(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-06
(45)【発行日】2022-06-14
(54)【発明の名称】体液を排出及び分析するためのシステム、デバイス及び方法
(51)【国際特許分類】
A61M 1/00 20060101AFI20220607BHJP
A61M 25/04 20060101ALI20220607BHJP
A61M 25/14 20060101ALI20220607BHJP
A61B 5/00 20060101ALI20220607BHJP
【FI】
A61M1/00 135
A61M1/00 103
A61M1/00 137
A61M25/04
A61M25/14 516
A61M25/14 514
A61B5/00 N
(21)【出願番号】P 2019538523
(86)(22)【出願日】2018-01-11
(86)【国際出願番号】 US2018013399
(87)【国際公開番号】W WO2018136306
(87)【国際公開日】2018-07-26
【審査請求日】2019-09-30
(32)【優先日】2017-01-19
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-05-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-09-26
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517075355
【氏名又は名称】ポトレロ メディカル,インコーポレイテッド
(74)【代理人】
【識別番号】110002516
【氏名又は名称】特許業務法人白坂
(72)【発明者】
【氏名】バーネット,ダニエル アール.
(72)【発明者】
【氏名】ソコロフ,ディミトリ
【審査官】小林 睦
(56)【参考文献】
【文献】特表2007-515192(JP,A)
【文献】米国特許出願公開第2013/0218106(US,A1)
【文献】米国特許第04957487(US,A)
【文献】米国特許第05370610(US,A)
【文献】国際公開第2016/049654(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 1/00
A61M 25/04
A61M 25/14
A61B 5/00
(57)【特許請求の範囲】
【請求項1】
遠位端又はその近くに少なくとも1つの開口部を有するカテーテルと、
前記カテーテルの近位端と流体連通しているバーブと、
前記少なくとも1つの開口部と流体連通するドレナージチューブと、
前記バーブと流体連通する通気管と、
前記通気管と一直線上にかつ前記バーブに対して近位側の位置に配置されている一方向弁と、
前記ドレナージチューブに陰圧を加えることによって前記一方向弁が開放され流体が前記通気管を通過するように制御されるコントローラと、を備えるカテーテルシステム。
【請求項2】
前記コントローラが、前記一方向弁が閉じられて流体が前記通気管を通過するのを防止されるように前記陰圧を周期的に変えるようにさらにプログラムされている、請求項1に記載のシステム。
【請求項3】
前記流体は、前記流体が前記通気管を通って前記バーブを介して前記ドレナージチューブに流れるように、開いたときに前記一方向弁を通って受けられることを特徴とする、請求項1に記載のシステム。
【請求項4】
前記一方向弁を介して受けられる前記流体が大気を含む、請求項3に記載のシステム。
【請求項5】
前記一方向弁は、前記
一方向弁の前後の圧力差が前記
一方向弁の所定のクラッキング圧力を超えると開くように構成されている、請求項1に記載のシステム。
【請求項6】
前記一方向弁は、前記
一方向弁の前後の圧力差が前記
一方向弁の前記所定のクラッキング圧力を下回ると閉じるようにさらに構成される、請求項5に記載のシステム。
【請求項7】
前記バーブと前記一方向弁との間に画定される前記通気管の第1の部分は第1の直径および第1の長さを画定し、前記一方向弁の近位に画定される第2の部分は第2の直径及び第2の長さを画定する、請求項1に記載のシステム。
【請求項8】
前記第1の直径が前記第2の直径よりも小さい、請求項7に記載のシステム。
【請求項9】
前記第1の長さが前記第2の長さよりも小さい、請求項7に記載のシステム。
【請求項10】
前記第1の長さおよび前記第2の長さは、前記ドレナージチューブの長さにほぼ等しい、請求項7に記載のシステム。
【請求項11】
前記第1の直径と前記第2の直径とが等しい、請求項7に記載のシステム。
【請求項12】
前記第1の直径が4mm未満である、請求項7に記載のシステム。
【請求項13】
前記第1の直径が2mm未満である、請求項7に記載のシステム。
【請求項14】
前記第1の直径が0.2~5mmの範囲である、請求項7に記載のシステム。
【請求項15】
前記第2の直径が2mmより大きい、請求項7に記載のシステム。
【請求項16】
前記第2の直径が0.2~5mmの範囲である、請求項7に記載のシステム。
【請求項17】
前記第1の長さが10cm未満である、請求項7に記載のシステム。
【請求項18】
前記第1の長さが2cmより大きい、請求項7に記載のシステム。
【請求項19】
前記第1の長さは、5~10cm、10~20cm、20~30cm、または30~50cmの範囲である、請求項7に記載のシステム。
【請求項20】
前記第2の長さが50~150cmの範囲である、請求項7に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2017年1月19日に出願された米国仮出願第62/448,237号、及び2017年5月8日に出願された米国仮出願第62/503,209号並びに2017年9月26日に出願された米国仮出願第62/563,546号の優先権を主張し、その各々はその全体が参照により本明細書に組み込まれる。本出願はまた、2011年7月11日に出願された国際特許出願第PCT/US2011/043570号、2012年3月7日に出願されたPCT/US2012/028071号、2016年11月3日に出願されたPCT/US2016/060365号、2015年9月28日に出願されたPCT/US2015/052716号、2014年6月27日に出願されたPCT/US2014/044565号、2015年1月7日に出願されたPCT/US2015/010530号、及び2016年11月3日に出願されたPCT/US2016/060365号に関連し、そのそれぞれがあたかもそのような個々の刊行物又は特許出願が具体的かつ個別に参照によりそのように組み込まれることが示されたかのように本明細書中に援用される。
【0002】
本発明は、医療装置、特に膀胱の排出を補助し、尿排出量及び酸素圧、尿コンダクタンス及び尿比重などの様々な尿パラメータを測定し、腎機能をモニタリングし、感染の存在を含む尿量を含む尿パラメータを分析し、水分投与を追跡及び/又は管理する装置の分野に関する。本発明はさらに、尿路、胃腸管、直腸位置、腹膜前、胸膜腔又は他の体腔のいずれかに存在するように適合されたカテーテルに組み込まれたセンサに基づいて生理学的データを感知することができる医療装置に関する。
【0003】
本明細書で言及される全ての刊行物及び特許出願は、あたかもそのような個々の刊行物又は特許出願のそれぞれが具体的かつ個別にそのように参考として援用されると示されるのと同程度に本明細書に参考として援用される。
【背景技術】
【0004】
入院中及び介護中の全患者の10%が留置尿道カテーテルを受けると推定されている。ほとんどすべての重症患者は1つの留置尿道カテーテルを受け、ICUではそれは1時間ごとに尿量をモニタリングすることである。産生される尿の量は体液状態と腎機能の指標である。しかしながら、多数の誤差原因がこの重要な指標の誤った測定を引き起こす可能性がある。
【0005】
膀胱から排液するために使用される最も一般的な装置はフォーリーカテーテルである。その導入以来、尿が中心管腔を通って排出することを可能にする固定バルーン及び小穴を有する可撓性チューブの設計は、大部分は変わっていない。しかしながら、現在のフォーリーカテーテルの設計は、例えば仰向けの患者では50mLを超えるような、膀胱内に大きな残存容量が残る可能性があることが判明している。Fallis,Wendy M. Indwelling Foley Catheters Is the Current Design a Source of Erroneous Measurement of Urine Output? Critical Care Nurse 25.2 (2005):44-51を参照のこと。ある研究では、平均残存容量はICUで96mL、一般病棟で136mLであった。Garcia et al., Traditional Foley Drainage Systems- Do They Drain the Bladder?, J Urol. 2007 Jan;177(l):203-7;discussion 207を参照のこと。フォーリーカテーテルをドレナージバッグに接続するドレーンチューブ、又はドレナージシステム内の他の場所にも、大量の残尿があることがよくある。
【0006】
膀胱及びドレナージチューブ内の残留尿は、チューブ内に形成され、膀胱から排尿バッグへの尿の流れを妨げる大きな気泡(エアロック)の結果である。結果として、尿排出量を測定する前に看護師が排尿管を操作することは日常的な手順となり、これは管を空にするのを助ける。ICUでは、1時間ごとに測定が行われるため、これは非常に反復的で不正確なプロセスである。より正確で自動の尿排出量測定が必要とされている。
【0007】
さらに、尿収集システム内に、尿パラメータを測定し分析する機会が存在する。
【0008】
尿排出測定及び尿パラメータ分析を改善することに加えて、尿ドレナージカテーテルそれ自体は、さらなる患者パラメータを検出、収集及び分析するための未活用の機会を提供する。
【0009】
さらに、多くの種類の医療機器は、患者の治療及び/又は維持を制御するように設計されている。例えば、人工呼吸器は、とりわけ患者の呼吸速度、容積、及び/又はガス混合を制御することができる。IV(静脈内送達)は、流体及び/又は薬物などの他の物質を患者に送達することができる。他の装置には、薬を送達したり他の行動を実行することができるものが含まれる。これらの種類の医療機器は、様々な設定などを介して厳密に制御することができる。看護師又は他の施術者は、様々な患者パラメータをチェックし、それに応じて医療機器設定を調整することができる。自動的又は半自動的に患者パラメータを使用して治療装置の設定を制御するコントローラが必要とされている。
【発明の概要】
【課題を解決するための手段】
【0010】
広く使用され、低コストであり、医療専門家によって容易に配置されるフォーリー型カテーテルは、フォーリー型カテーテルを修正することにより、及び/又は機能性をフォーリー型カテーテルに追加することにより、重要な診断情報を導出するための媒体として使用され得る。本明細書に開示される技術は、腹腔内圧力(及び他の)感知機能を備えたフォーリー型カテーテルに由来し得るように、高度に分解され、以前は利用できなかった診断情報の送達を提供する。
【0011】
加えて、エアロックの開発により、腹腔内圧の測定値が著しく歪むことがわかった。さらに、空でない膀胱も膀胱内の圧力測定値に悪影響を与える可能性がある。本明細書で開示される技術は、腹腔内圧力測定又はその他の設定の際のエアロックの検出及び除去、並びにより完全な膀胱排液も提供する。
【0012】
本明細書で開示する技術は、膀胱をより効果的に排出し、ドレナージチューブ内にエアロックが形成され、ドレナージチューブから排出されるのを防ぎ、自動化された方法で尿量を測定する精度を高めることを目指している。開示された技術は、体液状態、腎機能、及びその他の重要な患者パラメータのモニタリングを改善するために、酸素圧、コンダクタンス、及び比重、ガス圧、濁度、感染、沈殿物などを含む尿の追加測定値を組み込むことも目指している。
【0013】
開示された技術は、患者の膀胱及び/又は尿路からの生理学的データを感知するフォーリー型カテーテルにも関し、生理学的データは、特に、忠実度の高い圧力感知及び処理に適した信号への変換によって収集されたものを含む。いくつかの実施形態では、圧力センシングフォーリー型カテーテルはさらに、臨床的に重要な温度及び検体を感知することが可能になり得る。センシングフォーリーカテーテルシステムが測定できる生理学的パラメータの例(時間固有の測定値と経時的な値の傾向)には、尿量、呼吸数、心拍数、心拍数の変動、1回拍出量、1回拍出量の変動、腹腔内圧(IAP)、組織酸素化、組織ガス含有量、パルス通過時間、肺血液量変動、体温、血液含有量及びその他の患者パラメータが含まれる。
【0014】
陰圧の蓄積を防止するように構成されたドレナージアセンブリの一実施形態は、一般に、体腔内に挿入するように構成された第1の端部を有する細長いカテーテルを備えてもよい。カテーテルは、それを通して画定されるカテーテル管腔と流体連通する第1の端部の又は第1の端部の近くに少なくとも一つの開口部、カテーテルの第2の端部と流体連通するドレナージ管腔、ドレナージ管腔と流体連通するリザーバ、及びドレナージ管腔及び陽圧管腔と流体連通する通気機構を有してもよい。通気機構内に弁を配置し、ドレナージ管腔内の第1の圧力レベルが第2の圧力レベルに下がるまで閉位置を維持し、弁が開位置に移動するように構成することができる。また、弁と流体連通するように通気孔を配置することができ、通気機構は、ドレナージ管腔内の液体からの通気孔の濡れを阻止するように構成され、リザーバと連通するコントローラは、リザーバ内に収集された流体量を決定するように構成されている。
【0015】
別の実施形態では、ドレナージアセンブリは、体腔内に挿入するように構成された第1の端部を有する細長いカテーテルを一般に含む陰圧の蓄積を防ぐように構成されてもよく、カテーテルはそれを通して規定されるカテーテル内腔と流体連通する端部又はその近くに少なくとも一つの開口部を有する。ドレナージ管腔は、カテーテルの第2の端部と流体連通し、ドレナージ管腔と流体連通した陽圧管腔、ドレナージ管腔と流体連通したリザーバ、及びドレナージ管腔に連結された通気機構であり、通気機構は、ドレナージ管腔内の流体からの通気孔の濡れを抑制するように構成されている。コントローラは、リザーバと通信していてもよく、コントローラは、リザーバ内に収集された流体量を決定するように構成されていてもよく、閉位置と開位置との間で構成可能な弁も含まれ、弁は弁に加えられた第1の圧力レベルがリザーバ内の第2の圧力レベルまで低下すると、閉位置から開位置へ移動する。
【0016】
開示された技術により測定及び/又は決定され得る特定の患者パラメータは、医療装置による患者の治療により影響を受け、及び/又は影響を与える。例えば、患者の尿量、呼吸数、心拍数、1回拍出量、1回拍出量の変動、腹腔内圧(IAP)、組織酸素化、組織ガス量、体温、血液量、及びその他の患者パラメータが及び/又は衝撃、医療により影響を受ける場合がある。医療機器によって制御される医療のいくつかの例には、呼吸器によって制御される呼吸速度と内容、IV点滴コントローラによって制御されるIV速度と内容、薬物送達装置又はIVコントローラによって制御される薬物送達、排尿ポンプ、ドレナージポンプによって制御される腹水量、及び他の医療機器によって制御される他の治療が含まれる。
【0017】
体液を分析するためのシステムの一実施形態は、一般に、カテーテルの遠位端又はその近くに位置する拡張可能なバルーンを有し、バルーンに近接する1つ又は複数の開口をさらに規定する細長いカテーテル、カテーテルの近位端、陰圧が通気機構に加えられたときに空気が通過するように構成された通気機構、通気機構に連結されて1つ以上の開口部と流体連通する第1の管腔、流体連通する第2の管腔バルーン、第1の管腔の近位端に連結され、1つ又は複数の開口部と流体連通するリザーバ、及びリザーバに接続するように構成され、第1の管腔内の圧力を制御するようにプログラムされるコントローラはさらに、患者からリザーバ内で受け取った尿出力をモニタリングし、腹部内圧を決定するようにプログラムされている患者は、バルーン内の圧力の変化に部分的に基づいており、コントローラは、患者データを保存するようにさらに構成されている。
【0018】
患者からの1つ以上の身体パラメータを分析するための1つの例示的な方法において、方法は一般に、少なくとも部分的に満たされた身体管腔内のカテーテルの遠位端の近く又は遠位に位置する拡張可能なバルーンを有する細長いカテーテルを配置すること、バルーンに近接してカテーテルに沿って定義された1つ以上の開口部から尿を受け取り、さらに体腔の外部にあるリザーバ内で体液を受け取り、1つ以上の開口部と流体連通している体液流体管腔、陰圧が流体管腔に加えられたときに流体管腔と連通している通気機構を介して空気を排出し、陰圧を制御するようにプログラムされたコントローラを介してリザーバ内に収容された尿の量を分析する通気機構、バルーン内の圧力の変化に部分的に基づいて患者の腹腔内圧を決定すること、コントローラを介して患者データの1つ以上のパラメータを保存することを含み得る。
【0019】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、患者パラメータに関する1つ以上のデータを受け取り、この情報を使用して1つ以上の医療治療装置を制御するループコントローラを含む。ループコントローラは、患者パラメータを測定する装置、医療装置、又はその両方と統合することができる。
【0020】
カテーテル上の圧力測定バルーン、例えばSensing Foley Catheterという名称の国際特許出願番号PCT/US14/44565に開示されているもの(参照によりその全体が本明細書に組み込まれる)は、患者のパラメータを測定する装置の例である。追加の実施形態が本明細書に開示される。センシングフォーリーカテーテルシステムには、圧力測定バルーン及び/又はその他のセンサ、及び尿排出量と内容を測定して、尿排出量、IAP、呼吸数、心拍数、1回拍出量組織の酸素化、尿組成、体温、その他の患者パラメータなどの患者パラメータを決定する機能が含まれる。
【0021】
センシングフォーリー型カテーテルを介して測定及び/又は決定され得る他のパラメータには、尿比重及び脈圧変動性が含まれる。これらのパラメータは、人工呼吸器及び/又は注入及び/又は水分補給装置などの医療治療装置の制御を支援するために使用されてもよい。
【0022】
尿比重は、尿中の溶質粒子の数と重量の尺度である。通常の範囲は約1.010~1.030である。これよりも高い測定値は、脱水又は他の状態を示している可能性がある。これより低い測定値は、液体の過負荷又はその他の状態を示している可能性がある。測定は、センシングフォーリーカテーテルのセンサで行うことができる。測定結果は、患者への注入速度の増加(脱水の場合)又は減少(体液過剰の場合)を示す場合がある。測定結果は、換気パラメータや薬物注入などの変化を示す場合もある。
【0023】
脈圧変動は、人工呼吸器及び/又は流体注入装置などの医療装置に対する流体応答性の予測因子となり得る。センシングフォーリーカテーテルは圧力波形を記録でき、コントローラは呼吸サイクルと一致する最大及び最小圧力パルスを識別できる。コントローラは脈圧変動を計算できる。脈圧変動は、特定の患者が輸液療法に反応するかどうかを判断するのに役立つ。コントローラは、脈圧変動を使用してフィードバックループの治療を制御することもできる。脈圧の変動が大きい場合、患者により多くの液体が必要になることがある。脈圧の変動性が低い場合、必要な液体は少なくなる。
【0024】
センシングフォーリーカテーテルシステムは、膀胱内の圧力検知を介して心臓活動を測定することができる。センシングフォーリーカテーテルは呼吸活動と心臓活動を測定することができ、患者の呼吸数と心拍数の頻度は互いに類似している可能性があるため、患者の呼吸測定は心臓測定を歪める可能性がある。この問題を克服するために、コントローラのいくつかの実施形態は、1つ以上の吸気ポイントの終わりで人工呼吸器を一時停止し、かつ/又は1つ以上の呼気ポイントの終わりで人工呼吸器を一時停止し(毎回、例えば数秒間だけ1~3秒、又は、例えば1~4秒)、これにより、呼吸の歪みなしに心臓波形を捕捉できる。この方法で詳細な心臓波形を捕捉することで、コントローラは、敗血症の検出及び体液過剰の予防に役立つ一回拍出量変動(SVV)を決定できる。代替実施形態として、患者は、吸気点及び/又は呼気点で呼吸を止めるように求められてもよい。
【0025】
別の実施形態では、カテーテルシステムは、一般に、カテーテルの遠位端付近又は遠位端に少なくとも1つの開口部を有するカテーテル、カテーテルの近位端と流体連通するバーブ、少なくとも1つの開口部と流体連通するドレナージチューブ、及びバーブと流体連通する通気管を備えてもよい。一方向弁は、通気管と一列に並んで、バーブの近位の位置に配置されてもよく、コントローラは一方向弁と通信していてもよく、コントローラはドレナージに陰圧を加えるようにプログラムされており、その結果、一方向弁が開き、流体が通気管を通過する。
【0026】
別の実施形態では、流体を排出するための1つの方法は、一般に、カテーテルの遠位端の近く又は遠位に少なくとも1つの開口部を有するカテーテルを有するカテーテルの近位端と流体連通するバーブ(barb)、及び少なくとも1つの開口部と流体連通するドレナージチューブを有するカテーテルシステムを対象の身体の近くに配置することを含み得る。一方向弁と連通しているコントローラは、一方向弁が通気管と一列に配置され、バーブと流体連通している場合に作動させることができ、一方向弁はさらにバーブに近位の位置に配置される。ドレナージチューブに陰圧をかけると、一方向弁が開き、流体が通気管を通過する。
【0027】
本発明の新規な特徴が記載される。本発明の特徴及び利点のより良い理解は、本発明の原理が利用される例示的な実施形態を記載する以下の詳細な説明、及び添付の図面を参照することにより得られるであろう。
【図面の簡単な説明】
【0028】
【
図1】
図1は、センシングフォーリー型カテーテルの実施形態を示す。
【
図3】
図3は、呼吸プロファイルの詳細な部分を示す。
【
図4】
図4は、心拍数及び相対的心拍出量感知データの例を示す。
【
図5】
図5は、人間の脚上げ運動における相対的な心拍出量感知に関するデータを示す。
【
図8】
図8は、腹腔内圧、呼吸波圧、及び心臓圧の間の関係を示す。
【
図9】
図9は、本方法の実施形態のフロー図を提供する。
【
図10A】
図10Aは、センシングフォーリーカテーテルシステムの実施形態を示す。
【
図10B】
図10Bは、いくつかの実施形態のコントローラで使用される温度ロジックを示す。
【
図10D】
図10Dは、センシングフォーリーカテーテルシステムの実施形態の使い捨てコンポーネントを示す。
【
図11A】
図11Aは、センシングフォーリーカテーテルシステムの様々な実施形態を示す。
【
図11B】
図11Bは、センシングフォーリーカテーテルシステムの様々な実施形態を示す。
【
図11C】
図11Cは、センシングフォーリーカテーテルシステムの様々な実施形態を示す。
【
図11E】
図11Eは、センシングフォーリーカテーテルシステムの別の実施形態を示す。
【
図12A】
図12Aは、センシングフォーリーカテーテルシステムの別の実施形態を示す。
【
図12B】
図12Bは、センシングフォーリーカテーテルシステムの別の実施形態を示す。
【
図13】
図13は、センシングフォーリーカテーテルシステムの別の実施形態を示す。
【
図14A】
図14Aは、ねじれ抵抗チューブ内にある折り畳み可能なドレナージチューブの実施形態を示す。
【
図14B】
図14Bは、ねじれ抵抗チューブ内にある折り畳み可能なドレナージチューブの実施形態を示す。
【
図15】
図15は、センシングフォーリーカテーテルシステムの清掃機構の一例を示している。
【
図16】
図16は、センシングフォーリーカテーテルシステムの清掃機構の一例を示している。
【
図17】
図17は、ガスサンプリング管腔を備えたドレナージチューブを備えたセンシングフォーリーカテーテルシステムの実施形態を示している。
【
図18】
図18は、通気孔及びポンプを備えたアクティブ通気孔システムを示す。
【
図19】
図19は、圧力軽減及び無菌性のための追加の通気孔を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図20】
図20は、圧力逃がし通気孔及び逃がし弁を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図21】
図21は、UV/光分光法を使用して尿中の細菌、血液及び/又は他の物質を検出するためのセンシングフォーリーカテーテルシステムに含まれ得る収集容器、チャンバ又はカセットの実施形態を示す。
【
図22】
図22は、尿中の大腸菌、赤血球、及び血漿の様々な吸収波長を示す。
【
図23】
図23は、バッフル又はフラップを含むカセットの実施形態を示す。
【
図24】
図24は、いくつかの実施形態における圧力バルーンプライミング方法を表すグラフを示す。
【
図25】
図25は、いくつかの実施形態における圧力バルーンプライミング方法を表すグラフを示す。
【
図26】
図26は、本発明の様々な実施形態における可能なロジックのフローチャートを示す。
【
図27】
図27は、本発明の様々な実施形態における可能なロジックのフローチャートを示す。
【
図28】
図28は、本発明の様々な実施形態における可能なロジックのフローチャートを示す。
【
図29】
図29は、患者環境におけるループコントローラを備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図30】
図30は、患者環境におけるループコントローラを備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図31】
図31は、患者環境におけるループコントローラを備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図32】
図32は、患者環境におけるループコントローラを備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図33】
図33は、可能な入力パラメータ及び出力アクションを備えたループコントローラの詳細を示す。
【
図34】
図34は、体積発散の超音波及び圧力測定のプロットである。
【
図35】
図35は、センシングフォーリーカテーテルの実施形態の遠位端を示す。
【
図37】
図37は、バルーンが膨張したバルーン内のフィルタの実施形態を示す。
【
図38】
図38は、バルーンが収縮したバルーン内のフィルタの実施形態を示す。
【
図47】
図47は、複数のアクセス管腔を備えたバルーンの実施形態を示す。
【
図50】
図50は、気体透過性膜を備えたバルーンカテーテルの様々な実施形態を示す。
【
図51】
図51は、気体透過性膜を備えたバルーンカテーテルの様々な実施形態を示す。
【
図52】
図52は、気体透過性膜を備えたバルーンカテーテルの様々な実施形態を示す。
【
図53】
図53は、気体透過性膜を備えたバルーンカテーテルの様々な実施形態を示す。
【
図54】
図54は、バルーンカテーテルを介してガス含有量を測定するためのコントローラを示す。
【
図55】
図55は、ガス測定カテーテル/コントローラシステムの概略図である。
【
図56】
図56は、ガス測定カテーテル/コントローラシステムの概略図である。
【
図58A】
図58Aは、患者のパラメータに基づいて急性腎障害及びUTIを識別するための潜在的な特徴を可能にするパラメータの組み合わせを記載する表を示す。
【
図58B】
図58Bは、患者パラメータに基づいて、急性腎障害、敗血症、及び急性呼吸窮迫症候群を識別するための可能なサインを可能にするパラメータの組み合わせを記載する表を示す。
【
図59】
図59は、エアロックのクリアランス中の収集チャンバ内の圧力特性曲線を示す。
【
図60】
図60は、本発明の任意の実施形態で使用することができるデータ処理システムのブロック図である。
【
図61】
図61は、赤血球、及び/又は血漿/白血球を識別するために使用できる代替波長を示す。
【
図63A】
図63Aは、通気孔/フィルタ領域において、より小さい直径の管腔がより大きい直径の管腔とどのように比較できるかを示す。
【
図63B】
図63Bは、通気孔/フィルタ領域において、より小さい直径の管腔がより大きい直径の管腔とどのように比較できるかを示す。
【
図65】
図65は、通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図66】
図66は、別個の陽圧通気管を備えたセンシングフォーリーカテーテルシステムを示す。
【
図68】
図68は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図69】
図69は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図70】
図70は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図71】
図71は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図72】
図72は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図73】
図73は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図74】
図74は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図75】
図75は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図76】
図76は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図77】
図77は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図78】
図78は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図79】
図79は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図80】
図80は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図81】
図81は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図82】
図82は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図83】
図83は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図84】
図84は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図85】
図85は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図86】
図86は、センシングフォーリーカテーテルシステムの様々な実施形態のバーブ領域を示す。
【
図87】
図87は、内部通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図88】
図88は、内部通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図89】
図89は、内部通気管及び陽圧管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図90】
図90は、内部通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図91A】
図91Aは、内部通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図91B】
図91Bは、内部通気管を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図94A】
図94Aは、圧力センサが別個のカテーテル上にあるセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図94B】
図94Bは、圧力センサが別個のカテーテル上にあるセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図94C】
図94Cは、圧力センサが別個のカテーテル上にあるセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図95A】
図95Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図95B】
図95Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図95C】
図95Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図96A】
図96Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図96B】
図96Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図96C】
