(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-06
(45)【発行日】2022-06-14
(54)【発明の名称】ショベル
(51)【国際特許分類】
E02F 9/24 20060101AFI20220607BHJP
E02F 9/20 20060101ALI20220607BHJP
E02F 9/22 20060101ALI20220607BHJP
【FI】
E02F9/24 B
E02F9/20 M
E02F9/22 E
(21)【出願番号】P 2017233759
(22)【出願日】2017-12-05
【審査請求日】2020-10-14
(31)【優先権主張番号】P 2016235602
(32)【優先日】2016-12-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100105924
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100116274
【氏名又は名称】富所 輝観夫
(72)【発明者】
【氏名】岡田 純一
(72)【発明者】
【氏名】小野寺 将
【審査官】三笠 雄司
(56)【参考文献】
【文献】特開2014-122510(JP,A)
【文献】特開昭64-006420(JP,A)
【文献】特開昭62-248724(JP,A)
【文献】特開2016-169572(JP,A)
【文献】国際公開第2012/169531(WO,A1)
【文献】米国特許出願公開第2016/0281335(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
E02F 3/00-3/96
9/00-9/28
(57)【特許請求の範囲】
【請求項1】
ショベルであって、
走行体と、
前記走行体に回動自在に設けられる上部旋回体と、
ブーム、アーム、バケットを有し、前記上部旋回体に取り付けられたアタッチメントと、
前記走行体の浮き上がりが抑制されるように、前記アタッチメントの動作を補正する浮き上がり抑制部と、
を備え、
前記浮き上がり抑制部は、前記走行体の浮き上がりが生ずるたびに、浮き上がりの瞬間にブームシリンダが前記上部旋回体に及ぼす力F
1_INITを取得し、力F
1_INITにもとづいて転倒支点の位置情報を算出し、以降の作業中に前記転倒支点まわりに前記ブームシリンダが前記上部旋回体に及ぼす力F
1が前記転倒支点まわりの重力のトルクより小さくなるように、前記アタッチメントの動作を補正することを特徴とするショベル。
【請求項2】
ショベルであって、
走行体と、
前記走行体に回動自在に設けられる上部旋回体と、
ブーム、アーム、バケットを有し、前記上部旋回体に取り付けられたアタッチメントと、
前記走行体の浮き上がりが抑制されるように、前記アタッチメントの動作を補正する浮き上がり抑制部と、
前記走行体または前記上部旋回体に取り付けられた加速度センサおよびピッチ方向の回転情報を取得する回転センサと、
を備え、
前記浮き上がり抑制部は、前記走行体の浮き上がりが生ずるたびに、浮き上がりの瞬間における前記加速度センサの出力および前記回転センサの出力にもとづいて、転倒支点の位置情報を算出し、以降の作業中に前記転倒支点まわりにブームシリンダが前記上部旋回体に及ぼす力F
1が前記転倒支点まわりの重力のトルクより小さくなるように、前記アタッチメントの動作を補正することを特徴とするショベル。
【請求項3】
前記浮き上がり抑制部は、前記転倒支点の位置情報の算出に際して、前記加速度センサの出力から、重力加速度の影響を除去することを特徴とする請求項2に記載のショベル。
【請求項4】
前記回転センサは角速度センサであり、
前記角速度センサの出力が所定値を超えたとき、および前記角速度センサの出力の微分値が所定値を超えたときの少なくとも一方を、前記走行体の浮き上がりの瞬間とすることを特徴とする請求項2または3に記載のショベル。
【請求項5】
ショベルであって、
走行体と、
前記走行体に回動自在に設けられる上部旋回体と、
ブーム、アーム、バケットを有し、前記上部旋回体に取り付けられたアタッチメントと、
前記走行体の浮き上がりが抑制されるように、前記アタッチメントの動作を補正する浮き上がり抑制部と、
を備え、
前記浮き上がり抑制部は、
前記走行体の浮き上がりの瞬間を検出するセンサと、
ブームシリンダが前記上部旋回体に及ぼす力F
1とするとき、前記走行体の浮き上がりが生ずるたびに、前記浮き上がりの瞬間における力F
1_INITを取得し、前記力F
1_INITにもとづいて、転倒支点の位置と関連するパラメータを取得し、前記転倒支点まわりに前記ブームシリンダが前記上部旋回体に及ぼす力F
1が前記転倒支点まわりの重力のトルクより小さいことを規定する制御条件を設定する条件設定部と、
前記制御条件を満たすように、前記アタッチメントの動作を補正する補正部と、
を含むことを特徴とするショベル。
【請求項6】
前記ショベルの車体重心と前記走行体の転倒支点の間の距離をD
A、前記ブームシリンダと前記上部旋回体との連結点と前記転倒支点の間の距離をD
