(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-09
(45)【発行日】2022-06-17
(54)【発明の名称】高メルトインデックスの熱可塑性エラストマー及びその製造方法
(51)【国際特許分類】
C08F 293/00 20060101AFI20220610BHJP
C08F 2/22 20060101ALI20220610BHJP
C08F 2/38 20060101ALI20220610BHJP
C08F 4/28 20060101ALI20220610BHJP
【FI】
C08F293/00
C08F2/22
C08F2/38
C08F4/28
(21)【出願番号】P 2020564645
(86)(22)【出願日】2019-05-10
(86)【国際出願番号】 CN2019086303
(87)【国際公開番号】W WO2019218933
(87)【国際公開日】2019-11-21
【審査請求日】2020-11-17
(31)【優先権主張番号】201810474427.3
(32)【優先日】2018-05-17
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】505072650
【氏名又は名称】浙江大学
【氏名又は名称原語表記】ZHEJIANG UNIVERSITY
(74)【代理人】
【識別番号】100128347
【氏名又は名称】西内 盛二
(72)【発明者】
【氏名】方 ▲進▼▲偉▼
(72)【発明者】
【氏名】▲羅▼ 英武
(72)【発明者】
【氏名】高 翔
【審査官】工藤 友紀
(56)【参考文献】
【文献】中国特許出願公開第107418125(CN,A)
【文献】中国特許出願公開第106281147(CN,A)
【文献】中国特許出願公開第106433530(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 2/00-301/00
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
高メルトインデックスの熱可塑性エラストマーであって、
前記熱可塑性エラストマーは、一般構造式:
X-AA
n1-b-St
n2-b-α
n3-b-(β-co-γ)
n4-b-α
n5-R
(式中、Xはイソプロピオン酸基、酢酸基、2-シアノ酢酸基又は2-アミノ酢酸基である。AA
n1において、AAはメタアクリル酸単量体単位又はアクリル酸単量体単位であり、n
1はAAの平均重合度であり、且つn
1=20~60である。St
n2において、Stはスチレン単量体単位であり、n
2はStの平均重合度であり、且つn
2=3~10である。α
n3において、αはスチレン、メタアクリル酸メチル及びアクリロニトリルから選ばれる単量体単位であり、n
3はαの平均重合度であり、且つn
3=50~200である。(β-co-γ)
n4において、β-co-γはβ単量体とγ単量体とのランダム共重合体であり、βはアクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸t-ブチル、アクリル酸イソブチル及びアクリル酸イソオクチルから選ばれる単量体単位であり、γはメタアクリル酸ブチル、メタアクリル酸t-ブチル、メタアクリル酸イソブチル及びメタアクリル酸イソオクチルから選ばれる単量体単位であり、n
4はβ-co-γ共重合体の平均重合度であり、且つn
4=200~1000であり、β-co-γ共重合体のうちγとβの重量比は0:1~3:1である。α
n5において、αはスチレン、メタアクリル酸メチル及びアクリロニトリルから選ばれる単量体単位であり、n
5はαの平均重合度であり、且つn
5=50~200である。Rはアルキルジチオエステル基又はアルキルトリチオカーボネート基である。)で表され、
190℃、2.16kgの条件で測定したメルトインデックスが0.5~10g/10minである、ことを特徴とする熱可塑性エラストマー。
【請求項2】
請求項1に記載の熱可塑性エラストマーの製造方法であって、
両親媒性高分子可逆的付加-開裂連鎖移動試薬0.6~3重量部を撹拌しながら水50~100重量部に溶解し、次に、α単量体5~15重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を30~80℃に昇温して、撹拌しながら窒素を導入して酸素除去を5分間以上行い、第1水溶性開始剤0.014~0.1重量部を反応系に加え、30~60分間反応させた後、水酸化ナトリウム0.05~0.2重量部を含有する水酸化ナトリウム水溶液20~40重量部を加え、さらに30~60分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AA
n1-b-St
n2-b-α
n3-Rで表されるブロック共重合体を得るステップ(1)と、
ステップ(1)の反応が終了した後、反応温度を30~60℃に変更して、β単量体15~30重量部とγ単量体0~45重量部を加え、次に、第2水溶性開始剤0.014~0.1重量部を加えて、90~240分間反応させた後、水中に粒子として安定に分散してラテックスを形成する、式:X-AA
n1-b-St
n2-b-α
n3-b-(β-co-γ)
n4-Rで表されるブロック共重合体を得るステップ(2)と、
ステップ(2)の反応が終了した後、α単量体5~15重量部を加え、さらに30~60℃で90~240分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AA