図96Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図96D】
図96Dは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図97A】
図97Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図97B】
図97Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図97C】
図97Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図97D】
図97Dは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図98A】
図98Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図98B】
図98Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図98C】
図98Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図98D】
図98Dは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図99A】
図99Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図99B】
図99Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図99C】
図99Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図100A】
図100Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図100B】
図100Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図100C】
図100Cは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図101A】
図101Aは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図101B】
図101Bは、気泡低減機構を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図101C】
図101Cは、収集リザーバ内の回旋状流路を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図101D】
図101Dは、収集リザーバ内の回旋状流路を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図101E】
図101Eは、収集リザーバ内の回旋状流路を備えたセンシングフォーリーカテーテルシステムの実施形態を示す。
【
図103】
図103は、ECGを使用して心臓信号からノイズを除去する方法を示すサンプル臨床データを示す。
【
図104】
図104は、モデル波形を使用した1回拍出量変動分析を示すサンプル臨床データを示す。
【
図105A】
図105Aは、カセットとコントローラ/モニタとの間のいくつかの管腔のための封止機構の実施形態のカセット側コンポーネントの図を示す。
【
図105B】
図105Bは、カセットとコントローラ/モニタとの間のいくつかの管腔のための封止機構の実施形態のカセット側コンポーネントの図を示す。
【
図110】
図110は、カセットとコントローラ/モニタとの間のいくつかの管腔のための密閉機構の実施形態のカセット側コンポーネントの寸法図を示す。
【
図111】
図111は、カセットとコントローラ/モニタとの間のいくつかの管腔のための密閉機構の実施形態のカセット側コンポーネントの力図(force view)を示す。
【
図112】
図112は、サンプリングポートを含む任意の尿排出システムに追加することができる通気機構を含む実施形態を示す。
【
図114】
図114は、ドレナージチューブがコイル状又は圧縮部分を含む実施形態を示す。
【発明を実施するための形態】
【0029】
本発明の好ましい実施形態を本明細書で詳細に説明する。しかしながら、装置の様々な特徴の代替実施形態も可能である。これらの実施形態の例を以下に提供するが、本発明の範囲はこれらの特定の構成に限定されない。
【0030】
センシングフォーリーカテーテル
【0031】
図1は、センシングフォーリーカテーテルの実施形態及びその特徴のいくつかを示す。カテーテルは、カテーテルが人間の被験者に挿入されたときの配置に応じて、被験者の外部に残る近位部分、中央部又は尿道に残る部分、及び遠位又は尿膀胱に残る部分など、さまざまな区画を持っていると理解できる。
【0032】
膀胱保持バルーン104及び保持バルーンポート118と連通する空気又は流体管腔など、様々な内部管腔がカテーテルの長さを横断する。尿ドレナージ管腔は、内部に存在する遠位開口部又は開口部106を有し、カテーテルの膀胱部分、及びカテーテルの近位端114に開口部を有する。尿ドレナージ管腔は、尿を収集容器に運ぶ尿ドレナージチューブに接続されてもよい。尿ドレナージチューブは、センシングフォーリーカテーテルとは別のものでも、一体型でもよい。いくつかの実施形態では、膀胱のドレナージ管腔及び遠位開口部は、薬剤を注入することができる、又は加熱又は冷却流体を注入することができる注入導管としても機能し得る。検体センサ(図示せず)又は温度センサ(図示せず)は、カテーテルの尿道部分又はカテーテルの膀胱内在部分のいずれかに配置することができる。電気又は光ファイバの導線は、遠位に配置されたセンサとカテーテルの近位部分との間の検知信号の通信を可能にする管腔に配置され、その後、データ処理装置又はコントローラとさらに通信する。
【0033】
膨張可能な圧力感知バルーン108(又は開口部を横切って配置された圧力感知膜)は、カテーテルの遠位端又はその近くに配置されてもよい。圧力感知バルーン又は圧力感知膜の実施形態は、膀胱内からの圧力にさらされる遠位に面する表面と、近位流体柱に曝される近位に面する表面とを有する圧力インターフェースを備えると理解され得る。圧力感知バルーン又は膜は、カテーテルの近位端又はその近くで圧力ポート116と流体連通している流体柱又は管腔と流体連通している。(液体又は気体のいずれかの流体で満たされた)流体カラムの実施形態は、専用の管腔又は共有管腔を備えてもよい。
【0034】
いくつかの実施形態では、温度センサは、カテーテルの遠位端又はその近くに存在してもよい。温度ポート110は、温度センサをディスプレイ、コネクタ及び/又はコントローラに接続する温度通信線112を含むことができる。
【0035】
図1は複数の別個のポートを含むカテーテルの近位端を示しているが、ポートのいくつか又はすべては単一のポートに統合されるか、又は尿排出システム及び/又はコントローラに移動する尿排出ラインに統合され得る。他の管腔及び/又はポートも存在し得る。
【0036】
センシングフォーリーカテーテルシステムが感知し得る、及び/又は感知されたパラメータに基づいてコントローラを介して決定し得る圧力ベースの生理学的パラメータは、例として、腹圧、呼吸数、及び心拍数、相対的な肺一回換気量プロファイル、心拍出量、相対心拍出量、絶対心拍出量を含み得る。フォーリー型カテーテルのいくつかの実施形態は、温度センサ、1つ又は複数の検体センサ、電極、並びに光源とセンサのペアのいずれかをさらに備えていてもよい。このようにさらに装備された実施形態は、例えば、血圧、酸素飽和度、パルスオキシメトリー、EKG、及び毛細血管充填圧などの他の形態の生理学的データを送達することができる。
【0037】
センシングフォーリーカテーテルの実施形態は、以下の例に含まれるような、臨床的に関連する複数のパラメータのうちの任意の1つ以上を感知することができ得る:尿pH、尿酸素含有量、尿硝酸含有量、呼吸数、心拍数、膀胱壁又は尿道壁の灌流圧、膀胱又は尿道内の温度、膀胱壁又は尿道上のセンサを介した心電図、呼吸量、呼吸圧、腹膜圧、尿グルコース、尿道粘膜を介した血糖及び/又は膀胱粘膜、尿タンパク質、尿ヘモグロビン、血圧。
【0038】
いくつかの実施形態では、カテーテルは複数のパラメータを感知することができるが、いくつかの実施形態は、集中用途(例えば、呼吸困難の患者の呼吸数)のための単一のパラメータに制限される場合がある。
【0039】
開示された技術は、膀胱内からの腹圧の高解像度の経時的プロファイル(時間の関数としての圧力)を捕捉し、腹膜圧、呼吸数、及び心拍数を含む特定の生理学的ソースに割り当て可能な別個の圧力プロファイルに変換及び処理できる。技術によって提供されるように、十分に速いサンプリング速度で圧力プロファイルを追跡することにより、圧力プロファイルは、相対的肺一回換気量、心拍出量、相対心拍出量、及び絶対心拍出量にさらに分解及び/又は分析できる。
【0040】
したがって、開示される技術の態様は、膀胱内の圧力の変化に応じて産生される圧力信号の忠実度及び分解能に関し、そのような変化は、腹膜腔内の圧力プロファイルを反映し、そのような圧力プロファイルは、前述の生理学的ソースからの蓄積的入力を含む。この技術の側面はさらに、圧力信号の高度に分解可能な電気信号への変換の忠実度と解像度に関連している。技術の側面は、さらに、腹膜腔内の圧力プロファイルの代理である電気信号プロファイルの全体を、生理学的ソースに割り当てることができるコンポーネントプロファイルに処理することに関する。
【0041】
圧力センサとしての膨張したバルーンの感度は、一部には、ベースライン条件としてのバルーン膜の前後の圧力差の関数である。バルーンは、ベースラインの圧力差がゼロに近いときに、圧力に対して最大の感度を持つ。ベースライン圧力差が大きくなると、感圧バルーンの感度が低下する。したがって、開示された技術は、バルーンを膨張状態に維持するが、最小の圧力差で自動プライミング方法を提供する。
【0042】
生理学的圧力プロファイルを効果的に捕捉するために、プロファイルの変化の固有の頻度を解決するのに十分な速度でプロファイルをサンプリングする必要がある。この考慮事項は、ナイキスト-シャノンサンプリング定理によって通知される。この定理では、Bサイクル/秒の頻度で実行される事象を解決するには、少なくとも2Bサンプル/秒のサンプリング頻度が必要であると述べている。例えば、生理的圧力サイクルに適用される場合、70拍/分の心拍数は、サイクルを効果的に捕捉するために少なくとも140サンプル/分のサンプリングレートを必要とする。この関係は、相対的な肺一回換気量、心拍出量、相対的な心拍出量、絶対心拍出量などの生理学的圧力サイクルを捕捉するために特に必要なサンプリングレートを指定する開示技術の側面の基礎となる。
【0043】
本技術の実施形態は、順応性膜又は非順応性膜のいずれかを有するバルーンによって表され得るような圧力インターフェースを含む。
【0044】
本技術の実施形態による、拡張可能な圧力感知バルーンは、順応性又は非順応性の少なくとも2つの基本形態のうちの1つ又は複数を想定してもよい。一般に従来のパーティバルーンに例えることができる順応性バルーンタイプでは、感圧バルーンは順応性膜から形成されるか、順応性膜を含む。したがって、膜の表面積は、バルーンの膨張の関数として膨張又は収縮する。膜の順応性は、膨張の異なるレベルで、全体としてバルーンのさまざまな機能を決定する。拡張時に、バルーンは、拘束されていない場合、バルーンが形成されるマンドレルによって決定されるように、実質的に一定又は好ましい形状又は形状を維持する。バルーンが最小容積から最大容積まで膨張すると、バルーンの膜は緊張状態を維持する。順応性膜の順応性の範囲内で、膨張中の圧力の増加により、結果として体積が拡大する。バルーンは、全体として、形状が拡張又は膨張時に遭遇する可能性のある空間的制約に対応するという点で部分的に適合していると見なされる場合があるが、バルーンは優先又はネイティブの形状を持ち、そのような形状の優先度は、形状順応性又は非順応性バルーンによって示されるような適合性のレベルを防ぐ。
【0045】
非順応性バルーンでは、拡張可能な圧力感知バルーンは、非弾性膜、又は実質的に非弾性の膜から形成されるか、又はそれらを含む。したがって、膜の表面積は、バルーンの膨張/加圧のレベルに応じて膨張又は収縮しない。非順応性の圧力感知バルーンは、一般的に従来のMylar(登録商標)バルーンに例えられる。膜の順応性の欠如は、全体として、膨張の異なるレベルでのバルーンのさまざまな特徴を決定する。バルーンが最小容積から最大容積に近いレベルまで拡張すると、バルーンの膜はしなやかで、ある程度のたるみがある。不適合なバルーンの膨張は、膜のしわやひだを外側に向けて滑らかにすることで起こる。非順応性バルーンの収縮又は圧縮は、一般的に内側に向かうしわ及び折り畳みによって発生する。順応性のないバルーンが閉じ込め空間に入らずに完全に膨張する(又は実質的に膨張する)場合、バルーンの膜又は布の形状によって決定される好ましい形状又は自然な形状を想定する。しかし、部分的に膨張した状態では、バルーンは全体として非常に柔軟で順応性があり、閉じ込め空間によって指示される形状を広く取る。
【0046】
技術の実施形態による拡張可能な圧力感知バルーンはまた、順応性及び非順応性の2つの基本的な形態の両方の特徴を含み得る。これらの実施形態では、膜は、順応性のある領域と非順応性の領域を含むことができる。このハイブリッドタイプのバルーンは、全体として、上記のように、順応性バルーンと非順応性バルーンの両方の動作面から描画する方法で動作する。さらに、順応性バルーンは、均一な組成又は厚さではない膜で形成されてもよい。そのような実施形態では、異なる厚さ又は組成の領域は、さまざまな程度の順応性を有することができ、したがって、バルーンの拡張中のこれらの領域の挙動に影響を及ぼす。さらに他の実施形態では、膜の順応性は、1つ以上の方向の順応性を可能にする傾向があるバイアス又は極性を有し、1つ以上の他の方向の順応性を禁止する傾向がある。
【0047】
技術の実施形態による拡張可能な圧力感知バルーンはまた、順応性及び非順応性の2つの基本的な形態の両方の特徴を含み得る。これらの実施形態では、膜は、順応性のある領域と非順応性の領域を含むことができる。このハイブリッドタイプのバルーンは、全体として、上記のように、順応性バルーンと非順応性バルーンの両方の動作面から描画する方法で動作する。さらに、順応性バルーンは、均一な組成又は厚さではない膜で形成されてもよい。そのような実施形態では、異なる厚さ又は組成の領域は、さまざまな程度の順応性を有することができ、したがって、バルーンの拡張中のこれらの領域の挙動に影響を及ぼす。さらに他の実施形態では、膜の順応性は、1つ以上の方向の順応性を可能にする傾向があるバイアス又は極性を有し、1つ以上の他の方向の順応性を禁止する傾向がある。
【0048】
これらのデータは、小さな直径の小児用カテーテルにおける圧力変換システムの実施形態を4Fという小さなサイズまで使用することの適切性を示している。この実施形態においても、カテーテルの先端は、圧力感知バルーンを追加しても一貫して小さな直径を可能にするために、カテーテルの残りの部分よりも低いプロファイルであり得る。したがって、本発明のカテーテルは、より適切で侵襲性の低いモニタリング方法が切実に必要とされる小児の適応症に独特に適している。別の実施形態では、必要な管腔の数を最小限にするために、保持バルーン自体を圧力バルーンとして使用することができる。一実施形態では、保持バルーンは、完全に膨張した状態で使用され、IAPのマクロトレンドを追跡するためにのみ使用される。別の実施形態では、保持バルーンは、圧力の小さな変化に対するバルーンの感度を高めるためにわずかに膨らまされる。この実施形態は、心拍数、相対的な一回拍出量、相対的な心拍出量、呼吸数、及び相対的な一回換気量などのミクロパラメータのより細かい測定を可能にする。また、圧力管腔を小さくすると、センサなどの他のテクノロジー用の大きなカテーテルにスペースを確保できる。
【0049】
保持バルーンが圧力バルーンとして使用されるセンシングフォーリーカテーテルの実施形態では、保持バルーン内で測定される圧力は、保持バルーンとして機能するのに十分なだけバルーンを膨張させるのに必要な圧力によって相殺される。その結果、膨張圧力、及び場合によっては膀胱の内面と接触している保持バルーンから生じる圧力を圧力測定値から差し引く必要がある。このようにして、小さな圧力変化は、個別の圧力バルーンで測定されたものと同様に追跡できる。膨張圧力オフセットは、患者に最初に挿入されたときに保持バルーン内の圧力を測定するか、患者の外部で保持バルーンの膨張圧力を測定するか、又は他の手段で決定できる。保持バルーンは、流体、空気、又は他の適切なガスで満たされていてもよい。
【0050】
開示された技術の実施形態は、圧力センサが、光ファイバ、歪みゲージ、磁気、共鳴、及び/又は他の適切な技術を使用するものなどの機械的圧力センサである実施形態を含み得る。
【0051】
図2は、センシングフォーリーカテーテルシステムの実施形態によって提供される、被験者からの呼吸数感知データの例を示す。このテスト期間中、被験者は次のような呼吸シーケンスを実行する。(1)呼気の終わりに呼気、(2)バルサルバ、(3)過呼吸、(4)バルサルバ、及び(5)吸気の終わりに呼気。
【0052】
図3は、
図2に示したものと同様の呼吸プロファイルにおける通常の呼吸周期の詳細な部分を示している。圧力曲線は呼吸ピークを明確に示しているため、呼吸数と心拍数のピークを決定できる。したがって、心拍数を決定できる。
【0053】
図4は、センシングフォーリーカテーテルシステムの実施形態によって提供される、被験者からの心拍数及び相対心拍出量感知データの例、並びに同時に独立して測定されるEKGトレースを示す。このグラフは、センシングフォーリーカテーテルで測定された心拍数のピークが心拍数と一致していることを明確に示している。
【0054】
図5は、心拍の増加した振幅によって実証されるように、心拍出量が増加する人間の脚上げ運動における相対的心拍出量感知に関連するデータを示す。
【0055】
図6及び7は、IACUCが承認したプロトコルの下でヨークシャー豚を用いて行われた研究に由来している。
図6は、センシングフォーリーカテーテルシステムの実施形態によって提供される、ブタからの呼吸数に焦点を合わせた腹膜感知データの例を示している。
図7は、腹腔内高血圧を検出するセンシングフォーリーカテーテルシステムの実施形態の能力を実証するブタ研究の一例を示している。この研究では、腹膜腔に5mmテナミアントロカールでアクセスした。次に、トロカールを蠕動ポンプを介して乳酸リンゲル液の5Lバッグに取り付け、1分あたり約1Lの速度で溶液を注入した。約20mmHgの圧力が得られた後、流体の流れは中断され、その後、空洞に出入りする正味の流体の流れはなくなった。
【0056】
図8は、圧力(対数目盛のmmHg)対周波数(Hz)の2次元プロットとして概略的に配列された腹腔内圧、呼吸波圧、及び心圧を示している。圧力と周波数の間には反比例の関係があり、この方法で配列された場合、さまざまな生理学的圧力関連パラメータが異なるセクターを占めることがわかりる。本明細書に開示される方法の実施形態は、生理学的起源に応じて、単一の全体の時間的圧力プロファイルを別個のサブプロファイルに分解できるのは、これらの圧力及び/又は周波数プロファイルの両方の明確さによる。腹腔内圧測定は、約0Hzから約0.5Hzの周波数範囲で解決できる。呼吸圧測定は、約0.25Hz~約0.75Hzの周波数範囲で解決できる。心圧測定は、約0.75Hzから約3.0Hzの周波数範囲で解決できる。腹腔内圧測定は、約5mmHgから約30mmHgの振幅範囲で解決できる。呼吸圧の測定値は、約0.5mmHgから約5mmHgの振幅範囲で解決できる。心圧測定は、約0mmHgから約0.5mmHgの振幅範囲で解決される場合がある。サンプリング周波数(圧力測定が行われる周波数)は、分解能周波数の約2倍であることが望ましい。例えば、サンプリング周波数は、腹腔内圧測定では約0Hz-1Hz、呼吸圧測定では0.5Hz-1.5Hz、心圧測定では1.5Hz-6Hzになる。
【0057】
図9は、膀胱内から検出される、腹腔内の様々な周波数及び振幅の波として動的に発生する圧力をモニタリングする方法の実施形態のフロー図を提供する。圧力インターフェースの機関を通じて、高忠実度の圧力プロファイルが産生され、流体カラムを通じて近位に送信される。より近位では、圧力トランスデューサが高忠実度圧力波を、圧力周波数と振幅の情報となる高忠実度電気信号に変換する。産生された忠実度の高い電気信号は、コントローラによって処理され、腹圧、呼吸数、心拍数、相対心拍出量、及び患者の運動又は活動などの特定の生理学的ソースに起因する全体的な圧力プロファイル内の成分を反映するデータサブセットが生成される。
【0058】
センシングフォーリーカテーテルシステム
【0059】
図10Aは、エアロック清掃機構及び流体収集及び分析システムの実施形態とともに使用されるセンシングフォーリーカテーテルの実施形態を示す。尿排出と圧力測定値の両方が、尿排出ラインのエアロックの除去又は削減の恩恵を受ける。
【0060】
センシングフォーリーカテーテル1000は、
図1に示されるセンシングフォーリーカテーテルに類似している。センシングフォーリーカテーテルは、膀胱1014で使用中に示される。
図1に示されるカテーテルの近位端のいくつかのポートは、
図10Aに示される実施形態。尿ドレナージチューブ1001もここに示されている。尿ドレナージチューブは、センシングフォーリーカテーテルと組み合わせるか、別のコンポーネントにすることができる。尿ドレナージチューブ1001及び/又はセンシングフォーリーカテーテルはまた、通気孔バーブ(又はバーブ)1016を含み得るか、又は通気孔バーブは別個のコンポーネントであり得る。エアロック清掃機構及び流体収集及び分析システム1002もここに示されており、センシングフォーリーカテーテル1000と流体連通している尿ドレナージチューブ1001と流体連通している。エアロック清掃機構及び流体収集及び分析システムはベース/コントローラ1018、流体収集バッグ1020及びリザーバ又はカセット1022を含む。センシングフォーリーカテーテル1000、尿ドレナージチューブ1001、及びエアロック清掃機構及び流体収集及び分析システム1002の組み合わせは、本明細書ではセンシングフォーリーカテーテルシステムとも呼ばれる。センシングフォーリーカテーテル、尿排出ライン、及びリザーバ/カセットは使い捨てで、ユニットとして販売できる。この使い捨てアセンブリは
図10Dに示されており、フォーリーカテーテル1000の感知、尿ドレナージチューブ1001(通気孔バーブを含む)、及びリザーバ/カセット1022を含む。
【0061】
通気孔バーブ1016は、1つ又は複数の通気孔1006及び尿サンプリングポート1004を含むことができる。この実施形態では、通気孔1006は、疎水性膜などの液体ではなく気体の透過を可能にする膜から作られることが好ましい。そのような例示的な通気孔の一例は、PTFE(ポリテトラフルオロエチレン)、ePTFE(拡張PTFE)、又はVersapor(登録商標)(ポール・コーポレーション、ニューヨーク州ポートワシントンから)膜であるが、他の材料を使用してもよい。通気管により、ドレナージチューブに陰圧が加えられるとシステムに空気が入り、ドレナージラインのエアロックにより陽圧が生じると空気がシステムから出ることができる。そのような機構は、例えば膀胱壁での吸引外傷を防ぐ。通気孔1006は、空気がドレナージラインから出たり、ドレナージラインに入るのを防ぐ一方向弁を組み込んでもよい。好ましい実施形態では、一方向弁を使用して、空気がドレナージラインを出るのを防ぐが、通気孔1006を介して空気がドレナージラインに入ることを可能にする。このように、弁は尿が通気孔1006と接触することも防ぐ。
【0062】
尿ドレナージチューブ1001は、圧力管腔1010、温度管腔1008、及び尿管腔1012を含むいくつかの管腔を含み得る。圧力管腔1010は、圧力感知バルーン108並びにコントローラ1018内の圧力トランスデューサインターフェース1026と流体連通する。フォーリーカテーテルのセンサに温度センサ(図示せず)があり、コントローラに温度コネクター1024がある。尿管腔1012は、1つ又は複数の開口部106及び尿リザーバ又はカセット1022と流体連通している。
【0063】
使い捨て測定容器、収集容器、チャンバ又はカセットコンポーネント1022は、カセットマウント、ベース又はコントローラ1018に収まり、コントローラのコンポーネントと連動するように設計されている。コントローラカセットインターフェース(カセットポンプインターフェース1148の後ろ)は、ポンプ1134及び使い捨てカセットコンポーネント上のカセットポンプインターフェース1148に接続する。ポンプは、カセットコンポーネントの内部に真空を産生するように設計されており、真空はドレナージラインの尿ドレナージ管腔に送られる。好ましくは、収集容器/カセットは、ポンプが陰圧をかけるときに一定の容積を維持するために剛性である。適用される陰圧のレベルは、圧力センサによってモニタリングできる。エアロックのクリアランス中、圧力は
図59に示すような特徴的な曲線に従いる。吸引が適用されると圧力が低下し、尿のメニスカスがドレナージチューブの最低点を通過すると、最終的に変曲点に達する。この時点で、エアロックをクリアし続けるために必要な吸引量は少ないため、エアロックが完全にクリアされたら膀胱に送られる吸引量を最小限に抑えるために、ポンプの出力を下げることができる。例えば、この圧力検出機能を持たない大型の船舶は、エアロックが解除されてから大気と平衡する時間になる前に、実質的な陰圧を膀胱に伝達する。コントローラ圧力インターフェース(カセット圧力インターフェース1150の後ろ)は、圧力トランスデューサなどの圧力測定デバイスとカセット圧力インターフェース1150に接続する。圧力測定装置は、圧力トランスデューサなどの圧力測定装置にかかる圧力に基づいて、尿又は他の液体の体積を測定するように設計されている。超音波トランスデューサインターフェース1130はまた、尿量測定を提供することである。超音波測定は、圧力測定と組み合わせて使用することができる。又は、尿又は他の液体の体積出力を決定するために使用できる。アクティブピンチ弁1132は、カセットの流出チューブに接続するように設計されている。ピンチ弁はカセット容器の空を制御するためのものであり、圧力及び/又は超音波測定によって決定されるように、尿出力がカセット内の特定の体積に達すると尿/流体を放出するようにピンチ弁はコントローラによって制御される。カセット内の尿の量が測定され、尿が特定の量に達すると、尿はピンチ弁を介して尿ドレナージバッグ1020に排出される。例えば、カセット内の尿の量が約50mLに達すると、カセットは空になる。あるいは、カセット内の尿の量が約40mLに達したら、カセットを空にすることができる。あるいは、カセット内の尿の量が約30mLに達したら、カセットを空にすることができる。あるいは、カセット内の尿の量が約20mLに達したら、カセットを空にすることができる。あるいは、カセット内の尿の量が約10mLに達したときに、カセットを空にすることができる。このようにして、尿の排出量を経時的に正確に測定できる。
【0064】
カセットを空にすることは、空にするプロセス中にカセットを加圧することにより増強又は加速され得る。
【0065】
あるいは、コントローラは、カセットを空にする間の設定時間を利用し、空にする直前にカセット内の尿の量を測定してもよい。あるいは、コントローラは、ポンプの起動によってトリガーされるエアロックの取り外しなどの通気孔が発生したときにカセットを空にすることができる。例えば、コントローラは定期的なエアロッククリアランスサイクルを設定し、その後にカセット内の尿量を測定し、その後カセットを空にすることができる。
【0066】
例えば、コントローラは、尿量が約50mLに達したときにピンチ弁を制御してリザーバ/カセットを空にすることができる。あるいは、コントローラはピンチ弁を制御して、カセット内の尿量を測定した後、1時間ごとにリザーバ/カセットを空にすることができる。あるいは、コントローラはピンチ弁を制御して、ポンプの運転などの尿排出通気孔中又はその後にリザーバ/カセットを空にすることができる。又は、コントローラはこれらのトリガーの組み合わせを使用して、ピンチ弁を制御してリザーバ/カセットを空にすることができる。
【0067】
圧力ベース、抵抗ベース、静電容量ベース、超音波ベース、又は光学ベースの技術を含む、圧力及び/又は超音波に加えて、又はその代わりに、尿量を測定するために他の技術が使用される場合がある。複数の技術を使用して、測定値を互いに比較し、体積測定の精度を向上させることができる。より正確な尿量測定を得るために、1つ又は複数の技術によって行われた複数の量測定を冗長性、バックアップ、又は互いに組み合わせて使用できる。
【0068】
ベッドフック1116は、必要に応じてコントローラをベッド又は他のデバイスにフックするためのものである。また、患者輸送のためにコントローラをポータブルデバイスにフックするのにも使用できる。収集バッグのフック/穴1102は、尿/流体がピンチ弁を通過した後、尿/流体が最終的に収集されるドレナージバッグを取り付けるためのものである。収集バッグフック1102は、バッグ内の流体の重量を決定できるようにひずみ測定値を提供し、したがってバッグ内の流体の体積を決定する別の方法を提供するように設計することができる。例えば、圧電トランスデューサが使用されてもよい。コントローラは、比重の決定を使用して、重量と比重に基づいて有用な体積測定値を決定することもできる。
【0069】
画面1110は、現在の尿/体液量の状態、システムの状態などを含む情報を表示するためのものである。画面1110はタッチスクリーンでもあり、設定、画面表示の変更、メニューの変更などを含む入力を受け取ることができる。圧力ポート1026は膀胱圧力ライン1010に接続し、使用される場合、センシングフォーリーカテーテルを使用して膀胱圧力を測定する。あるいは、圧力ポートは、カセット1022の下のカセットマウント内又はコントローラ/ベースの他の場所に配置されてもよい。ポート1024の温度は、管腔1008を介したセンシングフォーリーカテーテル又は他の手段を介して体温を測定するサーミスタ/温度センサに接続する。温度出力ポート1122は、温度測定値を外部デバイス及び/又はモニタに送信するためのものである。アダプタポート1124は、RFIDアダプタの場合など、コントローラを他のデバイスに適合させるためのものである。これを使用して、IAP、呼吸数、心拍数、心拍出量、又はセンシングフォーリーカテーテルで測定できるその他のパラメータの測定など、追加/高度な機能をアクティブにすることができる。これにより、その情報が必要な場合にのみ、追加のパラメータを有効化し、病院で支払うことができる。高度な機能の起動は、例えば異なる使い捨てコンポーネントの使用によって制御することもできる。あるいは、使い捨て機能の一部として、又は個別に購入したソフトウェアアップグレードによって、高度な機能を有効にすることができる。ソフトウェアのアップグレードは、ワイヤレス、USBドングル、micro-SDカード、EPROMカード、又はその他の適切な技術によって提供される。各患者及び/又は集計された患者のデータも、コントローラによって保存される場合がある。患者データは、メモリ、USB、マイクロSDカード、EPROMカード、ハードドライブなどに保存できる。患者データは、無線又は有線接続により、インターネット又はイントラネット上のサーバーなどの別のストレージデバイスに転送できる。患者データは匿名化される場合がある。患者IDなどの患者データは、特定の患者に固有のデータがコントローラによって認識され、その患者が使用する使い捨てコンポーネントに関連付けられるように、RFIDアダプタに保存される。
【0070】
電源LED/インジケータ1114は、電源がオン又はオフになっていることを示す。エラーLED/インジケータ1112は、システム内でエラーが発生した場合のインジケータである。エラーの詳細は画面1110に表示できるが、インジケータ1112はエラーが存在することをユーザーに警告する。インジケータには、音やその他の警告も組み込まれている場合がある。
【0071】
ポート1108は、EMR(電子医療記録)システムとの統合など、ダウンロード、アップロード、ソフトウェアのアップグレード、他のデバイスへの接続などに使用される。ポート1108はUSBポート又はその他の適切なポートである。SDポート1106はデータのダウンロード用である。電源ポート1104は、コントローラを壁又は他の電源に接続してコントローラに電力を供給するためのものである。
【0072】
尿/流体ドレナージバッグ1020は、オーバーフロー管1138及び流出チュービング1140に接続された一方向弁1136を含み、収集されると尿/流体がドレナージバッグから出るのを防ぐ。これらの弁は、ポンプ1134が真空を引いているときに空気が収集容器1022に入るのを防ぎ、真空がバッグではなくドレナージチューブに作用するようにする。好ましい実施形態では、オーバーフロー管と流出管の両方に単一の弁が使用される。取り付けフック/穴1102により、ドレナージバッグ1020をコントローラ1018に取り外し可能に取り付けることができる。通気孔1142は、疎水性又は他の通気孔であり、空気又は気体がドレナージバッグから出ることを可能にするが、流体がバッグから出ることはできない。これにより、過剰な空気、及び潜在的に圧力がバッグ内に蓄積するのを防ぎ、したがってドレナージバッグの効率的な充填を可能にする。目盛り付きマーク1144は、バッグが収集される際のバッグ内の流体量のやや粗い測定値を示している。流出弁1146を使用して、流体/尿のバッグを空にすることができる。好ましくは、弁は一人で簡単に操作できる。ひずみ測定要素として設計された収集バッグのフック1102は、バッグがフル容量に達し、空にする必要がある場合にアラームを鳴らすこともできる。バッグに不必要に過剰な力が加わった場合、例えばバッグが引っ張られたり、患者の移動中に障害物に引っかかったりした場合にも、アラームが鳴ることがある。