B、車体重量をM、重力加速度をgとするとき、前記条件設定部は、前記浮き上がりの瞬間に
D
BF
1_INIT=D
AMg
が成り立つものとして距離D
A,D
Bを取得し、
D
BF
1<D
AMg
を前記制御条件に設定することを特徴とする請求項5に記載のショベル。
【請求項7】
前記条件設定部は、前記アタッチメントの姿勢が変化すると、前記制御条件に含まれる前記D
Bを変化させることを特徴とする請求項6に記載のショベル。
【請求項8】
ショベルであって、
走行体と、
前記走行体に回動自在に設けられる上部旋回体と、
ブーム、アーム、バケットを有し、前記上部旋回体に取り付けられたアタッチメントと、
前記走行体の浮き上がりが抑制されるように、前記アタッチメントの動作を補正する浮き上がり抑制部と、
を備え、
前記浮き上がり抑制部は、前記走行体の浮き上がりが生ずるたびに、浮き上がりの瞬間にブームシリンダが前記上部旋回体に及ぼす力F
1_INITを取得し、以降の作業中に、前記ブームシリンダが前記上部旋回体に及ぼす力F
1が力F
1_INITより小さくなるように、前記アタッチメントの動作を補正することを特徴とするショベル。
【請求項9】
前記センサは角速度センサであり、
前記角速度センサの出力が所定値を超えたとき、および前記角速度センサの出力の微分値が所定値を超えたときの少なくとも一方を、前記走行体の浮き上がりの瞬間とすることを特徴とする請求項5から
7のいずれかに記載のショベル。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ショベルに関する。
【背景技術】
【0002】
ショベルは、主として走行体(クローラ、ロワーともいう)、上部旋回体、アタッチメントを備える。上部旋回体は走行体に対して回動自在に取り付けられており、旋回モータによって位置が制御される。アタッチメントは上部旋回体に取り付けられており、作業時に使用される。
【0003】
オペレータは、作業内容に応じて、アタッチメントのブーム、アーム、バケットを制御するが、このとき、車体(すなわち走行体、上部旋回体)はアタッチメントからの反力を受ける。反力が加わる向きと、車体の姿勢、地面の状況によって、ショベルの本体が浮き上がってしまう場合がある。
【0004】
特許文献1には、ブームシリンダの収縮側(ロッド側)の圧力を抑制することにより、車体の浮き上がり、ひいては転倒を防止する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
ショベルの浮き上がり防止のためには、ショベルの転倒支点の位置情報が必要となる。転倒支点は、上部旋回体の回転角(方向)や地面の状況に応じて変化する。一方、従来のショベルでは、汎用性を考慮して固定的な転倒支点を定めておき、ショベルの使用状況にかかわらず、常に同じ制御条件を用いて浮き上がり防止の制御が行われていた。
【0007】
本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、ショベルの使用状況に動的に対応した浮き上がりの抑制機構を備えたショベルの提供にある。
【課題を解決するための手段】
【0008】
本発明のある態様はショベルに関する。ショベルは、走行体と、走行体に回動自在に設けられる上部旋回体と、ブーム、アーム、バケットを有し、上部旋回体に取り付けられたアタッチメントと、走行体の浮き上がりが抑制されるように、アタッチメントの動作を補正する浮き上がり抑制部と、を備える。浮き上がり抑制部における制御条件は、走行体の浮き上がりの瞬間において取得した情報にもとづいて設定される。
【0009】
浮き上がりの瞬間は、アタッチメントが車体を傾けようとする力と、それに抗う重力がバランスした状態と近似できる。したがって、浮き上がりの瞬間を検出し、そのときのショベルの状態を監視することにより、浮き上がりを抑制するための制御条件を適応的に設定でき、様々な使用状況下において浮き上がりを適切に抑制できる。
【0010】
浮き上がり抑制部は、走行体の浮き上がりの瞬間において取得した情報にもとづいて、転倒支点の位置情報を取得し、当該位置情報にもとづいて、制御条件を規定してもよい。
【0011】
走行体の浮き上がりの瞬間において取得される情報は、ブームシリンダが前記上部旋回体に及ぼす力F1_INITを含んでもよい。
【0012】
ショベルは、走行体または上部旋回体に取り付けられた加速度センサおよびピッチ方向の回転情報を取得する回転センサをさらに備えてもよい。浮き上がり抑制部は、加速度センサの出力および回転センサの出力にもとづいて、転倒支点の位置情報を取得してもよい。
【0013】
浮き上がり抑制部は、加速度センサの出力から、重力加速度の影響を除去してもよい。
【0014】
回転センサは角速度センサであってもよい。角速度センサの出力が所定値を超えたとき、および角速度センサの出力の微分値が所定値を超えたときの少なくとも一方を、走行体の浮き上がりの瞬間としてもよい。
【0015】
