の準位で、WO2016/050834のディスプレイデバイスの効率的な動作を可能にする。したがって、本願のドーパントは、OLEDディスプレイの電気的クロストークをさらに抑制することを可能にし、また電気的クロストークが非常に低い準位を示す効率的なOLEDディスプレイを設計するための新しい機会を提供する。著者らによってなされたこれらの観察を、さらにより詳細に記載する。
【0057】
本出願人により出願された先の出願EP15181385において、著者らの数人は、有機電気デバイスにおける正孔注入材料として、以下に示すような幾つかの金属アミドの使用の成功を記載している。
【0058】
【化8】
【0059】
類似の金属アミド化合物のさらなる調査と並行して、著者らは驚くべきことに、いくつかの構造的に全く異なる化合物、すなわち、以下のようなホウ酸金属塩錯体を類似の方法で使用可能であることも見出した。
【0060】
【化9】
【0061】
最も驚くべきことに、著者らはこれらの構造的に異なる化合物の全てが、ドープされた材料および/または層の製造中のプロセス条件に依存して、それらのp-ドープ作用において2つの異なる様式を同様に示すことを見出した。
【0062】
第1の様式では、これらの化合物でドープされた半導体材料および/または層(金属塩および/またはアニオン性配位子を有する電気的に中性の金属錯体として一般化することができる)は、典型的なレドックス(redox) p-ドーパントでドープされた材料および/または層と比較してわずかに低いが、十分に測定可能な電気伝導率を示す。この様式は、微量であっても、ドープされた材料および/または層が酸素に曝露される場合に起こるようである。
【0063】
第2の様式では、開示された金属塩および/またはアニオン性配位子を含む電気的に中性の金属錯体でドープされた半導体材料および/または層は、測定可能な電気伝導率をほとんど示さない。この様式は、ドープされた材料および/または層への酸素の接触がそのプロセス全体を通して厳密に回避される場合に生じる。著者らは、第2の様式でドープされた材料および/または層の極めて低い導電率にもかかわらず、特に正孔輸送層または正孔注入層としてそのような材料および/または層を含むデバイスが、優れた正孔注入に対応する電気的挙動を依然として示すことを見出した。
【0064】
p-ドープ作用の前記2つの様式の存在は、本開示のp-ドーパントに対して、有機電子デバイス、特に共通の正孔輸送層を共有する多数の画素に構造化された陽極を含むディスプレイ中の使用において、固有の汎用性を提供する。共通のp-ドープされた層の導電率は、第1のドーピング様式を利用することによってWO2016/050834で教示されている制限に設定するか、または第2のドーピング様式を利用してこれらの制限未満に設定することができる。
【0065】
さらに、著者らによってなされた最近の研究は、提示された金属塩および/または金属錯体でドープされた材料および/または層が、特に前記p-ドープ作用の第2の様式に従って提供された材料において、好ましい熱安定性を示し得るという手がかりを提供した。加えてこれらの特性は、AMOLEDディスプレイにおける開示されたp-ドーパントの使用に特に適している可能性がある。なぜなら、このようなディスプレイを別個の画素に構造化しなければならない場合、しばしば、p-ドープされた層の熱処理を必要とするか、または事前に堆積されたp-ドープされた層の不可避な加熱をもたらす可能性がある別の処理の使用を必要とするからである。
【0066】
本発明の特定の実施形態において、著者らは、水素原子のうち少なくとも半分がハロゲン原子またはニトリル基のような電子求引基で置換された特定の複素環式リガンドを含む新規なホウ酸塩化合物を提供した。LiTFSIおよび類似のTFSI塩は潮解する傾向がある一方で、ホウ酸塩錯体は、EP15181385の金属塩および/またはアニオン性金属錯体に十分に匹敵するp-ドープ作用に加えて、実質的に非吸湿性であり、高い空気湿度でも固体のままである。
【発明の詳細な説明】
【0067】