【0073】
患者の体温は、患者の体内のサーミスタ/温度センサを使用して測定される。この温度はコントローラを通過して、サードパーティのデバイスに表示される場合がある。
図10Bは、温度測定が外部ディスプレイ又は外部デバイスに転送される前に、温度測定の誤差を減らすために並列ポテンショメータを使用する方法を示している。
【0074】
ドレナージバッグは、透明なビニール又は他の適切な材料でできていてもよい。一方向弁は、ビニール又は他の適切な材料でできていてもよい。疎水性通気孔は、ePTFE、Versapor、又は他の適切な材料でできていてもよい。流出弁は、PVC、PC、又は他の適切な材料でできていてもよい。
【0075】
センシングフォーリーカテーテルからの圧力測定値を使用して、ポンプを作動させ、したがってドレナージチューブを空にすることができる。例えば、膀胱で感知された圧力が事前設定された数を超えると、ポンプが作動して排尿チューブを介して尿をより迅速に移動させることができる。
【0076】
コントローラ/ベース及び/又はリザーバ/カセットは、コントローラ/カセットが水平であるときと水平でないときを判断するために、加速度計又は他のセンサを含むことができる。コントローラ/カセットが水平でない場合、アラームが鳴ることがある。あるいは、尿量の測定値を調整して、システム内のさまざまな角度を考慮することもできる。
【0077】
カセット内の尿リザーバの底部は丸いエッジを持っているか、又はピンチ弁が開いたときに尿がカセットから完全に空になるように構成されている。
【0078】
図10Cは、エアロッククリア機構及び流体収集及び分析システム1002の詳細図である。画面1110は、患者パラメータ並びにタッチスクリーン又は他の制御機能を含むユーザーインターフェースを表示する。心拍数エリア1152は、センシングフォーリーカテーテルによって検出された膀胱内圧の測定値に基づいてコントローラによって決定される患者の心拍数を示す。呼吸数エリア1154は、フォーリーカテーテルの検知によって検出された膀胱内圧測定値に基づいてコントローラによって決定される患者の呼吸数を示す。芯部体温領域1156は、フォーリーカテーテルの温度センサなどで検出された患者の深部体温を示す。尿出力エリア1158は、圧力インターフェース1150及び/又は超音波トランスデューサインターフェース1130に接続された圧力測定装置によって測定される尿量測定に基づいてコントローラによって決定される患者の現在及び/又は平均尿出力を示す。敗血症指数領域1160は、収集及び/又は計算された1つ又は複数の患者パラメータに基づいてコントローラによって決定される患者の敗血症の可能性を示す。例えば、敗血症のリスクを判断する際に、体温、心拍数異常、呼吸数異常、及び/又は尿量などの要因を考慮することができる。これらのパラメータの傾向は、リスクの評価にも使用できる。例えば、尿量の減少、心拍数の増加、中核体温の増減は、敗血症の指標となる場合がある。
【0079】
他のリスク評価は、コントローラによって決定され、敗血症指数に加えて、又は敗血症指数の代替として表示される場合がある。これらには、急性腎障害、尿路感染症、腹腔内高血圧、腹部コンパートメント症候群、感染リスク、敗血症、ARDS(急性呼吸窮迫症候群)などのリスク評価が含まれる。例えば、急性腎障害と尿路感染のサンプルリスクアルゴリズムを
図58Aに示す。急性腎障害、敗血症、急性呼吸窮迫症候群のサンプルリスクアルゴリズムを
図58Bに示す。測定される尿パラメータには、コンダクタンス、比重、尿排出量、感染の有無、細菌、白血球、酸素分圧などが含まれる場合がある
【0080】
グラフィカルインジケータ1162は、これらのエリアの履歴データを示す。例えば、ユーザーは画面に触れることでグラフィック表示を切り替えて、患者の尿量、体温、心拍数、呼吸数、敗血症指数、急性腎障害のリスク、尿路感染症、腹腔内高血圧、腹部コンパートメント症候群、感染リスクなどの患者の履歴、又はその他の関連パラメータを表示できる場合がある。履歴の時間枠は、すべての時間、毎日、毎時、又はユーザーが設定した期間である。範囲外であるため、リスクが高い任意のリスク要因は、ここ又はディスプレイ上の他の場所に自動的に表示される場合がある。アラート及び/又は範囲は、ユーザーが設定でき、絶対値や長期にわたる傾向を含めることができる。例えば、特定の時間枠で芯部体温が2度を超えて上昇すると、視覚的な警告音又は音声による警告音が表示されることがある。
【0081】
図11Aは、
図10Aに示すものと同様のセンシングフォーリーカテーテルシステム(エアロッククリア機構、流体排出、収集及び分析システム/コントローラを含む)の実施形態を示し、通気孔1180はコントローラ1018又はリザーバ/カセット1022に配置される。この実施形態では、通気孔1180は、通気孔1184を介して尿ドレナージ管腔1012と流体連通しており、通気管腔1184は、通気孔1184で尿管腔1012に流体的に接続している。本実施形態においてバーブ設計は簡素化され、ドレナージチューブは、
図10Aに示す実施形態と比較して、追加の管腔を単に有する。通気孔はシステム内のどこにでも配置でき、尿管腔との流体界面もシステム内のどこにでも配置できる。
【0082】
図11Bは、
図11Aに示されるものと同様のセンシングフォーリーカテーテルシステムの実施形態を示す。この実施形態では、ガス透過性通気孔/フィルタがカセット1022及び/又はコントローラ1018に組み込まれている。通気孔管腔は、ドレナージチューブ1012に沿って、バーブ1182から通気孔管1184内を通過することができる。通気孔管腔は、カセット及び/又はコントローラの外部で終了するか、又はここに示すように、カセット及び場合によってはコントローラを通過し、ガス透過性通気孔/フィルタ1180を組み込んでもよい。
図11Bは弁1186も示している。弁は、流体(例えば、大気)の流れが通気孔管腔を通り、バーブを介してドレナージチューブに、又はドレナージチューブ又はフォーリーカテーテルに沿った他の場所、又はベース/コントローラ1018内に流れることを可能にする一方向弁であってもよい。弁は、尿や空気などの液体が通気管を通って流れ、フィルタに達する可能性を防ぐ。弁は、ここに示されているように受動的であっても、コントローラによって能動的に制御されてもよい。弁は、バーブ内、通気管に沿った場所、カセット内、コントローラ内、又はコントローラの外側、例えばコントローラの非患者側など、通気孔内腔内又は通気孔内腔に沿ったどこにでもあり得る。
【0083】
いくつかの実施形態では、ドレナージチューブ内の陰圧を制御することにより、コントローラを介して弁が能動的に制御される。ドレナージチューブのドレナージ管腔内の陰圧を引くコントローラによって弁を開くことができ、ドレナージチューブに適用される真空を減らすコントローラによって弁を閉じることができる(つまり、陰圧を下げ、ゼロ圧力をかける、又はドレナージ管腔にわずかに陽圧をかける)。カテーテル及びドレナージチューブのドレナージ管腔は通気管の管腔と流体連通しているため、ドレナージチューブに加えられた陰圧は通気管の管腔にも加えられ、弁の前後の圧力差が弁のクラッキング圧力を超えていると弁が開く。ドレナージ管腔に適用される真空を低下させることにより、弁は再び閉じられ、したがって、弁の前後の圧力差を弁のクラッキング圧力未満の圧力に低下させる。このようにして、コントローラは、弁自体がパッシブ弁である場合でも、通気管内の弁の開閉を能動的に制御できる。
【0084】
いくつかの実施形態では、弁を能動的に開くコントローラは、例えば定期的なスケジュールで定期的に行われてもよい。これを
図11Fにグラフで示す。例えば、コントローラは少なくとも30分(T1で表される)ごとに弁を開き、少なくとも15秒間(T2で表される)弁を開いたままにして、サイクルが再び始まるまでさらに30分間弁を閉じることができる。弁を開くために適用される真空と閉じた弁を維持するために適用される真空の差は、図のDIFFで表される。DIFFは、弁のクラッキング圧力差よりも大きくなる。あるいは、T1は少なくとも60分である。あるいは、T1は少なくとも20分である。あるいは、T1は少なくとも10分である。あるいは、T1は少なくとも5分である。あるいは、T2は少なくとも5秒である。あるいは、T2は少なくとも10秒である。あるいは、T2は少なくとも20秒である。あるいは、T2は少なくとも30秒である。
【0085】
図11Fは、陰圧での弁閉鎖圧力を示しているが、弁閉鎖圧力はゼロでも陽性でもよい。
【0086】
あるいは、サイクル長は可変であってもよく、T1及び/又はT2は尿排出流量に依存する。あるいは、このサイクルは、ドレナージチューブ内のエアロックを検知するシステムに基づいてもよい。これは、システム内の圧力、例えば、ドレナージチューブ内の真空圧又はバーブの圧力を測定することで実行できる。
【0087】
いくつかの実施形態では、弁1186は、フィルタ1180なしで所定の位置にあり得る。いくつかの実施形態では、フィルタ1180は、ドレナージ管腔と弁1186との間にあり得る。
【0088】
いくつかの実施形態では、通気管1184は、ドレナージチューブの長さの全部又は一部に沿ってドレナージチューブ1012と一体化される。
【0089】
弁は、ダックビル弁、アンブレラ弁、ボール弁、ドーム弁、ベルビル弁、クロススリット弁、x-fragm弁、又は医療用途に適した他の弁であってもよい。弁のクラッキング圧力は非常に低いか、より高い可能性があるが、通常はゼロから真空ポンプによって引き出される陰圧の大きさの間である。
【0090】
図11Cは、
図11Bに示されるものと同様のセンシングフォーリーカテーテルシステムの実施形態を示す。この実施形態では、通気管は、バーブと弁との間の直径がより小さい管腔の一部を含む。バーブと弁の間の内径が小さいチューブは、弁とバーブの間に空気の柱を作り、これにより、一般に、通気管弁が閉じているときに尿が通気管に入るのを防ぐ。通気管弁が開いている場合、流体の流れは一般的に逆方向(つまり、ドレナージ管腔)に流れ、尿が通気管に入るのを防ぐ。
【0091】
図11Dは、異なる直径区画を備えた通気管の例を示している。第1区画1188は、患者に最も近い区画であり、ID1の内部ID及びL1の長さを有する。この実施形態では、弁1186は、破線の矢印で示すように、流体が一般に右から左にのみ流れることを可能にする。第2の区画1190は、患者からさらに離れており、内側ID ID2及び長さL2を有する。いくつかの実施形態では、L1はL2未満であり、ID1はID2未満である。いくつかの実施形態では、ID1はID2よりも小さいが、長さは変動してもよく、互いに同じでもよい。L1+L2は、ドレナージチューブとほぼ同じ長さである。
【0092】
いくつかの実施形態では、ID1は約1.8~2.0mmであり得る。いくつかの実施形態では、ID1は約1.6~1.8mmであってもよい。いくつかの実施形態では、ID1は約1.4~1.6mmであり得る。いくつかの実施形態では、ID1は約1.2~1.4mmであり得る。いくつかの実施形態では、ID1は約1.0~1.2mmであり得る。いくつかの実施形態では、ID1は約0.8~1.0mmであってもよい。いくつかの実施形態では、ID1は約0.5~0.8mmであり得る。いくつかの実施形態では、ID1は約0.2~5mmであってもよい。一部の実施形態では、ID1は約1mm未満であり得る。一部の実施形態では、ID1は約2mm未満であり得る。いくつかの実施形態では、ID1は約3mm未満であり得る。いくつかの実施形態では、ID1は約4mm未満であり得る。一部の実施形態では、ID1は約2mm未満であり得る。好ましくは、ID1は、サイフォンをその長さの全体又は一部にわたって保持するのに十分なほど小さい。
【0093】
いくつかの実施形態では、ID2は約1.8~2.0mmであり得る。いくつかの実施形態では、ID2は約1.6~1.8mmであり得る。いくつかの実施形態では、ID2は約1.4~1.6mmであり得る。いくつかの実施形態では、ID2は約1.2~1.4mmであってもよい。いくつかの実施形態では、ID2は約1.0~1.2mmであってもよい。いくつかの実施形態では、ID2は約0.8~1.0mmであり得る。いくつかの実施形態では、ID2は約0.5~0.8mmであり得る。いくつかの実施形態では、ID2は約0.2~5mmであり得る。いくつかの実施形態では、ID2は約4mm未満であり得る。一部の実施形態では、ID2は約5mm未満であり得る。いくつかの実施形態では、ID2は約6mm未満であり得る。一部の実施形態では、ID2は約2mmより大きくてもよい。いくつかの実施形態では、ID2は約6mm未満であり得る。一部の実施形態では、ID2は約2mmより大きくてもよい。いくつかの実施形態では、ID2は約5mmより大きくてもよい。いくつかの実施形態では、ID2は約6mmより大きくてもよい。
【0094】
一部の実施形態では、L1は約5cm未満であり得る。一部の実施形態では、L1は約10cm未満であり得る。一部の実施形態では、L1は約5~10cmであり得る。一部の実施形態では、L1は約10~20cmであり得る。一部の実施形態では、L1は約20~30cmであり得る。一部の実施形態では、L1は約30~50cmであり得る。いくつかの実施形態では、L1は約50cmより大きくてもよい。いくつかの実施形態では、L1は約1cmより大きくてもよい。いくつかの実施形態では、L1は約2cmより大きくてもよい。いくつかの実施形態では、L1は約5cmより大きくてもよい。いくつかの実施形態では、L1は約10cmより大きくてもよい。
【0095】
一部の実施形態では、L2は約50~150cmであり得る。
【0096】
一部の実施形態では、ID1とID2は同一であってもよい。
【0097】
図11Eは、通気管腔1184が流体収集バッグ1020と直接流体連通するカテーテルシステムの実施形態を示す。この実施形態では、感知機能を含むコントローラが存在しても存在しなくてもよい。この実施形態では、流体収集バッグ内の通気孔1142を使用して尿ドレナージ管腔1012を通気孔する通気孔管腔によってエアロックが回避される。通気孔は、追加的又は代替的に、通気孔管腔に沿ったどこにあってもよい。通気管腔は、ドレナージ管腔の長さの一部又は全部に亘っていてもよい。尿ドレナージ管腔は、弁1136を含み得る接続点1192でドレナージバッグに流体接続する。通気管腔は、接続点1194でドレナージバッグに接続する。この実施形態、及び潜在的に他の実施形態の流体収集バッグ1020は、流体収集バッグが接続点1194の周りでつぶれないことを保証するために、剛性又は半剛性部分1196を含んでもよい。この実施形態は、弁1186を含んでも含まなくてもよい。通気管1184は、ドレナージチューブシステムに組み込まれてもよく、フォーリーカテーテルのバーブとドレナージバッグの接続点1194で接続される追加部品であってもよい。
【0098】
図12Aは、
図10Aに示されたシステムとは対照的に、圧力バルーンが利用されない、
図10Aに示されたものと同様のセンシングフォーリーカテーテルシステムの実施形態を示す。その代わり、圧力はセンシングフォーリーカテーテルの尿管腔(又は他の管腔)を介して膀胱内で測定される。この実施形態では、圧力管腔1202は、通気孔1204、又は患者の外部のシステムの他の場所に接続され、少なくとも定期的に、カテーテルのドレナージ/尿管腔と流体連通する。この実施形態では、センシングフォーリーカテーテルシステムは、任意の標準フォーリーカテーテルとともに使用されてもよい。なお、センシングフォーリーカテーテルシステムの任意の実施形態は、標準フォーリーカテーテルとともに使用できる。
図12に示されるシステムは、膀胱内の圧力測定が望ましくない場合、圧力管腔1202なしで、標準フォーリーカテーテルとともに使用されてもよい。
【0099】
図12Bは、IAP又は温度の測定を含まないセンシングフォーリーカテーテルシステムの実施形態を示す。なお、この実施形態は依然としてエアロック防止機能を有する。
【0100】
図13は、
図12に示されるものと同様のセンシングフォーリーカテーテルシステムの実施形態を示す。この実施形態では、弁1302を利用して、圧力管腔1202を尿ドレナージ管腔に周期的に閉じることができる。弁は、圧力測定が行われるとコントローラ又は手動で開き、膀胱の圧力の読み取りが不要な場合はコントローラ又は手動で再び閉じることができる。
【0101】
図10A、10C、11、及び12は、ドレナージチューブ内のサイフォン又はポンプ機構のいずれか又はその両方が原因で陰圧が発生した場合に空気がドレナージチューブに入ることを可能にするドレナージチューブの患者端付近に通気孔を含むセンシングフォーリーカテーテルシステムの実施形態を示す。通気孔/フィルタがないと、そのような陰圧は、膀胱の粘膜内層に引き起こされる外傷などの吸引外傷につながる可能性がある。なお、これらの実施形態は、通気孔が空気を排出するがドレナージ管に入ることはできない装置とは異なる。
【0102】
尿ドレナージ管腔は、好ましくは、管腔内の液体が管腔と円周接触を維持し、シールを形成し、ポンプ機構が作動したときに液体が前進できるように、約0.25インチ未満の内径を有する。ポンプ機構が故障した場合、流れの閉塞を防ぐために、複数のドレナージ管腔が存在する場合がある。これらの実施形態では、ドレナージ管腔は、好ましくは、一般に空であり、これは、ポンプ機構の連続的な作動を必要とし得る。あるいは、体積の測定を行う前にポンプ機構を作動させて、すべての液体が排出されたことを確認し、デバイスの所要電力を削減することができる。
【0103】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、身体器官内の圧力が一定のままである間にドレナージラインの圧力スパイクを検出することを含み、ドレナージラインの圧力が身体器官の圧力と等しくなるまで、ドレナージラインを通して陰圧を作り出すためにポンプを使用する。
【0104】
一実施形態では、通気孔は、患者からの液体の流れに対する抵抗よりも大きい空気流に対する抵抗を有し、その結果、空気が通気孔を通って入る前に患者内の液体の蓄積がドレナージラインにパージされる。例えば、尿排出の場合、通気孔を通る気流の抵抗が患者のカテーテルを流れる尿の抵抗よりも大きい限り、通気孔から空気が入る前に完全な膀胱がドレナージラインに排出される。しかし、吸引外傷を最小限に抑えるために、この要件を満たす一方で、通気孔は空気流に対して可能な限り小さい抵抗を有することが好ましい。
【0105】
別の実施形態では、通気孔は空気流に対する抵抗が非常に少ないため、膀胱は吸引からさらに保護され、コントローラポンプはより頻繁な間隔、例えば1分ごと、5分ごと、又は10分間、ドレナージラインに尿が入らないようにする。ポンプが作動すると、尿が排出されなくなったことを検出するまで作動し続け、膀胱が完全に空になったことを示す。あるいは、ポンプは、例えば約30秒、約1分、約3分、約5分、又は約10分などの設定された期間にわたって動作し得る。コントローラポンプは、インターバル間で不活性であるか、エアロッククリアランスインターバル間で「バックグラウンドバキューム」(エアロッククリアランス圧力よりも低い陰圧)を産生する場合がある。
【0106】
使用されるポンプ機構は、蠕動ポンプ、ダイヤフラムポンプ、ベーンポンプ、インペラーポンプ、遠心ポンプ、又はその他の適切なポンプを含むが、これらに限定されない、適切な機構である可能性がある。ポンプは、壁のコンセント、バッテリー、人力、又はその他の適切な電源から電力を供給される。いくつかの実施形態では、真空は約0~-50mmHgの範囲にある。あるいは、陰圧は、しばしば病院の部屋に存在する壁の真空によって供給されてもよい。ポンプ機構には、収集容器に直接適用される蠕動様ポンプ又は吸引が含まれる場合がある。ポンプは、ドレナージリザーバの患者側に配置することができ、又は、ポンプは、好ましくは、ドレナージリザーバ/カセットの非患者側に配置し、リザーバが患者とポンプの間にあるようにする。適切に機能するために、ポンプは、ドレナージチューブ内の最大液柱高さに等しい陰圧を産生できることが望ましい。これは、ドレナージチューブの長さの半分である場合がある。最大長が60インチの尿ドレナージチューブの場合、必要な最大陰圧は約30インチH2O、つまり56mmHgになる。
【0107】
他の技術を使用して、脈動の機械的、振動音響、熱、振動、ピンチ、ローリング、又は電磁刺激を含むチューブ及び/又はシステムを介して尿を促し、ドレナージラインとその中の体液の動きの少なくとも一方を引き起こすことができる。いくつかの実施形態では、ローリング刺激は、複数の内腔が連続して圧縮されることを含み、その結果、内腔がすべて同時に圧縮されることは決してない。
【0108】
別の実施形態において、エアロックは、より堅いねじれ抵抗チューブ内にある折り畳み可能なドレナージチューブによって除去される。
図14Aは、そのような実施形態を折り畳まれていない形態で示している。内側折り畳み式ドレナージチューブ1402は、外側ねじれ抵抗チューブ1404の内側にある。
図14Bは、内側折り畳み式チューブが折り畳まれた実施形態を示す。折り畳みチューブとねじれ防止チューブの間の空間に陽圧を加えるか、折り畳みチューブの内側に陰圧をかけるなどして、ドレナージチューブは定期的に折り畳まれる。次に、ドレナージチューブがつぶれると、尿が患者から収集容器に向かって押し出される。
【0109】
別の実施形態では、ドレナージ管腔清掃機構は、約0.25インチ未満の内径を有するチューブを備え、その結果、エアポケットはチューブの長さを超えて移動することができない。これは、小さなチューブ内の表面張力により可能になり、チューブの一端が大気に閉じられたときの流体の動きを防ぐ(膀胱の場合のように)。したがって、ドレナージチューブは常に尿で満たされたままであり、尿は非圧縮性であるため、産生される尿の各容積に対して同じ量の尿がドレナージチューブから排出されなければならない。別の実施形態では、内径は0.125インチ未満である。別の態様では、前記ドレナージチューブはサイフォンとして作用し、膀胱に少量の安全な量の真空を提供する。あるいは、小さな管腔ドレナージチューブを使用すると、通気孔/弁を介して空気を定期的に管腔に入れることができる。ポンプによって引き起こされる陰圧はこれを促進するかもしれない。ポンプによって引き起こされる陰圧のために、尿は収集リザーバに流れ続け、エアロックを防ぐ。
【0110】
また、小径のチューブを使用すると、従来技術と比較して、ドレナージチューブ内の残留尿の量が少なくなる。尿が患者の膀胱から収集容器へより速く移動できるため、残留容量が少ない方が優先される。この輸送の速度は、より最近生産された尿を測定するために重要である。これは、尿が膀胱から収集容器に運ばれるのにさらに時間がかかるため、尿の産生率が低い患者にとって特に重要である。例えば、標準ドレナージチューブを使用して尿を10mL/hrのみ産生する患者(約40mLの残留量)の場合、収集容器での尿の測定は、真の尿産生を4時間遅らせる。対照的に、より小さなチューブ(約5mLの残留容量を持つチューブなど)では、測定は真の生産を30分遅らせるだけである。通気孔/弁の有無にかかわらず、小径管腔を利用する一部の実施形態では、ドレナージラインに陰圧を供給するためのポンプは不要である。
【0111】
図15は、患者に一定の陰圧を加える胸部チューブ又は他のドレナージチューブをドレナージするのによく適した装置の実施形態を示す。これらの実施形態はまた、膀胱から尿又は他の空洞から流体を排出するのに適している場合がある。胸腔チューブドレナージに関連して開示された特徴のいずれも、膀胱ドレナージ又は他の体腔ドレナージに適用されてもよい。液体は、収集管1582に接続するドレナージ管腔1585を通して患者から排液される。ドレナージは、例えば吸引チューブ1583を病院の壁の吸引に取り付けることにより、収集容器1582に陰圧をかけることにより支援される。吸引は、本明細書の他の場所で開示されているポンプなど、他の方法でも適用され得る。空気は、所望の陰圧に等しいクラッキング圧力を有する弁1584を通ってドレナージ管腔1585に入る。正しいクラッキング圧力(例えば、-15~0mmHg、又は10mmHg)を選択すると、病院の壁の吸引/ポンプが収集容器1582で十分な吸引を産生できる限り、患者にかかる圧力はこの圧力のままになる。好ましくは、サイフォンを維持しながら、胸部チューブの排出に使用されるドレナージ管腔はできるだけ大きい。適切な内径には、約1/4インチ、約5/16インチ、又は約3/8インチが含まれるが、これらに限定されない。
【0112】
図16は、患者に一定の陰圧を加える胸部チューブ又は他のドレナージチューブを排液するのによく適した装置の別の実施形態を示す。液体は、ドレナージ管腔1688を通して患者から排出され、ポンプ機構1686を使用して陰圧が加えられる。圧力センサ1687は、患者側のドレナージチューブ内にあり、それによって患者にかかる圧力を測定する。センサ1687によって得られた測定値は、ポンプ機構1686を制御するコントローラに送り返され、ポンプ機構1686によって産生される圧力は、センサ1687(及び患者)の圧力を所望のレベルに保つために調整される。圧力センサ1687は、システム内の別の場所に配置することもできる。センサは、チューブの患者側の圧力を受動的にモニタリングするためにも使用でき、臨床医に適用されている吸引レベルに関する情報を提供する。
図16は、ドレナージリザーバの患者側のポンプを示しているが、代替として、リザーバが患者とポンプの間にあるように、ポンプはドレナージリザーバの反対側にあってもよい。
【0113】
胸腔チューブの排出に使用される本発明の別の実施形態では、臨床医に胸腔チューブの排出状態に関する情報を提供するために、排出される流体の体積が測定される。この測定は、任意の適切な手段、特に尿量を測定するために記載されている手段によって達成することができる。
【0114】
エアロックを排除することに加えて、上で詳述したエアロッククリアランス設計のいくつかは、尿ドレナージラインから堆積物と血栓を効果的に除去することがわかっている。これらの問題は、現在の尿ドレナージチューブ、特により小さな管腔ドレナージチューブ及びドレナージバッグでのモニタリング技術を伴うものを悩ませ、本発明は、これらのドレナージブロック破片及び凝血塊の除去を自動化することにより最新技術の進歩を提供する。この機能は、フォーリーの先端のバルーンで、又は膀胱と流体連通して圧力検出と組み合わせて使用する場合に特に便利である。これにより、膀胱内の圧力と真空のモニタリングが可能になり、血餅/閉塞が解消されるまで、実際の膀胱の圧力に基づいてより積極的な圧送が可能になる。この圧力/真空センシングがないと、膀胱粘膜が過度の真空にさらされるため、ドレナージチューブ内の液体の圧送により、吸引外傷などの膀胱に臨床的後遺症が発生する場合がある。
【0115】
図17に示される別の実施形態では、ガスサンプリング管腔1790は、ドレナージチューブの長さにわたって延び、尿と接触したままであるガス透過性で液体不透過性のフィルタ1791で終わり、そのメニスカス1792はフィルタより患者から遠い。酸素、二酸化炭素、又はその他のガスの測定が必要な場合、ガスサンプリング管腔1790内の空気は、分析のためにドレナージ装置のベース1789に引き込まれる。この構成により、
図10から16に示されるようなドレナージラインへの空気の流入を可能にする装置の実施形態でも、正確なガス分析が可能になる。
【0116】
図18に示すように、活性の通気システムは、通気孔1802、ドレナージライン1804、収集容器1806、及びポンプ1808を含む。ドレナージラインの通気孔側は患者に接続されている。一実施形態では、排出される流体は尿であり、尿カテーテルへの接続が行われる。流体は患者からドレナージラインを通って流れ、収集容器に収集される。この実施形態のポンプは、ドレナージラインに直接作用するのではなく、収集容器に真空を引いている。ポンプは、収集容器に陰圧をかけることで排水を促進し、ドレナージラインに液体を押し込む。好ましくは、収集容器は、ポンプが陰圧をかけるときに一定の容積を維持するために剛性である。ドレナージチューブの患者側の通気孔は、気体(好ましくは空気)の透過を可能にするが、液体の透過を防ぐ通気孔であることが好ましい。それにより、通気孔は、大気がシステムに入ることを可能にすることにより、患者に実質的な陰圧がかかるのを防ぐ。そのような機構は、例えば膀胱壁での吸引外傷を防ぐ。
【0117】
このシステムのポンプは、蠕動ポンプ、ダイヤフラムポンプ、又は遠心ポンプを含むが、これらに限定されない、ガスをポンピングするための任意の適切なポンプとすることができる。適切に機能するために、ポンプは、ドレナージチューブ内の最大液柱高さに等しい陰圧を産生できることが望ましい。これは、ドレナージチューブの長さの半分である場合がある。最大長が60インチの尿ドレナージチューブの場合、必要な最大陰圧は約30インチH2O、つまり56mmHgになる。
【0118】
図19に示すように、体液を排出するための活性の通気孔システムには、追加の通気孔がある。そのような通気孔の1つである通気孔1962は、収集容器上に配置することができ、空気が収集容器から逃げることを可能にする。これにより、システムに流入する各体積の流体を、システムから流出する同じ体積の空気で相殺できるため、新しい流体が容器に入る際の圧力の蓄積が防止される。別のそのような通気孔、通気孔1964は、収集容器とポンプの間に位置してもよい。この通気孔は、気体(できれば空気)の透過を可能にするが、細菌やウイルスが収集容器とドレナージチューブに出入りするのを防ぐために、液体の透過を防ぐ。好ましくは、この通気孔は無菌グレードであり、通過する空気は無菌であると見なされることを意味する。通気孔(ここには不図示)は、ドレナージラインの患者側にある場合とない場合がある。
【0119】
図20に示すように、圧力オフセットは、収集容器の1つの通気孔で達成できる。この場合、通気孔、通気孔2072は、前述のように収集容器とポンプの間にあるが、追加の弁2074により、陽圧の存在下で空気が収集容器から逃げることができる。この弁は、システムから空気を排出することはできるが、システムに入ることはできない。ポンプが作動すると、一方向弁が閉じ、空気を収集容器から引き抜く必要があり、これにより、収集に陰圧が発生し、ドレナージラインを通る流体の流れが促進される。通気孔は、ドレナージラインの患者側に存在する場合と存在しない場合がある(ここでは不図示)。
【0120】
感染の検出
【0121】
図21は、UV/光/ラマン分光法を使用して尿中の細菌、血液及び/又は他の物質を検出するためのセンシングフォーリーカテーテルシステムに含まれ得る収集容器、チャンバ又はカセットの実施形態を示す。カセット2100は、好ましくは剛性である容器壁2102を含む。尿2106はカセットに収集される。尿の収集が速すぎる場合、又はカセットを空にするのに何らかの障害がある場合、オーバーフロー領域2104により、過剰な尿がカセットから排出される。カセット2100は、好ましくはカセットの外壁に組み込まれる光学的に透明な区画2110と、好ましくはカセットの内壁にあるか、又は組み込まれる反射器区画2112とを含むことができる。ここで「光学的に透明」とは、光学的に透明な部分を通して必要な分析波長の光を透過できることを意味する。光学的に透明な部分は、ポリメチルメタクリレート、ポリスチレン、アクリル、石英などの紫外線を透過できる材料でできていることが好ましい。適切なUV波長が光学的に透明な部分を透過できるように、壁の厚さは十分に薄い必要がある。例えば、光学的に透明な区画の厚さは、約0.5mmから約0.7mmの厚さであり得る。あるいは、光学的に透明な部分の厚さは、約0.5mmから約0.6mmの厚さであってもよい。あるいは、光学的に透明な部分の厚さは、約0.6mmから約0.7mmの厚さであってもよい。あるいは、光学的に透明な区画の厚さは、約0.7mm未満の厚さであってもよい。
【0122】
UV/光送信機/受信機2108は、適切な波長のUV又は他の波長の光を、光学的に透明な区画2110、カセット内の尿を通して、カセット内の反射器2112に送信する。UV/光送信機/受信機は、センシングフォーリーカテーテルシステムのコントローラコンポーネントに組み込まれるか、又は接続されてもよい。光は反射してUV/光受信機に戻り、信号分析のために収集したデータをコントローラに送信する。複数のUV/光波長を同時に又は連続して分析できる。UV範囲内の光に加えて、UV範囲外の光を使用することができる。光の送信と受信の間の物理的に尿の量は、尿中の1つ又は複数の物質の濃度を反映するより強い信号のために最大化されることが好ましい。送信機/受信機は、
図21に示すように、又はカセットの他の領域に配置できる。受信機は送信機とは異なる場所にあってもよく、反射板は必要でなくても存在していなくてもよい。カセット内の尿は頻繁に空になるため、UV/光吸収の測定値は時間の経過とともに収集でき、尿中の1つ以上の物質のレベルの増加及び/又は減少は、本質的に、又はほぼ、リアルタイムで追跡することができる。これは、尿路感染症やカテーテル関連尿路感染症(CAUTI)など、感染を迅速に特定する上で特に重要である。UV/光の検出は、ドレナージチューブ、別のサンプリングエリアなどを含むフォーリーカテーテルシステムのセンシングの他の場所で実行することもできる。