本発明の別の態様もまた、ショベルである。このショベルは、走行体と、走行体に回動自在に設けられる上部旋回体と、ブーム、アーム、バケットを有し、上部旋回体に取り付けられたアタッチメントと、走行体の浮き上がりが抑制されるように、アタッチメントの動作を補正する浮き上がり抑制部と、を備える。浮き上がり抑制部は、走行体の浮き上がりの瞬間を検出するセンサと、ブームシリンダが上部旋回体に及ぼす力F1とするとき、浮き上がりの瞬間における力F1_INITを取得し、力F1_INITにもとづいて、転倒支点の位置と関連するパラメータを取得し、当該パラメータにもとづいて、制御条件を設定する条件設定部と、制御条件にもとづいて、アタッチメントの動作を補正する補正部と、を含む。
【0016】
ショベルの車体重心と走行体の転倒支点の間の距離をDA、ブームシリンダと上部旋回体との連結点と転倒支点の間の距離をDB、車体重量をM、重力加速度をgとするとき、条件設定部は、浮き上がりの瞬間に、
DBF1_INIT=DAMg
が成り立つものとして、距離DA,DBを取得し、
DBF1<DAMg
を制御条件に設定してもよい。
【0017】
条件設定部は、アタッチメントの姿勢が変化すると、制御条件に含まれるDBを変化させてもよい。
【0018】
本発明の別の態様もまた、ショベルである。ショベルは、走行体と、走行体に回動自在に設けられる上部旋回体と、ブーム、アーム、バケットを有し、上部旋回体に取り付けられたアタッチメントと、転倒支点の位置に応じた制御条件を設定し、設定した制御条件にもとづいて走行体の浮き上がりが抑制されるように、アタッチメントの動作を補正する浮き上がり抑制部と、を備える。
【0019】
なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
【0020】
さらに、この課題を解決するための手段の記載は、すべての欠くべからざる特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。
【発明の効果】
【0021】
本発明によれば、ショベルの走行体の浮き上がりを抑制できる。
【図面の簡単な説明】
【0022】
【
図1】第1の実施の形態に係る建設機械の一例であるショベルの外観を示す斜視図である。
【
図2】前方浮き上がりに関連するショベルの力学的なモデルを示す図である。
【
図3】ショベルの作業中に発生する後方浮き上がりの一例を説明する図である。
【
図4】後方浮き上がりに関連するショベルの力学的なモデルを示す図である。
【
図5】ショベルの電気系統および油圧系統のブロック図である。
【
図6】
図6(a)~(c)は、転倒支点Pと旋回体の向きθの関係を示す図である。
【
図7】転倒支点Pと地面の状態の関係を示す図である。
【
図9】浮き上がり抑制部の動作を説明するフローチャートである。
【
図10】第1構成例に係るショベルの浮き上がり抑制部およびその周辺のブロック図である。
【
図11】第2構成例に係るショベルの浮き上がり抑制部およびその周辺のブロック図である。
【
図12】第2の実施の形態に係るショベルを示す図である。
【
図13】転倒支点の位置取得の原理を説明する図である。
【
図14】位置情報を得るための処理を示すブロック図である。
【発明を実施するための形態】
【0023】
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
【0024】
本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。
【0025】
1. 第1の実施の形態
図1は、第1の実施の形態に係る建設機械の一例であるショベル1の外観を示す斜視図である。ショベル1は、主として走行体(ロワー、クローラともいう)2と、走行体2の上部に旋回装置3を介して回動自在に搭載された上部旋回体4と、を備えている。
【0026】
上部旋回体4には、アタッチメント12が取り付けられる。アタッチメント12は、ブーム5と、ブーム5の先端にリンク接続されたアーム6と、アーム6の先端にリンク接続されたバケット10とが取り付けられている。バケット10は、土砂、鋼材などの吊荷を捕獲するための手段である。ブーム5、アーム6およびバケット10は、それぞれブームシリンダ7、アームシリンダ8およびバケットシリンダ9によって油圧駆動される。また、上部旋回体4には、バケット10の位置や励磁動作および釈放動作を操作するオペレータ(運転者)を収容するための運転室4aや、油圧を発生するためのエンジン11といった動力源が設けられている。
【0027】
続いて、ショベル1の浮き上がりについて説明する。
【0028】
図2は、前方浮き上がりに関連するショベルの力学的なモデルを示す図である。
たとえばショベル1は、地面50の掘削作業を行っている。ブーム5が固定され、アーム閉じ動作(あるいはバケット閉じ動作)を行うと、その反力としてブームシリンダ7のロッドを上に引き上げる力が発生し、ブームシリンダ7を介して車体の前方を上に引き上げる力が発生する。F
1はブームシリンダ7が上部旋回体4に及ぼす力を表している。
【0029】
D1は、ショベルの車体重心P3と、走行体2の後方の転倒支点P1の間の距離を表す。転倒支点P1は、走行体2の有効接地領域52のうち、アタッチメント12が延びる方向(旋回体4の向き)における最後端とみなすことができる。またD3は、ブームシリンダ7の延長線l2と、転倒支点P1の間の距離を表す。Mは車体重量、gは重力加速度である。このとき、転倒支点P1まわりに車体前方を持ち上げようとするトルクτ1は、式(1)で表される。