薄層試料の導電率は、例えば、いわゆる2点法によって測定することができる。このとき、薄層に電圧を適用し、前記層を流れる電流を測定する。抵抗、導電率はそれぞれ、接触の幾何学的形状と、試料の層の厚さとを考慮することによって得られる。本出願の著者らによって使用された導電率測定のための実験的設定は、特に酸素を含む空気との堆積層の接触に関して、制御された条件下で、p-ドープされた層の堆積ならびに導電率測定を可能にする。この点に関して、一連の堆積~測定の全ては、制御された空気を含むグローブボックス内もしくはチャンバ内で溶液処理技術を使用して実行されるか、または、完全に真空のチャンバ内で第2の様式でドープされた材料および/または層が必要とされる場合に特に適切な方法として選択され得る真空熱蒸着(VTE)を使用して実行され得る。
【0068】
一実施形態では、電子デバイスが少なくとも2つの画素を含む複数の画素を含むAMOLEDディスプレイであってもよく、p-ドーパントを含む第1の正孔輸送層は構造化された陽極と構造化された発光層との間に配置される。この実施形態では、第1の正孔輸送層が複数の画素によって共有され、この場合、共有層の導電率が可能な限り低くなることが、異なる電圧で動作する個々の画素間の電気的クロストークを制限するために、有利となり得る。
【0069】
ここで、第1の正孔輸送層の導電率は、1×10-6S・m-1未満、好ましくは1×10-7S・m-1未満、より好ましくは1×10-8S・m-1未満であってもよい。また、使用する導電率測定法の検出限界が1×10-6S・m-1未満であれば、この実施形態の電子デバイスでは、第1の正孔輸送層の導電率が検出限界未満であることが好ましい。
【0070】
AMOLEDディスプレイにおいて、陰極は、複数の画素のための共通の陰極として形成されてもよい。共通の陰極は、OLEDディスプレイ内の複数の画素の、全ての画素にわたって広がることができる。反対に、全ての個々の画素は、他の個々の画素の陽極に接触しなくてもよい、固有の陽極を有することができる。
【0071】
任意選択で、複数のOLED画素のうちの1つ以上について、以下の有機層、すなわち正孔阻止層、電子注入層、および/または電子阻止層を設けることができる。
【0072】
また、AMOLEDディスプレイは、OLEDディスプレイに設けられた複数の画素の個々の画素を別々に駆動するよう構成された駆動回路を有する。一実施形態では、別々に駆動する工程が、個々の画素に加えられる駆動電流の別々の制御を含むことができる。
【0073】
第1のHTLは、p-ドーパントで電気的にドープされた正孔輸送マトリックス(HTM)材料から作製される。正孔輸送マトリックス材料は、2つ以上のp-ドーパントで電気的にドープされてもよい。HTM材料は1つ以上のHTM化合物からなってもよいが、正孔輸送材料という用語は、本出願全体を通して、少なくとも1つの正孔輸送マトリックス化合物を含む全ての半導体材料に対して使用されるより広い用語であることを理解されたい。正孔輸送マトリックス材料は、特に限定されない。一般に、正孔輸送マトリックス材料は、p-ドーパントを埋め込むことができる共有結合原子からなる任意の材料である。この点で、シリコンまたはゲルマニウムのような主に共有結合を有する無機無限結晶、またはシリケートガラスのような極めて架橋された無機ガラスは、正孔輸送マトリックス材料の定義の範囲内に入らない。好ましくは、正孔輸送マトリックス材料が1つ以上の有機化合物からなり得る。
【0074】
電子デバイスにおいて、第1の正孔輸送層の厚さは、150nm未満、100nm未満、50nm未満、40nm未満、30nm未満、20nm未満、または15nm未満であり得る。
【0075】
第1の正孔輸送層の厚さは、3nm超、5nm超、8nm超、または10nm超であり得る。
【0076】
陽極は、インジウムスズ酸化物(ITO)またはアルミニウム亜鉛酸化物(AZO)のような透明導電性酸化物(TCO)から作製されてもよい。あるいは、陽極は、半透明の陽極となる1つ以上の薄い金属層から作製されてもよい。別の一実施形態では、陽極が可視光に対して透明でない厚い金属層から作製されてもよい。
【0077】
電子デバイスは、第1の正孔輸送層と発光層との間に設けられた電子阻止層(EBL)を含んでもよい。EBLは、第1のHTLおよびEMLと直接接触していてもよい。電子阻止層は、有機正孔輸送マトリックス材料から作製される電気的にドープされていない層(言い換えれば、電子素子層が電気的ドーパントを含まない)であってもよい。第1の正孔輸送層の有機正孔輸送マトリックス材料の組成は、電子阻止層の有機正孔輸送マトリックス材料の組成と同じであってもよい。本発明の別の一実施形態では、両方の正孔輸送マトリックス材料の組成は異なっていてもよい。