【0123】
感染は、UV/光分光法を使用して、細菌、赤血球、血漿及び/又は白血球の尿を分析することで特定できる。
図22は、尿中の大腸菌、赤血球、血漿のさまざまな吸収波長を示している。尿中の血漿/白血球及び/又は細菌の存在は両方とも感染の指標である。赤血球の存在は、感染の指標ではない場合がある。したがって、尿中の赤血球と細菌/血漿/白血球を区別することが望ましい。赤血球の分光学的特徴は、約414nmの波長で細菌又は血漿/白血球のいずれとも著しく異なるため、赤血球の信号は細菌及び/又は血漿/白血球細胞の信号から分離することができ、感染は、この波長の光の吸収を分析することによって特定できる。260nmと280nmの波長では血漿と細菌との特徴が互いに異なるため、これらの波長を使用して血漿と細菌とを区別できる。ただし、感染中は血漿と細菌との両方が存在する可能性がある。
【0124】
他の波長及び他の技術を使用して、尿又は収集/排出された体液中のさまざまな物質を検出することもできる。濁度の検出には、UV/光吸収も使用できる。色素又は薬物又は反応性物質をシステムに導入するか、システムの内部、カセットなどにコーティングして、尿中の物質と反応させて分析を支援することもできる。任意のタイプのセンサを使用して、収集された尿の物質又は品質を断続的又は継続的にリアルタイムで検出できる。例えば、尿中のマグネシウムを検出するセンサは、子癇前症又は子癇症の診断に使用できる。乳酸センサを使用して、尿中の乳酸(又は乳酸脱水素酵素)を検査できる。尿中の乳酸の同定は、敗血症の初期指標かもしれない。乳酸センサには、酵素乳酸センサが含まれてもよい。例えば、Weber(Weber J.,Kumar A., Kumar A., Bhansali S.Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes.Sens.Actuators,B,Chem.2006;117:308-313),and/or Mo (Mo,JW,Smart,W,Lactate biosensors for continuous monitoring.Front Biosci.2004 Sep 1;9:3384-91)、両方とも参照によりその全体が本明細書に組み込まれ、使用できる。
【0125】
適切なセンサを使用して、収集された尿から薬物又は薬物残留物を検出できる。感知される可能性のある収集された尿の他の物質又は特性には、色、透明度、臭気、比重、浸透圧、pHタンパク質、グルコース、クレアチニン、亜硝酸塩、白血球エステラーゼ(WBCエステラーゼ)、ケトン、赤血球又は白血球、ギプス、結晶、細菌、酵母細胞、寄生虫、扁平上皮細胞などが含まれる。
【0126】
CAUTI又は感染は、分光法、光波長などを用いて尿を分析し、汚染物質の早期発見すること、吸引による膀胱外傷を軽減すること、膀胱の尿閉を減少させること、抗菌コーティング又は銀又はその他の材料などの埋め込み材料の使用により細菌又は微生物の存在を減少させること、膀胱内の吸引を減らすことにより膀胱内の圧力測定の精度を向上させること、システム内のエアロック及び膀胱内部の吸引を減らすことにより尿排出量測定の精度を向上させることを含むいくつかの方法により特定及び/又は減少させることができる。膀胱内の吸引によって引き起こされる圧力スパイクは、約-20mmHg未満の圧力測定値として定義できる。あるいは、膀胱内の吸引によって引き起こされる圧力スパイクは、約-10mmHgから約-20mmHg未満の圧力測定値として定義されてもよい。あるいは、膀胱内の吸引によって引き起こされる圧力スパイクは、約-10mmHg未満の圧力測定値として定義できる。
【0127】
CAUTIは、UV光、又は任意の有効波長の光、又は放射線を使用して、尿及び/又はシステム内の細菌を減らすことによっても減らすことができる。カセット内又はシステム内の別の場所で尿を殺菌する紫外線を使用して、尿を処理することができる。例えば、UV光は、例えば
図101Aに示すように入口点弁10104で、又はカセット内、又はカセットの上方、例えばカセットの上のドレナージチューブで、カセットに入るときに尿を殺菌する場合がある。
【0128】
図23は、バッフル又はフラップ2302を含むカセットの実施形態を示す。このバッフル/フラップは、点線の矢印で示すように、カセットの内壁に沿って尿が吸い上げられるのを防ぐためのものである。バッフルは、尿がバッフルのポイントを越えて吸い上げられるのを防ぎ、尿が下の測定リザーバに戻るようにする。
【0129】
プライミング
【0130】
特定の生理学的ソースからの圧力プロファイル(腹膜圧、呼吸数、心拍数、相対的な肺一回換気量、心拍出量、相対的な心拍出量、絶対心臓拍動量など)からの高解像度信号を達成するのに特に有利な開示技術の態様)は、圧力感知バルーンの膜によって表される圧力インターフェースの両側の圧力のバランスを調整及び維持することに関連してモニタリングされ得る。この圧力のバランスは、圧力差と呼ばれる場合がある。いくつかの実施形態では、好ましい圧力差はゼロ又はほぼゼロである。いくつかの実施形態では、好ましい圧力差は異なる値であってもよい。バルーンの外面(膀胱の内面に面している)に作用する圧力は、患者の生理機能に応じて変化する。バルーンの内面(流体柱と流体連通している)の圧力は、流体の漏れと不完全な封止のために劣化しやすい。
【0131】
センシングフォーリーカテーテルを最初に挿入すると、一般に、膀胱内から圧力界面に加えられる圧力の第1近似値まで、外部圧力が流体柱に圧力界面に対して加えられる。圧力インターフェースで測定される圧力信号は、圧力差がほぼゼロのときに最大の振幅を有する。したがって、圧力信号の振幅を使用して、流体界面から圧力界面に対して加えられる圧力を調整することができる。界面に対して適切な量の圧力を加えるこのプロセスは、流体柱のプライミング又はバルーンのプライミングと呼ばれる場合がある。上記のように、圧力インターフェースの両側の圧力が変化する可能性があるため、流体カラムは時々プライミング又は再調整する必要がある。再プライミングの必要性は、圧力信号プロファイルの最大振幅を達成するために圧力の小さな変化をテストすることでモニタリングできる。あるいは、定期的にコントローラを介してプライミングを自動的に行うことができる。
【0132】
開示されたシステム及び方法の実施形態は、コントローラによる自動圧力調整を含む。したがって、調整システムは、感知された圧力信号をモニタリングし、必要に応じて空気又は流体の体積を追加又は除去することにより、バルーンを膨張させる最適な目標圧力及び体積を検出できる。例えば、カテーテルの挿入時に、バルーンの体積と圧力とを調整する圧力調整回路は、生理学的圧力を検出するまでバルーンを膨張させることがある。その速度を感知すると、圧力調整コントローラは、感知された波の振幅が最大になるまで、手順のルーチン化又はプログラムされたシーケンスで微量の空気を追加又は削除する。最適に調整された圧力(バルーンの圧力と容積として現れる)と検知された生理学的圧力プロファイルの間の制御フィードバックループは、生理学的データの忠実度の高い測定を保証するために、必要に応じて継続的に繰り返される。いくつかの実施形態では、生理学的データが送信及び表示されている間に、明白な背景で(in the apparent background)自動圧力調整が実行されてもよい;他の実施形態では、システムは、圧力調整シーケンス中に生理学的データの送信を一時停止してもよい。
【0133】
開示された技術の実施形態は、プライミング操作でガスを送達できるガス送達システムを含み、それにより、圧力インターフェースの近位に面する側面に近位の流体カラムに圧力を加えることができる。圧縮空気や液体などの気体源は、貯蔵タンクに保持される。CO2を例にとると、CO2は、タンク内の圧力(例えば、約850psiの圧力)を約1psiから約2psiの範囲まで下げることができる圧力調整器を介して、貯蔵タンクから制御可能に放出される。放出されたガスは、約2.5psiに設定されたフィルタと圧力開放弁を通過する。圧力安全弁は、上流の調整器が故障した場合に2.5psiを超えるレベルのガスの流れを防ぐ安全機能である。次に、圧力安全弁を出るCO2は、最初のソレノイド制御充填弁を通過してカテーテルラインに入り、最終的に圧力検知インターフェイスを含むバルーンを充填する。バルーン内の圧力が30mmHgのレベルまで上昇すると、最初のソレノイド制御弁が閉じる。第1の弁の遠位にある第2のソレノイド制御弁は、カテーテルからの圧力を目標圧力まで解放することができるドレナージ弁として動作する。あるいは、呼吸波形が検出されるまでドレナージ弁を作動させ、その後、バルーンを最適に呼び水して弁を閉じる。ドレン弁は、電圧又はパルス幅変調(PWM)に基づいて動作する比例制御の対象となる場合があり、これにより、目標圧力に到達するために排水速度が十分に遅くなり、オーバーシュートする前に弁を閉じることができる。あるいは、蠕動ポンプ又は他の空気ポンプを利用して、バルーンを室内空気で満たしてもよい。
【0134】
図24は、いくつかの実施形態における圧力バルーンプライミング方法を表すグラフを示している。ここでは、少量の流体バースト(約0.3cc)が圧力感知バルーンに追加され、バルーン内の圧力が測定される。バルーン内の測定された圧力が安定した圧力2401に落ち着くまで、少量の流体バーストが導入される。この遷移は、変曲点2402に示されている。測定された圧力が急速に増加し始めるまで、ボリュームバーストがこのポイントを過ぎて導入される(例えば、曲線の勾配2404が約2mmHg/10msより大きい場合)。この変曲点は2406に示されている。この時点で、バルーン内の圧力は、安定した圧力2401の周囲又はわずかに上の圧力まで低下する。この圧力は、いくつかの実施形態では、圧力を測定するプライム圧力を表す。このプロセスは、
図27のフローチャートにも示されている。
【0135】
あるいは、圧力バルーンのプライミングには、圧力バルーンを0mmHgをはるかに超えて加圧してから、少量の空気/ガス/流体を除去し、圧力バルーンの圧力をモニタリングすることが含まれる。圧力バルーンの圧力は、最適なプライミング圧力に近づくにつれて安定する。この最適な圧力を決定するために、少量の空気が圧力バルーンから除去されるときに圧力測定が行われ、後続の圧力測定値が本質的に同じ場合(互いに約2mmHg以内)、バルーンは最適なプライミング圧力になる。2つの後続の測定値が本質的に均等でない場合、圧力バルーンは0mmHgをはるかに超えて再加圧され、プロセスが繰り返される。圧力バルーンから少量の空気が除去されるときに取得される圧力測定値は、圧力測定値に対する呼吸の影響を補正するために、約5~約15秒にわたって取得される。いくつかの実施形態では、圧力測定が行われる前に、少量の空気/ガス/流体が圧力バルーンから除去された後、圧力信号は短い安定化期間を必要とし得る。
【0136】
少量の液体の噴出は、約0.2ccから約0.4ccになる。少量の液体の噴出は、約0.1ccから約0.5ccである場合がある。少量の液体の噴出は、最大で約0.5ccである。少量の液体の噴出は、最大で約1.0ccである。
【0137】
図25は、いくつかの実施形態における圧力バルーンプライミング方法を表すグラフを示す。この方法は、
図24に示す破裂がなく、圧力感知バルーン内の圧力がよりスムーズに増加することを除いて、
図24に示す方法と類似している。液量が圧力検知バルーンに追加され、バルーン内の圧力が測定される。バルーン内の測定圧力が安定した圧力2505に落ち着くまで、バルーンの圧力を上げる。この遷移は、変曲点2506に示されている。バルーンの圧力は、測定された圧力が急速に増加し始めるまでこのポイントを超えて増加する(例えば、曲線の勾配2510が約2mmHg/10msより大きい場合)。この変曲点は2508で示されている。この時点で、バルーン内の圧力は、安定した圧力2505の周囲の圧力又はわずかに上の圧力まで低下する。この圧力は、いくつかの実施形態では最適な、又はプライム圧力を表す。このプロセスは、
図28のフローチャートにも示されている。
【0138】
図26は、本発明の特定の実施形態のバルーンプライミングプロセスのフローチャートを示す。開示されたシステム及び方法の実施形態は、コントローラによる自動圧力調整を含む。したがって、調整システムは、感知された圧力信号をモニタリングし、必要に応じて空気量を追加又は除去することにより、最適な目標圧力と体積を検出してバルーンを膨張させることができる。例えば、カテーテルを挿入すると、バルーンの体積と圧力を調整する圧力調整回路が生理学的圧力を検出するまでバルーンを膨張させる。その速度を感知すると、圧力調整コントローラは、感知された波の振幅が最大になるまで、定期的な順序で微量の空気又は流体(約0.3cc)を追加又は削除する。最適に調整された圧力(バルーンの圧力と容積として現れる)と検知された生理学的圧力プロファイルの間の制御フィードバックループは、生理学的データの忠実度の高い測定を保証するために、必要に応じて継続的に繰り返される。いくつかの実施形態では、生理学的データが送信及び表示されている間に、明白な背景で(in the apparent background)自動圧力調整が実行されてもよく、他の実施形態では、システムは、圧力調整シーケンス中に生理学的データの送信を一時停止してもよい。
【0139】
微量の空気又は液体は、約0.2ccから約0.4ccである場合がある。微量の空気又は液体は、約0.1ccから約0.5ccである場合がある。微量の空気又は液体は、最大で約0.5ccである。微量の空気又は液体は、最大約1.0ccになる場合がある。
【0140】
いくつかの実施形態では、バルーンのプライミングは、システムの特性に基づいてもよい。圧力バルーンは、超音波トランスデューサ、圧力ポンプ、システムの抵抗、圧力バルーンなどを含むシステムを特徴付けるために、1、2回以上膨らませることができる。その時点での特定のシステムの特性を決定するために圧力バルーンがある範囲の圧力を超えて加圧されてもよい。この情報は、圧力バルーンの膨張圧力を最適化するために使用される。
【0141】
ループコントローラ
【0142】
センシングフォーリーカテーテルシステムやその他の手段で測定された特定の患者パラメータは、医療機器による患者の治療の影響を受ける。
【0143】
ループコントローラをセンシングフォーリーカテーテルシステムのコントローラと統合して(同じデバイス又は別のデバイスで)、患者のパラメータを解釈して、患者の治療を制御できる。
【0144】
例えば、IAPを使用してIV注入速度を制御できる。IAPが高くなりすぎると、IAPが許容範囲に戻るまで注入速度が低下又は停止する場合がある。相対的な一回拍出量及び/又は一回拍出量の変動(呼吸周期中に膀胱などで見られる心臓パルスのサイズの変動)と組み合わせたIAPは、過剰な液体と相対的なストローク量の増加の指標としてIAPを使用したIV輸液又は血液製剤注入の優れた制御及び追加の液体が必要であることの指標としてストローク量の変動性の減少を可能にする。尿排出量を制御ループにさらに追加して、尿排出量が戻ったときに体液状態が回復したことを示す指標を提供してもよい。心拍数と呼吸数とを組み合わせて、薬物注入(薬物の種類、注入速度、頻度、投与量など)を制御することができる。このようにして、薬物を使用して、患者をより安定した状態にすることができ、これは、心臓と呼吸数とによって決定される。IAP及び呼吸数は、人工呼吸器又は人工呼吸器を制御するためにも使用できる。IAPが上昇すると、人工呼吸器によって供給される呼吸終末陽圧(PEEP)も上昇して、この圧力を克服する。換気が不十分であるという指標は、組織の酸素化及び/又は自然呼吸数で見ることができ、これは機械的換気の根底にある信号として見ることができる。この信号は、機械的換気中に抽出するか、ループ制御器が機械的人工呼吸器を一時停止して、基礎となる呼吸数/呼吸駆動のより精密で正確な検出を可能にすることができる。このIAP、組織の酸素化及び/又は呼吸数は、患者の状態の悪化を医療提供者に警告するために使用され、及び/又は呼吸数、PEEP、%O2吸入及び他の設定を含む人工呼吸器設定の自動調整を提供するために使用される。理想的なシナリオでは、これらのパラメータをループコントローラで使用して、機械学習とアルゴリズム調整によって通知される方法で治療をモニタリング及び制御できる。これらはほんの一例であるが、多くの組み合わせが存在する。1つ以上のパラメータを使用して、1つ以上の治療装置を制御できる。
【0145】
図29は、患者環境におけるループコントローラの実施形態を示す。この例では、ループコントローラはセンシングフォーリーカテーテル2902から患者パラメータ入力を受信している。センシングフォーリーカテーテルは患者の膀胱2904にあり、保持バルーン2908と圧力センシングバルーン2910を含みる。センシングフォーリーカテーテルは本明細書中に開示される他のセンサを含んでもよい。
【0146】
センシングフォーリーカテーテル2902は、保持バルーン膨張管腔、圧力バルーン感知管腔、及び尿管腔を含む。圧力検知バルーン2910は、コントローラ2928に組み込まれ得る圧力トランスデューサ2920に接続される圧力検知管腔に接続される。尿管腔は、尿ドレナージチューブ2912に接続されている。尿ドレナージチューブは、尿量測定デバイス2916に接続され得る、又は本明細書に開示されるようにコントローラに組み込まれ得る尿リザーバ2914に入る。さらに、尿排出は尿ポンプ2918によって制御することができ、尿ポンプ2918は尿ドレナージチューブに配置するか、コントローラに組み込むか、又は本明細書の他の箇所で開示するようにコントローラの非患者側に配置することができる。
【0147】
この患者は、人工呼吸器マスク2922で示されており、人工呼吸器チューブ2924から供給される。呼吸ガスの流れ及び補給は、人工呼吸器2926によって制御される。
【0148】
ループコントローラ2928は、それぞれコネクタ2930、2932、2934、及び2936を介して、尿量測定デバイス2916、尿ポンプ2918、圧力トランスデューサ2920、及び人工呼吸器2926に接続される。コネクタは有線でも無線でもよい。あるいは、この実施形態及び他の実施形態では、尿量測定デバイス2916、尿ポンプ2918、及び/又は圧力トランスデューサ2920の一部又はすべてをコントローラ2928に組み込んでもよい。
【0149】
この例では、ループコントローラ2928は尿量測定デバイス2916及び圧力トランスデューサ2920から患者パラメータ入力を受け取り、これらのパラメータによって提供される情報を使用して、尿ポンプ2918及び人工呼吸器2926を制御できる。ループコントローラがセンシングフォーリーカテーテルから受け取る可能性のあるパラメータには、IAP、呼吸数、心拍数、1回拍出量、組織酸素化、組織灌流圧、温度、尿検体、尿排出量、及び本明細書中に開示されているものを含むその他のパラメータが含まれる。
【0150】
例えば、ループコントローラが患者のIAPが上昇していることを示すパラメータ情報を受信した場合、ループコントローラは人工呼吸器の灌流速度、圧力、又はその他のパラメータを制御できる。ループコントローラは、1つ以上の入力パラメータからのデータを組み込み、1つ以上の治療用医療機器を制御してもよい。例えば、受信されたIAP及び異常組織酸素化パラメータの上昇に基づいて、ループコントローラは、尿ポンプ2918を制御することにより、人工呼吸器2926の出力及び尿出力速度を制御し得る。
【0151】
ループコントローラは、引き続き患者パラメータをモニタリングし、それに応じて治療用医療機器を調整する。患者のパラメータが正常になると、治療医療機器の制御は、ループコントローラによって制御されるフィードバックループが閉ループになるように、それに応じて調整される。ループは、必要に応じて手動で調整することもでき、その場合、ループはオープンループ又はセミクローズループにすることができる。
【0152】
図30は、患者環境におけるループコントローラの別の例を示している。この例では、患者の腕の血管に静脈(IV)ライン3002がある。IV流体バッグ3004を上昇させて、IV流体がIVライン3002を介して患者に滴下及び/又は流入できるようにする。弁3006は、流体を自由に流すことにより患者へのIV流体の流量を制御し、流れを制限し、又は流れを停止する。ここで、弁3006は、接続3008を介してループコントローラ2928によって制御される。IV流体バッグ3004は、水和流体及び/又は薬物を含み得る。1つ又は複数のIVバッグが関与する場合があり、1つ又は複数の弁がIVバッグを制御する場合がある。ループコントローラは、ループコントローラによって受信された患者パラメータに基づいて、患者へのIV流体の流量と内容を制御することができる。
【0153】
図31は、患者環境におけるループコントローラの別の例を示している。この例では、患者は腹部に挿入されたドレナージライン3102を有する。腹部からの流体は、患者からレセプタクル3104に流れてもよい。流体の流れは、接続3108を介してループコントローラ2928によって制御されるポンプ3106によって制御されてもよい。ループコントローラは、受け取った患者パラメータに基づいて、ポンプ3106を介して患者から容器3104への流体の流れを制御することができる。例えば、IAPが異常に高い場合、ループコントローラは、ポンプ3106を制御することにより、患者からの体液除去の速度を上げるか、開始することができる。
【0154】
図32に、患者環境でのループコントローラの別の例を示す。この例では、患者の腕の血管に静脈(IV)ライン3202がある。薬物注入デバイス3204は、IVライン3202を介して患者への薬物の流量を制御する。複数の薬物注入デバイスを使用してもよい。ここで、薬物注入デバイス3204は、接続3206を介してループコントローラ2928によって制御される。薬物注入デバイス3204は、任意の適切な流体及び/又は薬物を含み得る。ループコントローラは、ループコントローラによって受信された患者パラメータに基づいて、患者への薬物の流れと内容を制御してもよい。
【0155】
これらの例は、ループコントローラで制御できる医療機器の一部を示しているが、任意の医療機器を使用できる。
【0156】
図33はループコントローラの詳細図である。ループコントローラ2928は、センシングフォーリーカテーテル又は他のデバイスから1つ又は複数の患者パラメータ入力を受け取ることができる。これらの入力には、尿排出量と尿量、膀胱からの圧力プロファイル、及びフォーリーカテーテル又はその他のデバイスからのセンサ情報が含まれるが、これらに限定されない。膀胱からの圧力プロファイル情報をさらに分析して、IAP、呼吸数、心拍数、1回拍出量、敗血症指数、AKI指数、及びその他の患者パラメータを決定できる。この分析は、ループコントローラ2928で、又は有線又は無線接続のいずれかによってループコントローラに接続されている別個のコントローラで実行されてもよい。接続は、インターネット、イントラネット、WAN、LAN、又はその他のネットワークを介して行うことも、Bluetooth(登録商標)、Wi-Fiなどを介してローカルで行うこともできる。
【0157】
ループコントローラは、1つ又は複数の入力を受け取り、データを分析して、治療装置の制御を変更する必要があるかどうかを判断する。患者のパラメータを目標範囲に収めるために、1つ又は複数の医療機器を制御できる。ひとたび患者の目標範囲が達成されると、ループコントローラは、制御された医療機器を標準状態に戻す。標準状態は、各医療機器ごとに異なり、患者ごとに異なる可能性がある。患者パラメータの目標範囲も同様に、患者ごとに、また患者の状態によって異なる。例えば、呼吸速度の目標範囲は、患者が鎮静されているかどうかによって異なる場合がある。
【0158】
本技術の実施形態は、心拍出量からのフィードバック又は感知された呼吸数に基づいて、静脈内輸液又は薬物注入速度を自動的に調整することもできる。そのような一実施形態では、呼吸速度が低くなりすぎると、患者制御鎮痛ポンプを停止することができる。このグループでは呼吸抑制が致命的となる可能性があり、この保護手段は過剰摂取を防ぐ。自動フィードバックシステムは、大量の蘇生処置においても有利である可能性があり、この場合、腹腔内圧に基づいて輸液を調整し、腹部コンパートメント症候群を防ぐために、アラートを鳴らし、腹腔内圧が上昇するにつれて注入速度を遅くすることができる。さらに別の自動化されたフィードバック機能は、人工呼吸器システムに直接フィードバックを提供して、換気ガスの最適な圧力を提供し得る。腹圧の増加の設定では、典型的な人工呼吸器の設定では、患者に十分な呼吸が提供されない。この実施形態からの腹腔内圧力フィードバックに基づく人工呼吸器設定の自動調整は、最適な患者換気を有利に提供し得る。本技術の実施形態は、他の診断測定の応用又は理解における修正としても適用され得る。例えば、腹部内圧が上昇すると、中心静脈圧が劇的に歪む場合がある。中心静脈圧報告システムによるこれらのデータへの直接アクセスを提供することにより、この重要な生理学的パラメータの自動修正と正確な報告が可能になる。本技術の実施形態は、心拍出量又は他のパラメータの増加又は減少に応じて、昇圧剤又は利尿剤などの活性剤をさらに含み得る流体の注入を含む治療を自動化する様々な他の方法で使用されてもよい。
【0159】
ループコントローラへのその他の入力及び出力には、栄養チューブ又は静脈経由で提供される栄養、創傷ドレナージ、糞便出力、汗出力、呼気蒸気出力などが含まれる。
【0160】
治療装置を直接制御することに加えて、ループコントローラ2928は、可聴アラーム、電子メールアラーム、テキストアラーム、ポケットベルアラームなどを含むアラームを鳴らしてもよい。ループコントローラ2928は、電子健康記録、その他のデータアーカイブシステム、又はその他のシステムへの情報の出力等のシステム統合のために他のシステムに出力を提供してもよい。ループコントローラ2928はまた、様々なEHR、EMR、又は他のシステムから入力を受信する場合がある。
【0161】
センシングフォーリーカテーテルシステムによって収集及び/又は分析されたデータの結果として、患者に医療が施されてもよい。この治療は、ループコントローラを介して自動的に投与される薬物療法である場合もあれば、伝統的な薬物療法、すなわち経口投与、注射などを介して手動で投与される場合もある。
【0162】
フォーリーカテーテルシステムの検出結果に基づいて、さらなる医療診断を実施することもできる。
【0163】
比重
【0164】
尿比重は、センシングフォーリーカテーテルを使用した圧力及び超音波測定を使用して測定できる。
図34は、体積の超音波及び圧力測定が液体密度とともにどのように分岐するかを示すプロットを示している。測定される液体は合成尿濃縮物で、比重は約1.100である。
【0165】
比重が1.000の液体の場合、2つの測定手法が較正され、同じ体積測定値が得られる。ただし、密度が増加すると、それらは発散し始める。V=A*h及びP=ρ*g*h、又はV=A*ρ*g/Pであるため、圧力により密度が増加すると体積測定値が増加する。超音波の場合、V=A*h、v=h*2/t、v=(E/ρ)^(1/2)であるため、V=A*(E/ρ)^(1/2)*t/2。
V:容積
A:断面積
h:液体の高さ
P:圧力
ρ:液体密度
g:重力
v:音速
t:音が反射する時間
E:液体の体積弾性率
【0166】
簡単に言えば、液体の密度が高くなると、圧力が高くなり、その測定値が大きく歪んでしまう。同時に、音はより速く伝わり、超音波測定値を低く歪ませる。それらがどれだけ発散したかを測定することにより、液体の密度を決定できる。これは、温度が変化していないことを前提としているが、温度をモニタリングして温度のばらつきを補正することもできる。超音波と圧力による体積測定は、温度測定と同様に、センシングフォーリーカテーテルを使用して実行できる。このようにして、コントローラと組み合わせたセンシングフォーリーカテーテルは、尿の比重を測定できる。
【0167】
凝結の低減
【0168】
バルーンカテーテル、特に、比較的長期間にわたって人間又は動物の体内に留まるように設計されたバルーンカテーテルは、時間が経つと漏れることがある。例えば、空気又は別のガスで膨らんだバルーンは、時間が経つとバルーンから空気が漏れることがある。あるいは、液体で満たされたバルーンは、時間の経過とともに液体が漏れる場合がある。その逆も同様である。尿、血液などの液体に存在する気体又は空気で満たされたバルーンは、時間の経過とともにバルーン内に液体が漏れることがある。これは、バルーンが比較的低い圧力で膨張している場合に特に当てはまる。
【0169】
センシングフォーリーカテーテルは、比較的長時間、比較的低い圧力で膨張するように設計されたバルーンの例である。バルーンが圧力を測定するように設計されているこの例では、バルーンは比較的低い圧力で膨らませることができ、その結果、比較的柔らかく薄い材料から製造することができる。膨張圧力が低く、柔らかいバルーン素材が柔らかいため、時間が経つと液体がバルーンに漏れる可能性がある。圧力測定バルーン内の液体は、特に圧力測定が行われるカテーテル内腔に液体が移動する場合、非常に敏感な圧力測定に悪影響を及ぼす可能性がある。
【0170】
この課題を解決するための一実施形態は、圧力測定バルーンとカテーテルの圧力測定管腔の間に非常に小さな孔フィルタ又は疎水性フィルタを配置することである。これにより、バルーンを膨張させ、継続的にプライミングして圧力を維持できるほか、カテーテル内腔を介して圧力測定を行うことができる。空気又はガスはフィルタを通過できるが、流体は通過できない。
【0171】
別の実施形態は、低透湿性材料からバルーンを作ることを含む。
【0172】
別の実施形態は、1つの管腔又は複数の管腔のいずれかを介してバルーンに真空及び圧力を交互に加えることにより、バルーン内のガスを再注入することを含む。
【0173】
別の実施形態は、複数の管腔がバルーンにアクセスすることにより、バルーン内でガスを循環させることを含む。1つの管腔を使用してガスをバルーンに導入し、別の管腔を使用してバルーンからガスを吸引することができる。
【0174】
別の実施形態は、バルーン、バルーン内腔、バルーンへのガス供給、又はこれらの任意の組み合わせ内で乾燥剤を使用することを含む。
【0175】
図35は、凝結の軽減から恩恵を受ける可能性のあるフォーリー型バルーンカテーテルの遠位端を示している。この例では、バルーンカテーテルは膀胱から尿を排出するのを助けるために患者の膀胱に配置されるように設計されている。カテーテルは、膀胱内にカテーテルを固定する保持バルーン3506を備えている。カテーテルシャフト3502は、カテーテルの内腔を含む。開口部3504により、膀胱内からの尿がカテーテルを通って排出され、カテーテルの近位端(図示せず)から出ることが可能になる。開口部3508は、保持バルーンを膨張及び収縮させるためのものである。圧力感知バルーン3510は、開口部3512を介して膨張及び収縮する。圧力感知バルーン3510は、膀胱内からカテーテルシャフト内の圧力管腔を介して、カテーテルの近位端に近い圧力トランスデューサに圧力信号を送信する。
【0176】
特定の状況下では、時間が経つと、流体が圧力バルーン3510に漏れることがある。さらに、流体は圧力バルーン3510内から開口部3512を通ってカテーテルシャフト3502に移動する。圧力管腔内の流体は、圧力バルーンからの圧力測定値に悪影響を与える可能性がある。結果として、流体が圧力バルーン内から開口部3512を通って移動するのを防ぐか、可能であれば、圧力バルーンに入る流体の量を減らすことが望ましい。
【0177】
図36は、バルーン内のフィルタの実施形態を示す。フィルタ3602は、バルーン3510の内部とカテーテルの開口部3512の内側の圧力管腔との間にある。フィルタ3602は、好ましくは、気体を通過させるが流体は通過させない材料でできている。例えば、フィルタは、Versapor、PTFE、ePTFEなどの疎水性膜から作成することができる。フィルタは、ナイロンなどのポリマー、又は他の適切な材料でできていてもよい。孔径は、約3ミクロン、又は約5ミクロン、又は約0.2ミクロンから約5ミクロンの範囲、又は約5ミクロンから約10ミクロンの範囲であってもよい。フィルタの厚さは、約6ミルから約12ミルの範囲である。あるいは、フィルタの厚さは約1ミルから約6ミルの範囲である場合がある。孔径は、バルーンの感度に関連している。例えば、5ミクロンの孔径のフィルタは、約5mmHgから約20mmHgに膨張したバルーンに適している場合があり、0.01mmHgの解像度範囲までの圧力差を検出できる。圧力バルーンで測定した圧力の感度が低い場合は、より小さな孔フィルタを使用できる。圧力バルーンを介して測定される圧力をより敏感にする必要がある場合は、より大きなポアフィルタを使用できる。
【0178】
図36は、開口部3512でカテーテルシャフトを取り囲み、開口部を完全に覆う管の形態のフィルタを示す。フィルタは、適切な接着剤又は熱収縮などの他の手段を使用して、その端でカテーテルシャフトに接着されてもよい。フィルタとカテーテルの間の封止は理想的にはガス不透過性であるため、開口部3512を介してバルーン3510に出入りするガスはフィルタ3602を通過しなければならない。
【0179】
図37は、フィルタがバルーン内に取り付けられているより小さなカテーテルシャフトを含む本発明の別の実施形態である。バルーン内のカテーテルシャフト3704は、バルーンの下にないカテーテルシャフト3706よりも小さい直径である。これは、フィルタ3702の追加されたバルクが収縮したバルーンの直径を増加させることを防ぐ。
【0180】
図38は、バルーンが収縮した
図37に示す実施形態を示しており、バルーン領域の下のカテーテルシャフトの直径が減少することにより、バルーンカテーテルの顕著な膨らみが防止されることが分かる。