τ1=D3×F1 …(1)
【0030】
一方、重力が転倒支点P1まわりに車体を地面に抑え付けようとするトルクτ2は、式(2)で表される。
τ2=D1Mg …(2)
【0031】
車体の前方が浮き上がらずに安定する条件は、
τ1<τ2 …(3)
であり、式(1)、(2)を代入すると、安定条件として不等式(4)を得る。
D3F1<D1Mg …(4)
となる。すなわち制御条件として不等式(4)が成り立つように、アタッチメント12の動作を補正すれば、前方の浮き上がりを防止できる。
【0032】
作業内容によっては、ショベルの後方が浮き上がる場合もある。
図3は、ショベルの作業中に発生する後方浮き上がりの一例を説明する図である。ショベル1は、地面50の掘削作業を行っている。バケット10が斜面51を掘り込むように力F
2が発生しており、またブーム5がバケット10を斜面51に抑え付けるように力F
3が発生している。このときブームシリンダ
7のロッドを引き上げる力F
1が発生し、この力F
1が、ショベル1の車体(走行体2、旋回装置3、旋回体4)を傾けるよう作用する。この力F
1が、重力にもとづく車体を地面に抑え付けようとする力(トルク)を上回ると、車体の後方が浮き上がってしまう。
【0033】
図3に示すように、バケット10が地面や対象物に接触し、引っかかったり、あるいは、めり込んでいる場合、ブーム5に力が作用してもブーム5は動かず、したがってブームシリンダ7のロッドは変位しない。ロッド側油室の圧力が大きくなるとブームシリンダ7自体を持ち上げる力F
1、すなわち車体を前方に傾けようとする力が大きくなる。
【0034】
このようなケースは、バケット10が車体(走行体2)よりも下方に位置する深掘りや、
図3に示すように前方斜面の整地作業で起こりえる。また、ブーム自体を操作した場合に限らず、アームやバケットを操作した場合にも生じうる。
【0035】
図4は、後方浮き上がりに関連するショベルの力学的なモデルを示す図である。
D
2は、ショベルの車体重心P
3と、走行体2の前方の転倒支点P
1の間の距離を表す。転倒支点P
1は、走行体2の有効接地領域52のうち、アタッチメント12が延びる方向(旋回体4の向き)における最先端とみなすことができる。またD
4は、ブームシリンダ7の延長線l
2と、転倒支点P
1の間の距離を表す。F
1はブームシリンダ7が上部旋回体4に及ぼす力であり、Mは車体重量、gは重力加速度である。このとき、転倒支点P
1まわりに車体を前方に傾けようとするトルクτ
1は、式(5)で表される。
τ
1=D
4×F
1 …(5)
【0036】
一方、重力が転倒支点P1まわりに車体を地面に抑え付けようとするトルクτ2は、式(6)で表される。
τ2=D2Mg …(6)
【0037】
車体の後方が浮き上がらずに安定する条件は、
τ1<τ2 …(7)
であり、式(5)、(6)を代入すると、安定条件として不等式(8)を得る。
D4F1<D2Mg …(8)
となる。すなわち制御条件として不等式(8)が成り立つように、アタッチメント12の動作を補正すれば、後方の浮き上がりを防止できる。
【0038】
なお距離D1,D2をDA,距離D2,D4をDBとおいて、転倒支点P1を前後で入れ換えれば、前方の浮き上がりと後方の浮き上がりの制御条件は、以下のようにまとめることができる。
DBF1<DAMg
【0039】
続いて、前方あるいは後方の浮き上がりを抑制可能なショベル1の具体的な構成を説明する。
図5は、ショベル1の電気系統および油圧系統のブロック図である。なお、
図5では、機械的に動力を伝達する系統を二重線で、油圧系統を太い実線で、操縦系統を破線で、電気系統を細い実線でそれぞれ示している。なおここでは油圧ショベルについて説明するが、旋回に電動機を用いるハイブリッドショベルにも本発明は適用可能である。
【0040】
エンジン11は、メインポンプ14及びパイロットポンプ15に接続されている。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続されている。なお、油圧アクチュエータに油圧を供給する油圧回路は2系統設けられることがあり、その場合にはメインポンプ14は2つの油圧ポンプを含む。本明細書では理解の容易化のため、メインポンプが1系統の場合を説明する。
【0041】
コントロールバルブ17は、ショベル1における油圧系の制御を行う装置である。コントロールバルブ17には、
図1に示した走行体2を駆動するための走行油圧モータ2A及び2Bの他、ブームシリンダ7、アームシリンダ8およびバケットシリンダ9が高圧油圧ラインを介して接続されており、コントロールバルブ17は、これらに供給する油圧(制御圧)をオペレータの操作入力に応じて制御する。
【0042】
また、旋回装置3を駆動するための旋回油圧モータ21がコントロールバルブ17に接続される。旋回油圧モータ21は、旋回コントローラの油圧回路を介してコントロールバルブ17に接続されるが、
