IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社 資生堂の特許一覧

特許7084112二酸化チタン粉体およびそれを配合した粉末化粧料
<>
  • 特許-二酸化チタン粉体およびそれを配合した粉末化粧料 図1
  • 特許-二酸化チタン粉体およびそれを配合した粉末化粧料 図2
  • 特許-二酸化チタン粉体およびそれを配合した粉末化粧料 図3
  • 特許-二酸化チタン粉体およびそれを配合した粉末化粧料 図4
  • 特許-二酸化チタン粉体およびそれを配合した粉末化粧料 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-06
(45)【発行日】2022-06-14
(54)【発明の名称】二酸化チタン粉体およびそれを配合した粉末化粧料
(51)【国際特許分類】
   C01G 23/08 20060101AFI20220607BHJP
   A61K 8/29 20060101ALI20220607BHJP
   A61K 8/19 20060101ALI20220607BHJP
   A61K 8/25 20060101ALI20220607BHJP
   A61K 8/02 20060101ALI20220607BHJP
   A61Q 1/12 20060101ALI20220607BHJP
【FI】
C01G23/08
A61K8/29
A61K8/19
A61K8/25
A61K8/02
A61Q1/12
【請求項の数】 5
(21)【出願番号】P 2017124517
(22)【出願日】2017-06-26
(65)【公開番号】P2019006640
(43)【公開日】2019-01-17
【審査請求日】2020-05-29
(73)【特許権者】
【識別番号】000001959
【氏名又は名称】株式会社 資生堂
(74)【代理人】
【識別番号】100092901
【弁理士】
【氏名又は名称】岩橋 祐司
(74)【代理人】
【識別番号】100188260
【弁理士】
【氏名又は名称】加藤 愼二
(72)【発明者】
【氏名】秦 英夫
(72)【発明者】
【氏名】木村 元春
【審査官】青木 千歌子
(56)【参考文献】
【文献】特開平10-245228(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01G 23/08
A61K 8/29
A61K 8/19
A61K 8/25
A61K 8/02
A61Q 1/12
(57)【特許請求の範囲】
【請求項1】
見かけ上の平均粒子径が200~300nm、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m/gであって、放射状に突出した針状の突起が凝結した形状を有する粒子であって、
形状短径と長径の比(長径/短径)が1.0以上、2.5未満、
450nmの反射率の値が、650nmの反射率の値の1.3倍以上であり、
色差(ΔE)が22以下であるルチル型二酸化チタン粉体。
なお、色差(ΔE)は、二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出した。
【請求項2】
請求項1に記載の二酸化チタン粉体において、形状短径と長径の比(長径/短径)が1.0~2.0であることを特徴とする二酸化チタン粉体。
【請求項3】
見かけ上の平均粒子径が200~300nm、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30mg、放射状に突出した針状の突起が凝結した形状を有する粒子であって、形状短径と長径の比(長径/短径)が1.0以上、2.5未満、450nmの反射率の値が、650nmの反射率の値の1.3倍以上、色差(ΔE)が22以下であるルチル型二酸化チタン粉体を1~30質量%と、
窒化ホウ素を1~20質量%と、
板状層状ケイ酸塩を10~50質量%と、を含むことを特徴とする粉末化粧料。
なお、前記ルチル型二酸化チタン粉体の色差(ΔE)は、二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出した。
【請求項4】
請求項3に記載の粉末化粧料において、板状層状ケイ酸塩のアスペクト比が、30~80であることを特徴とする粉末化粧料。
【請求項5】
請求項3又は4に記載の粉末化粧料において、板状層状ケイ酸塩の平均粒子径が2~20μmであることを特徴とする粉末化粧料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は二酸化チタン粉体およびそれを配合した粉末化粧料に関し、特に仕上がりと使用性に優れ、隠蔽力を維持しつつ、長波長領域の光をより透過する機能(赤色光選択透過機能)に優れた粉末化粧料に関する。
【背景技術】
【0002】
二酸化チタンは、屈折率が高く、白色度、隠蔽力、着色力に優れていることから、塗料、プラスチックなどの白色顔料として広く使用されている。また、二酸化チタンは、その粒子径または光活性度をコントロールすることにより、紫外線を遮蔽する物質として、紫外線吸収剤や紫外線遮蔽剤として化粧料や触媒などでの用途にも利用することが可能であることから、近年、これらの用途での研究開発が盛んに行われている。
【0003】
多数の二酸化チタンから形成されるマリモ状の特定平均一次粒子径の二酸化チタンの小球状粒子から形成される見掛け上の特定平均粒子径の二酸化チタン粉体を、化粧料に使用すれば、従来の二酸化チタンにはない良好な滑り性や優れた耐光性を付与することができる機能性材料になることが知られている。(特許文献1)。
また、平均粒径が0.2~0.4μmで、平均摩擦係数(MIU値)が0.4~0.6であるルチル型酸化チタン凝集粒子1~15質量%と半固形油分1~40質量%を含有する唇用化粧料が、ツヤがあり、唇のシワの目立ちを抑え、化粧持ちに優れていることが知られている(特許文献2)。
また、化粧料として用いられる色材として、可視光領域でも長波長側の光(波長630~700nm)の吸収率の小さいものを配合することで、肌内部での光透過性が素肌と近くなり、自然な仕上がりを実現できることが知られている(特許文献3)。
【0004】
このように、光の長波長側の光の透過率を高めた酸化チタンとして、棒状粒子が束状に配向凝集した粒子形態で、配向凝集した粒子の見掛け平均長軸長80~300nm、配向凝集した粒子の見掛け平均短軸長30~150nm、見掛け平均長軸長/見掛け平均短軸長で表される見掛け平均軸比1.1~4で、比表面積が120~180m/gを示すルチル型酸化チタンである短冊状あるいは藁束状ルチル型酸化チタンが開発されており、透明性並びに紫外線遮蔽能とも高いことが知られている(特許文献4)。
しかし、この二酸化チタンは、棒状粒子の凝集体であり、二次凝集体中の空げきも多いことから、見かけの屈折率が低下してしまい、実際に化粧料に配合するには隠ぺい力が不十分であった。また、紫外線防御に目的の主眼が置かれているため、二次凝集体の見かけの粒子径も100nm未満であり、Mieの理論に基づく酸化チタンの散乱効果を最大化させる粒子径より明らかに小さいため、このことも隠ぺい力が小さい要因となってしまう。
【0005】
また、パウダリーファンデーションに代表される固形粉末化粧料は、粉末成分に結合剤としての油性成分を添加して混合した後、容器に充填成型してなる化粧料である。粉末成分は主に無機顔料、有機顔料、樹脂粉末から構成され、顔料はさらに、色調や光沢を調整するための有色・パール顔料と、それ以外の体質顔料に分かれる。体質顔料の代表はタルク、マイカ、カオリン等の板状粉末で、粉末成分の大半を占め、化粧料の成形性、付着性、使用性等に大きく影響する。そして、これらの基本的な体質顔料に、窒化ホウ素、合成フッ素金雲母、硫酸バリウム等の特徴的な体質顔料を追加することで、粉末化粧料の特徴が概ね形成される。