【0181】
図39は、バルーンの下のフィルタの別の実施形態を示す。この実施形態におけるフィルタ3902は、カテーテルのシャフトの周りを完全に回るのではなく、代わりに、接着剤又は他の適切な手段を介してカテーテルシャフトに接着される平坦又は湾曲したフィルタ片である。接着剤は、好ましくは、バルーン膨張/収縮/圧力測定開口部3512を侵害することなく、フィルタをその縁の周りで完全に密封する。
【0182】
図40は、フィルタの長さがより短いフィルタ4002の別の実施形態を示す。
【0183】
図41は、フィルタを備えたバルーンカテーテルの別の実施形態を示している。この実施形態では、バルーンカテーテルは、バルーンと流体連通する2つの管腔を有する。フィルタ4102は開口部4104を覆っており、開口部4106は覆われていない。この実施形態では、開口部4104及び4106はそれぞれ、カテーテルの別個の管腔、又は同じ管腔にアクセスし得る。それらが別個の管腔にアクセスする実施形態では、バルーン膨張、収縮、及び圧力測定は、いずれの管腔を介しても実行され得る。例えば、圧力測定は、管腔内の液体の蓄積が圧力測定に悪影響を与えるまで、開口部4106と流体連通する管腔を介して行われ得る。この時点で、圧力トランスデューサは、開口部4104と流体連通している管腔に切り替えられて、液体のない管腔を通して圧力測定が行われ得る。
【0184】
あるいは、管腔内の液体の蓄積が圧力測定に悪影響を与えるまで、開口部4106と流体連通する管腔を介して圧力測定を行ってもよい。この時点で、開口部4106と流体連通する管腔にガスを導入して、管腔から流体を除去することができる。同時に、開口部4104と連通する管腔を介してバルーンから気体を引くことができる。このようにして、開口部4106と連通する管腔から液体を除去し、その管腔を通して圧力測定を再開できる。このラインクリア手順は、定期的に行われるようにプログラムできる。
【0185】
図41は、カテーテルの異なる側の2つのバルーン開口部4102及び4106を示し、フィルタ4104は開口部の一方のみを覆っている。あるいは、
図42は、フィルタ4202が開口部の1つのみを覆う2つの開口部4204及び4206が並んでいてもよいことを除いて、
図41の実施形態と同様の実施形態を示す。
【0186】
図43は、フィルタ4302がより大きい開口部4304を覆う本発明の実施形態を示す。バルーンからより正確な圧力測定値を得るためには、より大きい開口部が望ましい場合がある。さらに、フィルタ、及び場合によってはその接着手段が開口部4304の周りのカテーテルの領域に提供する余分な完全性のために、フィルタ4304を追加することにより、より大きな開口部が可能になり得る。
【0187】
図44は、フィルタ4402が熱収縮チューブセグメント4404を介してカテーテルシャフトに取り付けられている本発明の実施形態を示している。これにより、カテーテル開口部4406が透明のままであることを保証しながら、フィルタとカテーテルの間の気密封止が可能になる。
【0188】
図45は、
図44の実施形態と同様の実施形態を示しており、カテーテルシャフトはバルーン領域の下に縮小されている。これにより、フィルタが取り付けられているカテーテルに膨らみを生じさせることなく、バルーンを収縮させることができる。フィルタ4502は、熱収縮チューブセグメント4504を介してカテーテルシャフトに取り付けられている。これにより、カテーテル開口部が透明なままであることを保証しながら、フィルタとカテーテルとの間の気密封止が可能になる。
【0189】
図46は、フィルタ4602が開口部でカテーテルの内側に取り付けられている本発明の実施形態を示している。
【0190】
図47は、バルーンが2つのアクセス管腔4702及び4704を有する本発明の実施形態を示す。この実施形態では、バルーンカテーテルは、バルーンと流体連通する2つの管腔を有する。この実施形態では、開口部4702及び4704はそれぞれ、カテーテルの別個の管腔、又は同じ管腔にアクセスし得る。それらが別個の管腔にアクセスする実施形態では、バルーン膨張、収縮、及び圧力測定は、いずれかの管腔を介して実行され得る。例えば、圧力測定は、管腔内の液体の蓄積が圧力測定に悪影響を与えるまで、又は設定された期間まで、開口部4702と流体連通する管腔を介して行われ得る。この時点で、開口部4702と流体連通する管腔にガスを導入して、管腔から流体を取り除くことができる。同時に、開口部4704と連通する管腔を介してバルーンからガスを引くことができる。逆も行うことができる-開口部4704と流体連通する管腔に流体を導入し、開口部4702と流体連通する管腔から除去することができる。このようにして、開口部4702と連通する管腔から液体を除去することができ、その管腔を通して圧力測定を再開することができる。このラインクリア手順は、定期的に行われるようにプログラムできる。開口部4702及び4704は、ここでは互いに反対に示されているが、開口部は互いにずらして配置されてもよい。
【0191】
図48及び49は、2つの異なる圧力バルーン設計を示すが、任意の適切な設計及び/又は形状が使用されてもよい。バルーンの素材に応じて、バルーンはさまざまな方法で製造できる。ブロー成形に適した材料もあれば、ディップ成形に適した材料もある。他の製造技術、例えば、抵抗ヒートシールも同様に使用され得る。
図48は、ブロー成形されたバルーンの例を示している。
図49は、ディップ成形バルーンの例を示している。
【0192】
バルーンを製造することができる材料のいくつかの例には、ウレタン、ポリウレタン、ポリエチレン、ナイロン、ポリフッ化ビニリデン、又は任意の他の適切なポリマー又は他の材料、又は材料の任意の組み合わせが含まれる。
【0193】
バルーンの流体透過性を低下させるために、バルーンコーティングも利用され得る。そのようなコーティングの例は、ポリ(p-キシリレン)ポリマー、又はパリレンである。
【0194】
いくつかの実施形態では、水蒸気が圧力バルーンに入るのを防ぐことが望ましい。これらの実施形態では、水又は流体の不浸透性材料をバルーンに使用してもよい。本明細書内で言及される材料のいくつかは適切である。さらに、多くの場合ブランド名であるマイラーと呼ばれる二軸延伸ポリエチレンテレフタレート(BoPET)を使用することができる。また、金属化ポリマー又は他の適切な材料を使用してもよい。
【0195】
いくつかの実施形態では、センシングフォーリー型カテーテルは、空気で満たされた管腔(圧力管腔など)内の水滴又は他の障害物の存在を報告し、その後、滴を処理又は分解するように構成される。特に低体温の設定では、空気管腔内の水分が凝縮して閉塞性の水滴を形成する可能性がある。空気で満たされた管腔内の水滴(又は水で満たされた管腔内の気泡)は、水の表面張力により圧力信号を乱したり複雑にしたりする可能性がある。したがって、開示された技術のいくつかの実施形態における圧力伝達管腔は、途切れない連続したエアチャネルを維持するため水分を管腔から逃がすための親水性の特徴(管腔自体の壁のコーティング、又は管腔の長さにわたって伸びる親水性繊維など)を含むことができる。いくつかの実施形態では、吸湿性組成物(例えば、シリカゲル)を空気注入ラインに沿って、又は空気注入管腔自体内で使用して、水又は湿度を捕捉することができる。いくつかの実施形態では、吸湿性組成物をカテーテル内に含めることができるため、この材料を交換するために空気注入回路を整備する必要はない。
【0196】
いくつかの実施形態では、水分の蓄積を防ぐために、乾燥させた空気又は気体を圧力管腔及び圧力バルーンで使用してもよい。
【0197】
いくつかの実施形態では、圧力管腔及び/又は圧力バルーンに疎水性又は親水性コーティングを使用してもよい。
【0198】
ガス含有量
【0199】
別の実施形態は、膀胱内の尿との界面又は尿道の粘膜内層として疎水性フィルタ又は膜を使用して、尿又は組織の相対酸素又は他のガス含有量を測定することを含む。
【0200】
センシングフォーリーカテーテルのいくつかの実施形態では、ガス含有量組織及び/又は尿又はガス含有量の経時的な変化を測定することが望ましい。対象となる可能性のあるガスには、酸素、二酸化炭素、窒素、麻酔に関連するガス、又は他のガスが含まれる。いくつかの実施形態では、膜は気体に対して透過性であるが、液体に対しては透過性ではなく、例えば、疎水性膜又は他の適切な膜が使用されてもよい。疎水性膜の孔径は約5ミクロンであり得る。あるいは、疎水性膜の孔径は、約3ミクロンから約7ミクロンであってもよい。
【0201】
図50は、酸素透過膜を備えたセンシングフォーリーカテーテルを示している。保持バルーン5002は、膨張/収縮ポート5010と流体連通している。尿は、開口部5004を通ってカテーテルを通り、開口部5004と流体連通しているポート5012から流出する。圧力感知バルーン5006は、管腔5014と流体連通している。膜5008は、管腔5016と流体連通しているカテーテルの遠位端の開口部を覆っている。
【0202】
図51は、膜5108が圧力検知バルーン5106と保持バルーン5102との間にあることを除いて、
図50に示すものと同様の酸素透過膜を備えたセンシングフォーリーカテーテルを示す。尿の開口部5104は、保持バルーン5102より遠位のどこにでも配置することができる。
【0203】
図52は、膜5204がガス検知バルーン5202に組み込まれたセンシングフォーリーカテーテルの実施形態を示す。この図では、ガス検知バルーン5202は圧力検知バルーン5206の遠位であるが、そうではない別の実施形態が
図53に示されている。ガス検知バルーン5202は、シリコーン、ポリマー、又は他の任意の適切な材料から作られてもよい。
【0204】
膜材料は、本明細書の他の実施形態に記載されている疎水性膜材料と同様であってもよい。膜は、ガス、又は特定のガスを透過するが、尿などの液体は透過しない。このようにして、組織及び/又は尿のガス含有量、及び/又は経時的なガス含有量の変化を測定するために、ガスが膜を通過してカテーテルに入ることができる。測定されるガスには、酸素、窒素、二酸化炭素、又はその他のガスが含まれる。
【0205】
カテーテルは、膜が膀胱又は尿道のいずれかにあるように患者に配置することができる。ここでは、圧力感知バルーンを備えたセンシングフォーリーカテーテル上に膜が示されているが、ガス透過性膜は、血管又は他の体腔内にあるカテーテルを含む任意の生体留置カテーテル上に配置できる。膜は、流体、気体、又は体組織と直接的又は間接的に接触していてもよい。
【0206】
図54は、酸素又は他のガスの測定を制御するコントローラを示している。コントローラは一般に患者の外部にあり、ポート、例えばポート5016を介してカテーテルに接続する。コントローラは、圧力フォーリー機能又はフォーリーセンシングカテーテルのその他の機能を制御することもできる。
【0207】
ガス測定コントローラ5402は、カテーテル5404及びガス移動膜5406の表示とともにここに示される。ガス測定コントローラ5402は、空気又は気体、入口5408、空気又は気体、排気5410、ポンプ5412、酸素、又は他のタイプのセンサ5414及び逆止弁5416を含む。
【0208】
この実施形態では、ポンプ5412は、定期的に少量の空気又は他のガスをチューブを通してカテーテルに押し込む。空気は膜「窓」5406を通過し、空気の酸素含有量は、粘膜内層(ガス輸送膜が尿道にある場合)又は尿(ガス輸送膜が膀胱にある場合)の酸素含有量に基づいて変化する。さらに下流(ガス測定コントローラボックス5402に戻る)では、光ファイバ又は他のタイプの酸素センサを使用して、空気の酸素割合を測定する。ポンプは、システム時間内の空気が組織/流体と平衡させるために短時間だけ動作する場合がある。
【0209】
逆止弁5416は、システムを通過した空気と外気又は以前の測定間隔の空気との混合を制限するのに役立つ。
【0210】
測定された酸素又はその他のガスの含有量は非常に少ない場合がある。測定値は、絶対ガスレベル又は相対ガスレベルのいずれかを示す場合がある。例えば、ガス測定コントローラの測定値は、患者の状態の変化を示すために、患者の相対的な酸素含有量を経時的に表示する場合がある。
【0211】
図55は、ガス測定コントローラがカテーテルと相互作用して尿又は患者の組織のガス量を測定する方法の概略図を示している。カテーテル5502は、尿ドレナージ管腔5504、並びにガス移動膜5510と流体連通しているガス測定管腔5506及び5508を含む。管腔5506は、カテーテルに入る空気又は他のガスを含み、管腔5508は、キャリアガスがガス移動膜を通過した後カテーテルを出る空気又は他のガスを含む。ドレナージガス中の酸素又は他のガスのレベルを測定して、患者の尿及び/又は組織の酸素レベル又は酸素レベルの変化を判定する。入ってくるガス測定管腔5506は、大気又は他のソースに対して開いていてもよく、又は閉じたシステムであってもよいため、管腔5506及び5508内のガスは連続的に循環され、ガス含有量の変化を経時的に容易に決定できる。すなわち、
図54の空気又は気体の入口5408及び空気又は気体の排気5410は、互いに流体的に接続されてもよい。
【0212】
入ってくるガス測定管腔5506が大気に開放されている場合、ポンプを断続的に作動させて、ガス測定管腔内のガスが膜表面全体で平衡化する時間を長くすることができる。これにより、測定ガスの断続的な濃度が高くなるため、より感度の高い測定が可能になる。
【0213】
ポンプは、システムが閉じているか開いているかに関係なく、連続的又は断続的に実行できるが、オープンシステムモードで断続的に実行すると、より感度の高い測定が可能になる。クローズドシステムモードでは、システム内の測定ガスが測定中の尿、体液、又は組織のガスレベルと平衡するため、傾向がより明確になる場合がある。
【0214】
この実施形態では、尿管腔とガス測定管腔は別個である。しかしながら、
図56に示すように、ガス輸送膜は尿管腔とガス測定管腔との間に位置してもよく、ガス輸送膜5602は尿管腔と流体連通している。
【0215】
図57A及び57Bは、ガス測定アドオンコンポーネントの実施形態を示す。ガス測定コンポーネント5702は、センシングフォーリーカテーテル1000又は任意のフォーリーカテーテルと、尿ドレナージチューブ1001又は任意の尿ドレナージチューブとの間に挿入されてもよい。ガス測定コンポーネント5702は、本明細書の他の箇所で開示された材料で作られ得る疎水性フィルタ5704を含む。ガス入口管腔5706及びガス出口管腔5708は、ドレナージシステム内の尿とガス連通しているフィルタ5704上をガスが通過することを可能にする。フィルタ5704の近くの空気又は気体は、ドレナージシステム内の尿内の気体と非常に急速に平衡状態になる。
図57Bは、フィルタ5704の前後の空気流の経路を示す。ガス出口管腔5708は、関連するガスについて管腔内のガスを分析するコントローラ(ここでは図示せず)と流体連通している。ガス入口管腔5706は、大気、別のガスに対して開いていてもよく、又はコントローラ内のガス出口管腔5708との閉ループにあってもよい。コントローラは、本明細書の他の箇所で述べた尿出力を測定するのと同じコントローラでもよいし、別個のコントローラでもよい。管腔5706及び5708は、ドレナージチューブ1001に組み込まれてもよく、別個であってもよい。ガス測定コンポーネント5702は、ここに示されるように別個のコンポーネントであってもよく、又は通気孔バーブ1016に組み込まれてもよい。あるいは、ガス測定コンポーネント5702は、システム内のどこかに配置されてもよい。
【0216】
特定の条件の検出/決定
【0217】
図58Aは、AKI(腎前、内因性及び閉塞性)の異なる指標について指紋又は署名(パラメータの組み合わせ)を可能にするパラメータの組み合わせをリストする表を示している。さらに、パラメータの変更のタイミングに関して指紋又は署名があり、AKIの原因も特定される場合がある(例えば、糸球体腎炎によって引き起こされる内因性AKIと、急性尿細管壊死によって引き起こされる内因性AKIの一部のパラメータが速く変化することはもっともらしい)。また、このマルチパラメトリックアプローチは、AKIのさまざまな原因が異なる効果的な治療法を持っているため、AKIを治療するための効果的な治療法の選択を促進する可能性がある(例えば、組換えアルカリホスファターゼは、内因性(敗血症)AKIの治療には効果的であるが、非敗血症AKIの治療には効果がない)。
【0218】
図58Bは、敗血症、AKI、及び急性呼吸窮迫症候群(ARDS)の異なる指標の指紋又は特徴(パラメータの組み合わせ)を可能にするパラメータの組み合わせをリストする表を示している。これらの特徴には、尿量、心拍数、呼吸数、体温、1回拍出量、心拍出量、腹部灌流圧など、さまざまな患者パラメータの増加、減少、又は両方が含まれる。腹部灌流圧は、平均動脈圧(MAP)から腹腔内圧(IAP)を引いたものである。平均動脈圧は、拡張期血圧(DP)+脈圧(PP)の1/3に等しくなる。(脈圧は、収縮期圧から拡張期圧を引いたものに等しい。)要するに、MAP=DP+1/3PP
【0219】
他の患者パラメータも使用できる。1つ、いくつか、又はすべての関連パラメータをコントローラが使用して、診断やリスクをユーザー又は別のデバイスに伝えることができる。センシングフォーリーカテーテルシステムによって捕捉された患者パラメータは、単独で使用することも、EKG、血圧測定デバイス、EMRからの情報など、他の場所で取得したパラメータと組み合わせて使用することもできる。
【0220】
センシングフォーリーカテーテルシステムは、さまざまな病状を早期に検出するためのリアルタイム、自動、正確な生理学的パラメータモニタリングを提供する。これらの高周波データストリームのリアルタイム多変量(ポイント値)及び時系列(トレンド)分析を利用して、機械学習を活用したモデルに通知することにより、早期敗血症発症(又はその他の病状判定)に対する高感度の生理学的特徴を開発できる。これにより、早期の診断と介入とが可能になり、臨床結果が改善される。特定の病状の発症前及び/又は発症中に発生する生理学的変化に関するデータに関連する特徴は、関連するパラメータを強化し、関連性の低いパラメータを弱めて構築又は接続を破壊する。これにより、コントローラはアルゴリズムを利用して、医学的状態を互いに区別し、正常及び他の病状と区別することができる。
【0221】
本発明のいくつかの実施形態は、患者に利尿剤が投与された直後に尿排出量を測定することができる。このタイプのテストは、AKIの患者がより重症のステージに進行するか、死亡するかどうかの強力な指標となる。利尿薬の投与後に患者の尿量が増加する場合、これは患者がAKIのより重症の段階に進行する可能性が低いことを示す。利尿薬の投与後に患者の尿量が大幅に増加しない場合、これは患者がAKIのより重症の段階に進行する可能性が高いことを示す。本発明は、リアルタイムで迅速かつ正確に尿排出量を測定することができる。したがって、利尿薬への反応は、従来の尿測定技術を使用した場合よりも迅速に(数時間ではなく数分で)検出できる。
【0222】
このテストは、制御された用量の利尿薬を提供するコントローラで自動化でき、その後、数分又は数時間、できれば数分で尿量をモニタする。与えられる利尿薬はフロセミド、又は他の適切なループ利尿薬又は他の利尿薬であり得る。参照により本明細書に組み込まれるChawla LS,Davison DL,Brasha-Mitchell E,Koyner JL,Arthur JM,Tumlin JA,Shaw AD,Trevino S,Kimmel PL,Seneff MG.Development and standardisation of a furosemide stress test to predict the severity of acute kidney injury.Crit Care.2013 Sep 20;17(5):R207に開示されているように、利尿薬を投与し、データを収集することができる。
【0223】
AKIの検出に加えて、本発明は、酸素圧、二酸化炭素レベルの低下、比重の増加、及び比較的安定した尿排出量及びコンダクタンスによって示されるように、尿路感染症(UTI)を検出することができる。UTIの検出は、UTIの一意の指紋の尿マーカーを組み合わせることにより、AKIの不在下で、おそらくAKIの存在下で達成できる。ユニークなUTIのはっきりした特徴は、臨床医にUTIの存在を知らせることができる。
【0224】
説明されたパラメータを使用してAKI及びUTIを検出することに加えて、これらのパラメータは、腹腔内圧(IAP)、呼吸数(RR)、心拍数(HR)、心拍出量(CO)、相対的な拍出量(RSV)、体温(Temp)、脈圧(PP)、尿コンダクタンス(UC)、尿量(UO)及び/又は1回拍出量(SV)の読み取り値(すでに腹腔内高血圧(IAH)などの状態の検出に使用されている)、腹部コンパートメント症候群(ACS)及び敗血症との結合で用いてもよい。IAP、RR、HR、CO、RSV、Temp、PP、UC、UO、及び/又はSV測定値をここで説明するアルゴリズムに追加すると、AKI又はUTIの検出の感度と特異性が向上する場合がある。一方、本発明によって得られた測定値をIAP、RR、HR、CO、RSV、Temp、PP、UC、UO及び/又はSV測定アルゴリズムに追加すると、IAH、ACS又は敗血症を検知する敏感性と特異性とが増大するかもしれない。他の臨床応用には、外傷と火傷の治療が含まれる。
【0225】
IAP、RR、HR、CO、RSV、温度、PP、UC、UO、ガス濃度及び/又はSVの絶対測定に加えて、これらのパラメータのトレンドデータを使用してIAH、ACS、敗血症又はその他の状態を検出することもできる。例えば、これらのパラメータの値の経時的な傾き、及び/又はこれらのパラメータの値の経時的な変動も使用できる。データ傾向を使用する別の例は、脈圧波形分析と脈波速度(又は脈波伝播時間)の使用である。脈波伝播時間は、センシングフォーリーカテーテルのリード線などからEKGなどの心臓信号を取得し、脈波圧信号が膀胱に到達する時間を決定することで決定できる。IAH、ACS、敗血症又はその他の状態の存在を判断するために、複数のパラメータ及び/又はパラメータの傾向を使用できる。
【0226】
トレンドデータの使用例には次のものがある。
【0227】
安定したバイタルの設定でUOが減少する場合(そうでない場合)は、急性腎障害を示す場合がある。拍出量が減少している場合、腎臓は虚血性である可能性がある。安定したバイタルの設定で尿量が急増した場合、中毒性の急性腎障害を示している可能性がある。
【0228】
ストローク量の減少に伴う呼吸数の増加は、肺塞栓症、出血、又は他の量の減少を示している場合がある。
【0229】
安定したバイタルの設定での呼吸数の増加は、切迫した気道閉塞を示している可能性がある。
【0230】
他のパラメータの安定性の設定における呼吸数の減少は、麻薬の過剰摂取を示している可能性がある。これは、患者管理鎮痛法の大きな問題である。
【0231】
安定した一回拍出量の設定での腹腔内圧(IAP)の増加と尿量の増加とは、切迫した体液過剰の指標となる場合がある。
【0232】
UOの減少と心拍出量の減少に伴うIAPの増加は、心肺機能不全の指標となる場合がある。これは、体液過剰、敗血症などが原因である可能性がある。
【0233】
本発明は、様々な病院環境(例えば、救急室、手術室、集中治療室、病棟)で使用することができる。いつでも、デバイスを使用して、AKIの進行、及びAKIが改善又は減少しているかどうかをモニタリングできる。そのアルゴリズムは、新しく開発されたAKIのケース又はAKIのステータスの変化を臨床医に警告するように機能する。AKIの開始を検出するために、腎臓への傷害が発生する前にデバイスを配置することがある(例えば、腎臓への傷害が手術中に開始するかどうかを検出するために心臓手術を受ける患者)。その時点で損傷の程度を検出するために、腎障害に対する損傷が既に存在する場合に配置されてもよい。このデバイスは、治療/治療的介入の応答をモニタリングするためにも使用できる(例:腎代替療法、輸液蘇生)。
【0234】
代替実施形態
【0235】
本技術の実施形態はまた、発作障害の検出又は診断における患者の動きを報告してもよい。この実施形態では、圧力変動は、EEG又は記録装置を動作させ、発作であると疑われるエピソード中の激しいモニタリング期間を可能にし得る。さらに、又は代わりに、蠕動、患者の動き、発作の機能活動、患者の震え、咳の頻度、咳の重症度、睡眠時間、睡眠の質、発話検出、患者の順応性(動き又はその欠如)を含む腸の活動を検出するために、圧力センサ、音響センサ又は他のセンサを使用することができ、患者が動いておらず、方向転換又は転回する必要があることを医療提供者に警告することができる。この運動関連の情報は、発作活動、震え及び/又は咳を制御又は軽減するために、低体温装置、薬物送達装置、又は他の装置に中継することもできる。
【0236】
いくつかの実施形態では、センシングフォーリー型カテーテルは、空気で満たされた管腔(圧力管腔など)内の水滴又は他の障害物の存在を報告し、その後、滴を処理又は分解するように構成される。特に低体温の設定では、空気管腔内の水分が凝縮して閉塞性の水滴を形成する可能性がある。空気で満たされた管腔内の水滴(又は水で満たされた管腔内の気泡)は、水の表面張力により圧力信号を乱したり複雑にしたりする可能性がある。したがって、開示された技術のいくつかの実施形態における圧力伝達管腔は、途切れない連続した風洞を維持するため水分を管腔から逃がすための親水性の特徴(管腔自体の壁のコーティング、又は管腔の長さを走る親水性繊維など)を含むことができる。いくつかの実施形態では、吸湿性組成物(例えば、シリカゲル)を空気注入ラインに沿って、又は空気注入管腔自体内で使用して、水又は湿度を捕捉することができる。
いくつかの実施形態では、吸湿性組成物をカテーテル内に含めることができるため、この材料を交換するために空気注入回路を整備する必要はない。
【0237】
開示される技術のいくつかの実施形態では、上記でさらに詳細に説明したように、空気が断続的(及び自動的)に圧力感知バルーンに注入及び抽出され、バルーンが最適にプライミングされた一定の状態になるようにしてもよい。管腔内の吸上繊維又は親水性コーティングの場合、空気の抽出は、送気管から水を除去及び捕捉するのにも寄与する可能性がある。液体で満たされた管腔の例では、圧力管腔の内側の親水性繊維又は親水性コーティングは、この管腔が気泡を処理できるようにする上で同様の利点を提供する。この例では、気泡が信号を歪ませる可能性があるが、カテーテルの管腔内の親水性コーティングにより、空気と水との界面の表面張力が緩和される。
【0238】
さらに、液体及び/又は空気で満たされた管腔の場合の閉塞を防ぐために、カスタム押し出し及び管腔形状も使用され得る。本技術のいくつかの実施形態では、例えば、フォーリー型カテーテルは、断面プロファイルが星形である管腔を有し得る。そのような管腔は、一般に、水滴がそれ自体に凝集し、疎水性壁から離れる傾向があるため、水滴による閉塞の影響を受けない。この動作は、断面空間を充填させない傾向があり、通気管が水滴の周りに開いたままになり、センサと通信できるようにする。同じ論理が、親水性の星状水管腔内の水中の気泡にも適用される。この例では、親水性の液体が壁にしみつき、内腔の中心への気泡を排除する連続的な水柱を可能にする。同じことが、疎水性管腔内の疎水性液体にも当てはまる。いくつかの実施形態では、カテーテルは、空気チャネル、及びカテーテル自体に組み込まれたセンサ、又は圧力をセンサに戻すことができる流体管腔を含んでもよい。
【0239】
ドレナージチューブは、尿ドレナージライン、圧力管腔、及び熱電対のワイヤを収容するマルチ管腔チューブであり、一端がバーブに、他端がコントローラに接続されている。
【0240】
フォーリーカテーテルは、BaSO4で押し出されるか、X線不透過性マーカーを取り付けて透視観察が可能である。
【0241】
カテーテルの先端にあるサーミスタは、多くの押出プロファイルとアセンブリ技術を使用して所定の位置に固定することができる。
【0242】
いくつかの実施形態では、センシングフォーリーカテーテルは、いくつかの形態のいずれかを取り得る血圧検知要素を含み得る。一実施形態では、血圧感知素子は、膨張して光学的に分析されて決定することができる圧力送達バルーン(別個の専用バルーン又はデバイス保持バルーン又は圧力感知バルーンと流体連通するバルーンのいずれか)を含む。膀胱又は尿道内の血管を圧迫し、ブランチング(blanching)し、血流を停止する。このアプローチは、全身血圧と血管抵抗との両方を反映するような、圧力送達バルーンに隣接する組織の灌流圧の測定値を提供する。灌流圧装置のこの実施形態は、敗血症、ショック、出血などの様々な急性又は緊急の医学的状態の早期検出又はモニタリングを提供するために使用でき、早期段階でこれらの状態を検出するのに特に有利であり得る。敗血症の予測において、本発明の実施形態は、白血球数情報を受信して、敗血症をより良く予測することができる場合がある。
【0243】
血管系の圧迫を提供するための内腔、体腔、又は身体組織内の断続的な膨張の一般的な方法論的側面とともに、組織がブランチング又は虚血したことも検出するために他のモダリティが使用され得る。この装置及び関連する方法の実施形態は、断続的に膨張可能な部材を用いて身体の他の領域の灌流圧を検出し、血流又は血液の存在を光学的に検出するためにも使用できる。
【0244】
組織灌流情報は、カテーテルが所定の位置にあるときに尿道壁に接触するように、カテーテルのシャフトに配置されたセンサによって提供されてもよい。これらのセンシング技術には、微小透析、ピルビン酸、乳酸、pO2、pCO2、pH、灌流指数、近赤外分光法、レーザードップラー流量計、尿道カプノグラフィー(capnography)、及び直交偏光分光法が含まれる。これらのテストはいずれも、組織灌流の測定値を産生するために、尿又は膀胱壁自体に対して実行される。
【0245】
センシングフォーリーカテーテルシステムの別の実施形態は、ドレナージラインの開始点付近の陽の気流のためのデバイス及び/又はポートを含む清掃機構の実施形態を含む。陽性の気流は、尿を強制的にドレナージラインに流すことにより、排液を促進する。陽性の気流装置は、尿が尿収集装置に向かってのみ流れることを可能にし、空気がカテーテルに入るのを防ぐ、尿カテーテルの端部に一方向弁を含んでもよい。
【0246】
いくつかの実施形態において、尿除去機構は、尿ドレナージチューブの内側にコーティングを備えて、表面張力を低減し、排出を促進する。一態様では、前記コーティングは、PTFE又はFEPを含むがこれらに限定されない疎水性ポリマーである。
【0247】
さらに別の実施形態では、清掃機構は、その長さ全体にわたって空気が排出されるように、装置のドレナージ管腔に挿入できる管状の疎水性通気フィルタを備える。チューブがこれらの領域を通過するときに空気が確実にチューブから排出されるように、セグメント化された疎水性通気孔を一定の間隔で組み込むこともできる。この実施形態では、疎水性通気孔は、尿中の通気孔の水没を防ぐために、少なくとも1~2フィートの間隔で配置される。余剰性を提供することにより、複数の通気孔/フィルタは、浸水による1つのフィルタ/通気孔の故障を防ぐ。理想的な構成では、通気孔はPTFE又はePTFE材料であり、バーブで固定され、又は製造が容易になるように間隔を空けてチューブにグロメットで固定される。代替実施形態では、通気孔は、ドレナージチューブの長さにわたって延びるスリット又は螺旋の形態をとり、それにより、空気が任意の点で管から逃げることを可能にする。これにより、エアロックを防止及び/又は排除するときに、ドレナージチューブが位置に依存するのを防ぐ。
【0248】
別の実施形態では、エアロックは、チューブの高い部分に空気のポケットが形成され、低い部分に尿が集まるのを防ぐ伸縮可能なドレナージチューブによって防止される。延長可能なチューブは、尿道カテーテルと収集バッグの間でチューブをできるだけ真っ直ぐに保つことにより、チューブの高い部分に空気のポケットが形成され、低い部分に尿が集まるのが発生するのを防ぐ。一態様では、延長可能なドレナージチューブは、患者から収集バッグまでの距離に合わせて延長又は折り畳むことができる複数の伸縮区画で構成される。別の態様では、ドレナージチューブはひだ付けされて(pleated)アコーディオンを形成し、必要に応じて延長又は折り畳み又は変形することができる。さらに別の態様では、チューブはコイル状になっている。さらに別の態様では、ドレナージチューブは、適切な長さを達成するためにホイールの周りにチューブを巻き付けるスプリングコイルによって引き込み可能(retractable)である。
【0249】
相対的な心拍出量と相対的な一回換気量も、圧力センサ及び/又は他のフォースゲージのたわみに基づいて計算される。十分な周波数(1Hz以上など)でサンプリングされた場合、カテーテルの留置時の偏位の振幅に対する相対的な方法で、呼吸の偏位を定量化できる。より大きな変位は、一般に、より重い呼吸、又はベースラインの上方ドリフトの設定、より高い腹膜圧に関連する。心臓を膨らますことによって引き起こされる振動呼吸波の小さなピークは、より速いサンプリングレート(例えば、5Hz以上)を使用して追跡することもでき、この波の振幅は、比較的一定の腹膜圧の設定において用いることができ、既知の安定した腹膜圧、絶対拍出量及び/又は心拍出量の設定において、相対的な心拍出量を決定する。
【0250】