n1-b-St
n2-b-α
n3-b-(β-co-γ)
n4-b-α
n5-Rで表されるブロック共重合体を得るステップ(3)と、
得られたラテックスを解乳化、洗浄、乾燥して、高メルトインデックスの熱可塑性エラストマーを得るステップ(4)と、を含む、ことを特徴とする熱可塑性エラストマーの製造方法。
【請求項3】
前記両親媒性高分子可逆的付加-開裂連鎖移動試薬は、一般構造式:、
【数1】
(式中、Zは炭素数4~12のアルキルチオ基、アルキル基、フェニル基又はベンジル基である。Sは硫黄原子である。Stはスチレン単量体単位である。AAはメタアクリル酸単量体単位又はアクリル酸単量体単位である。Xはイソプロピオン酸基、酢酸基、2-シアノ酢酸基又は2-アミノ酢酸基である。n
6はスチレン単量体単位の平均重合度であり、且つn
6=3~10である。n
7はメタアクリル酸単量体単位又はアクリル酸単量体単位の平均重合度であり、且つn
7=20~60である。)で表される、ことを特徴とする請求項2に記載の
熱可塑性エラストマーの製造方法。
【請求項4】
前記第1水溶性開始剤は過硫酸アンモニウム、過硫酸カリウム、過酸化水素又は過酸化水素誘導体である、ことを特徴とする請求項2に記載の
熱可塑性エラストマーの製造方法。
【請求項5】
前記第2水溶性開始剤は、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩、2-ヒドロキシ-4'-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン、過硫酸水素ナトリウム/過硫酸カリウムのレドックス開始剤又は過硫酸ナトリウム/過硫酸アンモニウムのレドックス開始剤である、ことを特徴とする請求項2に記載の
熱可塑性エラストマーの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高分子材料の分野に属し、特に高メルトインデックスを有するブロック共重合体熱可塑性エラストマー及びその合成方法に関する。
【背景技術】
【0002】
熱可塑性エラストマーは、常温ではゴム弾性を有し、高温では塑性加工が可能な新規高分子材料である。ほとんどの熱可塑性エラストマーのトリブロック又はマルチブロック共重合体は、ガラス転移温度が作動温度よりも高いハードセグメントのブロックとガラス転移温度が作動温度未満のソフトセグメントとから構成され、前者は重合体に物理的架橋を付与し、製品の強度を高め、後者は製品へ良好な弾性を付与する。
【0003】
重合体のメルトインデックスは、その熱加工特性の優劣を反映するものであり、メルトインデックスが高いほど、重合体の熱加工特性が良好である。重合体のメルトインデックスは重合体の分子量の大きさ、分岐の程度、分子構造などに関連しており、ブロック共重合体について、メルトインデックスは2種類のブロックの間の相溶性にも関連し、ソフトブロックとハードブロックとの相溶性が高いほど、そのメルトインデックスが高くなる。一方、熱可塑性エラストマーは、ソフトブロックとハードブロックがミクロ相分離形態を形成するのに十分な駆動力を持っている必要があるため、通常、両方の相溶性が劣る。
【0004】
現在、ブロック熱可塑性エラストマーの工業的合成には、通常アニオンリビング重合方法が使用されているが、原料の純度及び反応環境への要求が極めて高いため、合成コストが比較的高く、適用可能な単量体が少ない。リビング/制御ラジカル重合はここ数十年で急速に発展した合成手段であり、ポリマー分子鎖の制御可能な調製を実現できるだけでなく、ラジカル重合に適用できる単量体範囲が広く、反応条件が温和であるなどの利点があるため、ブロック共重合体の合成に広く使用されている。可逆的付加-開裂連鎖移動重合(RAFT)は、リビング/制御ラジカル重合のうち最も工業化の将来性を有する一つである。
【0005】
溶液重合及びバルク重合に比べて、乳化重合は、重合速度が速く、伝熱効果が良く、最終製品の粘度などの優位性を有し、最も工業化に適した重合方法である。RAFT乳化重合は、RAFT重合活性が制御できるという特徴及び乳化重合の重合速度が速く、生成物の分子量が高いという利点を組み合わせるため、ブロック共重合体と熱可塑性エラストマーの合成において大きな優位性を有する。近年、RAFT乳化重合は、すでに複数種の熱可塑性エラストマーに使用されており、その中でも、アクリル酸エステル系重合体は、低いガラス転移温度、良好な老化防止効果、高極性などの優位性を有するため、熱可塑性エラストマーのソフトセグメントとして幅広く使用されている。
【0006】
しかしながら、従来の乳化重合の反応温度、つまり50~80℃において、RAFT乳化重合により合成されるアクリル酸エステル系熱可塑性エラストマーは、一般的には、メルトインデックスが低すぎ、加工性能が劣るという欠陥があり、そのメルトインデックスは、通常0.01g/10min未満である。低すぎるメルトインデックスによりアクリル酸エステル系熱可塑性エラストマーの適用が制限され、その熱加工の加工コストが大幅に増加した。
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明の目的は、従来技術の欠陥に対して、高メルトインデックスを有する極性熱可塑性エラストマー及びその製造方法を提供することである。
【課題を解決するための手段】
【0008】
本発明の目的は、以下の技術案により実現される。
高メルトインデックスの熱可塑性エラストマー及びその製造方法であって、
熱可塑性エラストマーは、一般構造式:
X-AAn1-b-Stn2-b-αn3-b-(β-co-γ)n4-b-αn5-R