【0078】
EBLの層厚は、30nm超、50nm超、70nm超、100nm超、または110nm超であり得る。
【0079】
EBLの厚さは、200nm未満、170nm未満、140nm未満、または130nm未満であり得る。EBLと比較して、共通HTLは、約1段階薄くてもよい。
【0080】
電子阻止層を形成する各化合物は、共通の正孔輸送層の正孔輸送マトリックス材料を形成する任意の化合物の最高被占軌道(HOMO)準位よりも高い、HOMOエネルギー準位を有し得る。前記HOMOエネルギー準位は、真空エネルギー準位がゼロの場合と比較した絶対尺度で表される。
【0081】
電子阻止層の有機マトリックス材料は、正孔輸送層のマトリックス材料の正孔移動度以上の正孔移動度を有し得る。
【0082】
共通のHTLおよび/またはEBLの正孔輸送マトリックス(HTM)材料は、非局在化電子の共役系を含む化合物から選択することができ、前記共役系は、少なくとも2つの第3級アミン窒素原子の孤立電子対を含む。
【0083】
ドープされた正孔輸送層および/または共通正孔輸送層の正孔輸送マトリックス材料に好適な化合物は、公知の正孔輸送マトリックス(HTM)、例えばトリアリールアミン化合物から選択することができる。ドープされた正孔輸送材料のためのHTMは、非局在化電子の共役系を含む化合物であってもよく、前記共役系は少なくとも2つの第3級アミン窒素原子の孤立電子対を含む。例えば、N4,N4’-ジ(ナフタレン-1-イル)-N4,N4’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(HT1)、およびN4,N4,N4'',N4''-テトラ([1,1’-ビフェニル]-4-イル)-[1,1’:4’,1''-テルフェニル]-4,4''-ジアミン(HT4)である。テルフェニルジアミンHTMの合成は、例えば、WO2011/134458A1、US2012/223296A1またはWO2013/135237A1に記載されており;1,3-フェニレンジアミンマトリックスは例えば、WO2014/060526A1に記載されている。これらの文書は、本明細書に参考として援用される。多くのトリアリールアミンHTMは市販されている。
【0084】
電子デバイスは、例えば太陽電池において、第1の電極と第2の電極との間に配置された光吸収層をさらに含んでもよい。別の一実施形態では、電子デバイスが、第1の電極と第2の電極との間に少なくとも1つの発光層を備えるエレクトロルミネセンスデバイスであってもよい。
【0085】
エレクトロルミネセンスデバイスの発光層は、連続していてもよく、構造化されていてもよい。構造化された発光層を含むエレクトロルミネセンスデバイスの例として、複数の副領域を含み得るAMOLEDディスプレイが挙げられてもよく、前記副領域の各々は複数の画素のうちの1つに割り当てられる。ディスプレイの発光層の副領域に対応する個々の画素の発光層は、隣接する画素の発光層に接触しないことが好ましい。ディスプレイ製造プロセスでは、個々の画素のEMLを含む有機層が、例えば、上面発光、底面発光、または底面発光マイクロキャビティのいずれかにおいて、ファインメタルマスク(FMM)、レーザ励起熱転写法(LITI)、および/またはインクジェット印刷(IJP)などの公知の方法によってパターン化され得る(例えば、Chung et al. (2006), 70.1: Invited Paper: Large-Sized Full Color AMOLED TV: Advancements and Issues. SID Symposium Digest of Technical Papers, 37: 1958-1963. doi: 10.1889/1.2451418; Lee et al. (2009), 53.4: Development of 31-Inch Full-HD AMOLED TV Using LTPS-TFT and RGB FMM. SID Symposium Digest of Technical Papers, 40: 802-804. doi: 10.1889/1.3256911を参照のこと)。RGB位置決めが設けられてもよい。
【0086】
複数のOLED画素について、共通の電子輸送層は、複数のOLED画素の有機層の積層体中に設けられた電子輸送層によって形成されてもよい。
【0087】