開示された技術の実施形態によって感知されるように、腹腔内圧又は膀胱圧はまた、患者の動きのレベルを検出するために用いてもよく(例えば、動きが実質的にない場合と動きの高いレベルの間で変化する場合がある)、移動レベルを医療提供者へ報告するために用いることができる。膀胱圧活性の山と谷の短いバーストは、そのような膀胱圧プロファイルが、例えば、座ったり、ベッドの外に出たりするために患者が腹筋を使用していることを示す強力な指標であるため、体の動きの代理として機能する。この実施形態は、転倒の危険がある患者にとって特に有益であり得る。転倒リスクのある患者では、ヘルスケア提供者は、患者が座っていることを通知され、それに応じて応答する場合がある。あるいは、装置は、患者の不活動及び/又は患者の動きの欠如を報告するために使用されてもよい。
【0251】
パルス酸素濃度計要素は、血中酸素濃度又は飽和度の決定を可能にし、カテーテルの尿道の長さに沿ってどこにでも配置できる。いくつかの実施形態では、1つ又は複数のセンサは、尿道粘膜への接近を確実にするためにデバイスの管内に配置される。この技術により、医療提供者は膀胱を尿道カテーテルで減圧し、再現性があり正確な方法でパルスオキシメトリーデータを取得できる。パルスオキシメトリー用の電源は、尿収集容器内又はカテーテル自体内に組み込むことができる。いくつかの実施形態では、パルス酸素濃度計は再利用可能であり、カテーテルインターフェースは使い捨てであり、この構成では、パルスオキシメータは使い捨てカテーテルに可逆的に取り付けられ、酸素測定が不要になったときに取り外す。センシングフォーリーカテーテルの実施形態は、光ファイバケーブル、透明窓、及び再利用可能な酸素濃度計用のインターフェースなど、酸素測定信号用の光学的に透明な、又は十分に透明なチャネルを含み得る。尿道パルスオキシメトリーのためのこの方法及び装置は、本明細書で詳述される他の実施形態のいずれかと組み合わせて使用されてもよく、又はスタンドアロンの装置であってもよい。
【0252】
感染を防ぐために、抗菌コーティング、又は抗菌化合物を含浸させた材料をセンシングフォーリーカテーテルに使用できる。抗菌コーティング/材料の例には、銀、クエン酸銀、パリレン、又は他の適切な材料が含まれる。
【0253】
肺血液量の変動性は、心不全の存在又はリスクの評価を支援するために、フォーリーカテーテルシステムの検知によって決定される場合もある。左心室機能の低下は、肺の血液量(PBV)の増加又は肺の血液量の変動の減少につながる。PBV変動は、心周期中の経時的なPBVの変化として定義される。PBVは、心拍出量と肺通過時間(PTT)の積として決定できる。心拍出量は、一回拍出量と心拍数の積として決定することができ、ここで、一回拍出量は、1心周期のフロー時間曲線の下の領域である。パルス通過時間は、EKGのQRS複合体と膀胱の信号の出現との間の遅延を調べることで取得できる。EKG信号は、別個のEKGリード、センシングフォーリーカテーテルに組み込まれたリード、カテーテル挿入キットに組み込まれたリード、又は他の場所から取得できる。EKGリードは、システム内のどこからでも、尿の中からEKG信号を読み取ることができる。パルス通過時間をより正確に決定するために、2本のリード線を使用できる。
【0254】
心筋梗塞後に一回拍出量、駆出率、及びPBV変動が減少し、PBV変動に最大の変化が見られることがわかっている。そのため、PBV変動を判定し、PBV変動の減少を特定することは、心不全、又は心不全リスクの強力な指標となる可能性がある。
【0255】
センシングフォーリーカテーテルシステムによって収集されたデータは、データベースに保存され、傾向分析やその他の用途のために分析される。例えば、複数の患者からデータを収集し、匿名で集計して、将来の患者の行動をより適切に治療、モニタリング、又は予測するために使用できる。例えば、心拍数、呼吸数、体温感染などに関して経時的に収集されたデータは、さまざまなパラメータと結果との間の関係などの傾向を見つけるためにコントローラによって集計及び分析される。例えば、温度の特定の傾向だけで、又は他のパラメータと組み合わせて、感染の予測因子、敗血症の発症、ARDS及び/又はAKIがある。
図58はいくつかの既知の例を示しているが、集約された患者データから他の現在未知の傾向が現れる場合がある。
【0256】
センシングフォーリーカテーテルシステムによって収集されたデータは、電子健康記録(EHR)又は電子医療記録(EMR)及び/又はその他のシステムと統合できる。センシングフォーリーカテーテルシステムコントローラによって収集されたデータは、EMR/EHRシステムと直接的又は間接的に接続できる。EMR/EHRからの患者の人口統計データや病歴データなどのデータも、センシングフォーリーカテーテルシステムと統合できる。
【0257】
データ処理システムの例
【0258】
図60は、本発明の任意の実施形態で使用され得るデータ処理システムのブロック図である。例えば、システム6000は、本明細書のいくつかの実施形態に示されるように、コントローラの一部として使用されてもよい。なお、
図60はコンピュータシステムのさまざまなコンポーネントを示しているが、コンポーネントを相互接続する特定のアーキテクチャ又は方法を表すことを意図していない;そのような詳細は、本発明と密接な関係がないためである。ネットワークコンピュータ、ハンドヘルドコンピュータ、モバイルデバイス、タブレット、携帯電話、及びより少ないコンポーネント又はおそらくより多くのコンポーネントを有する他のデータ処理システムも本発明で使用できることも理解されよう。
【0259】
図60に示されるように、データ処理システムの形態であるコンピュータシステム6000は、1つ以上のマイクロプロセッサ6003及びROM6007に結合されるバス又は相互接続6002、揮発性RAM6005、及び非相互接続6002を含む。マイクロプロセッサ6003は、キャッシュメモリ6004に結合される。バス6002は、これらの様々なコンポーネントを相互接続し、これらのコンポーネント6003、6007、6005、及び6006をディスプレイコントローラ及びディスプレイデバイス6008に、並びに入力/出力(I/O)デバイス6010に相互接続し、これは、マウス、キーボード、モデム、ネットワークインターフェース、プリンタ、及び当技術分野で周知の他のデバイスとすることができる。
【0260】
通常、入力/出力デバイス6010は、入力/出力コントローラ6009を介してシステムに結合される。揮発性RAM6005は、通常、ダイナミックRAM(DRAM)として実装され、メモリ内のデータをリフレッシュ又は維持するために継続的に電力を必要とする。不揮発性メモリ6006は、典型的には、磁気ハードドライブ、磁気光学ドライブ、光学ドライブ、又はDVD RAM、又はシステムから電力が除去された後でもデータを維持する他のタイプのメモリシステムである。通常、不揮発性メモリはランダムアクセスメモリでもあるが、これは要求されない。
【0261】
図60は、不揮発性メモリがデータ処理システム内の残りのコンポーネントに直接結合されたローカルデバイスであることを示しているが、本発明は、モデムやイーサネット(登録商標)インターフェースなどのネットワークインターフェースを介してデータ処理システムに接続されているネットワークストレージデバイスなどシステムから離れた不揮発性メモリを利用してもよい。バス6002は、当技術分野で周知のように、様々なブリッジ、コントローラ、及び/又はアダプタを介して互いに接続された1つ又は複数のバスを含むことができる。一実施形態では、I/Oコントローラ6009は、USB周辺機器を制御するためのUSB(ユニバーサルシリアルバス)アダプタを含む。あるいは、I/Oコントローラ6009は、FireWireデバイスを制御するためのFireWireアダプタとしても知られるIEEE-1394アダプタを含んでもよい。
【0262】
前述の詳細な説明のいくつかの部分は、コンピュータメモリ内のデータビットに対する操作のアルゴリズム及び記号表現に関して提示されてきた。これらのアルゴリズムの説明と表現とは、データ処理の分野の当業者が自分の仕事の内容を他の当業者に最も効果的に伝えるために使用する方法である。アルゴリズムは、ここでは、そして一般的に、望ましい結果を導く一貫した操作のシーケンスであると考えられている。操作は、物理量の物理的な操作を必要とするものである。
【0263】
しかし、これら及び類似の用語のすべては適切な物理量に関連付けられるべきであり、これらの量に適用される便利なラベルにすぎないことに留意されたい。上記の議論から明らかであると特に明記しない限り、説明全体を通じて、以下の特許請求の範囲に記載されている用語などの用語を使用する議論は、コンピュータシステム又は同様の電子コンピューティングデバイスのアクション及びプロセスを指し、コンピュータシステムのレジスター及びメモリ内の物理(電子)量として表されるデータを、コンピュータシステムのメモリ又はレジスター内の物理量として同様に表される他のデータに操作及び変換することが理解される。
【0264】
図に示される技術は、1つ又は複数の電子デバイスに格納され実行されるコード及びデータを使用して実装することができる。そのような電子デバイスは、非一時的なコンピュータ読み取り可能な記憶媒体(磁気ディスク、光ディスク、ランダムアクセスメモリなど)などのコンピュータ読み取り可能な媒体を使用して、コード及びデータを(内部及び/又はネットワーク経由で他の電子デバイスと)保管及び通信する;読み取り専用メモリ、フラッシュメモリデバイス、相変化メモリ)及び一時的なコンピュータ読み取り可能な伝送媒体(例えば、搬送波、赤外線信号、デジタル信号などの電気信号、光学信号、音響信号、又はその他の形式の伝播信号)。
【0265】
前の図に示されたプロセス又は方法は、ハードウェア(例えば、回路、専用ロジックなど)、ファームウェア、ソフトウェア(例えば、非一時的なコンピュータ可読媒体上で実施される)又は両方の組み合わせを含む処理ロジックによって実行できる。プロセス又は方法は、いくつかの順次処理に関して上で説明されているが、説明された処理のいくつかは異なる順序で実行されてもよいことを理解されたい。さらに、一部の操作は、連続ではなく並行して実行される場合がある。
【0266】
他に定義されない限り、本明細書で使用されるすべての技術用語は、医療分野の当業者によって一般に理解されるのと同じ意味を有する。特定の方法、装置、及び材料が本出願に記載されているが、本明細書に記載のものと類似又は均等の任意の方法及び材料を本発明の実施に使用することができる。本発明の実施形態をある程度詳細にかつ例示として説明したが、そのような例示は理解を明確にすることのみを目的としており、限定することを意図するものではない。発明の詳細な説明では、本発明の理解を伝えるためにさまざまな用語が使用されている;これらのさまざまな用語の意味は、その一般的な言語的又は文法的なバリエーションにまで及ぶことが理解されよう。さらに、技術の理解を促進するためにいくつかの理論的考察が進められたかもしれないが、本発明の添付の特許請求の範囲はそのような理論に拘束されない。さらに、本発明の任意の実施形態の任意の1つ以上の特徴は、本発明の範囲から逸脱することなく、本発明の任意の他の実施形態の任意の1つ以上の他の特徴と組み合わせることができる。さらに、本発明は、例示の目的で示された実施形態に限定されず、各要素に権利がある(each element thereof is entitled)均等の全範囲を含む、特許出願に添付された請求項の公正な解釈によってのみ定義されることを理解されたい。
【0267】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、UV光、又は適切な波長の光を使用して、収集チャンバ自体又はシステムの他のコンポーネントを滅菌することを含む。UV光源は、収集チャンバの壁を通してUV光を向けることができ、あるいは、UV光源は収集チャンバの内部に配置することができる。チャンバが空、満杯、又は部分的に満杯のときに、UV光源を使用して収集チャンバを滅菌することができる。UV光源は、尿が収集室に入るときに尿を殺菌するために使用できる。UV殺菌プロセスは、連続的又は断続的に発生する場合がある。UV光源は、センシングフォーリーカテーテルシステム内のどこにでも配置できる。膀胱内では、紫外線又はその他の波長の光が使用される場合がある。
【0268】
分光法-分光測光法
【0269】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、細菌、赤血球、及び/又は血漿/白血球を識別するために約520nmから約650nmの範囲の光波長を使用することを含む。
図61の楕円の内側の領域を参照のこと。
【0270】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、分光光度法を組み合わせて白血球及び細菌を特定し、PO2の減少及び/又はCO2の増加を特定して感染を特定することを含む。
【0271】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、利尿剤の投与直後に増加した尿出力を補償するために尿出力データをフィルタリングするコントローラを含む。尿量は一般に利尿薬の投与直後に増加する。しかし、特定の状況では、利尿薬の投与に関連する増加した尿排出データを本質的に無視することが有益である。センシングフォーリーカテーテルシステムのコントローラは、利尿薬の投与に関連する尿排出曲線の形状を特定し、この増加に関連するデータを減算及び/又は無視することにより、利尿薬の投与に関連する尿排出データを自動的に無視できる。曲線の形状の識別は、勾配、増加の長さ、増加の振幅、形状などによって行われる。利尿薬によって誘発された尿出力データの減算は、AKIの発症を決定又は予測するのに有益である。
図62を参照のこと。例えば、尿量が約2,000mL/時間(ピーク)を超える場合、コントローラはこれを利尿薬が投与された状況として識別することができる。
【0272】
利尿剤の投与によって引き起こされる尿排出量の増加は、尿ドレナージチューブ及び/又はフォーリーカテーテルのクランプ、又はそうでなければ遮断によって引き起こされる尿排出量の増加と区別することができる。ドレナージ管腔が固定されている状況では、増加前の尿量は本質的にゼロ、又は非常に低く、例えば5mL/時間未満になる。対照的に、利尿薬を投与した状況では、利尿薬を投与する直前の尿量は非常に低い場合があるが、ゼロを超える可能性が高く、例えば約5mL/時間を超える。加えて、ドレナージ管腔が固定されている状況では、ドレナージ管腔の固定解除後の尿排出量の増加は、比較的短い期間、例えば約30秒から約5分である。対照的に、投与された利尿薬の状況では、尿量の増加はより長い期間、例えば、約30分から約2時間になる。さらに、ドレナージ管腔が固定されている状況では、ドレナージ管腔の固定解除後の尿排出量は約1000mL未満になる可能性がある。対照的に、利尿薬を投与した状況では、利尿薬の投与後の尿量は約1000mLを超える可能性がある。これらの要因のいずれか又はすべてをコントローラで使用して、時間曲線での尿排出量を分析し、利尿薬が投与された時期を判断し、利尿薬に起因する増加した尿排出量をユーザーに提示される尿排出量から差し引くことができる。
【0273】
このようにして、コントローラは、利尿薬が投与される時期を自動的に決定し得る。 あるいは、コントローラのユーザーインターフェースは、利尿薬が投与されたことを示すボタン又は他のユーザー入力デバイス(タッチスクリーン、音声制御など)を含んでもよい。次に、コントローラは、増加した尿量を探し、利尿薬に起因する増加した尿量をユーザーに提示された尿量データから差し引く。
【0274】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、腹部灌流圧(APP)を決定するコントローラを含む。APPは、平均動脈圧と腹腔内圧(IAP)の差として定義される。平均動脈圧は従来の方法で決定でき、コントローラを決定するIAPと組み合わせてAPPを決定できる。コントローラはさらに、輸液及び/又は昇圧/昇圧の注入を自動的に変更して、血圧を上昇又は低下させることができる。
【0275】
フィルタ/通気孔の濡れを防ぐ
【0276】
センシングフォーリーカテーテルシステムのいくつかの実施形態は、フォーリーカテーテル内に陰圧が蓄積して膀胱に吸引外傷を引き起こすのを防ぐために、1つ以上の通気孔及び/又はフィルタを含む。フィルタ/通気孔は、以下に説明するように、フォーリーカテーテルとドレナージチューブの接合部、又は収集容器内、あるいはドレナージチューブ又はフォーリーカテーテル自体の管腔内などのどこかに配置することができる。
【0277】
いくつかの実施形態におけるフィルタ/通気孔は、流体をはじくように、すなわち疎水性材料から設計される。ただし、疎水性材料を使用しているにもかかわらず、フィルタ/通気孔は依然として液体、特に尿による濡れの影響を受けやすい可能性がある。いくつかの実施形態は、より大きな管腔、又は管腔領域を含み、そこでは、流体の表面張力によって管腔が流体で満たされる可能性を低減するためにフィルタ/通気孔が配置される。
図63Aは、より小さな直径の管腔を示し、
図63Bは、通気孔/フィルタ領域のより大きな直径の管腔を示す。なお、通気孔/フィルタ6304が上向き又は外側を向いている場合、小さい管腔でも流体6202でフィルタ/通気孔を濡らすことができ、大きい管腔ではフィルタ/通気孔が濡れる可能性を減らすことができる。
【0278】
フィルタ/通気孔がフォーリーカテーテルとドレナージチューブとの接合部又はその近くに位置する実施形態では、一旦フォーリーカテーテルが配置されると、フィルタ/通気孔の下又は近くの領域を患者の脚にテープで留めて、フォーリーカテーテルを安定させることができる。より大きな管腔チューブは、この状況、特に通気孔/フィルタが脚から離れる方向、つまり患者から離れる方向にある場合にフィルタ/通気孔が濡れないようにするのに役立つ。いくつかの実施形態では、通気孔バーブは、バーブ又はバーブ領域が患者の脚にテープで固定されたときに通気孔/フィルタが外側を向くように設計されてもよい。例えば、
図64に示されるように、患者の脚6402により良く取り付けられ、方向付けするために、バーブは湾曲していてもよく、又は湾曲したベースに取り付けられてもよい。
【0279】
いくつかの実施形態では、バーブ領域は、例えば6~12インチに延長され、通気孔/フィルタを患者からさらに遠ざけて、通気孔/フィルタを濡れを防ぐ位置及び方法で容易に配置できるようにする。
【0280】
いくつかの実施形態では、通気孔/フィルタは、バーブ内又は他の場所のドレナージ管腔の直径の周りの複数の位置に配置されてもよい。あるいは、通気孔は、管腔の周囲のすべて又は大部分を取り囲んでもよい。これらの実施形態では、補強カフ又は他の構造が通気孔を取り囲んで、管腔に構造的完全性を提供してもよい。ドレナージチューブの長さに沿ってフィルタ/通気孔を配置することもできる。
【0281】
図65に示される実施形態はまた、通気孔/フィルタの濡れを防ぐ。この実施形態は、バーブ領域6506の近くのドレナージ管腔6504に接続し、通気管に沿って及び/又は他端の近くに1つ以上のフィルタ/通気孔6508を介して大気又は他の空気/ガス/流体に通気される内側管腔を備えた通気管6502を含む。フィルタ/通気孔は、
図65に示されるように収集容器内にあってもよいし、収集容器とは別の場所などであってもよい。
【0282】
ドレナージ管腔は、尿ドレナージ管腔に沿って、又は尿ドレナージ管腔内のいずれかで、ドレナージ管腔に組み込まれてもよい。あるいは、通気管腔は、ドレナージ管腔とは別個であり、通気管/ドレナージ管接合部、例えば、バーブ領域6506の近くでドレナージ管腔に接続されてもよい。
【0283】
図66に示される実施形態は、尿ドレナージ管腔6604及びポンプ6606と流体連通する内側管腔を有する陽圧通気管6602を有するセンシングフォーリーカテーテルシステムを示す。陽圧通気管は、その長さに沿って、直列又はその他の場所のどこにでもフィルタ6612を含むことができる。陽圧通気管は、チューブのいずれかの端に、チューブに沿ったどこかに通気孔を含んでもよく、又は複数の通気孔を含んでもよい。
【0284】
ポンプは、尿ドレナージ管腔に陰圧をかけ、陽圧を大気中にポンプで送る代わりに、陽圧は、陽圧管を介して尿ドレナージ管腔にポンプで戻される。あるいは、陰圧と陽圧とに異なるポンプを使用することもできる。このようにして、正確な陰圧又は陽圧を、尿ドレナージ管腔と陽圧通気管の接合部6608で制御できる。好ましくは、接合部6608内の圧力は、流体の流れがフォーリーカテーテルに戻るのを防ぐためにわずかに陰性又は中性のいずれかである。例えば、接合部の圧力は約0mmHgに維持される。あるいは、接合部の圧力を約-2mmHgに維持することもできる。任意の調整器6610は、大きさ、タイミングなどにより、陽圧に対して陰圧を制御することができる。例えば、調整器(制御器によって制御される)は、まず尿ドレナージ線に陰圧がかかるようにわずかな遅延を実装し得、次に設定時間後、又は特定の陰圧が達成されると、陽圧が陽圧チューブに加えられ、最終的に陽圧チューブ/ドレナージチューブの接合部に到達する。これにより、陽圧チューブ/ドレナージチューブの接合部での正味の圧力が陽性になり、膀胱からではなく膀胱に尿が流入するのを防ぐ。任意の調整器は、特定の寸法の通気孔の形をとることができる(抵抗を小さくするには表面積を小さくするか、フィルタ材料を密にし、抵抗を小さくするには表面積を大きくするかフィルタ材を緩くする)。陽圧通気管は、設定されたクラッキング圧力を備えた傘弁などの弁を介して尿ドレナージ管腔に接続することができる。
【0285】
あるいは、陽圧管は、圧縮滅菌流体/気体/空気によって加圧されてもよい。
【0286】
さらに、膀胱にかかる陰圧の正確な制御により、膀胱の正常な充満及び排液の複製が可能になり得る。例えば、膀胱が正常に満たされるように、中性又はゼロの圧力を維持するか、フォーリーのベースで少し陽圧を一定期間維持することができる。次に、設定された期間の後、又は特定の圧力(すなわち、フォーリーカテーテルのベースで中立圧力を維持するために必要な圧力)に達した後、圧力を下げて膀胱を空にするか、又は排出する。このプロセスは、圧力調整器を制御するコントローラによって制御され、このプロセスを繰り返して膀胱の通常の充填と排出とを模倣する。
【0287】
いくつかの実施形態では、フォーリーカテーテルのベースに弁を使用して、膀胱にかかる圧力(陰性又は陽性)を含むその領域の圧力をよりよく制御することができる。
【0288】
なお、陽圧チューブの実施形態は、本明細書に示されるものとは異なるフィルタ/通気孔構成を備えたものを含む、センシングフォーリーカテーテルシステムの実施形態のいずれかとともに使用できる。さらに、エアロック防止の実施形態のいずれかは、通常の、すなわち非センシングフォーリーカテーテル、又は他のカテーテル又はドレナージチューブとともに使用することができる。
【0289】
図67~86は、この領域の異なる実施形態の例を示すために、
図66のバーブ領域Xの拡大図を示している。
【0290】
図67に示される実施形態では、陽圧通気孔管6602の管腔と尿ドレナージ管腔6604との間に設定されたクラッキング圧力を有する傘弁などの弁6702が示されている。弁は一方向弁であってもよい。通気孔6704は、陽圧通気管と大気との間に示されている。通気孔のみ、又は弁のみが存在する構成もある。開口部6706は、尿ドレナージ管腔6604及びチャンバ6714と流体連通する(弁6702がチャンバへの流体連通を定期的に遮断する)。チャンバ6714は、陽圧通気管6602の管腔と流体連通している。周期的又は連続的に、陽圧管腔6702を通して陽圧が印加され、及び/又は尿ドレナージ管腔6604に陰圧が印加される。これを超えると、流体、好ましくはガスが弁6702及び開口部6706及び尿ドレナージ管腔6604の管腔を流れる。これにより、エアロック又は閉塞のラインをクリアし、チャンバ6714から流体をクリアすることができ、それにより通気孔6704が濡れる可能性を減らす。また、通気孔6704が濡れている場合は、通気孔6704をクリアするのにも役立つ。弁6702のクラッキング圧力は、陽圧管腔6702と尿ドレナージ管腔6604との間の圧力差を指す。尿ドレナージ管腔内の圧力がクラッキング圧力により陽圧管腔内の圧力よりも低い場合、弁が開き、陽圧管腔からチャンバを通って、開口部6706を通って、ドレナージ管腔を通って流体が流れるようになる。例えば、クラッキング圧力は約1mmHg未満であり得る。あるいは、クラッキング圧力は約2mmHg未満であってもよい。あるいは、クラッキング圧力は約3mmHg未満であってもよい。あるいは、クラッキング圧力は約4mmHg未満であってもよい。あるいは、クラッキング圧力は約5mmHg未満であってもよい。あるいは、クラッキング圧力は約10mmHg未満であってもよい。
【0291】
尿ドレナージ管腔内の圧力は、定期的又は継続的に約-5mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-7mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-10mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-15mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-20mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-25mmHgであってもよい。あるいは、尿ドレナージ管腔内の圧力は、定期的又は継続的に約-30mmHgであってもよい。
【0292】
陽圧管腔内の陽圧は、定期的又は継続的に約5mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約7mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約10mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約15mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約20mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約25mmHgであってもよい。あるいは、陽圧管腔内の陽圧は、定期的又は継続的に約30mmHgであってもよい。
【0293】
通気孔はまた、又は代替的に、陽圧通気管に沿った他の場所、例えばポンプの近く、又は圧力調整器の一部として存在してもよい。第2の通気孔/弁アセンブリ6708は、
図67のバーブに示されているが、この第2の通気孔/弁アセンブリは存在しても存在しなくてもよい。任意のサーミスタ6710と任意の圧力管腔6712も示されている。あるいは、陽圧通気管は大気圧にさらされてもよい。弁、又は追加の弁は、陽圧チューブ6602内又はリザーバ内など、システム内のどこにでも存在できる。
【0294】
図68は、通気孔6802、弁6804、及び空気/ガスが通気孔から尿ドレナージ管腔に自由に流れることを可能にするのに十分大きいが、通気孔への液体の流れを防ぐのに十分小さい断面積6806を含むバーブ領域の実施形態を示す。例えば、狭窄部分6806は、直径が約1mm未満であり得る。あるいは、狭窄部分の直径は約2mm未満であってもよい。あるいは、狭窄部分の直径は約3mm未満であってもよい。あるいは、狭窄部分の直径は約4mm未満であってもよい。狭窄部分の長さは約1~5mmである。あるいは、狭窄部分は、約5mm~30mmの長さであり得る。
図68に示される実施形態は、陽圧管を含んでも含まなくてもよく、陽圧管なしで示されている(すなわち、大気にさらされている)。この実施形態は、弁を含んでも含まなくてもよい。この実施形態及び任意の実施形態は、バーブに組み込まれてもよく、又は(サンプリング又は他のポートを介して)バーブに又はシステムのどこかに(例えば、ドレナージチューブに沿って、好ましくは患者に最も近いドレナージチューブの1/3のところに)付加することができる別個の構成要素であってもよい。
【0295】
図69は、通気孔6902と、通気孔から尿ドレナージ管腔への空気/ガスの自由な流れを可能にするが、通気孔への液体の流れを防ぐのに十分な長さの長い通気管6904とを含むバーブ領域の実施形態を示す。例えば、通気管部分6904は、直径が約1~10mmであってもよく、長さが約1~10cmであってもよい。例えば、通気管部分6904は、約2cmを超える長さであり得る。あるいは、通気管部分6904の長さは約4cmを超えてもよい。あるいは、通気管部分6904は、長さが約10cmを超えてもよい。
図69に示す実施形態は、陽圧チューブを含む場合と含まない場合があり、陽圧チューブなしで示されている。この実施形態は、弁を含んでも含まなくてもよい。
【0296】
図70は、通気孔7002と、通気孔から尿ドレナージ管腔に空気/ガスを自由に流すが、通気孔への液体の流れを防ぐのに十分に曲がりくねった、長い蛇行する通気管7004とを含むバーブ領域の実施形態を示す。例えば、通気管部分7004はコイルであってもよい。
図70に示される実施形態は、陽圧チューブを含んでも含まなくてもよく、陽圧チューブなしで示される。この実施形態は、弁を含んでも含まなくてもよい。
【0297】
図71は、通気孔7102と、通気孔から尿ドレナージ管腔へ空気/ガスを自由に流すが、通気孔への液体の流れを防ぐのに十分に曲がりくねった、簡素な蛇行する通気管7104とを含むバーブ領域の実施形態を示す。例えば、通気管部分7104は、内腔にバッフル又はメッシュを備えた管であり得る。
図71に示す実施形態は、陽圧チューブを含む場合と含まない場合があり、陽圧チューブなしで示されている。この実施形態は、弁を含んでも含まなくてもよい。
【0298】
図72は、通気孔7202及び通気管7204を含むバーブ領域の実施形態を示す。この実施形態では、通気管は陽圧チューブ7206と流体連通しており、通気孔7202は陽圧管腔と一直線になっており、したがって、陽圧下の流体は、開口部7208を介して通気孔を通過し、通気管を通過してドレナージ管腔に入る。通気管7204はここにコイル状に示されており、通気管への尿の逆流を防ぐが、通気管7204は、ストレートチューブ又はバーブ領域に組み込まれた管腔を含むあらゆる構成であってもよい。ここでは、通気管7204と陽圧チューブ7206の接合部付近に通気孔7202が示されているが、通気孔は、ポンプ/カセットの近く、又はドレナージ管腔7208への開口部の近くを含む、陽圧管腔に沿ったどこでもよい。本実施形態は弁を含む場合又は弁を含まない場合がある。
【0299】
図73A及びBは、通気孔7302と、通気孔から尿ドレナージ管腔へ空気/ガスを自由に流すが、通気孔への液体の流れを防ぐのに十分に曲がりくねった、簡素な蛇行する通気管7304とを含むバーブ領域の実施形態を示す。さらに、通気管7304の通気孔端は、バーブ領域が患者の脚に固定された後に上方に向けられるように、構成可能又は曲げ可能又は変形可能にすることができる。通気管の通気孔端を上に向けることで、通気孔が液体に触れる可能性が低くなる。例えば、通気管部分7304は、本質的に平らなコイルであり得る。
図73に示す実施形態は、陽圧チューブを含む場合と含まない場合がある-陽圧チューブなしで示されている。この実施形態は、弁7306を含んでも含まなくてもよい。
【0300】
図74は、複数の通気孔7402及び任意の弁7404を含むバーブ領域の実施形態を示す。複数の通気孔は、すべての通気孔が尿で湿る可能性を低減する。複数の通気孔は、線、円などを含む任意の適切な構成であってもよい。複数の通気孔は、バーブの片側にあってもよく、又はバーブを部分的又は完全に取り囲んでもよい。例えば、2つの通気孔が含まれてもよく、又は例えば、3つの通気孔が含まれてもよく、又は例えば、4つの通気孔が含まれてもよく、又は例えば、5つの通気孔が含まれてもよく、又は例えば、6つの通気孔が含まれてもよく、又は例えば7個の通気孔が含まれてもよく、又は例えば8個の通気孔が含まれてもよく、又は例えば9個の通気孔が含まれてもよく、又は例えば10個の通気孔が含まれてもよい。
図74に示す実施形態は、陽圧チューブを含む場合と含まない場合があり、陽圧チューブなしで示されている。この実施形態は、弁を含んでも含まなくてもよい。
【0301】
図75Aは、通気孔に依拠しないバーブ領域の実施形態を示すが、それは1つ以上の通気孔を依然として含んでもよい。この実施形態では、陽圧チューブ7502は、開口部7504を介して尿ドレナージ管腔と流体連通している。さらに、弁、好ましくは感圧弁7506は、開口部7504とドレナージカテーテルとの間にあり、開口部7510を介して陽圧源と流体連通している。弁7506は、
図75Aでは、環状バルーン(
図75Bにも示されている)などの膨張可能な弁として描かれている。弁7506は、陽圧チューブ7502又は別個の供給源に接続された同じ圧力源を介して膨張させられてもよい。弁7506は、ここに示されるように陽圧チューブ7502の管腔と流体連通していてもよく、又は別個の陽圧管腔を介して膨張されてもよい。
【0302】
この実施形態では、陽圧が陽圧チューブ7502を介してドレナージ管腔に周期的に加えられると、弁7506が閉じる。空気又は陽圧が膀胱に到達するのを防ぎ、陽圧流体(気体又は液体)を可能にするドレナージ管腔をパージする。陽圧チューブ内の陽圧が低下すると、弁が開き、尿が再び膀胱から排出される。陽圧チューブにわずかな陽圧を維持して、尿ドレナージラインの陰圧を相殺することができる。エアロックのラインをクリアするためにより高い圧力が必要な場合、より高い圧力でのフラッシングの間弁7506を閉じる。
【0303】
図76は、