このうち、窒化ホウ素は、潤滑性を備え、適度な隠蔽力と心地よい付着性を化粧料に付与することから、高配合の要望が高い成分である。
【0006】
従来の二酸化チタンでは、肌のシミ等の隠蔽力が高い反面、隠ぺい力を高めるために多量に配合した場合、不自然な仕上がりとなり、肌上の凹凸は、素肌よりも目立たせてしまうことがある。
【0007】
このような事情から、窒化ホウ素及びその他板状層状ケイ酸塩を配合し、使用性と均一な仕上がりに優れつつ、さらに、肌へ塗布した際に、自然な仕上がりとなるような粉末化粧料の開発が望まれている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2000-191325号公報
【文献】特開2010-24189号公報
【文献】特開2006-265134号公報
【文献】特開2010-173863号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
そこで、本発明は前記従来技術に鑑み行われたものであり、その解決すべき課題は、窒化ホウ素及びその他板状層状ケイ酸塩を配合し、使用性と均一な仕上がりに優れつつ、さらに、肌へ塗布した際に、自然な仕上がりとなるような粉末化粧料を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らが前述の課題を解決すべく鋭意研究を行った結果、特定の二酸化チタンを焼成し、特定の見かけ上の粒子径、特定の結晶子径と、特定の比表面積とした二酸化チタンが、化粧料に求められる隠ぺい力を十分有しつつ、赤色光選択透過機能に優れたものであることを見出した。そして、その二酸化チタンに、窒化ホウ素と板状層状ケイ酸塩を配合したものが、使用性に優れつつ、肌へ塗布した際に自然な仕上がりと白浮きのなさを有することが分かった。
【0011】
すなわち、本発明にかかる二酸化チタン粉体は、見かけ上の平均粒子径が100nm以上、500nm未満、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであって、放射状に突出した針状の突起が凝結した形状を有する粒子であって、形状短径と長径の比(長径/短径)が1.0以上、2.5未満であることを特徴とする。
前記二酸化チタン粉体において、形状短径と長径の比(長径/短径)が1.0~2.0であることが好適である。
本発明にかかる粉末化粧料は、見かけ上の平均粒子径が100nm以上、500nm未満、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gであって、放射状に突出した針状の突起が凝結した形状を有する粒子である二酸化チタン粉体を1~30質量%と、
窒化ホウ素を1~20質量%と、
板状層状ケイ酸塩を10~50質量%と、を含むことを特徴とする。
本発明にかかる固形粉末化粧料は、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m/gであって、450nmの反射率の値が、650nmの反射率の値の1.3倍以上であり、色差(ΔE)が22以下であるルチル型二酸化チタン粉体を1~30質量%と、
窒化ホウ素を1~20質量%と
板状層状ケイ酸塩を10~50質量%と、を含むことを特徴とする。
なお、色差(ΔE)は、二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出した。
本発明にかかる粉末化粧料は、下記の(a)~(c)を満たす針状粒子が放射状に配向凝集した粒子表面に針状突起を有するルチル型二酸化チタンを焼成して得られるルチル型二酸化チタン粉体であって、見かけ上の平均粒子径が100nm以上、500nm未満、X線回折法で測定される平均結晶子径が15~30nm、比表面積が10~30m2/gである二酸化チタン粉体を1~30質量%と、
窒化ホウ素を1~20質量%と
板状層状ケイ酸塩を10~50質量%と、を含むことを特徴とする。
(a)見かけ上の平均粒子径が100nm以上、500nm未満
(b)X線回折法で測定される平均結晶子径が1~25nm
(c)比表面積が40~200m2/g
本発明にかかる粉末化粧料は、下記の(a)~(c)を満たす針状粒子が放射状に配向凝集した粒子表面に針状突起を有するルチル型二酸化チタンを焼成して得られるルチル型二酸化チタン粉体であって、焼成後のルチル型二酸化チタン粉体の比表面積が、焼成前に対して8~50%である二酸化チタン粉体を1~30質量%と、
窒化ホウ素を1~20質量%と
板状層状ケイ酸塩を10~50質量%と、を含むことを特徴とする。
(a)見かけ上の平均粒子径が100nm以上、500nm未満
(b)X線回折法で測定される平均結晶子径が1~25nm
(c)比表面積が40~200m2/g
前記粉末化粧料において、二酸化チタンの焼成温度が、500℃~800℃であることが好適である。
前記粉末化粧料において、二酸化チタンの焼成温度が、550℃~750℃であることが好適である。
前記粉末化粧料において、板状層状ケイ酸塩のアスペクト比が、30~80であることが好適である。
前記粉末化粧料において、板状層状ケイ酸塩の平均粒子径が2~20μmであることが好適である。
【発明の効果】
【0012】
本発明によれば、仕上がりと使用性に優れ、隠蔽力を維持しつつ、長波長領域の光をより透過する機能(赤色光選択透過機能)に優れた粉末化粧料を提供することができる。
【図面の簡単な説明】
【0013】
図1】見掛けの平均粒子径の算出方法
図2】ルチル型顔料級酸化チタン(*1)と酸化チタンB(未焼成)および酸化チタンBを700、900℃で焼成したものの分光反射率を示す図である。
図3】TEM観察により各焼成温度で焼成された二酸化チタンBの形状の変化を示す図である。
図4】ロータリーキルンでの焼成温度変化による酸化チタンBの隠蔽力の変化を示す図である。
図5】ロータリーキルンでの焼成温度変化による酸化チタンBの焼成温度変化による赤色透過性の変化を示す図である。
【発明を実施するための形態】
【0014】
本発明に係る二酸化チタン粉体は、棒状もしくは針状粒子が放射状に配向凝集した粒子表面に針状突起を有する二酸化チタンを500~800℃、より好ましくは550~750℃で焼成して得られる二酸化チタン粉体であって、X線回折法で測定される平均結晶子径が15~30nm、二酸化チタンの見掛け上の平均粒子径が100nm以上、500nm未満、より好ましくは200~400nm、比表面積が10~30m/gであることを特徴とする。
【0015】
[母核に用いる二酸化チタン]
母核に用いる二酸化チタンの結晶型は、結晶構造の違いから、アナターゼ型とルチル型がある。ここで本発明に用いる二酸化チタンの結晶型は、光触媒活性が低く、屈折率が高いため隠ぺい力が高いルチル型である必要がある。
【0016】
母核に用いるルチル型二酸化チタンは、赤色光透過機能を有する二酸化チタンが用いられる。母核に用いる二酸化チタンの見かけの平均粒子径は、焼成後に一般的に収縮現象が起こることを考慮すると、本発明で得られた二酸化チタンの散乱による隠ぺい力と優れた赤色透過機能を実現するという観点から、100nm以上、500nm未満が好ましく、より好ましくは200~400nmであることが望ましい。
【0017】
母核に用いるルチル型二酸化チタンの形状としては、繭状、藁束状、短冊状、球状、針状、棒状等が挙げられる。本発明では、好ましくは、棒状もしくは針状粒子が放射状に配向凝集した粒子表面に針状突起を有することが好ましい。
【0018】
母核に用いる二酸化チタンの比表面積は、焼成による効率的な見かけの屈折率向上の観点から40~200m/gであることが望ましい。
【0019】
母核に用いるルチル型二酸化チタンは、X線回折法で測定される平均結晶子径が 1~25nmであることが好ましい。
【0020】