図5には旋回コントローラの油圧回路は示されず、簡略化されている。
【0043】
パイロットポンプ15には、パイロットライン25を介して操作装置26(操作手段)が接続されている。操作装置26は、走行体2、旋回装置3、ブーム5、アーム6およびバケット10を操作するための操作手段であり、オペレータによって操作される。操作装置26には、油圧ライン27を介してコントロールバルブ17が接続され、また、油圧ライン28を介して圧力センサ29が接続される。
【0044】
たとえば操作装置26は、油圧パイロット式の操作レバー26A~26Dを含む。操作レバー26A~26Dはそれぞれ、ブーム軸、アーム軸、バケット軸および旋回軸に対応する操作レバーである。実際には、操作レバーは二個設けられ、一方の操作レバーの縦方向、横方向に2軸が、残りの操作レバーの縦方向、横方向に残りの2軸が割り当てられる。また操作装置26は、走行軸を制御するためのペダル(不図示)を含む。
【0045】
操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)をオペレータの操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧(制御圧)は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。すなわち圧力センサ29の検出値は、操作レバー26A~26Dそれぞれに対するオペレータの操作入力θ
CNTを示す。なお
図5において油圧ライン27は1本で描かれているが、実際には左走行油圧モータ、右走行油圧モータ、旋回それぞれの制御指令値の油圧ラインが存在する。
【0046】
コントローラ30は、ショベルの駆動制御を行う主制御部である。コントローラ30は、CPU(Central Processing Unit)および内部メモリを含む演算処理装置で構成され、CPUがメモリにロードされた駆動制御用のプログラムを実行することにより実現される。
【0047】
さらにショベル1は、浮き上がり抑制部600を備える。浮き上がり抑制部600は、走行体2の前方のおよび/または後方の浮き上がりが抑制されるように、アタッチメント12の動作を補正する。浮き上がり抑制部600の主要部は、コントローラ30の一部として構成することができる。
【0048】
上述のように、前方浮き上がり、後方浮き上がりが発生しない制御条件は、不等式(4)、式(8)であった。不等式(4)、(8)は、距離D1,D2,D3,D4をパラメータとしており、これらの距離は、転倒支点P1に依存する。
【0049】
転倒支点P
1は、旋回体4の向きや地面の状態に応じて移動する。
図6(a)~(c)は、転倒支点P
1と旋回体の向き(旋回角度θ)の関係を示す図である。ここでは後方の浮き上がりを考慮して、転倒支点が車体前方に位置するものとしている。l
1は、アタッチメントが延びる方向(旋回体4の向き)と直交しており、かつ有効接地領域52のうちアタッチメント12が延びる方向における最先端を通る線を表している。転倒支点P
1は、この線l
1上に位置する。
図6(a)~(c)に示すように、転倒支点P
1が移動すると、距離D
2も変化する。同様に、距離D
4も、転倒支点P
1の移動にともなって変化する。
【0050】
図7は、転倒支点P
1と地面(作業フィールド)の状態の関係を示す図である。実線は堅い地面50を、一点鎖線は柔かい地面50’を表す。堅い地面50の上では、転倒支点P
1は、実線三角の位置に存在する。柔らかい地面50’の上では、転倒支点P
1’は一点鎖線の三角の位置に存在しうる。そのほか、転倒支点P
1の近傍に堅い障害物が存在していたり、走行体2が障害物に乗り上げたりしている場合には、転倒支点P
1はさらに移動しうる。
【0051】
転倒支点P1の移動は、距離D1~D4に影響を与え、したがって車体が転倒しない力学的な安定条件に影響を及ぼす。そこで浮き上がり抑制部600は、転倒支点P1の位置に応じた制御条件を設定し、設定した制御条件にもとづいて走行体の浮き上がりが抑制されるように、アタッチメント12の動作を補正する。
【0052】
以下、浮き上がり抑制部600における制御を説明する。浮き上がり抑制部600は、走行体の姿勢を監視しており、走行体2の前方(あるいは後方)が浮き上がった瞬間を検出する。そしてアタッチメント12の動作を補正する際の制御条件(上述の安定条件、一例として不等式(4)、(8))を、走行体2の浮き上がりの瞬間におけるショベル1の状態にもとづいて動的に変化させる。
【0053】
浮き上がりの瞬間は、アタッチメント12が車体を傾けようとする力(トルクτ1)と、それに抗う重力(トルクτ2)がバランスした状態と近似できる。したがって、浮き上がりの瞬間を検出し、ショベル1の状態を監視することにより、浮き上がりを抑制するための制御条件を適応的に設定でき、様々な使用状況下において浮き上がりを適切に抑制できる。
【0054】
図8は、浮き上がり抑制部600の制御ブロック図である。
浮き上がり抑制部600は、センサ610、条件設定部620、補正部630を備える。センサ610は、走行体の浮き上がりの瞬間を検出する。センサ610は、姿勢センサ、ジャイロセンサや加速度センサを用いることができ、ピッチ軸周りの回転を検出してもよい。