図75に示されるものと同様の実施形態を示すが、この実施形態では、弁7602は受動機械式弁である。弁7602は通常、平らな、又は開いた位置にある。陽圧チューブ内の陽圧がドレナージ内腔内の陰圧よりも高い場合、弁は自動的に閉じて、流体/陽圧が患者のフォーリーカテーテル/膀胱に伝達されないようにする。
【0304】
あるいは、ベンチュリを使用して、自動車のキャブレターと同様に、バーブ領域に滲出する陰圧及び陽圧を制御することができる。
【0305】
図77A及びBは、より能動的な弁システムを使用する別の実施形態を示す。この実施形態は、吸引チャンバ7702、順応性部分7704、患者側弁7706、ドレナージ側弁7708、ドレナージ管腔入口7710、及び圧力ライン7712、7714、7716、7718を含む。
【0306】
受動的、又は開位置では、患者側弁7706及びドレナージ側弁7708の両方が開いている、すなわち、バルーン/膀胱は膨らまないため、尿はドレナージカテーテル7722から自由に通過することができ、バーブのドレナージ管腔7720、及びドレナージチューブ7724を通る。開位置では、順応性部分7704は中立位置にある。エアロックなどの閉塞通気孔が発生した場合、又は定期的に閉塞を防止するために、ドレナージラインの弁7708は、圧力ライン7716を介して加圧流体(ガス又は液体)などの圧力を加えることにより閉じられる。順応性部分7704は圧力ライン7718を介して陰圧を印加することにより拡大される。圧力ライン7714は中立のまま、又は閉じたままである。圧力ライン7712は、弁7706を完全に収縮させるために、中立、又は閉じた、又は陰のままである。この構成は、ドレナージライン7724への流体の流れを遮断しながら、順応性部分7704を拡張することにより、ドレナージカテーテルに陰圧を効果的に適用する。この構成は
図77Aに示されている。
【0307】
図77Aの構成は、例えば約0.5~1秒、又は約1~3秒、又は約3~5秒の短時間しか続かない。次に、圧力ライン7712に陽圧を加えることで患者側弁7706を閉じ、圧力ライン7716の圧力を中性に下げるか、圧力ライン7716に陰圧をかけることでドレナージ側弁を開く。圧力ライン7718の圧力をニュートラルに上げるか、圧力ライン7718に陽圧を加えることにより減少する。陽圧を圧力ライン7714に加えることもできる。この構成を
図77Bに示す。この構成では、ドレナージ管腔7720及びドレナージライン7724内の流体は、圧力ライン7714を介して、及び/又は順応性部分7704の容積の減少によって加えられる陽圧によって流体(気体/液体)で洗い流され、ドレナージラインを通って尿を効果的に洗い流す。フラッシング後、システムは中立位置に戻され、患者側弁7706とドレナージ側弁7708は両方とも開いており、順応性部分7704は中立位置にある。
【0308】
図78は、
図72に示されているものと同様の実施形態を示しているが、別個の通気管ではなく、陽圧通気管7802を備えている。通気孔7804は、陽圧通気管7802の内腔と流体連通し、これと一致する。通気孔7804は、尿ドレナージ管腔のバーブ領域7808とも流体連通し、開口部7806によって領域7808に接続される。陽圧下の流体/空気/ガスは、通気孔7804を通り、開口部7806を通って、ドレナージ管腔と流体連通している領域7808に入る。すなわち、陽圧の流体/空気/ガスがフィルタを通過してバーブの内側に到達する。通気孔7804の湿潤は、陽圧管内で通気孔7804の前後の陽圧、並びにドレナージ管腔の陰圧を制御することにより防止される。いくつかの実施形態では、尿ドレナージ管腔のバーブ領域7808内の圧力は、ほぼゼロに近い。通気孔7804は、陽圧通気管7802の長さに沿ったどこにあってもよい。
図78に示される実施形態は、フィルタと開口部との間に一方向弁を含んでも含まなくてもよい。陽性に加圧された流体/空気/ガスは、通気孔を連続的、断続的、散発的に通過させることができる。陽性に加圧された流体/空気/ガスは、ストリーム、パフ又はパルスとして通気孔を通過する。
【0309】
バーブ、陽圧チューブ、換気チューブ、リザーバ又は他の場所にあるかどうかにかかわらず、システム全体のフィルタは、圧力を使用してクリアされてもよい。例えば、加圧された空気又はガスのパフをフィルタ全体に使用して、フィルタが濡れている場合はフィルタをクリアするか、濡れないようにする。あるいは、定常的又は断続的な空気又はガスの流れを使用してもよい。
【0310】
図79は、尿ドレナージ管腔と流体連通しているバーブ内の領域がより大きい容積を有する実施形態を示す。尿などの流体2902は、ドレナージカテーテルから大きなリザーバ7904に流れ、次に尿ドレナージ管腔に流れ込む。リザーバ7904は十分に大きく、液体で完全に満たされることはほとんどない。液体で満たされていないリザーバの容積は、空気又は気体で満たされる。一方向弁7908も存在し得る。リザーバ7904には常にいくらかの空気/ガスが入っているため、通気孔7906はリザーバ内の尿/流体とほとんど接触しないように配置することができる。すなわち、通気孔は、リザーバ内の気泡の側面にあり得る。少なくとも1つの通気孔がリザーバ内の気泡と常に流体連通していることを確認するために、複数の通気孔が存在する場合がある。いくつかの実施形態では、リザーバ7904の容積は、ドレナージチューブの内腔の容積よりも大きくてもよい。
【0311】
図80A及び80Bは、通気孔の面積が非常に大きい実施形態を示す。通気孔8002は、ここでは大きな平らな円又はディスクであるように示されているが、通気孔はどのような形状とサイズでもよい。通気孔は、バーブ領域の周りを包むように、平らでも湾曲していてもよい。ここでの実施形態は、1つの開口部8004及び一方向弁8006とともに示されているが、他の実施形態は、2つ以上の開口部を有してもよく、弁を有しても有さなくてもよい。いくつかの実施形態は、約1cm2より大きいフィルタ表面を有し得る。いくつかの実施形態は、約2cm2より大きいフィルタ表面を有し得る。いくつかの実施形態は、約3から約4cm2のフィルタ表面を有し得る。あるいは、いくつかの実施形態は、約2から約4cm2のフィルタ表面を有してもよい。あるいは、いくつかの実施形態は、約4から約6cm2のフィルタ表面を有してもよい。あるいは、いくつかの実施形態は、約6から約10cm2のフィルタ表面を有してもよい。
【0312】
図81は、交換可能な通気孔を備えた実施形態を示している。ここでは、陽圧チューブ8104及び一方向弁8106を備えた実施形態において、交換可能な通気孔8102が示されているが、陽圧チューブ及び/又は弁なしの実施形態も存在し得る。交換可能な通気孔8102は、ルアーロック、スナップロック、スライドインロック、圧入、又は他の適切な機構などの取り付け機構を介して取り外して交換することができる。通気孔の交換は、1日に1回など、定期的に実行することも、必要に応じて実行することもできる(例えば、コントローラがユーザーに通気孔が適切に機能しなくなったことを警告したとき、又は通気孔が機能しなくなったことにユーザーが気づいたとき)。通気孔には、尿又は尿の成分に敏感な化学物質があり、色が変化して濡れていることを示す。例えば、pHに敏感な、又は他の化学薬品又は属性に敏感な用紙を交換可能な通気孔に使用して、色を変え、ユーザーに見えるようにすることができる。交換可能な通気孔は使い捨て可能である。
【0313】
図82A及び82Bは、フィルタが柔軟である実施形態を示す。この実施形態では、フィルタ8202は、可撓性又は変形可能であってもよく、すなわち、それは、そのハウジング内で凸状/凹状であるか、又は緩んでいてもよい。柔軟なフィルタ8202の動きは、フィルタが濡れているか汚染されている場合、フィルタの詰まりを除去するのに役立つ。フィルタの動きは、陽圧チューブ8204を介した陽圧、尿ドレナージ管腔を介した陰圧、弁8206、又は上記の任意の単一又は組み合わせによって制御できる。いくつかの実施形態はまた、フィルタ8202を撹拌、振盪、振動、屈曲及び/又は移動させる機械的機構を含んでもよい。例えば、
図82Aは、尿ドレナージ管腔内の陰圧によりフィルタが凹状になる実施形態の例を示す。
図82Bは、陽圧チューブ8204を介して通気孔に陽圧が加えられた後の同じ例を示す。通気孔ハウジング8208内の圧力は、一方向弁のクラッキング圧力、又は尿ドレナージ管腔と陽圧チューブ内の相対的な陰圧及び陽圧によって制御され得る。フィルタが柔軟ではないが、フィルタを乾燥状態に保つ同様の方法で通気孔ハウジング8208内の圧力が制御される同様の実施形態も存在し得る。
【0314】
あるいは、フィルタ(可撓性又はそうでなければ)は、手動又は自動のいずれかで機械的に拭き取られるか又は擦り取られてもよい。あるいは、フィルタは、酵素洗剤などのタンパク質の付着及び/又は蓄積を抑制する化学物質を含んでもよい。あるいは、フィルタは、抗菌剤などのバイオフィルムを阻害する化学物質を含んでもよい。
【0315】
図83は、複数の積み重ねられたフィルタを備えた実施形態を示す。異なる孔径のフィルタを積み重ねて使用できる。例えば、粗孔フィルタ8304は、微細孔フィルタ8302が濡れないように保護してもよい。粗孔フィルタ8304は、流体/尿と微細孔フィルタ8302の間に配置することができる。この構成では、液体/尿は粗フィルタ8302を通過して微細フィルタ8302と接触する必要がある。2つ以上のフィルタをこのように積み重ねることができる。孔径が段階的、又は類似の孔径、又は任意の孔径を有する。例えば、ますます微細な細孔フィルタを積み重ねて、より微細な細孔フィルタが尿/液体から遠ざかるようにしてもよい。あるいは、同じ又は異なる孔径の1つ以上の粗孔フィルタを尿/液体と微細孔フィルタの間に配置してもよい。一方向弁が存在する場合と存在しない場合がある。粗孔フィルタ8304の孔径は、約10ミクロンであり得る。あるいは、粗孔フィルタ8304の孔径は、約10から約20ミクロンであってもよい。あるいは、粗孔フィルタ8304の孔径は、約10から約30ミクロンであってもよい。
【0316】
図84は、陽圧チューブ内の流体によってバーブ領域に継続的に陽圧が加えられる実施形態を示す。陽圧チューブはほぼ一定の陽圧下にあり、流体(好ましくは空気/ガス)が開口部8404を連続的に通過する。バーブの内部8406の流体にかかる陽圧は、流体が尿ドレナージカテーテルに逆流しないように制御される。すなわち、内部8406の流体に加えられる陰圧は、内部8406の流体に加えられる陽圧より常に大きいか、又はほぼ同じである。陽圧は、コントローラで制御されてもよく、及び/又は開口部8404のサイズ、例えば開口部8404のサイズを非常に小さくすることで制御されてもよい。例えば、開口部8404の直径は、約1mm未満であり得る。あるいは、開口部8404の直径は約2mm未満であってもよい。あるいは、開口部8404の直径は約3mm未満であってもよい。あるいは、開口部8404の直径は、約4mm未満であってもよい。
【0317】
図85は、アコーディオン形状の通気孔を備えた実施形態を示している。この実施形態の通気孔8502は、アコーディオンのような形状である。通気孔は、両方向矢印の方向に圧縮される場合がある。この圧縮により、通気孔から詰まり/濡れなどを取り除くことができる。圧縮は、手動、自動/機械的に、及び/又は通気領域内の圧力(陰性及び/又は陽性)を使用して行うことができる。
【0318】
図86は、単一の通気孔と複数の開口部を備えた実施形態を示している。この実施形態では、複数の小さな開口部8602が尿ドレナージ管腔を通気孔8604から分離する。小さな開口部は、流体が通気孔8604と接触することを防止する。複数の開口部は余剰性として機能する可能性があるため、1つ以上の開口部が詰まった場合、他の開口部は開いたままである。開口部は、通気孔8604を通る空気/ガス/流体の通過を制御するためにも使用でき、穴が多いほど空気の流れに対する抵抗が小さくなり、穴が少ないと空気の流れに対する抵抗が大きくなる。
【0319】
本明細書の実施形態のいずれかは、生理学的圧力測定を含んでもよく、又は生理学的圧力測定なしで使用されてもよい。例えば、
図1及び
図2に示すシステムは、
図67から
図86及び他の実施形態は、サーミスタも圧力管腔も含まなくてもよく、標準のフォーリーカテーテルとともに使用されてもよい。
【0320】
いくつかの実施形態において、圧力は、陽圧チューブ/ドレナージチューブ接合部で測定されてもよい。あるいは、圧力は、センシングフォーリーカテーテル/ドレナージチューブの接合部、又はバーブの領域で測定されてもよい。これらの場所のいずれかで、圧力チューブ/ドレナージチューブの接合部、又は一端でバーブの領域と流体連通し、他端で圧力センサ又は変換器と流体連通する追加のチューブ又は管腔を組み込むことにより、圧力を測定できる。例えば、この圧力測定管腔は、一端(センサ端)に圧力センサを収容するコントローラと流体連通し、他端(検知端)の陽圧チューブ/ドレナージチューブ接合部と流体連通する場合がある)。管腔の尿汚染を防ぐために、感圧膜が検出端に存在してもよい。
【0321】
エアロックはまた、それらを最適に除去及び/又は回避できるように検出されてもよい。本明細書の実施形態のいずれかを使用して、コントローラは、尿ドレナージ管腔にわずかな陽圧又は陰圧を加えて、応答を感知してもよい。減衰した応答はエアロックの存在を示す場合があり、空気が尿よりも圧縮性が高いため、減衰が少ない応答はエアロックが少ないことを示す。過剰なエアロックが検出された場合、コントローラは、例えばドレナージ管腔に陰圧をかけることにより、エアロックのクリアを開始できる。
【0322】
いくつかの実施形態では、弁は、陽圧管内又はリザーバ内を含む、システム内のどこに存在してもよい。
【0323】
通気管は、ドレナージチューブとは別個の管であってもよく、ドレナージ管腔内、又はフォーリーカテーテル内にさえ挿入されてもよい。
図87は、通気管が尿ドレナージチューブの内側にあるセンシングフォーリーカテーテルシステムの実施形態を示す。このタイプの実施形態は、任意の標準的なドレナージチューブで使用できるという利点を有する。通気管は、ドレナージ管腔内、ドレナージチューブ内、又はフォーリーカテーテル内のいずれかに通気孔を配置する。通気管は、ドレナージチューブ及び/又はフォーリーカテーテル内にスライド可能に挿入されてもよく、いつでも動かされてもよい。
【0324】
図87に示す実施形態では、通気管8704は、一端(「空気端」8708)で収集リザーバ内の通気/フィルタ8702(これは大気圧に開いている)に対して開口しており、ドレナージ管腔8706内にある他端で(「尿端」8710)開口している。ここでは通気管がフォーリーカテーテルのベースのバーブ内で終了するように示されているが、ドレナージチューブ内又はフォーリーカテーテル内のあらゆる場所を含む排尿管腔内のどこでも終了できる。通気管は1つの場所にとどまるか、システム内で移動して尿の排液を最大化し、エアロックと膀胱内の陰圧による膀胱への損傷を最小限に抑えることができる。
【0325】
図88は、通気管8802が管の「尿端」に通気/フィルタ8804を有し、管の「空気端」8806で大気に開放されているセンシングフォーリーカテーテルシステムの別の実施形態を示す。両端にフィルタ/通気孔がある場合もある。通気管の「空気端」は、Yアームアダプタ、活栓、又はその他の標準的な方法でドレナージ管腔から出ることができる。通気管の「空気端」は、収集容器に組み込まれたチャネル又はポートを介して、収集容器内からシステムを出ることができる。繰り返するが、通気管は、標準的な尿ドレナージチューブを含むあらゆる尿ドレナージチューブとともに使用できる。
【0326】
図89は、陽圧チューブ8902が追加された
図88に示されるものと同様の実施形態を示す。
【0327】
図90及び91A及びBは、センシングフォーリーカテーテルシステム内の異なる位置にある通気管を示している。
図90では、通気管の「尿端」9002は、ドレナージチューブ内の一部にすぎない。例えば、通気管は、ドレナージチューブの約半分を通して挿入されてもよい。又は、例えば、通気管は、ドレナージチューブの約3分の1を通して挿入されてもよい。又は、例えば、通気管は、ドレナージチューブの約3分の2に挿入される。
図91Aでは、通気管の「尿端」9002はフォーリーカテーテル内にある。通気管の「尿端」の位置は、尿の排水を最大化し、排水に対するエアロックの影響を最小限に抑え、膀胱内の陰圧を最小限に抑えることに基づいて決定される。
図91Bでは、通気管はドレナージチューブの内側にあり、バーブ又はその近くの一端で接続し、ドレナージラインの約6インチから24インチで終わる。通気管は、フィルタ又は弁を含んでも含まなくてもよい。
【0328】
いくつかの実施形態では、尿の初期量が膀胱から排出された後、通気管がセンシングフォーリーカテーテルシステムに取り付けられる。
【0329】
通気管は、1つ又は複数のフィルタ/通気孔を組み込むことができる。通気管は、通気管の内腔と流体連通し、最終的に収集リザーバ又は他の場所で通気孔/フィルタと流体連通する1つ又は複数のカットアウトを組み込むことができる。複数のフィルタ/通気孔又は複数のカットアウトは、通気管の周囲、又は通気管に沿って、あるいはその両方に配置できる。通気管は、無菌性を維持するために、フィルタ、「尿端」、又は他の場所に向けられた紫外線を含んでもよい。
【0330】
図92A及び92Bは、ドレナージ管腔のいくつかの可能な実施形態、例えば
図10Aに示されるドレナージ管腔1012を示す。
図92Aは、折り畳み可能/拡張可能部分9202を備えたドレナージ管腔を示す。部分9202は、ドレナージ管腔の残りの部分よりも低いデュロメータ材料から製造され、内部の圧力に応じて潰れたり拡張したりする。管腔は、低い圧力又は陰の圧力でより低い内部領域/容積まで崩壊し、より高い圧力又は陽の圧力で拡張する。エアロックは、異なる圧力での管腔容積のこの変化により減少する場合がある。このタイプの管腔は、本明細書の実施形態のいずれかに組み込むことができる。
【0331】
図92Bは、2つの管腔を含むドレナージ管腔の実施形態を示す。ここに示す内側管腔は陰圧/尿ドレナージ管腔9204である。外側管腔は陽圧管腔9206である。2つの管腔の間は開口部9208である。開口部はフィルタ膜を含んでも含まなくてもよい。2つの管腔は、ここに示すように同心円状でも、隣接していてもよい。陽圧管腔は、本書の他の場所に示されている陽圧通気管と本質的に同じ役割を果たす。陰圧がドレナージ管腔9204に作用し、ドレナージ管腔9204のクリアランスをもたらすので、陽圧管腔9206に常に又は定期的に陽圧が作用する。
【0332】
図93Aから93Eは、ドレナージ管腔の別の実施形態を示す。この実施形態はまた、ドレナージ管腔9302及び陽圧管腔9304を含む。この実施形態では、陽圧管腔9304は拡張可能かつ折り畳み可能である。陽圧管腔の拡張状態では、ドレナージ管腔を部分的又は完全にブロックする。陽圧管腔の折り畳まれた状態では、ドレナージ管腔は実質的に開いており、流体がドレナージ管腔を自由に流れることができる。
図93Aは、ドレナージチューブの患者側近くの閉状態のドレナージ管腔を示している。
図93Bは、患者からさらに離れた閉状態のドレナージ管腔を示す。
図93Cは、開いた状態のドレナージ管腔を示している。
【0333】
図93Dは、閉じた状態のドレナージチューブの長手方向の図を示す。
図93Eは、開いた状態のドレナージチューブの長手方向の図を示す。
図93C及び93Eに示すように、開いた状態では、陽圧管腔9304は折り畳まれ、ドレナージ管腔9302を実質的に妨げず、尿が身体からリザーバに自由に流れることができる。ドレナージチューブのエアロック又は他の閉塞クリアランスが実行されると、陽圧管腔が膨張し、尿/液体がドレナージチューブから収集リザーバに向かって押し出される。陽圧管腔の患者端部9306は、陽圧管腔のリザーバ端部9308よりも大きな直径及び/又はより低いデュロメーターのものであり得る。これにより、リザーバ端が膨張する前に、陽圧管腔の患者端が膨張する。このようにして、ドレナージ管腔が最初に患者に最も近くブロックされ、次にドレナージ管腔のほぼすべてが満たされるか、又はドレナージ管腔の一部が陽圧管腔の残りの膨張で満たされる。陽圧管腔は、ドレナージチューブの患者側又はリザーバ側のいずれかで膨張させることができる。ドレナージ管腔の長さに沿って1つ以上のフィルタが存在する場合がある。
【0334】
センシングフォーリーカテーテルシステムの実施形態は、フォーリーカテーテルに接続された圧力バルーンを介して、又はドレナージチューブ又はフォーリーカテーテルのドレナージ管腔内に挿入された圧力バルーン又は他の圧力センサを介して膀胱内の圧力を測定する能力を含むことができる。例えば、
図94A-94Cを参照のこと。
【0335】
図94A~94Cは、圧力センサがフォーリーカテーテルの尿管腔と流体連通しているが、別個のカテーテル上に存在し得るセンシングフォーリーカテーテルシステムの実施形態を示す。フォーリー型カテーテル9402は、尿管腔9404及び尿ドレナージ開口部9406とともに示されている。圧力検知バルーン9410を備えた小型圧力センシングカテーテル9408は、フォーリー型カテーテルの尿ドレナージ管腔内に示されている。圧力センシングカテーテルの外径は、フォーリー型カテーテルの尿ドレナージ管腔内に収まるように十分に小さい。例えば、圧力センシングカテーテルの外径は約4mm未満、あるいは圧力センシングカテーテルの外径は約3mm未満、あるいは圧力センシングカテーテルの外径は約2mm未満、あるいは圧力センシングカテーテルの外径は約1mm未満である。
【0336】
圧力センシングカテーテル上の圧力センサは、圧力センシングカテーテルの遠位端の近くにあってもよく、又はカテーテルの長さに沿ったどこにあってもよい。圧力センサは、圧力感知バルーンであっても、圧電センサ、機械センサなどの任意のタイプの圧力センサであってもよい。圧力感知バルーンの場合、膨張したバルーンはフォーリー型カテーテルの尿ドレナージ管腔の内径よりも小さくてもよく、又は膨張したバルーンは、フォーリー型カテーテルの尿ドレナージ管腔を満たすのに十分な大きさであってもよい。
【0337】
膨張した圧力感知バルーンは、フォーリー型カテーテルの尿ドレナージ管腔を満たすことができ、より良い圧力測定を可能にする。圧力感知バルーンは、膀胱からフォーリー型カテーテルを通って尿が流れるように、定期的に収縮又は部分的に収縮させることができる。圧力感知バルーン膨張サイクルの制御は、本発明のコントローラによって制御され得る。
【0338】
図94Bは、閉塞バルーン9424と感圧バルーン9426の両方を有する感圧カテーテルの実施形態を示す。閉塞バルーンは尿ドレナージ管腔を閉塞するため、感圧カテーテルは閉塞バルーンと膀胱との間の圧力のみを検知し、それにより膀胱内の圧力をより精密かつ正確に測定できる。
【0339】
膨張した圧力感知バルーンの外径は約5mmより小さくてもよく、あるいは圧力センシングカテーテルの外径は約4mmより小さくてもよく、あるいは圧力センシングカテーテルの外径は約3mmより小さくてもよく、あるいは、圧力センシングカテーテルの外径は約2mm未満であってもよく、あるいは圧力センシングカテーテルの外径は約1mm未満であってもよい。
【0340】
図94Cは、保持バルーン9412、尿ドレナージ開口部9406、保持バルーンポート9414、及び尿ドレナージポート9416を備えた標準フォーリー型カテーテルを示す。尿ドレナージポート9416に接続されたアダプタ9418が示されている。アダプタ9418には、尿ドレナージポート9420と二次尿管腔ポート9422との2つのポートがある。圧力センシングカテーテル9408は、尿管腔ポート9422に示されている。このようにして、圧力センシングカテーテルは、フォーリー型カテーテルの尿ドレナージ管腔と流体連通している。圧力センシングカテーテル9408の近位端は、本明細書の他の実施形態と同様に、圧力トランスデューサなどの圧力センサに接続される。圧力センシングカテーテル9408は、単一の管腔、感知バルーン管腔のみを有し得るか、又は他の管腔を含み得る。圧力センシングカテーテルの圧力センサが機械的圧力センサである場合、圧力センシングカテーテルは管腔を持たなくてもよく、又は圧力センシングカテーテルはフォーリー型カテーテルの尿ドレナージ管腔を密封するためのバルーンを有してもよい。
【0341】
圧力センシングカテーテルはまた、ドレナージチューブの尿ドレナージ管腔を通して挿入されてもよい。
【0342】
圧力検出カテーテルを使用して、経時的に圧力測定値を取得し、本明細書に開示された方法のいずれかで分析することができる。圧力測定を改善するために、ドレナージポート9420を定期的に閉じたり、ブロックしたりできる。ドレナージポート9420のブロックは、ストップコック又は弁を使用して機械的に行うことも、例えばコントローラに接続されたソレノイド弁を使用して自動的に行うこともできる。この実施形態の利点は、圧力を測定するために圧力センシングカテーテル9408を任意のフォーリー型カテーテルとともに使用できることである。さらに、フォーリー型カテーテルが患者の膀胱内に既に配置された後に、圧力センシングカテーテル9408を挿入し、フォーリー型カテーテルから取り外すことができる。
【0343】
圧力センシングカテーテルは、他の図に示される通気管と組み合わされてもよい。このようにして、圧力フォーリーカテーテルシステムの圧力検知、尿排出、エアロック防止、通気コンポーネントを、標準のフォーリーカテーテルとドレナージチューブで使用できる。あるいは、圧力センシングカテーテル/通気管の組み合わせを、より特殊化されたフォーリーカテーテル及び/又はドレナージチューブとともに使用してもよい。
【0344】
任意のタイプのエアロッククリア機構を含む実施形態のいずれにおいても、エアロッククリアは、継続的、定期的(定期的又は随時)、オンデマンドで、又はエアロック状態が検知されたときに実行され得る。エアロッククリア機構は、エアロックを防止又は軽減する。例えば、エアロックをクリアする機構は、エアロックが少なくとも60分ごとにクリアされるようにエアロックを減らすことができる。あるいは、エアロックは少なくとも45分ごとにクリアできる。あるいは、エアロックは少なくとも30分ごとにクリアできる。あるいは、エアロックは少なくとも20分ごとにクリアできる。あるいは、エアロックは少なくとも10分ごとにクリアできる。あるいは、エアロックは少なくとも5分ごとにクリアできる。あるいは、エアロックは少なくとも1分ごとにクリアできる。
【0345】
バーブ領域又はドレナージチューブの一部として通気孔又はフィルタ又は通気管を含む実施形態のいずれかでは、通気孔/フィルタ/通気管を介してドレナージ管腔に導入されるガス/空気のために、液体(すなわち尿)排水が不連続、すなわち中断され得る。すなわち、ドレナージ管腔は、液体(すなわち尿)と気体とを交互にすることができる。
【0346】
リアルタイムでの尿排出量の測定を含む実施形態のいずれかにおいて、リアルタイムとは、報告される尿排出量測定値が約1分以内に正確であることを意味し得る。あるいは、リアルタイムでは、報告される尿排出量の測定値が約5分以内に正確であることを意味する場合がある。あるいは、リアルタイムでは、報告される尿排出量の測定値が約10分以内まで正確であることがある。あるいは、リアルタイムでは、報告される尿排出量の測定値が約20分以内に正確であることを意味する場合がある。あるいは、リアルタイムでは、報告される尿排出量の測定値が約30分以内に正確であることを意味する場合がある。あるいは、リアルタイムでは、報告される尿排出量の測定値が約60分以内まで正確であることがある。
【0347】
尿中の泡-泡を防ぎ、及び/又は測定値への影響を防ぐ
【0348】
尿中のタンパク質又は他の成分は、ドレナージ管腔及び/又は収集容器内の尿に過剰な泡立ちを引き起こす場合があり、通気孔/フィルタの濡れ、尿が入るなどの問題を引き起こす場合がある。フォーリーカテーテルカテーテルシステムのいくつかの実施形態は、気泡防止機構を組み込んでいる。
【0349】
陽圧チューブを組み込む実施形態などのいくつかの実施形態では、尿ドレナージ内の圧力の正確な制御を得ることができる。時折、ドレナージシステム(つまり、ドレナージ管腔及び/又は収集チャンバ)内にわずかな陽圧を加えて、存在する気泡をつぶしたり、気泡の形成を防ぐことができる。
【0350】
シリコーン、シメチコン、又は他の適切な材料などの界面活性剤をシステムに追加してもよい。例えば、遅溶性シリコーンカプセルを収集リザーバに追加してもよい。あるいは、ドレナージ管腔の内側及び/又は収集容器の内側に界面活性剤コーティングを使用してもよい。
【0351】
気泡は、ドレナージチューブと収集容器との接合部で除去又は低減され得る。いくつかの実施形態は、
図95A-Cに示されている。例えば、ドレナージチューブのベースは(排水溝の下の排水管のように)S-ドレナージチューブ形状であり、ドレナージチューブの内径は収集容器との接合部付近、又は他の場所で拡大する。ドレナージチューブは、電球形又は円錐形であってもよい。
図95Cに示すように、ドレナージ管腔は環状になる。この実施形態では、ビールの泡を減らすためにビールをグラスの中央に入れる代わりにグラスの側面に流し込むのと同様に、流体を斜めの円錐面の側面に流して気泡を減らす。ここでは、気泡低減機能がドレナージチューブのベースに示されているが、ドレナージチューブ又はシステムの任意の部分に配置できる。いくつかの実施形態では、排尿管腔は、再び尿を表面と接触させるために平坦化されてもよい。例えば、尿ドレナージ管腔は、約1mm未満まで平らになる場合がある。尿ドレナージ管腔は、約2mm未満まで平らになる場合がある。尿ドレナージ管腔は、約3mm未満まで平らになる場合がある。
【0352】
尿はまた、
図96Aの逆円錐の実施形態で示されるように、ある点まで強制的に流れることができる。円錐は、ここに示されているような角度を持っている場合もあれば、より湾曲している場合もある。円錐の形状は、一般に小さな領域から大きな領域へ、及び/又は大きな領域から小さな領域に移行する。この及び他の気泡低減機構も収集容器内にあり得る。例えば、
図96B~Dに示すように、角度付きバッフルを収集リザーバに組み込んで、流体を角度付き表面に押し下げることができる。傾斜面は、収集容器の底部まで完全に延びていても、収集容器内に部分的にのみ延びていてもよい。異なる角度、例えば、約10度から約80度の角度が使用されてもよい。
【0353】
図96C及び
図96Dの実施形態によって示されるような角度付きバッフルは、特に患者の尿排出量が低く、尿排出量の連続測定があるクリティカルケア条件下で、尿量測定の精度を改善するためにも好ましい場合がある(mL/min又はmL/sec)は、AKI、敗血症、又はその他の状態の発症に対する患者の脆弱性を診断するために望まれる。少量の尿量の正確な測定は、平底のバッフル又はカセットと比較して、所定の尿量に対して尿柱の高さが高いため、円錐形又は角度付きバッフルでより適切に測定される。コントローラの超音波トランスデューサ又は同様のトランスデューサは、特に患者の腎臓が負傷して尿量が少ない場合に、高さをより確実に測定し、尿量と尿排出量の正確な測定値を提供できる。さらに、角度付き/バッフル又はカセット(尿収集チャンバー)は、少量の尿の場合、平らな表面のカセットと比較して、コントローラの傾斜角の変化に対する感度が低く、測定誤差を減らすことができる。
【0354】
図97Aは、流体が流体レベルより下で収集された流体に一般的に排出されるように、ドレナージ管腔が収集容器/カセット内に延びるセンシングフォーリーカテーテルシステムの実施形態を示す。ドレナージ管腔のドレナージ端は、チューブがカセットの底部に接して流体の流れをブロックするのを防ぐために、斜めにカットされる。角度カット9724は、約45度、約10~80度、又は任意の適切な角度であり得る。同じ結果を得るために、ドレナージ管腔のドレナージ端で他の形状を使用してもよい。例えば、
図97Bはドレナージ管腔を示しており、その管はドレナージ管端で城郭状になっている。キャスタレーション9726は、丸みを帯びた、長方形、三角形、スカラップなどを含む任意の形状であってもよい。
【0355】
図97Cは、ドレナージ管腔がカセット内に延び、平坦化領域9728を含むセンシングフォーリーカテーテルシステムの実施形態を示す。この実施形態では、ドレナージ管腔の断面積は、同じまま、増加又は減少し得るが、平坦化された領域では、好ましくは、少なくとも1つの寸法が増加して、流体の流れと接触する表面積を増加させる。
図97Cに示すように、平らな領域は流れを下向きにするか、平らな部分に角度を付けて、管腔の内面の少なくとも片側と接触するように流体を強制的に流すことができる。代替的又は追加的に、
図97Dに示されるバッフル9730などの角度付きバッフルが使用されてもよい。バッフル9730の角度は、約45度、約10~80度、又は任意の適切な角度であり得る。角度付きバッフル、又は平坦な領域は、本明細書に示されるドレナージチューブ/管腔設計のいずれかで使用されてもよい。
【0356】
図98Aは、ドレナージ管腔面積が増減するセンシングフォーリーカテーテルシステムの実施形態を示す。電球9832は、
図98Dに示されるように、カセットの上方、カセット内、又はドレナージ管腔に沿ったどこかにドレナージチューブに組み込まれてもよい。
図98Bに示すように、電球の上下の面積は本質的に同じでも、電球の下の面積は電球の上の面積より小さくてもよい。ドレナージ管腔領域の減少部分9834は比較的短くてもよく、例えば、部分9834は約1mm~10mmの長さであってもよい。あるいは、部分9834は、約10mm~20mmの長さであり得る。あるいは、部分9834は約10mmの長さであり得る。
図98Cは、狭窄部9836が2つ以上の減少した面積の流体ドレナージ管腔を含む実施形態を示す。これにより、ドレナージ管腔の面積を大幅に削減することなく、ドレナージ管腔の表面接触を増やすことができる。狭窄部9836は、電球9832とともに、又は電球なしで使用されてもよい。