母核に用いる二酸化チタンは、市販品でもよい。たとえば、チタン工業株式会社製 ST700シリーズが挙げられる。その中でも、ST710などが挙げられる。
【0021】
[本発明に用いる二酸化チタン粉体]
本発明の二酸化チタン粉体は、母核に用いる二酸化チタンを焼成することによって、得られる。
焼成温度は焼成を行う装置によって、焼成前に存在する粒子表面から放射状に飛び出ていた針状の突起が、焼成することで凝結した粒子にあって、焼成により凝結することで針状粒子間に存在する空げきを減らし、かつ、針状粒子同士が焼結して、X線回折法で測定される平均結晶子径が過度に増大しない温度条件であることが望ましい。これにより、十分な隠ぺい力と赤色光選択透過機能の両立が可能となる。
【0022】
本発明に用いる二酸化チタン粉体は、焼成前に存在する粒子表面から放射状に飛び出ていた針状突起が、焼成することで凝結した粒子の形状であることを特徴とする。そして、その粒子の短径と長径の比(長径/短径)が1.0以上、2.5未満であることを特徴とする。さらに好ましくは、1.0~2,0である。
【0023】
適切な焼成温度は、焼成装置によって異なるが、一般的な焼成炉であるマッフル炉やロータリーキルンで焼成した場合は、500~800℃、より好ましくは550~750℃の範囲で焼成することが望ましい。500℃を下回ると、焼成前に存在する空げきが十分減っていないために隠ぺい力が十分でなく、800℃を超えると、過度に焼結が進行し、赤色光選択透過機能が失われる。
【0024】
本発明の二酸化チタンはX線回折法で測定される平均結晶子径が15~30nmであることが必要である。
上記結晶子径が15nm未満の場合は、十分な隠ぺい力が得られないという理由で好ましくない。また、30nmを超える場合は、焼結が進行し、十分な赤色光選択透過機能が失われるという点で好ましくない。
【0025】
また、本発明の二酸化チタン粉体は、見掛け上の平均粒子径が散乱による隠ぺい力と優れた赤色透過機能を効果的に実現するという観点から100nm以上、500nm未満、より好ましくは200~400nmであることが必要である。
【0026】
本発明に用いる二酸化チタン粉体の比表面積は、得られた酸化チタン粒子の空隙率の低下と焼結の進行を示す指標であり、母核となる二酸化チタン粉体を焼成後の比表面積が焼成前(100%)に比べて8~50%になる範囲が好ましい。より好ましくは、8~30%である。
【0027】
また、本発明の二酸化チタン粉体の比表面積は、10~30m/g、であることが必要である。10m/g未満であると、焼結が進行し、十分な赤色光選択透過機能が失われるという点で好ましくない。また、30m/gを超えると、空隙が過度に存在し、十分な隠ぺい力が達成できないという点で好ましくない。
【0028】
本発明の二酸化チタン粉体は、焼成後に、表面処理を行うこともできる。表面処理を行うことにより、粘度、油への分散性、撥水性に伴う化粧持ちを向上させつつ、使用性に優れた二酸化チタンを得ることができる。
【0029】
表面処理剤として使用できる無機物としては、例えば、アルミニウム、ケイ素、亜鉛、チタニウム、ジルコニウム、鉄、セリウム及び錫等の金属の含水酸化物又は酸化物が挙げられる。これに用いられる前記金属塩は特に限定はない。
【0030】
表面処理剤として使用できる有機物としては、例えば、水酸化アルミニウムや酸化アルミニウムなどの金属酸化物、金属水酸化物で表面処理したのちに、親油性を付加するために、ステアリン酸、オレイン酸、イソステアリン酸、ミリスチン酸、パルミチン酸、ベヘニン酸などの脂肪酸、メチルハイドロジェンポリシロキサン、ジメチコン、アルキル(C8~C18など)トリアルコキシシラン、アミノ変性シリコーン、カルボキシル変性シリコーンなどシリコーン化合物、パーフルオロアルキルアルキルリン酸塩などのフッ素化合物、ミリスチン酸デキストリン、パルミチン酸デキストリン、ラウロイルリシン、ラウロイルグルタミネートなどのアミノ酸誘導体等が挙げられる。
【0031】
これらの表面処理剤は、二酸化チタン粉体に対して1~10質量%であると、隠蔽力が高いため好ましい。
【0032】
本発明に用いる二酸化チタン粉体は、化粧料、顔料、インク、塗料などに広く配合することができる。
【0033】
本発明に用いる二酸化チタンの配合量は、粉末化粧料の総重量に対し、1~30質量%、より好ましくは5-15質量%である。1質量%より少ないと本発明の二酸化チタン配合による効果が得られない場合があり、30量%を超えると仕上がりが不自然になる場合がある。
【0034】
[窒化ホウ素]
本発明に用いる窒化ホウ素としては、通常化粧料に用いられるものであれば特に制限はなく、例えば、Ronaflair Boroneige SF-12(メルク株式会社製)、 SHP-3、SHP-6(いずれも水島合金鉄株式会社製)、等の市販品を用いてもよい。なお、分散性や付着製を改良するために、シリコーン類、フッ素化合物類、金属石鹸類、油剤類等で表面処理したものを用いてもよい。
【0035】
本発明に用いる窒化ホウ素の配合量は、粉末化粧料の総重量に対し、1-20質量%、より好ましくは3-15質量%である。1質量%より少ないと窒化ホウ素配合による効果が得られない場合があり、20質量%を超えると仕上がりが悪くなる場合がある。
【0036】
[板状層状ケイ酸塩]
本発明には、合成フッ素金雲母鉄、雲母、合成フッ素金雲母、セリサイトなどの板状層状ケイ酸塩 が好適に用いられる 。
【0037】
本発明に用いる合成フッ素金雲母鉄、合成フッ素金雲母としては、通常化粧料に用いられるものであれば特に制限されないが、好ましくは、平均粒子径が2~20μm、より好ましくは5~15μmである。そのような合成フッ素金雲母鉄として、例えば、PDM-FE(トピー工業株式会社製)を挙げることができる。合成フッ素金雲母として、例えば、PDM-5L、10L(トピー工業株式会社製)を挙げることができる。なお、分散性や付着性を改良するために、シリコーン類、フッ素化合物類、金属石鹸類、油剤類等で表面処理したものを用いてもよい。
【0038】
本発明に用いる板状層状ケイ酸塩の配合量は、化粧料総量に対し、10~50質量%、より好ましくは20~45質量%である。10質量%より少ないと化粧料の仕上がりが低下する場合があり、また、50質量%を超えると仕上がりの均一性が悪くなる場合がある。
【0039】
本発明に用いる板状層状ケイ酸塩のアスペクト比が30~80の範囲内のものであると一層好適である。
【0040】
[その他の成分]
本発明にかかる粉末化粧料には、本発明の効果を損なわない範囲において、他の成分、例えば、エステル、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤、保湿剤、水溶性高分子、増粘剤、皮膜剤、紫外線吸収剤、金属イオン封鎖剤、低級アルコール、多価アルコール、糖、アミノ酸、有機アミン、高分子エマルジョン、pH調整剤、皮膚栄養剤、ビタミン、酸化防止剤、酸化防止助剤、香料、水等を必要に応じて適宜配合し、目的とする剤形に応じて常法により製造することが出来る。
以下に具体的な配合可能成分を列挙するが、上記必須配合成分と、下記成分の任意の一種又は二種以上とを配合して粉末化粧料を調製できる。
【0041】