【0055】
センサ610によって、前回りの角加速度(あるいは角速度)が検出されると、後方浮き上がりを抑制するための制御条件が設定される。反対に、後回りの角加速度(あるいは角速度)が検出されると、前方浮き上がりを抑制するための制御条件が設定される。
【0056】
ブームシリンダが上部旋回体に及ぼす力F1とする。条件設定部620は、センサ610が検出した浮き上がりの瞬間における力F1_INITを取得し、取得した力F1_INITにもとづいて、転倒支点P1の位置と関連するパラメータを取得し、当該パラメータにもとづいて、制御条件を設定する。
【0057】
前方浮き上がりを抑制する制御条件として、
D3F1<D1Mg …(4)
を用いるとする。センサ610により、後ろ回りのピッチングが検出されたとする。浮き上がりの瞬間においてトルクτ1とτ2が釣り合うから、
D3F1_INIT=D1Mg …(9)
が成り立つ。F1_INIT,Mgは既知であるから、式(9)は現在のショベル1の使用状況において、D1とD3が満たすべき関係式である。
【0058】
式(9)が既知であれば、距離D1,D3は幾何学的に一意に定まる。そこで条件設定部620は、式(9)および、アタッチメント12の姿勢にもとづいて、現在の距離D1_DET,D3_DETを取得する。なお距離D1を取得することは、転倒支点P1の位置情報を取得することと等価である。なぜなら、車体重心P3の位置は不変であるから、距離D1が求まれば、転倒支点P1の位置は一意に定まるからである。そしてそれ以降の制御条件を、D3_DETF1<D1_DETMgに設定する。補正部630は、設定された制御条件にもとづいてアタッチメント12の動作を補正する。
【0059】
一度取得した距離D1は、旋回体4の方向を変化させず、また地面状況が変化しない限り、同じ値を用いることができる。一方、距離D3は、ブーム5の上げ、下げに応じて変化する。そこで、条件設定部620は、ブーム5の角度が変化すると、それに応じて距離D3を変化させ、制御条件に反映させる。
【0060】
後方浮き上がりに関しても同じ制御が行われる。後方浮き上がりを抑制する制御条件として、不等式(8)を用いるとする。
D4F1<D2Mg …(8)
センサ610により、前回りのピッチングが検出されたとする。浮き上がりの瞬間においてトルクτ1とτ2が釣り合うから、
D4F1_INIT=D2Mg …(10)
が成り立つ。F1_INIT,Mgは既知であるから、式(10)は現在のショベル1の使用状況において、D2とD4が満たすべき関係式である。
【0061】
条件設定部620は、式(10)および、アタッチメント12の姿勢にもとづいて、現在の距離D2_DET,D4_DETを取得してもよい。なお距離D2を取得することと、転倒支点P1の位置情報を取得することは等価である。そしてそれ以降の制御条件を、D2_DETF1<D4_DETMgに設定する。補正部630は、設定された制御条件にもとづいてアタッチメント12の動作を補正する。
【0062】
一度取得した距離D2は、旋回体4の方向を変化させず、また地面状況が変化しない限り、同じ値を用いることができる。一方、距離D4は、ブーム5の上げ、下げに応じて変化する。そこで、条件設定部620は、ブーム5の角度が変化すると、それに応じて距離D4を変化させ、制御条件に反映させる。
【0063】
図9は、浮き上がり抑制部600の動作を説明するフローチャートである。はじめに、アタッチメント12を使用した掘削作業中か否かが判定される(S100)。アタッチメント12を使用した掘削作業中であることの判定条件は、たとえば、走行中でなく、かつ、旋回中でなく、アタッチメント12のブームシリンダ7、アームシリンダ8およびバケットシリンダ9の少なくともひとつに圧力が立っていることであってもよい。掘削作業中でない場合(S100のN)、元に戻る。なお掘削作業には、均し作業や埋め戻し作業なども含まれる。
【0064】
掘削作業中と判定されると(S100のY)、センサ610により浮き上がりが監視される(S102)。浮き上がりが検出されると(S102のY)、浮き上がりの瞬間におけるショベルの状態が取得される(S104)。ショベルの状態は、たとえば上述の力F1_INITである。そしてステップS104で取得したショベルの状態にもとづいて、転倒支点P1に応じたパラメータ(たとえばD1~D4)が算出され、制御条件が設定される(S106)。以降、補正部630により、設定された制御条件にもとづいて、アタッチメント12の動作が補正される。
【0065】
ブームの姿勢の変化が検出されると(S108のY)、距離D3,D4が変化するため、制御条件が修正される(S110)。作業が終了していなければ(S112のN)、引き続きブームの姿勢が監視される。作業が終了していれば(S112のY)、スタートに戻る。
【0066】
なお、制御条件を設定する前のステップS102においては、車体は一瞬、浮き上がることになる。プロセッサとソフトウェアプログラムの適切な組み合わせを使用すれば、浮き上がりの検出後、ステップS102における1回目の浮き上がりが大きな車体の傾きに発展する前に、きわめて短時間で制御条件を設定し、アタッチメント12の動作補正を開始することが可能である。