電子デバイスの電子輸送層は、有機電子輸送マトリックス(ETM)材料を含むことができる。さらに、電子輸送層は、1つ以上のn-ドーパントを含んでもよい。ETMに好適な化合物は特に限定されない。一実施形態では、電子輸送マトリックス化合物が共有結合原子からなる。好ましくは、電子輸送マトリックス化合物が少なくとも6個、より好ましくは少なくとも10個の非局在化電子の共役系を含む。一実施形態では、非局在化電子の共役系が、例えば文献EP1970371A1またはWO2013/079217A1に開示されているように、芳香族またはヘテロ芳香族の構造部分に含まれていてもよい。
【0088】
陰極は、低い仕事関数を有する金属または金属合金から作製することができる。TCOから作製された透明な陰極も、当該技術分野で周知である。
【0089】
有機層の積層体は、2000g/mol未満の分子量を有する有機化合物から作製することができる。また別の一実施形態では、有機化合物が1000g/mol未満の分子量を有し得る。
【図面の簡単な説明】
【0090】
以下には、さらなる実施形態を、図面を参照した実施例によって、さらに詳細に説明する。図面では以下のものが示されている。
図1】ディスプレイが複数のOLED画素を有する、アクティブOLEDディスプレイの概略の図である。
【発明を実施するための形態】
【0091】
図1は、OLEDディスプレイ1に設けられた複数のOLED画素2、3、4を有するアクティブOLEDディスプレイ1の概略の図を示す。OLEDディスプレイ1において、各画素2、3、4には、駆動回路(図示せず)に接続される陽極2a、3a、4aが設けられている。アクティブマトリックスディスプレイのための駆動回路として機能することができる種々の装置が、当技術分野で知られている。一実施形態では、陽極2a、3a、4aはTCO、例えばITOから作製される。
【0092】
陰極6は、電気的にドープされた正孔輸送層(HTL)7、電子阻止層(EBL)5、画素2、3、4に割り当てられ、電子輸送層(ETL)9内に別々に設けられた副領域2b、3b、4bを有する発光層(EML)を含む有機積層体の上に設けられる。例えば、副領域2b、3b、4bは、カラーディスプレイのためのRGBの組み合わせ(R-赤、G-緑、B-青)を提供することができる。陽極2a、3a、4aおよび陰極6を介して画素2、3、4に個別の駆動電流を加えることにより、表示画素2、3、4は独立して操作される。
【0093】
〔合成実施例〕
<トリス(4,5,6,7-テトラフルオロ-3-(トリフルオロメチル)-1H-インダゾール-1-イル)ヒドロホウ酸リチウム(PB-1)>
[工程1:4,5,6,7-テトラフルオロ-3-(トリフルオロメチル)-1H-インダゾール]
【0094】
【化10】
【0095】
11.09g(45.1mmol)のパーフルオロアセトフェノンを100mLのトルエンに溶解する。溶液を氷浴で冷却し、2.3mL(2.37g、47.3mmol、1.05当量)のヒドラジン一水和物を滴下して添加する。混合物を3日間、加熱還流する。室温まで冷却した後、前記混合物を、飽和炭酸水素ナトリウム水溶液100mLで2回、および水100mLで2回洗浄し、硫酸マグネシウム上で乾燥させ、溶媒を減圧下で除去する。黄色の油状残渣を約140℃の温度および約12Paの圧力でバルブトゥバルブ(bulb to bulb)蒸留する。粗生成物を熱ヘキサンに溶解し、溶液を-18℃で保存する。沈殿固体を濾別し、懸濁液を10mLのヘキサンで2回洗浄する。5.0g(43%)の生成物をわずかに黄色の固体として得た。
GCMS:予想されるM/z(質量/電荷)比258を確認した。
【0096】
[工程2:トリス(4,5,6,7-テトラフルオロ-3-(トリフルオロメチル)-1H-インダゾール-1-イル)ヒドロホウ酸リチウム]
【0097】
【化11】
【0098】
Ar向流下で、5.1g(19.8mmol)の4,5,6,7-テトラフルオロ-3-(トリフルオロメチル)-1H-インダゾールを、焼き出した(out-baked) シュレンクフラスコに添加し、3mLのトルエンで処理する。新たに粉砕した水素化ホウ素リチウムを出発材料に添加する。混合物を、水素の形成が停止するまで(約4時間)、100℃に加熱する。わずかに冷却した後、15mLのヘキサンを添加し、混合物を10分間、加熱還流し、室温に冷却する。沈殿固体を濾別し、10mLの熱ヘキサンで洗浄し、高真空中で乾燥させる。2.55g(49%)の生成物を黄色がかった白色の固体として得た。