アニオン界面活性剤としては、例えば、脂肪酸セッケン(例えば、ラウリン酸ナトリウム、パルミチン酸ナトリウム等);高級アルキル硫酸エステル塩(例えば、ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等);アルキルエーテル硫酸エステル塩(例えば、POE-ラウリル硫酸トリエタノールアミン、POE-ラウリル硫酸ナトリウム等);N-アシルサルコシン酸(例えば、ラウロイルサルコシンナトリウム等);高級脂肪酸アミドスルホン酸塩(例えば、N-ミリストイル-N-メチルタウリンナトリウム、ヤシ油脂肪酸メチルタウリッドナトリウム、ラウリルメチルタウリッドナトリウム等);リン酸エステル塩(POE-オレイルエーテルリン酸ナトリウム、POE-ステアリルエーテルリン酸等);スルホコハク酸塩(例えば、ジ-2-エチルヘキシルスルホコハク酸ナトリウム、モノラウロイルモノエタノールアミドポリオキシエチレンスルホコハク酸ナトリウム、ラウリルポリプロピレングリコールスルホコハク酸ナトリウム等);アルキルベンゼンスルホン酸塩(例えば、リニアドデシルベンゼンスルホン酸ナトリウム、リニアドデシルベンゼンスルホン酸トリエタノールアミン、リニアドデシルベンゼンスルホン酸等);高級脂肪酸エステル硫酸エステル塩(例えば、硬化ヤシ油脂肪酸グリセリン硫酸ナトリウム等);N-アシルグルタミン酸塩(例えば、N-ラウロイルグルタミン酸モノナトリウム、N-ステアロイルグルタミン酸ジナトリウム、N-ミリストイル-L-グルタミン酸モノナトリウム等);硫酸化油(例えば、ロート油等);POE-アルキルエーテルカルボン酸;POE-アルキルアリルエーテルカルボン酸塩;α-オレフィンスルホン酸塩;高級脂肪酸エステルスルホン酸塩;二級アルコール硫酸エステル塩;高級脂肪酸アルキロールアミド硫酸エステル塩;ラウロイルモノエタノールアミドコハク酸ナトリウム;N-パルミトイルアスパラギン酸ジトリエタノールアミン;カゼインナトリウム等が挙げられる。
【0042】
カチオン界面活性剤としては、例えば、アルキルトリメチルアンモニウム塩(例えば、塩化ステアリルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム等);アルキルピリジニウム塩(例えば、塩化セチルピリジニウム等);塩化ジステアリルジメチルアンモニウムジアルキルジメチルアンモニウム塩;塩化ポリ(N,N’-ジメチル-3,5-メチレンピペリジニウム);アルキル四級アンモニウム塩;アルキルジメチルベンジルアンモニウム塩;アルキルイソキノリニウム塩;ジアルキルモリホニウム塩;POE-アルキルアミン;アルキルアミン塩;ポリアミン脂肪酸誘導体;アミルアルコール脂肪酸誘導体;塩化ベンザルコニウム;塩化ベンゼトニウム等が挙げられる。
【0043】
両性界面活性剤としては、例えば、イミダゾリン系両性界面活性剤(例えば、2-ウンデシル-N,N,N-(ヒドロキシエチルカルボキシメチル)-2-イミダゾリンナトリウム、2-ココイル-2-イミダゾリニウムヒドロキサイド-1-カルボキシエチロキシ2ナトリウム塩等);ベタイン系界面活性剤(例えば、2-ヘプタデシル-N-カルボキシメチル-N-ヒドロキシエチルイミダゾリニウムベタイン、ラウリルジメチルアミノ酢酸ベタイン、アルキルベタイン、アミドベタイン、スルホベタイン等)等が挙げられる。
【0044】
親油性非イオン界面活性剤としては、例えば、ソルビタン脂肪酸エステル類(例えば、ソルビタンモノオレエート、ソルビタンモノイソステアレート、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンセスキオレエート、ソルビタントリオレエート、ペンタ-2-エチルヘキシル酸ジグリセロールソルビタン、テトラ-2-エチルヘキシル酸ジグリセロールソルビタン等);グリセリンポリグリセリン脂肪酸類(例えば、モノ綿実油脂肪酸グリセリン、モノエルカ酸グリセリン、セスキオレイン酸グリセリン、モノステアリン酸グリセリン、α,α'-オレイン酸ピログルタミン酸グリセリン、モノステアリン酸グリセリンリンゴ酸等);プロピレングリコール脂肪酸エステル類(例えば、モノステアリン酸プロピレングリコール等);硬化ヒマシ油誘導体;グリセリンアルキルエーテル等が挙げられる。
【0045】
親水性非イオン界面活性剤としては、例えば、POE-ソルビタン脂肪酸エステル類(例えば、POE-ソルビタンモノオレエート、POE-ソルビタンモノステアレート、POE-ソルビタンモノオレエート、POE-ソルビタンテトラオレエート等);POE-ソルビット脂肪酸エステル類(例えば、POE-ソルビットモノラウレート、POE-ソルビットモノオレエート、POE-ソルビットペンタオレエート、POE-ソルビットモノステアレート等);POE-グリセリン脂肪酸エステル類(例えば、POE-グリセリンモノステアレート、POE-グリセリンモノイソステアレート、POE-グリセリントリイソステアレート等のPOE-モノオレエート等);POE-脂肪酸エステル類(例えば、POE-ジステアレート、POE-モノジオレエート、ジステアリン酸エチレングリコール等);POE-アルキルエーテル類(例えば、POE-ラウリルエーテル、POE-オレイルエーテル、POE-ステアリルエーテル、POE-ベヘニルエーテル、POE-2-オクチルドデシルエーテル、POE-コレスタノールエーテル等);プルロニック型類(例えば、プルロニック等);POE・POP-アルキルエーテル類(例えば、POE・POP-セチルエーテル、POE・POP-2-デシルテトラデシルエーテル、POE・POP-モノブチルエーテル、POE・POP-水添ラノリン、POE・POP-グリセリンエーテル等);テトラPOE・テトラPOP-エチレンジアミン縮合物類(例えば、テトロニック等);POE-ヒマシ油硬化ヒマシ油誘導体(例えば、POE-ヒマシ油、POE-硬化ヒマシ油、POE-硬化ヒマシ油モノイソステアレート、POE-硬化ヒマシ油トリイソステアレート、POE-硬化ヒマシ油モノピログルタミン酸モノイソステアリン酸ジエステル、POE-硬化ヒマシ油マレイン酸等);POE-ミツロウ・ラノリン誘導体(例えば、POE-ソルビットミツロウ等);アルカノールアミド(例えば、ヤシ油脂肪酸ジエタノールアミド、ラウリン酸モノエタノールアミド、脂肪酸イソプロパノールアミド等);POE-プロピレングリコール脂肪酸エステル;POE-アルキルアミン;POE-脂肪酸アミド;ショ糖脂肪酸エステル;アルキルエトキシジメチルアミンオキシド;トリオレイルリン酸等が挙げられる。
【0046】
保湿剤としては、例えば、ポリエチレングリコール、プロピレングリコール、グリセリン、1,3-ブチレングリコール、キシリトール、ソルビトール、マルチトール、コンドロイチン硫酸、ヒアルロン酸、ムコイチン硫酸、カロニン酸、アテロコラーゲン、コレステリル-12-ヒドロキシステアレート、乳酸ナトリウム、胆汁酸塩、dl-ピロリドンカルボン酸塩、アルキレンオキシド誘導体、短鎖可溶性コラーゲン、ジグリセリン(EO)PO付加物、イザヨイバラ抽出物、セイヨウノコギリソウ抽出物、メリロート抽出物等が挙げられる。
【0047】
天然の水溶性高分子としては、例えば、植物系高分子(例えば、アラビアガム、トラガカントガム、ガラクタン、グアガム、キャロブガム、カラヤガム、カラギーナン、ペクチン、カンテン、クインスシード(マルメロ)、アルゲコロイド(カッソウエキス)、デンプン(コメ、トウモロコシ、バレイショ、コムギ)、グリチルリチン酸);微生物系高分子(例えば、キサンタンガム、デキストラン、サクシノグルカン、ブルラン等);動物系高分子(例えば、コラーゲン、カゼイン、アルブミン、ゼラチン等)等が挙げられる。
【0048】
半合成の水溶性高分子としては、例えば、デンプン系高分子(例えば、カルボキシメチルデンプン、メチルヒドロキシプロピルデンプン等);セルロース系高分子(メチルセルロース、エチルセルロース、メチルヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、セルロース硫酸ナトリウム、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、カルボキシメチルセルロースナトリウム、結晶セルロース、セルロース末等);アルギン酸系高分子(例えば、アルギン酸ナトリウム、アルギン酸プロピレングリコールエステル等)等が挙げられる。
【0049】