【0357】
なお、本明細書に含まれる気泡低減実施形態のいずれも、カセットの外側のドレナージチューブ、及びカセット内のドレナージチューブ/管腔を含む、ドレナージ管腔のどこでも使用できる。例えば、
図98Dは、電球がカセット内にある
図98Bに示されている実施形態と同様の実施形態を示している。
【0358】
図99Aは、ドレナージ管腔の少なくとも一部が粗く、泡を分散及び/又は破裂させるセンシングフォーリーカテーテルシステムの実施形態を示す。
【0359】
図99B及び99Cは、別の気泡低減実施形態を示す。この実施形態では、格子、又はハニカム、又はメッシュがドレナージチューブのベースの内側にある。メッシュは気泡を破壊するのに役立ち、定期的に圧縮して液体の領域をクリアし、気泡を破壊するのにも役立つ。
【0360】
あるいは、又はさらに、システム内の任意の場所、例えば、ドレナージチューブ/収集容器の接合部にフラットメッシュを挿入してもよい。
【0361】
いくつかの実施形態では、カセット及び/又はドレナージ管腔は、気泡を破壊するために連続的又は断続的に振動させられてもよい。
【0362】
図100A~Cは、収集容器内の尿の表面又はその近くで気泡を圧縮又は破壊するために、浮遊又は非浮遊の板を組み込む実施形態を示す。板は、単に表面に浮いていて、容器内の尿の量に応じて受動的に上下したり、板を積極的に上下させたりすることがでる。板は所定の位置に固定することもできる。板は多孔質又は中実であってもよい。板が流体の表面上にある実施形態では、板は尿出力測定にも使用され得る。板の位置は、超音波、視覚的手段(カメラなど)、レーザー、又はその他の手法で特定できる。収集容器内の流体の体積は、流体のレベルから直接決定でき、板の位置によって決定できる。
【0363】
カセットの内部は長方形であってもよく、又は他の形状であってもよい。例えば、カセットの内部の側面は、カセット内の尿の量に対してより大きな尿の上面があるように、底部に向かって内向きにテーパを付けることができる。これにより、より少ない量でより正確な尿量測定が可能になる。
【0364】
一部の実施形態は、設定された体積マーク、例えば50mLに体積バッフルを含むことができる。この容積バッフルは、所定の容積位置にあることを除いて、
図23に示されているバッフル2302に類似していてもよい。カセット内の尿量の上面が容積バッフル又はその近くにある場合、超音波信号は他の場合よりも強くなる。例えば、尿の容積の上面が約50mL(又は他の設定容積)にあるとき、尿の容積の上面が容積測定バッフル又はその近くになるように、容積測定バッフルを配置することができる。2つの表面(尿と体積のバッフル)が互いに近づくか、互いに触れると、超音波信号が最も強くなる。
【0365】
いくつかの実施形態は、リザーバの傾斜の説明を助けるための導波管を含むことができる。例えば、超音波信号は、それらが反射されるように、リザーバ内の流体の表面に向けて超音波を向けるために、平坦又は湾曲した側面を備えたシリンダー内に向けられてもよい。導波管は、リザーバ内のすべて又は一部に延びていてもよい。導波管は、超音波変換器/センサと流体の表面との間に延びていてもよい。
【0366】
いくつかの実施形態では、超音波トランスデューサ/センサは平坦であってもよく、いくつかの実施形態では、超音波トランスデューサ/センサの表面は、例えば凸状曲線で湾曲していてもよい。凸曲線は、超音波信号をより多くの角度に広げるのに役立ち、これにより、角度の一部がリザーバ内の流体の表面から反射されるようになる。
【0367】
いくつかの実施形態は、加速度計を使用してリザーバの傾斜を測定し、その後、傾斜角を使用して、流体がリザーバから空になった後にリザーバ(すなわち、リザーバの低角)に残っている流体の体積を計算するコントローラを含む。リザーバに残っているこの計算された量は、精度を高めるために総尿排出量の計算に追加できる。
【0368】
図101Aは、ドレナージポート10102と、ドレナージチューブが収集容器に接続する入口点10104の両方に弁を含むセンシングフォーリーカテーテルシステムの実施形態を示す。これにより、コントローラは定期的に収集容器に圧力をかけることができ、気泡を減らしたり収集容器の排水を促進したりできる。また、この入口ポート弁は、尿ドレナージ中にコントローラによって収集容器への尿の流れを停止できるため、尿の排出量をより正確に測定できる。
【0369】
図101Bは、尿オーバーフロー経路がより長く及び/又は回旋状/蛇行状及び/又は狭くなっている収集容器の実施形態を示す。この構成により、気泡がオーバーフローパスに流れにくくなり、尿排出量の測定が不正確になる。オーバーフローパスには、45度を超える1つ以上のパス角度が含まれる場合がある。
【0370】
図101Cは、リザーバ内の尿とカセットポンプインターフェース1148との間の流体経路(矢印の破線で示される)が回旋状であり、インターフェース1148の湿潤を防ぐために長い収集容器の実施形態を示す。ポンプインターフェース1148は、気体透過性、液体不透過性のフィルタを含み得る。流路の長さは約6~12cmである。あるいは、流体経路は約3~6cmの長さであってもよい。あるいは、流体経路は約12cmより長くてもよい。あるいは、流路は約3~6cmの長さであってもよい。あるいは、流路は約20cmより長くてもよい。
【0371】
図101Dは、リザーバ内の尿とカセットポンプインターフェース1148との間の流体経路(破線で示される)が回旋状であり、インターフェース1148の湿潤を防ぐために長い収集容器の別の実施形態を示す。経路は、流体経路の全部又は一部としてコイル状にされているか、又は束ねられている小径のチューブ10108を含んでもよい。 好ましくは、回旋状経路は3次元で回旋状である。
【0372】
図101Eは、リザーバ内の尿とカセットポンプインターフェース1148との間の流体経路(破線で示される)が回旋状であり、インターフェース1148の湿潤を防ぐために長い収集容器の別の実施形態を示す。本実施形態は、小径チューブ10108と、カセットに成形された回旋状の経路の両方を含む。曲がりくねった経路は、部分的に成形、部分的にチューブ、又はすべてのチューブ又はすべてが成形されていてもよい。
【0373】
小径チューブ10108の内径は、約1.8~2.0mmであってもよい。いくつかの実施形態では、IDは約1.6~1.8mmであり得る。いくつかの実施形態では、IDは約1.4~1.6mmであり得る。いくつかの実施形態では、ID1は約1.2~1.4mmであり得る。いくつかの実施形態では、IDは約1.0~1.2mmであり得る。いくつかの実施形態では、IDは約0.8~1.0mmであり得る。いくつかの実施形態では、IDは約0.5~0.8mmであり得る。いくつかの実施形態では、IDは約0.2~5mmであり得る。いくつかの実施形態では、IDは約4mm未満であり得る。いくつかの実施形態では、IDは約3mm未満であり得る。いくつかの実施形態では、IDは約2mm未満であり得る。
【0374】
いくつかの実施形態は、小さな内腔直径を有するドレナージチューブを含む。例えば、いくつかの実施形態では、内腔の直径は約2mmである。いくつかの実施形態では、内腔の直径は約1mmである。いくつかの実施形態では、内腔の直径は約3mmである。いくつかの実施形態では、内腔の直径は約2mm未満である。いくつかの実施形態では、内腔の直径は約1mm未満である。いくつかの実施形態では、内腔の直径は約3mm未満である。
【0375】
いくつかの実施形態では、排出された尿を使用して、ドレナージチューブ又は収集リザーバ内の気泡を「洗浄」することができる。尿をドレナージチューブに循環させてドレナージチューブ内の容積を増やし、チューブ及び/又はリザーバ内の泡を「洗い流す」ことができる。コントローラは、尿排出量を計算する際にリサイクルされた尿を補正する。
【0376】
いくつかの実施形態では、加圧空気をドレナージチューブ及び/又は収集容器に導入してもよい。強制空気(forced air)は泡を破裂させ及び/又は圧縮し、また尿をシステムの表面に押し付けて泡の形成を減らす。ドレナージチューブの断面積は、ドレナージチューブが平坦部分に移行するにつれて、減少するか、同じままであるか、増加する場合がある。
【0377】
レベリング
【0378】
尿量が超音波を使用して収集容器内で測定される実施形態では、超音波が超音波センサから約90度の表面(すなわち尿量の表面)を有することが重要である。システムが数度傾いている場合、超音波センサは尿の表面を感知できないため、尿量の正確な測定値を取得できない場合がある。これを補うために、収集容器又はベース/コントローラは、例えば、ローラーに取り付けられた取り付け具を介してベッドに取り付けられ、取り付けられたときに重力が自動的にベースを水平にする。
【0379】
いくつかの実施形態では、システム内のわずかな角度は、収集リザーバ内の尿量に「粗い」表面を作成することにより処理される。「粗い」表面は、超音波反射のための複数の角度を提供し、そのうちのいくつかは、超音波センサ/トランスデューサから約90度になる。粗さは、空気又は他のガスを使用して尿を泡立て、収集リザーバ及び/又は尿を振動させることで作成できる。振動は、機械的、超音波などで達成することができる。尿の表面に浮かぶ、粗い下面、凹状の下面、又は凸状の下面を有するフローティングプレートを使用できる。浮遊ビーズは、尿が排出されたときにリザーバを出るには直径が大きすぎるため、尿が排出されたときにリザーバ内にとどまるようにリザーバ内にある場合がある。ビーズがオーバーフロー領域に入るのを防ぐために、メッシュ、狭い、小径の開口部又は他の機構を使用してもよい。さらに、上記のように、尿量を正確に測定するために、角度付きバッフル又は角度付き壁付き又はテーパ付き壁付きカセット(又は尿収集チャンバ)を使用することもできる。
【0380】
圧力バルーンプライミング
【0381】
圧力バルーンの圧力を調整して最適な圧力感知測定のためにそれをプライミングするために、非常に少量の空気又は流体が必要になる場合がある。このため、プライミング流体と圧力バルーンの間に空気/ガス/流体調整器を使用できる。調整器により、プライミングポンプはより少ない量の空気で動作し、より正確な圧力バルーンプライミングが可能になる。調整器は、発泡体挿入、流体管腔の狭窄部、又は他の適切な調整器を含み得る。
【0382】
一般的な改善
【0383】
いくつかの実施形態では、センシングフォーリーカテーテルシステム内のベッド、患者、又は他の場所のセンサは、患者が仰向けであるか仰向けでないかを感知する。膀胱内で測定された圧力は、患者が仰向けでないときに増加し、コントローラによる分析用のデータに悪影響を与える可能性がある。その結果、コントローラは、患者が仰向けでいない間に収集された圧力データを無視するか、この時間中に圧力データの収集を停止する場合がある。あるいは、圧力測定自体を使用して、患者が仰向けでないことを検知することができる。圧力の急激な増加又は特定のしきい値を超える増加は、患者が座ったり、動いたり、咳をしたりすることを示す場合がある。異なる圧力プロファイルは、異なるイベントを示す場合がある。褥瘡を防ぐための患者の転がりは、この方法で追跡できる。
【0384】
いくつかの実施形態では、センシングフォーリーカテーテルシステムに取り付けられたリード線から得られた、又は独立して得られたEKG測定値を使用して、膀胱の心拍数を介して測定された心拍をEKGと同期させる。
【0385】
いくつかの実施形態では、ベッドの角度は、IAP又はAPPなどの計算結果への入力パラメータとしてコントローラによって使用されてもよい。例えば、体の角度を大きくする(患者の頭の高さを上げる)と、IAPが増加する。この増加は、健康な患者と健康でない患者とで異なる場合がある。その結果、さまざまなベッド角度でIAPを決定すると、患者の健康に関する追加情報が得られる場合がある。また、頭部レベルを下げるとIAPが低下し、IAPの高い患者が一時的に安定する可能性がある。
【0386】
いくつかの実施形態では、センシングフォーリーカテーテルは、外部圧力センサと流体連通する少なくとも1つの圧力センサ又は管腔を有する。この圧力センサにより、内腔内の圧力を高速又は高頻度で(理想的には1Hzを超える速度で)検出し、内腔内の生理学的信号をモニタリングできる。いくつかの実施形態では、圧力を連続的又は断続的にモニタリングしながら、圧力管腔を手動又は自動で加圧及び/又は減圧してもよい。圧力管腔が圧力バルーンを含む実施形態では、バルーンが膨張及び/又は収縮する一方で、身体によって圧力バルーンに加えられる圧力がモニタリングされる。圧力内腔は、体腔から圧力波を伝達することができ、その1つは、管腔器官及び/又は周囲組織への血液の流入によって発生する心臓の脈動である。心臓の拍動及び/又は呼吸可動域からの拍動圧は、肺及び心血管の圧を決定するために使用できる。さらに、圧力管腔/バルーン内の圧力は、しきい値(すなわち100mmHg)を超えて増加した後、脈圧の起点、脈圧の消光点、及び/又は圧力パルスサイズの相対的な増加/減少を決定するために感知範囲内でゆっくりと減少してもよい。圧力センサによって検出された圧力脈動の起点/消滅又は相対的な増加/減少は、血圧、灌流圧、平均動脈圧、1回拍出量、1回拍出量の変動、呼吸努力、肺圧伝達及び他の肺、胃腸、腎臓又は心血管のパラメータに相関する可能性がある。このプロセスは血圧カフに似ていることがあり、血圧カフでは、圧力が血圧よりも高くなり、血圧波形(心拍)が現れるか消えるまでカフ内の圧力がゆっくりと低下する。
【0387】
図102は、圧力バルーンが膨張するときの圧力波形とその消滅を示す。なお、平均動脈圧を超えると、心臓の拍動が減少及び/又は消滅する。相対圧力ポイントでの消衰の程度を平均動脈圧と相関させるのに十分なデータがあれば、平均動脈圧はこの相対圧力波形から導き出すことができる。同じことが肺の圧力や体の内腔内で感知できる他の圧力にも使用できる。
【0388】
いくつかの実施形態では、圧力センサ/管腔は、外部トランスデューサを使用して圧力がモニタリングされている間にゆっくりと膨張又は充填できるカプセル、又はバルーン、又はリザーバである。いくつかの実施形態では、圧力センサは、フォーリーカテーテルなどの尿道カテーテルに関連付けられている。あるいは、圧力センサは、経鼻胃管、口胃管又は直腸管に関連付けられてもよい。さらに別の実施形態では、圧力センサデバイス及び関連する圧力増加デバイスは、完全に移植可能であってもよい。組織灌流の実施形態では、圧力感知を尿道内又は管腔表面に対して膨張させ、パルスオキシメトリーを実行して、各圧力で管腔組織のブランチング及び/又は灌流を検出し、組織灌流圧力を決定することができる。
【0389】
いくつかの実施形態では、カテーテルは、データ分析の品質を改善するために、複数の測定されたパラメータを相乗的に使用することができる。一実施形態では、カテーテルは、ECG信号を尿道又は膀胱を介して内部で、又は脚又は臀部に配置されたセンサを介して外部で捕捉するためのセンサを組み込んでいる。この信号を使用して、心周期と同期する他の測定パラメータ(1回拍出量など)を電気信号と同期させ、多くの個々のサンプルから平均信号又は中央値信号を取得することでノイズを除去できる。別の実施形態において、呼吸信号は、分析を実行する前にモデル波形が現れるのを待つことにより、どの心臓圧信号が一回拍出量変動分析に使用されるべきかを導くために使用される。
【0390】
図103は、分析のためのきれいな信号を得るために、心原性信号(近くの腹部大動脈の脈拍によって引き起こされる膀胱の圧力変動など)を同期させる方法を示している。対象の別の心臓信号と同期してECGが捕捉されると、例えばECGのR波を使用して個々のサンプルを同期できる。この図では、ECGのR波を使用して位置合わせを行い、複数の圧力サンプルを捕捉してからオーバーレイしている。次に、心周期中にすべての圧力サンプルの中央値を同時に取得することにより、信号中央値が計算される。平均も使用できる。この方法では、あるサンプルのノイズに起因する外部の高い値が、別のサンプルの同様に外部の低い値によって相殺されるため、ランダムノイズが除外される。データポイントが追加されると、基になる信号が強くなり、分析に使用できるようになる。例えば、示されている圧力信号では、信号のピーク間振幅を使用して、相対的なストローク量を導出できる。
【0391】
図104は、一回拍出量変動性(SVV)を決定するために、呼吸圧信号を使用して心臓圧信号分析に通知する方法を示している。この方法は、換気されていない患者、すなわち人工呼吸器を使用していない患者に特に価値がある。熱希釈やパルス輪郭分析などのストローク量を測定するための既存の技術は、呼吸サイクルに影響されないため、ストローク量の変動性の測定(吸気と呼気の間のストローク量の変動性)を実行する能力が制限されている。膀胱内のフォーリーカテーテルなどの本明細書に記載の管腔圧を使用すると、呼吸信号と心臓信号の同時捕捉が可能になるという利点がある(同様にゆっくりと動く腹腔内圧)。このように、このデバイスは、特定の特性が適切な分析(呼吸の速度やサイズなど)により適しているため、1回拍出量変動の分析に使用する呼吸サイクルを区別して選択できる。この図では、膀胱から捕捉されたサンプル圧力信号が示されている。上の生の圧力信号では、大きな変動は呼吸によるものであり、例えば波の幅、振幅、又はピーク値に基づいて分析のために選択される。傾き、曲線下面積、形状、周波数、パターン、再現性などを含む、適切な波を定義するために、示されていない他の特性も使用できる。特定の値を超える振幅の曲線がある場合、曲線振幅フィルタを使用でき、それ以下の値、又は別の特定の値はSVVの計算では使用されない。下の図は、ハイパスフィルタとローパスフィルタを通過した後の同じ信号を示している。ハイパスフィルタは下にある心臓信号(破線)を残し、ローパスフィルタは下にある呼吸信号(実線)を残す。この例では、呼吸信号のピークと谷間の心臓信号の強度の差(ピーク間値など)を使用して、1回拍出量の変動性を計算できる。
【0392】
呼吸数及び他のパラメータは、センシングフォーリーカテーテルを介して感知されてもよく、又は任意の従来又は非従来の手段によって感知又は取得されてもよい。収集される可能性のある他のパラメータには、一回換気量、肺活量測定、呼吸流量パラメータ、肺活量測定、呼気努力、吸気努力などを介して収集されるデータが含まれる。これらのパラメータのいずれかを使用して、一回拍出量の変動性および/または他の心臓パラメータの計算を支援することができる。
【0393】
SVV計算においてどの圧力ピークが使用されるかを決定するために使用されるフィルタは、本明細書で開示される圧力曲線パラメータのいずれかに基づいてもよい。さらに、SVV計算自体を使用して、計算で使用する圧力曲線のピークを決定できる。例えば、SVVは通常約10%以内である。本明細書で開示されるシステムは、約10%などの特定の値の範囲内にある結果として生じるSVV計算に基づいて圧力曲線データを含むか、又は除外する場合がある。
【0394】
SVV計算はまた、患者特有のものであり得る。例えば、圧力曲線のピークフィルタは振幅に基づく場合があるが、カットオフ振幅は患者固有であり、その患者の圧力曲線の平均、平均、又はその他のパラメータに基づく場合がある。あるいは、フィルタは、複数の患者、又は特定の疾患状態などの特定のカテゴリー内の複数の患者に基づいてもよい。
【0395】
信号及び/又はSVV計算は、患者の動き及び/又は咳、シフティング(shifting)、くしゃみなどの他のアーチファクトをフィルタリングすることもできる。
【0396】
加えて、非常に低い、又は存在しないSVVの計算された結果は、体液過剰の指標であり得、適切な治療が示され得る。
【0397】
開示されたシステムのいくつかの実施形態において、患者は特定の方法で呼吸するよう促されてもよい。例えば、圧力曲線の形状(ピーク振幅、周波数など)に基づいて、システムは、患者がより深く呼吸すること、よりゆっくり呼吸すること、正常に呼吸することなどを促す場合がある。結果として得られる呼吸圧曲線は、SVVの計算に組み込むことができる。このタイプのプロンプトは、圧力曲線がSVV計算を提供するのに不十分な場合、又はその他の理由でシステムによって実行される場合がある。
【0398】
図105A及び105Bは、カセットとコントローラとの間の封止機構のベースピースの2つの図を示す。通常、
図105Aと105Bに示すベースピースはカセットに接続され、
図106に示すピンはコントローラに接続される。ただし、ピンがカセットに接続され、ベースがコントローラに接続されている場合は、コネクタを逆に取り付けることもできる。封止機構の目的は、カセットがコントローラに接続されると、カセットの管腔をコントローラの管腔に接続することであるが、カセットがコントローラから切断されると、カセットの管腔も密閉される。例えば、患者が手術を受けたり、ある部屋から別の部屋に移動したりすると、カセットがモニタ/コントローラから一時的に切断されることがある。カセットがコントローラから取り外されている間は、カセットの管腔が汚染されず、尿、液体、ガスが漏れたりシステムに入ったりしないように、カセットの管腔を密閉することが望ましい場合がある。
【0399】
例えば、圧力バルーン管腔(圧力トランスデューサインターフェース1026など)、通気管腔1150、カセットポンプインターフェース1148、及び/又はカセット圧力インターフェース1150などの管腔は、これらのようなコネクタを有してもよい。
【0400】
コネクタのベース部分1050は、
図105A及び105Bに示されている。ベースは、シリコーン又はゴムなどの圧縮性の強い不活性材料から製造することができる。ベース部分1050は、ベースヘッド10504、ベースステム10508、及びベースアンカー10502、並びに長さL3のスリット10506を含む。好ましくは、スリット10506は単一の線形スリットであるが、ベースの成形後に鋭利なナイフを備えているため、スリットは丸い縁を有さず、比較的弛緩した状態で完全に密封することができる。ベース1050が管腔に接続されている場合、流体はベースのスリットを通って流れることができない。
【0401】
図106に示されるピン部分1060は、ピンヘッド10604と、それを通る管腔を含むピンステム10602とを含む。ピンステム10602の外径はD3である。ピン1060は、ベース1050のスリット10506の内側に適合し、そのように配置されると、流体が封止機構を通過することを可能にする。いくつかの実施形態では、L3はD3とほぼ同じである。
【0402】
図107A及び107Bは、ベース1050のスリット10506に挿入されたピン1060を示しており、これにより、流体がピンの内腔及び封止機構を通って流れることが可能になる。
【0403】
図108は、コントローラの開口部にスナップ嵌合されるように設計されたカセットの背面にある封止機構1050のベース部分を示す。ここに示されている封止機構のベース部分は、圧力バルーン管腔インターフェース10802、通気孔管腔インターフェース10804、カセットポンプインターフェース10806、及びカセット圧力インターフェース10808(IAPを測定するため)に接続されている。なお、カセットインターフェースのすべて、一部、又はどれもこれらのタイプの封止機構を使用できない。例えば、IAPを測定するための圧力インターフェース10808は、カセットが取り外されたときに密封する必要がなく、異なるタイプのコネクタを使用してもよい。
【0404】
図109は、カセットがコントローラに接続されたときの密閉機構の動作を示している。カセット1022は、封止機構の1つが設置されている断面で示されている。ベース1050はカセット部分に取り付けられ、ピン1060が存在しない場合は密閉される。ピン1060はコントローラ(図示せず)に接続されており、カセット1022がコントローラの所定の位置にスナップされると、ピン1060がベース1050のスリットに挿入され、流体がカセット・コントローラ間を出入りする。接続には、ここではフィルタ10902として示されているフィルタを含めることができる。
【0405】
図110は、ベース1050の実施形態のおおよその寸法を示している。これらの寸法は、用途ごとに異なっていてもよい。
【0406】
図111は、カセットに全体が取り付けられたときにベース1050に加えられる力のいくつかを示している。これらの力は、取り付け穴の直径とステム10508の直径、及びカセット壁の厚さとステム10508の長さによって引き起こされる。さらに、カセットがコントローラにインストールされるとき圧縮力がベースヘッド10504を押す場合がある。これらの力は、ピンがスリットに挿入されているかどうかにかかわらず、ベース1050の封止を強化する傾向がある。すなわち、ベースの寸法と形状に基づいて、スリットには力がかかり、スリット自体が閉じたままになるか、ピンが閉じたままになる。力がスリットを内側に押し込む。力がスリットを内側に押し込み、ベースヘッド10504は底部がわずかに凹んでおり(マッシュルームのように)、底部(より広い部分)に広がり、頂部(スリット開口部がある)で圧縮する傾向がある。これは、カセットの壁厚がステム10508の長さよりも大きい場合に特に当てはまる。
【0407】
いくつかの実施形態では、複数のドレナージ管腔を使用して、エアロックを防ぐことができる。近位開口部及び/又は遠位開口部は、ずらされていてもよい。管腔は、単一又は複数のチューブに組み込まれてもよく、サイフォンを保持してもしなくてもよい。例えば、2つのドレナージ管腔を使用するか、3つのドレナージ管腔を使用するか、4つのドレナージ管腔を使用するか、5つのドレナージ管腔を使用するか、6つのドレナージ管腔を使用するか、7つのドレナージ管腔を使用するか、8つのドレナージ管腔を使用するか、8つ以上のドレナージ管腔を使用することができる。
【0408】
本明細書に開示される実施形態のいずれかにおいて、通気管は、フォーリーカテーテルのサンプリングポート、又はフォーリーカテーテルの近くのバーブのサンプリングポートドレナージシステムのどこにでも取り付けることにより、標準又は非標準のフォーリーカテーテルに接続され得る。例えば、
図112を参照のこと。
【0409】
図112は、サンプリングポート1004又は任意の他の適切なポートを含む任意の尿ドレナージシステムに追加することができる通気機構/通気管を含む実施形態を示す。この実施形態では、通気機構11200は、サンプリングポート1004をシステムの通気孔に変えて、エアロックを回避することができる。通気機構11200は、通気管11202と、任意選択で弁11204及び/又はフィルタ11206とを含む。通気機構は、サンプリングポート1004を穿刺又は開放/アクセスし、排出機能を実行するためのドレナージ管腔1012と流体連通する開口を維持する針又は穿刺機構又は鈍管11208も含み得る。この図では、サンプリングポートはバーブ1016の一部として示されているが、サンプリングポートはドレナージシステムのどこにでもある。あるいは、他のポート又はアクセスポイントを使用することもできる。この実施形態は、真空ポンプの有無にかかわらず使用することができる。通気管は、剛性又は可撓性又は曲げ可能であってもよい。通気機構は、通気管を膀胱の高さより上、例えば膀胱の高さより1~10cm上に吊るす手段を含むことができる。通気管の長さは、丸い1cmを超える場合がある。あるいは、通気管の長さは丸い2cmより大きくてもよい。あるいは、通気管の長さは丸い3cmより大きくてもよい。あるいは、通気管の長さは丸い4cmより大きくてもよい。あるいは、通気管の長さは丸い5cmより長くてもよい。あるいは、通気管の長さは丸い10cmを超える場合がある。通気管のIDは約5mm未満である。あるいは、通気管の内径は約4mm未満である場合がある。あるいは、通気管のIDは約3mm未満である場合がある。あるいは、通気管のIDは約2mm未満である場合がある。あるいは、通気管のIDは約1mm未満である場合がある。
【0410】
この図では、通気管11202は大気中で終端するように示されているが、通気管は、
図11Eに示されるようにドレナージバッグに接続されてもよい。弁と通気孔が存在する場合、弁はサンプリングポートと通気孔の間にあるか、通気孔がサンプリングポートと弁の間にあることがある。このタイプの通気機構は、初期量の尿が膀胱から排出された後、サンプリングポートに実装できる。このタイプの通気機構は、患者の脚又は他の場所にバーブを固定するためのストラップ又はパッチに組み込むことができる。この実施形態の通気機構/通気管は、
図11Dに示されるような長さの1つ以上の小径部分を有してもよい。例えば、通気管11202の部分は、尿が通気管内を移動して弁及び/又はフィルタに到達するのを防ぐために、比較的小さい直径で比較的長くてもよい。
【0411】
サンプリングポート1004と共に穿刺機構11208を使用する代わりに、カテーテル又はドレナージチューブのチューブに沿って穿刺機構を使用してもよい。あるいは、ポートが通常は閉じているが、追加の通気機構/通気チューブを受け入れる機構を使用することができる。例えば、ベースがカテーテル/ドレナージチューブ上にあり、ピンが通気機構/通気チューブの一部である場合、又はその逆の場合、
図105-111に示されるもののような封止機構ピン構成を使用できる。いくつかの実施形態では、ポート1004は、カテーテルとドレナージチューブとの間に配置されることを意図したアドオンバーブ又はコネクタピース上にあってもよい。
【0412】
図113は、ポンプ/アーガ11302を含む実施形態を示す。ポンプは、好ましくは、ドレナージチューブ1012の外側に作用し、そうすることで、ドレナージチューブ内の流体をドレナージバッグに向けて促す。ポンプは、蠕動ポンプ、ローラーを備えたポンプ、周期的な圧力を加えるポンプなどであってもよい。ポンプが非常に単純で周期的な圧力を加える実施形態(ここに概略的に示されている)では、ドレナージチューブのIDは流体が主に一方向、この場合はドレナージバッグに向かって流れるように、その長さに沿って変化させる。ドレナージチューブの患者側のIDは、ドレナージチューブのドレナージバッグ側のIDよりも小さい場合がある。この拡大図に示されているように、IDが低下するか、IDの変更が緩やかになる場合がある。
【0413】
図114は、ドレナージチューブ1012がコイル状又は圧縮区画11402を含む実施形態を示す。この実施形態では、ドレナージチューブの弛みが低減される。コイルは、形状記憶材料によって、又は物理的なクリップ又は何らかの種類のホルダーによって支持されてもよい。好ましくは、ドレナージチューブは、患者の動きに対応するために伸びることができる。
【0414】
図115A及び115Bは、チューブ着座機構を含むバーブの実施形態を示す。バーブ11502は、尿ドレナージ管腔11506を囲む尿ドレナージチューブ11504と、通気孔管腔11510を囲む通気チューブ11508を含んでいる。チューブ11504及び11506は、製造中にバーブに挿入され、ステップ11512に着座する。これにより、尿ドレナージ管腔と通気管腔との両方が、
図115Bに示されるように、カテーテルマニホールド11514の単一の内側管腔11516に開くようになる。
【0415】
いくつかの実施形態では、コントローラは、バーブ又はその近くの圧力センサを制御して、バーブ領域内の圧力が過度に陰性ではないときを判断し、膀胱に吸引外傷を引き起こすことなくドレナージラインに真空を引くことができる。圧力センサを使用して、システムの初期配置を決定し、ドレナージラインの圧力が陽性でない又は陰性すぎないことを確認することもできる。ドレナージライン内の圧力が非常に低い場合、コントローラは尿収集リザーバ又は他の場所で弁を操作して一時的に排尿を停止又は遅くし、圧力を低くして膀胱の吸引外傷の可能性を減らす。
【0416】
いくつかの実施形態において、膀胱は、膀胱からの尿の排出を助けるために定期的に加圧される。これは、保持バルーン、感圧バルーン、別のバルーンなどを使用して実行できる。
【0417】
いくつかの実施形態では、エアロッククリアランスは断続的に実行される。いくつかの実施形態において、エアロッククリアランスは、例えば、ドレナージラインで連続的なわずかな真空を引くことにより連続的に実行される。
【0418】
いくつかの実施形態では、パルスオキシメトリーデータは、患者の皮膚から、例えば大腿部から、又は鼠径部又は脚部のどこかから収集することができる。
【0419】
いくつかの実施形態では、コントローラは、システム全体の空気量及び/又は圧力を管理する。例えば、コントローラは、エアフィルタ(いくつかの図で1142として示されている)がブロックされているか、濡れている場合に発生する可能性のある尿収集バッグの過圧を感知する。これにより、バッグが破損するリスクが高まる。これが発生した場合、コントローラは問題を軽減するために1つ以上のことを行うようにシステムに指示する場合がある。コントローラは、フィルタに空気の「パフ」を吹き付けることにより、フィルタをクリアしようとする場合がある。コントローラは、エアロッククリアランスポンプを減速又は停止することにより、尿排出を減速又は停止する場合がある。コントローラは、ポンプに方向を断続的に反転させ、ドレナージバッグ内の圧力を下げるように指示する場合がある。コントローラは、ドレナージバッグの問題を変更するか、手動で修正するようユーザーに警告する場合がある。コントローラは、システム内の任意の場所で圧力をモニタリングし、圧力関連の問題を特定し、場合によっては軽減する。コントローラは、バーブ、ドレナージライン内、通気ライン内、リザーバ/カセット内、ドレナージバッグ内などの圧力をモニタリングできる。例えば、コントローラはカセット内の圧力を制御して、カセットを空にし、フィルタを空にすること、気泡低減などができる。