【0099】
<トリス(3,5-ビス(トリフルオロメチル)-1H-ピラゾール-1-イル)ヒドロホウ酸リチウム(PB-2)>
【0100】
【化12】
【0101】
焼き出したシュレンクフラスコ中、2.0g(9.8mmol、5当量)の3,5-ビス(トリフルオロメチル)ピラゾールを5mLの乾燥トルエンに溶解する。Ar向流下で、43mg(1.96mmol、1当量)の新たに粉砕した水素化ホウ素リチウムを添加し、混合物を3日間、加熱還流する。溶媒および過剰の出発材料を減圧下での蒸留によって除去し、残渣をn-クロロヘキサンから結晶化させる。0.25g(20%)の生成物を白色固体として得た。
【0102】
<トリス(4,5,6,7-テトラフルオロ-3-(パーフルオロフェニル)-1H-インダゾール-1-イル)ヒドロホウ酸リチウム(PB-3)>
[工程1:4,5,6,7-テトラフルオロ-3-(パーフルオロフェニル)-1H-インダゾール]
【0103】
【化13】
【0104】
20.0g(54.8mmol)のパーフルオロベンゾフェノンを200mLのトルエンに溶解する。4.0mL(4.11g、82.1mmol、約1.5当量)のヒドラジン一水和物を、氷冷した溶液に滴下して添加する。40gの硫酸ナトリウムを添加し、混合物を2日間、加熱還流する。冷却後、10mLのアセトンを反応混合物に添加し、得られた懸濁液を室温で1時間撹拌する。固体を濾別し、4×50mLのトルエンで十分に洗浄し、有機画分を合わせ、飽和炭酸水素ナトリウム水溶液で2回洗浄する。溶媒を減圧下で除去し、残渣をカラムクロマトグラフィーにより精製した。7.92g(41%)の生成物を淡黄色固体として得た。
GC-MS:予想されるM/z(質量/電荷)比356を確認した。
【0105】
[工程2:トリス(4,5,6,7-テトラフルオロ-3-(パーフルオロフェニル)-1H-インダゾール-1-イル)ヒドロホウ酸リチウム]
【0106】
【化14】
【0107】
焼き出したシュレンクフラスコ中、1.02g(2.86mmol、3.0当量)の4,5,6,7-テトラフルオロ-3-(パーフルオロフェニル)-1H-インダゾールを、5mLのクロロベンゼンに溶解させる。Ar向流下で、新たに粉砕した水素化ホウ素リチウム(21mg、0.95mmol、1.0当量)を添加する。混合物を150℃で2日間加熱し、室温に冷却する。溶媒を減圧下で除去し、残渣を高真空下で乾燥させる。粗生成物をさらに、約150℃の温度および約12Paの圧力下、バルブトゥバルブ蒸留装置中で乾燥させることで精製する。0.57g(70%)の生成物を、黄色がかった白色の固体として得た。
【0108】
<トリス(3-シアノ-5,6-ジフルオロ-1H-インダゾール-1-イル)ヒドロホウ酸リチウム(PB-4)>
【0109】
【化15】
【0110】
新たに粉砕した水素化ホウ素リチウム(15mg、0.7mmol、1.0当量)を焼き出した圧力管に入れ、Ar向流下で、0.5g(2.79mmol、4.0当量)の5,6-ジフルオロ-1H-インダゾール-3-カルボニトリルを添加し、1mLのトルエンで洗浄する。圧力管を閉じ、約160℃の温度に約21時間加熱する。室温に冷却した後、超音波浴中で約30分間、混合物を5mLのヘキサンで処理する。沈殿固体を濾別し、ヘキサン(合計20mL)で洗浄する。乾燥後、0.48gの黄色がかった固体を得た。
【0111】
<トリス(3,5-ビス(トリフルオロメチル)-1H-ピラゾール-1-イル)ヒドロホウ酸亜鉛(II)(PB-5)>
【0112】
【化16】
【0113】
0.57g(0.91mmol)のトリス(3,5-ビス(トリフルオロメチル)-1H-ピラゾール-1-イル)ヒドロホウ酸リチウムを6mLのN,N-ジメチルホルムアミドに溶解する。水1mL中に二塩化亜鉛62mgを含む水溶液を滴下して添加する。20mLの水をさらに添加し、混合物を超音波浴中で2時間処理する。沈殿物を濾別し、高真空中で乾燥させる。0.485g(82%)の生成物を、白色固体として得た。
【0114】
〔装置例〕
<装置例1>(底面発光白色OLED画素型のタンデムOLED)