合成の水溶性高分子としては、例えば、ビニル系高分子(例えば、ポリビニルアルコール、ポリビニルメチルエーテル、ポリビニルピロリドン、カルボキシビニルポリマー等);ポリオキシエチレン系高分子(例えば、ポリエチレングリコール20,000、40,000、60,0000のポリオキシエチレンポリオキシプロピレン共重合体等);アクリル系高分子(例えば、ポリアクリル酸ナトリウム、ポリエチルアクリレート、ポリアクリルアミド等);ポリエチレンイミン;カチオンポリマー等が挙げられる。
【0050】
増粘剤としては、例えば、アラビアガム、カラギーナン、カラヤガム、トラガカントガム、キャロブガム、クインスシード(マルメロ)、カゼイン、デキストリン、ゼラチン、ペクチン酸ナトリウム、アラギン酸ナトリウム、メチルセルロース、エチルセルロース、CMC、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、PVA、PVM、PVP、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ローカストビーンガム、グアガム、タマリントガム、ジアルキルジメチルアンモニウム硫酸セルロース、キサンタンガム、ケイ酸アルミニウムマグネシウム、ベントナイト、ヘクトライト、ケイ酸A1Mg(ビーガム)、ラポナイト、無水ケイ酸等が挙げられる。
【0051】
紫外線吸収剤としては、例えば、安息香酸系紫外線吸収剤(例えば、パラアミノ安息香酸(以下、PABAと略す)、PABAモノグリセリンエステル、N,N-ジプロポキシPABAエチルエステル、N,N-ジエトキシPABAエチルエステル、N,N-ジメチルPABAエチルエステル、N,N-ジメチルPABAブチルエステル、N,N-ジメチルPABAエチルエステル等);アントラニル酸系紫外線吸収剤(例えば、ホモメンチル-N-アセチルアントラニレート等);サリチル酸系紫外線吸収剤(例えば、アミルサリシレート、メンチルサリシレート、ホモメンチルサリシレート、オクチルサリシレート、フェニルサリシレート、ベンジルサリシレート、p-イソプロパノールフェニルサリシレート等);桂皮酸系紫外線吸収剤(例えば、オクチルメトキシシンナメート、エチル-4-イソプロピルシンナメート、メチル-2,5-ジイソプロピルシンナメート、エチル-2,4-ジイソプロピルシンナメート、メチル-2,4-ジイソプロピルシンナメート、プロピル-p-メトキシシンナメート、イソプロピル-p-メトキシシンナメート、イソアミル-p-メトキシシンナメート、オクチル-p-メトキシシンナメート(2-エチルヘキシル-p-メトキシシンナメート)、2-エトキシエチル-p-メトキシシンナメート、シクロヘキシル-p-メトキシシンナメート、エチル-α-シアノ-β-フェニルシンナメート、2-エチルヘキシル-α-シアノ-β-フェニルシンナメート、グリセリルモノ-2-エチルヘキサノイル-ジパラメトキシシンナメート等);ベンゾフェノン系紫外線吸収剤(例えば、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-4’-メチルベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸塩、4-フェニルベンゾフェノン、2-エチルヘキシル-4’-フェニル-ベンゾフェノン-2-カルボキシレート、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、4-ヒドロキシ-3-カルボキシベンゾフェノン等);3-(4’-メチルベンジリデン)-d,l-カンファー、3-ベンジリデン-d,l-カンファー;2-フェニル-5-メチルベンゾキサゾール;2,2’-ヒドロキシ-5-メチルフェニルベンゾトリアゾール;2-(2’-ヒドロキシ-5’-t-オクチルフェニル) ベンゾトリアゾール;2-(2’-ヒドロキシ-5’-メチルフェニルベンゾトリアゾール;ジベンザラジン;ジアニソイルメタン;4-メトキシ-4’-t-ブチルジベンゾイルメタン;5-(3,3-ジメチル-2-ノルボルニリデン)-3-ペンタン-2-オン、ジモルホリノピリダジノ;2-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート;2,4-ビス-{[4-(2-エチルヘキシルオキシ)-2-ヒドロキシ]-フェニル}-6-(4-メトキシフェニル)-(1,3,5)-トリアジン等が挙げられる。
【0052】
金属イオン封鎖剤としては、例えば、1-ヒドロキシエタン-1,1-ジフォスホン酸、1-ヒドロキシエタン-1,1-ジフォスホン酸四ナトリウム塩、エデト酸二ナトリウム、エデト酸三ナトリウム、エデト酸四ナトリウム、クエン酸ナトリウム、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸、リン酸、クエン酸、アスコルビン酸、コハク酸、エデト酸、エチレンジアミンヒドロキシエチル三酢酸3ナトリウム等が挙げられる。
【0053】
低級アルコールとしては、例えば、エタノール、プロパノール、イソプロパノール、イソブチルアルコール、t-ブチルアルコール等が挙げられる。
【0054】
多価アルコールとしては、例えば、2価のアルコール(例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、テトラメチレングリコール、2,3-ブチレングリコール、ペンタメチレングリコール、2-ブテン-1,4-ジオール、ヘキシレングリコール、オクチレングリコール等);3価のアルコール(例えば、グリセリン、トリメチロールプロパン等);4価アルコール(例えば、1,2,6-ヘキサントリオール等のペンタエリスリトール等);5価アルコール(例えば、キシリトール等);6価アルコール(例えば、ソルビトール、マンニトール等);多価アルコール重合体(例えば、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリプロピレングリコール、テトラエチレングリコール、ジグリセリン、ポリエチレングリコール、トリグリセリン、テトラグリセリン、ポリグリセリン等);2価のアルコールアルキルエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-メチルヘキシルエーテル、エチレングリコールイソアミルエーテル、エチレングリコールベンジルエーテル、エチレングリコールイソプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等);2価アルコールアルキルエーテル類(例えば、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールメチルエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールイソプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールブチルエーテル等);2価アルコールエーテルエステル(例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、エチレングリコールジアジベート、エチレングリコールジサクシネート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノフェニルエーテルアセテート等);グリセリンモノアルキルエーテル(例えば、キシルアルコール、セラキルアルコール、バチルアルコール等);糖アルコール(例えば、ソルビトール、マルチトール、マルトトリオース、マンニトール、ショ糖、エリトリトール、グルコース、フルクトース、デンプン分解糖、マルトース、キシリトース、デンプン分解糖還元アルコール等);グリソリッド;テトラハイドロフルフリルアルコール;POE-テトラハイドロフルフリルアルコール;POP-ブチルエーテル;POP・POE-ブチルエーテル;トリポリオキシプロピレングリセリンエーテル;POP-グリセリンエーテル;POP-グリセリンエーテルリン酸;POP・POE-ペンタンエリスリトールエーテル、ポリグリセリン等が挙げられる。