【0067】
続いて、浮き上がり抑制部600によるアタッチメント12の補正を説明する。
【0068】
1.1 第1構成例
図10は、第1構成例に係るショベル1の浮き上がり抑制部600およびその周辺のブロック図である。圧力センサ510,512はそれぞれ、ブームシリンダ7のロッド側油室の圧力(ロッド圧)P
R、ボトム側油室の圧力(ボトム圧)P
Bを測定する。測定された圧力P
R,P
Bは、浮き上がり抑制部600(コントローラ30)に入力される。
【0069】
コントローラ30は、力推定部602、センサ610、条件設定部620、補正部630を含む。
力F1は圧力PR,PBの関数f(PR,PB)で表される。
F1=f(PR,PB) …(5)
力推定部602は、ロッド圧PRおよびボトム圧PBにもとづいて、ブームシリンダ7が旋回体4に及ぼす力F1を計算する。
【0070】
一例として、ロッド側の受圧面積をAR、ボトム側の受圧面積をABとするとき、
F1=AR・PR-AB・PB
と表すことができる。力推定部602はこの式にもとづいて力F1を計算あるいは推定してもよい。
【0071】
条件設定部620は、センサ610の出力を受け、浮き上がりのタイミングを検出する。そして浮き上がりのタイミングにおける力F1にもとづいて、パラメータD1,D3(あるいはD2,D4)を計算し、制御条件を設定する。条件設定部620は、ブーム角センサ514からブームの角度に関する情報を受け、制御条件(パラメータD2,D4)に反映させてもよい。補正部630は、力F1が制御条件を満たすように、アタッチメント12の動作を補正する。
【0072】
たとえば浮き上がり抑制部600は、ブームシリンダ7の圧力を制御する。この構成例では、補正部630は、制御条件が成り立つようにブームシリンダ7のロッド圧RRを調節する。
【0073】
電磁比例リリーフ弁520は、ブームシリンダ7のボトム側油室とタンクの間に設けられる。補正部630は、制御条件が成り立つように、電磁比例リリーフ弁520を制御し、ブームシリンダ7のシリンダ圧をリリーフする。これによりロッド圧PRが低下し、したがってF1が小さくなり、前方あるいは後方の浮き上がりを抑制することができる。
【0074】
なおブームシリンダ7を制御するコントロールバルブ17のスプールの状態、言い換えればメインポンプ14からブームシリンダ7に供給される圧油の向きは特に限定されず、アタッチメント12の状態(作業内容)によっては、
図10のような順方向でなく、逆方向であったり、遮蔽状態であってもよい。
【0075】
1.2 第2構成例
図11は、第2構成例に係るショベル1の浮き上がり抑制部600およびその周辺のブロック図である。
図11のショベル1は、
図10のショベル1の電磁比例リリーフ弁520に代えて、電磁比例制御弁530を備える。電磁比例制御弁530は、操作レバー26Aからコントロールバルブ17へのパイロットライン27Aに設けられている。浮き上がり抑制部600は、制御条件を満たすように電磁比例制御弁530への制御信号を変化させ、コントロールバルブ17への圧力を変化させ、これによりブームシリンダ7のボトム室側の圧力およびロッド側油室の圧力を変化させる。
【0076】
以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。以下、こうした変形例を説明する。
【0077】
変形例1.1
実施の形態では、距離D1~D4を算出して制御条件を規定したがその限りではない。不等式(4)、(8)を変形すると、以下の不等式を得る。
F1<D1/D3×Mg …(4’)
F1<D2/D4×Mg …(8’)
【0078】
浮き上がりの瞬間において、
F1_INIT=D1/D3×Mg
F1_INIT=D2/D4×Mg
が成り立つ。したがって、条件設定部620は、浮き上がりの瞬間の力F1_INITを取得し、それ以降の制御条件を、
F1<F1_INIT
に設定してもよい。この制御条件には、もちろん正しい転倒支点P1の位置情報が反映されているが、距離D1~D4あるいは転倒支点P1の位置が明示的に計算されないことに留意されたい。
【0079】
変形例1.2
実施の形態では、浮き上がりを防止するための制御条件に、力F1が明示的に含まれるが、本発明はその限りではない。力F1に代えて、力F1と相関を有する別の力を使用して、制御条件を規定してもよい。
【0080】
変形例1.3
実施の形態では、ブームシリンダ7の圧力を制御することにより、浮き上がりを抑制したが、それに加えて、アームシリンダやバケットシリンダの圧力を制御してもよい。
【0081】
2. 第2の実施の形態
図12は、第2の実施の形態に係るショベルを示す図である。ショベル1は、加速度センサ40、回転センサ42および浮き上がり抑制部50を備える。加速度センサ40および回転センサ42は、旋回体4に取り付けられる。なお加速度センサ40、回転センサ42を走行体2に取り付けてもよい。加速度センサ40は、車体の前後方向(X軸方向)および鉛直方向(Z軸方向)の加速度A
x、A