厚さ90nmのITO陽極を備えたガラス基板上に、8重量%のPD-2でドープされたF1から作製される10nmの正孔注入層と、純粋なF1からなる厚さ140nmの非ドープ正孔輸送層と、3重量%のBD200でドープされたABH113(両方とも韓国、SFC社によって提供される)から形成される厚さ20nmの第1の発光層と、純粋なF2から作製される厚さ25nmの第1の電子輸送層と、5重量%のYbでドープされたF3から作製される厚さ10nmの電荷発生層の電子発生部(n-CGL)と、F4から作製される厚さ2nmの中間層と、PB-1から作製される厚さ30nmの電荷発生層の正孔発生部(p-CGL)と、純粋なF1から作製される厚さ10nmの第2の正孔輸送層と、第1の発光層と同じ厚さおよび組成の20nmの第2の発光層と、純粋なF2から作製される厚さ25nmの第1の電子輸送層と、5重量%のYbでドープされたF3から作製される厚さ10nmの電子注入層(EIL)と、100nmのAl陰極と、を順に堆積させた。
【0115】
全ての層を、真空熱蒸着(VTE)によって堆積させた。
【0116】
電流密度10mA/cmにおける、デバイスの動作電圧8Vおよび観測されたルミナンスは、PB-1の替わりに市販の最新技術のp-ドーパントを含む同じデバイスに十分に匹敵した。この予備実験では、効率評価に必要な正確な検定は省略した。
【0117】
<装置例2>(底面発光青色OLED画素)
次に、装置例1と同じITO陽極を備えたガラス基板上に、以下の層をVTEによって順に堆積させた:化合物PB-1から作製される10nmの正孔注入層;純粋なF1から作製される厚さ120nmのHTL;3重量%のNUBD370でドープされたABH113(両方とも韓国、SFC社によって供給される)から作製される20nmのEML;50重量%のLiQでドープされたF2から作製される36nmのEIL/ETL;100nmのAl陰極。
【0118】
比較デバイスは、PB-1の替わりに化合物CN-HAT(CAS 105598-27-4)から作製されるHILを含んでいた。
【0119】
本発明のデバイスは、電圧5.2Vにおいて、電流密度15mA/cmおよびEQE5.4%を達成した。一方で、比較デバイスは、5.4Vにおいて、EQE4.9%で作動した。
【0120】
<装置例3>(ホウ酸塩錯体でドープされた正孔輸送マトリックスからなる均質な注入層を含むデバイス)
装置例2と同じITO陽極を備えたガラス基板上に、以下の層をVTEによって順に堆積させた:8重量%の5PB-1でドープされたマトリックス化合物F2から作製される10nmの正孔注入層;純粋なF1から作製される厚さ120nmのHTL;3重量%のNUBD370でドープされたABH113(両方とも韓国、SFC社によって供給される)から作製される20nmのEML;50重量%のLiQでドープされたF2から作製される36nmのEIL/ETL;100nmのAl陰極。
【0121】
本発明のデバイスは、電圧5.6Vにおいて、電流密度15mA/cmおよびEQE5.6%を達成した。LT97(電流密度15mA/cmにおいて、照度が最初の値の97%に低下するのに要する動作時間)は、135時間であった。
【0122】
<装置例4>(ホウ酸塩錯体でドープされた正孔輸送マトリックスからなる均質な電荷発生層を含むタンデムデバイス)
装置例1と同様に製造したデバイスにおいて、純粋なPB-1層を、35重量%のPB-1でドープされたF2からなる同じ厚さの層に置き換えた。
【0123】
【表1】
【0124】
前述の説明および従属請求項に開示される特徴は、別々に、およびその任意の組み合わせの両方で、独立請求項においてなされた開示の態様をその多様な形態で実現するための材料であり得る。
【0125】
本明細書を通して使用される主要な記号および略語:
CV サイクリックボルタンメトリー
DSC 示差走査熱量測定
EBL 電子阻止層
EIL 電子注入層
EML 発光層
eq. 当量
ETL 電子輸送層
ETM 電子輸送マトリックス
Fc フェロセン
Fc フェリセニウム
HBL 正孔阻止層
HIL 正孔注入層
HOMO 最高被占軌道
HPLC 高速液体クロマトグラフィー
HTL 正孔輸送層
p-HTL p-ドープされた正孔輸送層
HTM 正孔輸送マトリックス
ITO インジウムスズ酸化物
LUMO 最低空軌道
mol% モルパーセント
NMR 核磁気共鳴
OLED 有機発光ダイオード
OPV 有機光起電力
QE 量子効率
TLC遅延因子
RGB 赤-緑-青
TCO 透明導電性酸化物
TFT 薄膜トランジスタ
ガラス遷移温度
TLC 薄層クロマトグラフィー
wt% 重量パーセント

図1