【0055】
単糖としては、例えば、三炭糖(例えば、D-グリセリルアルデヒド、ジヒドロキシアセトン等);四炭糖(例えば、D-エリトロース、D-エリトルロース、D-トレオース、エリスリトール等);五炭糖(例えば、L-アラビノース、D-キシロース、L-リキソース、D-アラビノース、D-リボース、D-リブロース、D-キシルロース、L-キシルロース等);六炭糖(例えば、D-グルコース、D-タロース、D-ブシコース、D-ガラクトース、D-フルクトース、L-ガラクトース、L-マンノース、D-タガトース等);七炭糖(例えば、アルドヘプトース、ヘプロース等);八炭糖(例えば、オクツロース等);デオキシ糖(例えば、2-デオキシ-D-リボース、6-デオキシ-L-ガラクトース、6-デオキシ-L-マンノース等);アミノ糖(例えば、D-グルコサミン、D-ガラクトサミン、シアル酸、アミノウロン酸、ムラミン酸等);ウロン酸(例えば、D-グルクロン酸、D-マンヌロン酸、L-グルロン酸、D-ガラクツロン酸、L-イズロン酸等)等が挙げられる。
【0056】
オリゴ糖としては、例えば、ショ糖、グンチアノース、ウンベリフェロース、ラクトース、プランテオース、イソリクノース類、α,α-トレハロース、ラフィノース、リクノース類、ウンビリシン、スタキオースベルバスコース類等が挙げられる。
【0057】
多糖としては、例えば、セルロース、クインスシード、コンドロイチン硫酸、デンプン、ガラクタン、デルマタン硫酸、グリコーゲン、アラビアガム、ヘパラン硫酸、ヒアルロン酸、トラガントガム、ケラタン硫酸、コンドロイチン、キサンタンガム、ムコイチン硫酸、グアガム、デキストラン、ケラト硫酸、ローカストビーンガム、サクシノグルカン、カロニン酸等が挙げられる。
【0058】
アミノ酸としては、例えば、中性アミノ酸(例えば、スレオニン、システイン等);塩基性アミノ酸(例えば、ヒドロキシリジン等)等が挙げられる。また、アミノ酸誘導体として、例えば、アシルサルコシンナトリウム(ラウロイルサルコシンナトリウム)、アシルグルタミン酸塩、アシルβ-アラニンナトリウム、グルタチオン、ピロリドンカルボン酸等が挙げられる。
【0059】
有機アミンとしては、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モルホリン、トリイソプロパノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、2-アミノ-2-メチル-1-プロパノール等が挙げられる。
高分子エマルジョンとしては、例えば、アクリル樹脂エマルジョン、ポリアクリル酸エチルエマルジョン、アクリルレジン液、ポリアクリルアルキルエステルエマルジョン、ポリ酢酸ビニル樹脂エマルジョン、天然ゴムラテックス等が挙げられる。
【0060】
pH調整剤としては、例えば、乳酸-乳酸ナトリウム、クエン酸-クエン酸ナトリウム、コハク酸-コハク酸ナトリウム等の緩衝剤等が挙げられる。
ビタミン類としては、例えば、ビタミンA、B1、B2、B6、C、E及びその誘導体、パントテン酸及びその誘導体、ビオチン等が挙げられる。
酸化防止剤としては、例えば、トコフェロール類、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸エステル類等が挙げられる。
【0061】
酸化防止助剤としては、例えば、リン酸、クエン酸、アスコルビン酸、マレイン酸、マロン酸、コハク酸、フマル酸、ケファリン、ヘキサメタフォスフェイト、フィチン酸、エチレンジアミン四酢酸等が挙げられる。
【0062】
その他の配合可能成分としては、例えば、防腐剤(エチルパラベン、ブチルパラベン、クロルフェネシン、フェノキシエタノール等);消炎剤(例えば、グリチルリチン酸誘導体、グリチルレチン酸誘導体、サリチル酸誘導体、ヒノキチオール、酸化亜鉛、アラントイン等);美白剤(例えば、胎盤抽出物、ユキノシタ抽出物、アルブチン等);各種抽出物(例えば、オウバク、オウレン、シコン、シャクヤク、センブリ、バーチ、セージ、ビワ、ニンジン、アロエ、ゼニアオイ、アイリス、ブドウ、ヨクイニン、ヘチマ、ユリ、サフラン、センキュウ、ショウキュウ、オトギリソウ、オノニス、ニンニク、トウガラシ、チンピ、トウキ、海藻等)、賦活剤(例えば、ローヤルゼリー、感光素、コレステロール誘導体等);血行促進剤(例えば、ノニル酸ワレニルアミド、ニコチン酸ベンジルエステル、ニコチン酸β-ブトキシエチルエステル、カプサイシン、ジンゲロン、カンタリスチンキ、イクタモール、タンニン酸、α-ボルネオール、ニコチン酸トコフェロール、イノシトールヘキサニコチネート、シクランデレート、シンナリジン、トラゾリン、アセチルコリン、ベラパミル、セファランチン、γ-オリザノール等);抗脂漏剤(例えば、硫黄、チアントール等);抗炎症剤(例えば、トラネキサム酸、チオタウリン、ヒポタウリン等)等が挙げられる。
【0063】
さらに、エデト酸二ナトリウム、エデト酸三ナトリウム、クエン酸ナトリウム、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸、リンゴ酸等の金属封鎖剤、カフェイン、タンニン、ベラパミル、トラネキサム酸及びその誘導体、甘草、カリン、イチヤクソウ等の各種生薬抽出物、酢酸トコフェロール、グリチルレジン酸、グリチルリチン酸及びその誘導体又はその塩等の薬剤、ビタミンC、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸等の美白剤、アルギニン、リジン等のアミノ酸及びその誘導体、フルクトース、マンノース、エリスリトール、トレハロース、キシリトール等の糖類等も適宜配合することができる。
【0064】
本発明にかかる粉末化粧料の製品形態としては、粉末化粧料の範疇のあらゆる製品形態をとることが可能である。具体的には、ファンデーション、アイシャドウ、チークカラー、ボディーパウダー、パフュームパウダー、ベビーパウダー、プレスドパウダー、デオドラントパウダー、おしろい等の製品形態をとることができる。
【0065】
[固形粉末化粧料の製造方法]
〈乾式の製造方法〉
無機粉末成分、油性成分とその他の成分をあらかじめヘンシェルミキサーにて混合した後、パルペライザーにて二回解砕する。そして、得られた混合物を樹脂製の中皿容器に充填し、公知の方法で乾式プレス成型を行ない、本発明の酸化チタンを化粧料に配合した固形状の粉末化粧料を得ることができる。
〈その他の製造方法〉
本発明の酸化チタンを化粧料に配合して製造する方法としては、公知の方法を用いることができる。たとえば、特許第5422092号に記載の揮発性溶媒を用いたスラリーを乾燥して作製する製造方法、特許第5972437号に記載の揮発性溶媒を用いたスラリーを充填後除去して作製する製造方法でも好適に得ることができる。

【実施例
【0066】
本発明について、以下に実施例を挙げてさらに詳述するが、本発明はこれにより限定されるものではない。配合量は特記しない限り、その成分が配合される系に対する質量%で示す。
実施例の説明に先立ち本発明で用いた二酸化チタンの試験の評価方法について説明する。
【0067】
評価(1):平均結晶子径の測定方法
試料をX線回折装置(Geigerflex、理学電機社製)で測定し、シェラー式を適用することにより、平均結晶子径を算出した。
【0068】
評価(2):隠蔽力の評価
二酸化チタン粉体を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機(CM-2600、コニカミノルタ社製)にて、白と黒紙上の塗膜表面をそれぞれ測色した。Hunter Lab色空間における、色差(ΔE)を算出し、これを隠蔽力として評価した。なお、ΔEが高いほど、隠ぺい力が小さく、ΔEが低いほど、隠蔽力が高いことを示す。