zを検出する。回転センサ42は、ピッチ方向の回転情報を取得する。
【0082】
たとえば回転センサ42は、ジャイロセンサなどの角速度センサを用いることができる。この場合、回転センサ42の出力は、ピッチ軸周りの角速度ωpとなる。加速度センサ40と回転センサ42が一体となった市販のセンサを用いてもよい。
【0083】
浮き上がり抑制部50は、走行体2の浮き上がりの瞬間において取得した加速度センサ40の出力および回転センサ42の出力にもとづいて、転倒支点の位置情報を取得する。
【0084】
浮き上がり抑制部50は、回転センサ42の出力である角速度ωpが所定のしきい値を超えたときを、浮き上がりの発生タイミングと判定してもよい。あるいは浮き上がり抑制部50は、回転センサ42の出力である角速度ωpを微分して得られる角加速度ωp’が所定のしきい値を超えたときを、浮き上がりの発生タイミングと判定してもよい。
【0085】
図13は、転倒支点の位置取得の原理を説明する図である。加速度センサ40と転倒支点P
1の距離をLとする。ショベル1の転倒は、転倒支点P
1周りの回転運動と捉えることができる。そのときの回転方向の加速度はL(ω
p)’、遠心力方向の角加速度はLω
p
2である。なお、L=√(x
2+z
2)である。’は時間微分を表す。
【0086】
加速度センサ40の出力を利用することにより、回転方向および遠心力方向(径方向)の加速度Aθ、Arを取得することができる。そうすると、
Aθ=L(ωp)’
Ar=Lωp
2
が成り立つから、Lを計算することができる。Aθ、Arからは重力加速度の影響は取り除かれている。なお、zは加速度センサ40の取り付け高さであるから、既知のパラメータであり、Lが得られれば、xすなわち転倒支点P1の位置情報を得ることができる。
【0087】
一実施例においては、以下の方法によって位置情報を取得してもよい。
【0088】
図13の位置に加速度センサ40を設けたとき、式(11)を得る。
【数1】
【0089】
右辺第1項は、回転運動に関して成り立つ式であり、右辺第2項は重力の影響を示す項である。Ax、Azは加速度センサ40の出力である。θpは回転角を、θp’は回転角速度を、θp”は回転角加速度を表す。なお、ジャイロセンサを用いた場合、ジャイロセンサの出力ωpが、θp’として利用できる。またジャイロセンサの出力ωpの微分値を回転角加速度θp”として、ジャイロセンサの出力ωpの積分値を回転角θpとして用いることができる。
【0090】
式(11)をxを未知数として解くことにより、転倒支点P1の位置情報を得ることができる。
【0091】
なお行列式(11)は、単一の変数xに対して、x方向に関する1行目の式と、z方向に関する2行目の式を含んでおり冗長である。したがって、Ax,Azのいずれか一方のみを測定すれば、xを計算することができる。
【0092】
あるいは行列式(11)を、xとzを変数とする連立方程式として解いてもよい。
【0093】
図14は、位置情報を得るための処理を示すブロック図である。なお、図中、様々な処理を行う機能ブロックとして記載される各要素は、ハードウェア的には、CPU、メモリ、その他のLSIで構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、またはそれらの組み合わせによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。
【0094】
角速度センサの出力ωpは積分器60によって積分され、回転角θpが計算される。そして回転角θpにもとづく回転行列R(θp)62が生成され、乗算器64によって回転行列R(θp)に重力加速度gを掛け合わせることにより、式(11)の右辺第2項が計算される。そして減算器66において、加速度センサ40により得られた加速度Ax,Azから、乗算器64の出力を減ずることにより、重力の影響が除去される。
【0095】
微分器68は、角速度センサの出力ωpを微分し、角加速度θp”を生成する。角速度ωp(θp’)および角加速度θp”は、演算器70に入力される。演算器70は、所定の計算式にもとづいて、座標x(およびz)を計算する。
【0096】
なお、θp”は、微分演算によって得られるため、ノイズの影響を受けやすい。そこで、式(11)に含まれる2つの式を、zを既知の値として、xおよびθp”を変数とする連立方程式として解いてもよい。
【0097】
実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
【符号の説明】
【0098】
1…ショベル、2…走行体、2A,2B…走行油圧モータ、3…旋回装置、4…旋回体、4a…運転室、5…ブーム、6…アーム、7…ブームシリンダ、8…アームシリンダ、9…バケットシリンダ、10…バケット、11…エンジン、12…アタッチメント、14…メインポンプ、15…パイロットポンプ、17…コントロールバルブ、21…旋回油圧モータ、26…操作装置、27…パイロットライン、30…コントローラ、600…浮き上がり抑制部、602…力推定部、610…センサ、620…条件設定部、630…補正部、510,512…圧力センサ、520…電磁比例リリーフ弁、530…電磁比例制御弁。