ΔE=
(評価基準)
×:25<ΔE
△:22 <ΔE≦25
○:ΔE≦22
【0069】
評価(3):赤色透過性の評価
赤色透過性とは、前述の隠ぺい力と同様に黒紙上での測定により得られる各波長での分光反射率のうち、波長が450nmにおける反射率と波長が650nmにおける反射率比(波長が450nmにおける反射率/650nmにおける反射率:R450/R650)を算出した。
R450/R650が高いほど、赤色透過性が高く、R450/R650が低いほど赤色透過性が低いことを示す。
(評価基準)
×:R450/R650≦1.3
△:1.3<R450/R650≦1.35
○:1.35<R450/R650≦1.4
◎:1.4<R450/R650
【0070】
評価(4):比表面積の測定方法
単位質量当たりの比表面積は、国際基準ISO 5794/1(付録D)に相当するThe Journal of the American Chemical Society、60巻、309頁、1938年2月に記載のBET(ブルナウアー-エメット-テラー)法として知られる窒素吸着法によって求めることができる。
【0071】
評価(5):見掛けの平均粒子径の測定方法
図1に示した方法で、粒子の長軸と短軸の長さの平均値をとっている。
【0072】
[母核に用いる酸化チタンの選定]
【0073】
はじめに、本発明者らは、市販品として入手可能な顔料級のルチル型とアナターゼ型の酸化チタンを用いて、上記評価方法にて評価した。結果を表1に示す。
【0074】
【表1】

*1:タイペーク CR-50(石原産業社製、見掛け上の平均粒子径:200nm、形状:不定形)
*2:バイエルチタンA(バイエル社製、見掛け上の平均粒子径:400nm、形状:不定形)
【0075】
ルチル型の顔料級酸化チタンとアナターゼ型の顔料級酸化チタンは、いずれも赤色透過性が低かった。また、これらを高温で焼成しても、赤色透過性は低かった。
【0076】
本発明者らは、赤色透過性の高いルチル型酸化チタンを用いて、隠蔽力に優れるものを製造できないかについて検討を行った。
本発明者らは、特許文献(特開2010-173863号公報)の手法を用いて、針状粒子が放射状に配向凝集した粒子表面に針状突起を有する粒径の異なる二酸化チタンを2種合成した。
得られた酸化チタンそれぞれを、酸化チタンA(比表面積:101m2/g、結晶子径:5 nm、見掛け上の平均粒子径:0.2~0.3μm、針状突起形状)、酸化チタンB(比表面積:117m2/g、結晶子径:11nm、見掛け上の平均粒子径:0.3μm、針状突起形状)と称する。
【0077】
また、市販品(ST-730;チタン工業株式会社製)である針状粒子が放射状に配向凝集した粒子表面に針状突起を有する二酸化チタンを、酸化チタンC(比表面積:98m2/g、結晶子径:6nm、見掛け上の平均粒子径:0.5μm、針状突起形状)と称する。
また、市販品(ST-750:チタン工業株式会社製)である針状粒子が放射状に配向凝集した粒子表面に針状突起を有する二酸化チタンを、酸化チタンD(84m2/g、結晶子径:8.6nm、見掛け上の平均粒子径:1.0μm、針状突起形状)と称する。
また、市販品(MT062;テイカ工業株式会社製)である粒子が針状である酸化チタンを、酸化チタンE(比表面積:47m2/g、結晶子径:23.3nm、見掛け上の平均粒子径:65nm、針状突起形状)と称する。
【0078】
各二酸化チタンを用いて、以下の方法により、二酸化チタン粉体を得た。得られた二酸化チタン粉末を、上記評価方法にて評価し、焼成前の二酸化チタンの種類と、焼成温度との関係について検討した。結果を表2~表6に示す。
【0079】
(二酸化チタン粉体の製造方法)
母核に用いる二酸化チタン100gを石英製のるつぼに入れ、マッフル炉にて各温度で1時間焼成を行うことにより、二酸化チタン粉末を得た。
【0080】
酸化チタンA(比表面積:101m2/g、結晶子径:5 nm、見掛け上の平均粒子径:0.2~0.3μm、針状突起形状)
【0081】
【表2】

【0082】
酸化チタンB(比表面積:117m2/g、結晶子径:11nm、見掛け上の平均粒子径:0.3μm、針状突起形状)
【0083】
【表3】


【0084】
酸化チタンC(比表面積:98m2/g、結晶子径:6nm、見掛け上の平均粒子径:0.5μm、針状突起形状)
【0085】
【表4】
【0086】
酸化チタンD(比表面積:84m2/g、結晶子径:8.6nm、見掛け上の平均粒子径:1μm、針状突起形状)
【0087】
【表5】

【0088】
酸化チタンE(比表面積:47m2/g、結晶子径:23.3nm、見掛け上の平均粒子径:65nm、針状突起形状)
【0089】
【表6】
【0090】
酸化チタンA~Cではいずれも焼成温度を上昇させることで、隠ぺい力は向上した。温度の上昇に伴い、比表面積は減少していることから、焼成前に存在した放射状に配向凝集した針状粒子同士が凝結することで、粒子中に存在する空げきが減少していることがわかる。これが見かけの屈折率向上を引き起こして、隠ぺい力が向上している。しかし、赤色透過性は徐々に減少していった。特に高温で焼成すると過度に焼結が起こり、当初の赤色透過性が著しく低下した。
特に、平均粒子径が大きい酸化チタンCについては、700℃で赤色透過性はほぼ失われていた。
また、酸化チタンA~Cと同様に針状粒子が放射状に配向凝集した酸化チタンDは、焼成温度の上昇に伴い、比表面積は酸化チタンA~Cと同様に減少するものの、見かけの粒子径が著しく大きいために、隠ぺい力の向上は極めて微小であった。さらに、赤色透過性についても見かけの粒子径が著しく大きいために、焼成前後に関わらず低いままであり、望まれる赤色透過性は得られなかった。
また、焼成前の平均粒子径が小さく、単一の針状粒子からなる酸化チタンEについては、焼成後も形状が大きく変化せず赤色透過性は維持されたが、隠蔽力が全く向上しなかった。
【0091】
さらに、異なる形状の二酸化チタンについて検討した。
【0092】
また、市販品(TTO55(A);石原産業株式会社製)である粒子が粒状である二酸化チタンを、酸化チタンF(比表面積:37m2/g、結晶子径:24.8nm、見掛け上の平均粒子径:50nm、粒状)と称する。
また、市販品(ST643:チタン工業株式会社製)である棒状粒子が藁束状に配向凝集した二酸化チタンを、酸化チタンG(比表面積:132m2/g、結晶子径:8.6nm、見掛け上の平均粒子径:200nm、藁束状)と称する。
【0093】
酸化チタンF(比表面積:37m2/g、結晶子径:24.8nm、見掛け上の平均粒子径:50nm、粒状)
【0094】
【表7】
【0095】
試験例6-1~6-4から分かるように、粒状である酸化チタンを350℃~720℃で焼成した場合は、結晶子径が変化せず、比表面積も結晶子径も本発明の焼成後の酸化チタンにはならない。
したがって、赤色透過性を有するが、望まれる隠蔽力は得られなかった。

【0096】
酸化チタンG(比表面積:132m2/g、結晶子径:8.6nm、見掛け上の平均粒子径:200nm、藁束状)と称する。
【表8】
【0097】
試験例7-1で用いた酸化チタンは、本発明の母核に用いる二酸化チタンと同じように、(a)見かけ上の平均粒子径、(b)X線回折法で測定される平均結晶子径、(c)比表面積を満たすが、粒子の表面に針状の突起を有さない。さらに、短径と長径の比が2.5と大きいため、焼成後も十分な赤色透過性と隠ぺい力を実現することができない。
【0098】
これらの検討から、本発明に用いる母核の酸化チタンとして適切なのは、隠ぺい性の向上と赤色透過性の維持の観点から許容できる温度幅が広いのは酸化チタンBであった。
【0099】
ルチル型顔料級酸化チタン(*1)および酸化チタンB(未焼成、焼成温度:700℃、900℃)の分光反射率を測定した結果を図2に示す。なお、測定は、二酸化チタン粉末を5%の濃度になるようにニトロセルロースラッカーに分散混合し、得られた分散物を白黒の隠蔽率試験紙JIS-K5400上に0.101μmの膜厚で塗布・乾燥して試験サンプルを得た。得られた試験サンプルを分光測色機(CM-2600、コニカミノルタ社製)にて、黒紙上の塗膜表面をそれぞれ測色し、分光反射率を得た。
【0100】
そこで、二酸化チタンBについて、未焼成のもの、焼成したもの(焼成温度:300℃、500℃、700℃、900℃)のTEM像を撮影した。結果を図3に示す。
また、二酸化チタンBについて、ロータリーキルンでの焼成温度変化による隠蔽力、赤色透過性を測定した。結果を、それぞれ図4図5に示す。
【0101】
以上の結果から、マッフル炉で焼成した場合は、適切な温度範囲は500~800℃、特に500~700℃がより望ましい。
【0102】
次に、本発明者らは、酸化チタンBを母核にして、細かく500℃~800℃の範囲で焼成温度を検討した。すなわち、本発明者は、焼成温度を変化させた二酸化チタン粉体を上記評価方法にて評価した。結果を表9、表10に示す。
【0103】
焼成はより量産に近く、焼成効率の高い、回転式焼成炉(ロータリーキルン)で行った。
一般的に回転式焼成炉は焼成効率が高く、静置で焼成するマッフル炉で焼成した場合よりも低い温度で同様の焼成状態を得ることができることが知られている。
【0104】
【表9】


【0105】
【表10】
【0106】
比表面積は、得られた酸化チタン粒子の空隙率の低下と焼結の進行を示す指標であり、本発明に用いる二酸化チタンは、母核となる二酸化チタン粉体を焼成することでその比表面積が焼成前(100%)に比べて8~30%になる範囲が好ましい。
【0107】
これらの結果より、隠蔽力および赤色透過性に優れているのは、焼成温度が、550~700℃であることが好ましく、575~660℃であることがより好ましいことが分かった。
【0108】
[固形粉末化粧料]
さらに、本発明者は、表10の焼成温度660℃で得られた二酸化チタンを用いて、下記の表面処理の方法で得られた疎水化処理二酸化チタンを配合した固形粉末化粧料を、それぞれ常法で調整した。そして、得られた化粧料を下記評価方法で評価した。
【0109】
[二酸化チタン粉体の表面処理方法]
得られた二酸化チタン粉体をイオン交換水に分散させ、加温したのち、ステアリン酸を3質量%吸着させ、その後脱水・洗浄・乾燥させることで表面処理二酸化チタンを得た。
【0110】
[固形粉末化粧料の製造方法]
〈乾式の製造方法〉
無機粉末成分、油性成分とその他の成分をあらかじめヘンシェルミキサーにて混合した後、パルペライザーにて二回解砕する。そして、得られた混合物を樹脂製の中皿容器に充填し、公知の方法で乾式プレス成型を行ない、本発明の酸化チタンを化粧料に配合した固形状の粉末化粧料を得ることができる。
〈その他の製造方法〉
本発明の酸化チタンを化粧料に配合して製造する方法としては、公知の方法を用いることができる。たとえば、特許第5422092号に記載の揮発性溶媒を用いたスラリーを乾燥して作製する製造方法、特許第5972437号に記載の揮発性溶媒を用いたスラリーを充填後除去して作製する製造方法でも好適に得ることができる。
【0111】
[固形粉末化粧料の評価方法]
【0112】
評価(6):自然な仕上がり
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
A:パネル10名中7名以上が自然な仕上がりと回答した。
B:パネル10名中5名以上7名未満が自然な仕上がりと回答した。
C:パネル10名中5名未満が自然な仕上がりと回答した。
【0113】
評価(7):伸びの良さ
専門パネル10名が顔に試料を塗布し、塗布中の使用感を評価した。
A:パネル10名中7名以上が伸びが良いと回答した。
B:パネル10名中5名以上7名未満が伸びが良いと回答した。
C:パネル10名中5名未満が伸びが良いと回答した。
【0114】
評価(8):白浮きのなさ
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
A:パネル10名中7名以上が白浮きがないと回答した。
B:パネル10名中5名以上7名未満が白浮きがないと回答した。
C:パネル10名中5名未満が白浮きがないと回答した。
【0115】
評価(9):シミ・そばかすのカバー
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
A:パネル10名中7名以上がシミ・そばかすのカバーがあると回答した。
B:パネル10名中5名以上7名未満がシミ・そばかすのカバーがあると回答した。
C:パネル10名中5名未満がシミ・そばかすのカバーがあると回答した。
【0116】
評価(10):キメの目立ち
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
A:パネル10名中7名以上がキメの目立ちがないと回答した。
B:パネル10名中5名以上7名未満がキメの目立ちがないと回答した。
C:パネル10名中5名未満がキメの目立ちがないと回答した。
【0117】
評価(11):色ムラのなさ
専門パネル10名が顔に試料を塗布し、塗布後の使用感を評価した。
A:パネル10名中7名以上が色ムラがないと回答した。
B:パネル10名中5名以上7名未満が色ムラがないと回答した。
C:パネル10名中5名未満が色ムラがないと回答した。

【0118】
【表11】
【0119】
【表12】
【0120】
(*1)三好化成株式会社製 SA-タルク JA-68R
(*2)トピー工業株式会社製 PDM-FE
(*3)トピー工業株式会社製 PDM-5L
(*4)トピー工業株式会社製 PDM-10L
(*5)トピー工業株式会社製 PDM-20L
(*6)三信鉱工株式会社 セリサイトFSE
(*7)メルク株式会社製 Ronaflair Boroneige SF-12
(*8)石原産業株式会社製 タイペークCR-50
(*9)テイカ株式会社製 MT-100TV
(*10)大東化成工業株式会社製 OTS-2ベンガラNo.216P
(*11)大東化成工業株式会社製 OTS-2 STN-1
(*12)大東化成工業株式会社製OTS-2 BL-100
(*13)東レ・ダウコーニング株式会社製 トレフィルE-506S
(*14)東レ株式会社製 ナイロンSP-500
【0121】
試験例8-1~8-3より、本発明の二酸化チタンと、窒化ホウ素と合成フッ素金雲母または合成フッ素金雲母鉄を用いた固形粉末化粧料は、使用性と仕上がりに優れつつ、肌へ塗布した際に自然な仕上がりと白浮きのなさを有することが分かった。
試験例8-4より、母核に用いる二酸化チタンをそのまま用いた場合は、シミ、そばかすのカバー力、キメの目立ちという点で劣っている。
試験例8-5~8-7より、従来の顔料級チタンを用いても、肌へ塗布した際に白浮きのなさの点で劣ることが分かった。
試験例8-8より、本発明の二酸化チタンと、窒化ホウ素を用いても合成フッ素金雲母の粒径が20μmを超えると、色ムラ、キメの目立ちという点で劣ってしまう。
試験例8-9より、窒化ホウ素の代わりに、セリサイトを用いて、本発明の二酸化チタンを混合したが、のびの良さの点て劣ることが分かった。
試験例8-10より、窒化ホウ素の量が本発明の範囲より多いと、キメの目立ちが強調され、仕上がりの点て劣ることが分かった。
試験例8-11より、窒化ホウ素の量が本発明の範囲より少ないと、のびの良さの点て劣ることが分かった。
試験例8-12より、本発明の二酸化チタンの量が本発明の範囲より少ないと、シミ・そばかすのカバーの点で劣り、自然な仕上がりが得られないことが分かった。
試験例8-13より、本発明の二酸化チタンの量が本発明の範囲より多いと、自然な仕上がり、白浮きのなさの点て劣ることが分かった。
図1
図2
図3
図4
図5