(式中、Xはイソプロピオン酸基、酢酸基、2-シアノ酢酸基又は2-アミノ酢酸基である。AAn1において、AAはメタアクリル酸単量体単位又はアクリル酸単量体単位であり、n1はAAの平均重合度であり、且つn1=20~60である。Stn2において、Stはスチレン単量体単位であり、n2はStの平均重合度であり、n2=3~10である。αn3において、αはスチレン、メタアクリル酸メチル(MMA)及びアクリロニトリル(AN)から選ばれる単量体単位であり、n3はαの平均重合度であり、且つn3=50~200である。(β-co-γ)n4において、β-co-γはβ単量体とγ単量体とのランダム共重合体であり、βはアクリル酸メチル(MA)、アクリル酸エチル(EA)、アクリル酸ブチル(BA)、アクリル酸t-ブチル(tBA)、アクリル酸イソブチル(iBA)及びアクリル酸イソオクチル(EHA)から選ばれる単量体単位であり、γはメタアクリル酸ブチル(BMA)、メタアクリル酸t-ブチル(tBMA)、メタアクリル酸イソブチル(iBMA)及びメタアクリル酸イソオクチル(EHMA)から選ばれる単量体単位であり、n4はβ-co-γ共重合体の平均重合度であり、且つn4=200-1000であり、β-co-γ共重合体のうちγとβの重量比は0:1~3:1である。αn5において、αはスチレン、メタアクリル酸メチル及びアクリロニトリルから選ばれる単量体単位であり、n5はαの平均重合度であり、且つn5=50~200である。Rはアルキルジチオエステル基又はアルキルトリチオカーボネート基である。)で表される。前記熱可塑性エラストマーは、190℃、2.16kgの条件で測定したメルトインデックスが0.5~10g/10minである。
【0009】
本発明は、
両親媒性高分子可逆的付加-開裂連鎖移動試薬0.6~3重量部を撹拌しながら水50~100重量部に溶解し、次に、α単量体5~15重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を30~80℃に昇温して、撹拌しながら、窒素を導入して酸素除去を5分間以上行い、第1水溶性開始剤0.014~0.1重量部を反応系に加え、30~60分間反応させた後、水酸化ナトリウム0.05~0.2重量部を含有する水酸化ナトリウム水溶液20~40重量部を加え、さらに30~60分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-Rで表されるブロック共重合体を得るステップ(1)と、
ステップ(1)の反応が終了した後、反応温度を30~60℃に変更して、β単量体15~30重量部とγ単量体0~45重量部を加え、次に、第2水溶性開始剤0.014~0.1重量部を加えて、90~240分間反応させた後、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-b-(β-co-γ)n4-Rで表されるブロック共重合体を得るステップ(2)と、
ステップ(2)の反応が終了した後、α単量体5~15重量部を加え、さらに30~60℃で90~240分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-b-(β-co-γ)n4-b-αn5-Rで表されるブロック共重合体を得るステップ(3)と、
得られたラテックスを解乳化、洗浄、乾燥して、高メルトインデックスの熱可塑性エラストマーを得るステップ(4)と、を含む上記熱可塑性エラストマーの製造方法を提供する。
【0010】
さらに、前記両親媒性高分子可逆的付加-開裂連鎖移動試薬は、一般構造式:
【数1】
(式中、Zは炭素数4~12のアルキルチオ基、アルキル基、フェニル基又はベンジル基である。Sは硫黄原子である。Stはスチレン単量体単位である。AAはメタアクリル酸単量体単位又はアクリル酸単量体単位である。Xはイソプロピオン酸基、酢酸基、2-シアノ酢酸基又は2-アミノ酢酸基である。n
6はスチレン単量体単位の平均重合度であり、且つn
6=3~10である。n
7はメタアクリル酸単量体単位又はアクリル酸単量体単位の平均重合度であり、且つn
7=20~60である。)で表される。
【0011】
さらに、前記第1水溶性開始剤は過硫酸アンモニウム、過硫酸カリウム、過酸化水素又は過酸化水素誘導体であり、前記第2水溶性開始剤は、2,2'-アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V50)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩(VA044)、2-ヒドロキシ-4'-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノン(2959)、過硫酸水素ナトリウム/過硫酸カリウムのレドックス開始剤又は過硫酸ナトリウム/過硫酸アンモニウムのレドックス開始剤である。
【発明の効果】
【0012】
本発明の有益な効果は以下のとおりである。本発明では、乳化重合系を用いて、可逆的付加-開裂連鎖移動型ラジカル重合技術と組み合わせ、反応温度の低下及びソフトセグメントでの共重合の方法により、高メルトインデックスのトリブロック構造の熱可塑性エラストマーを得る。
1、乳化重合は、低粘度、高熱伝達効率、低汚染などの利点を有し、工業化及び連続生産に有利である。
2、乳化重合は、ラジカル分離効果を有するため、異なる粒子中のラジカルが相互に反応せず、ラジカル停止の速度を低下させる。したがって、本発明は、重合速度が速く、得られた生成物の分子量が大きいという優位性を有する。
3、使用される両親媒性高分子可逆的付加-開裂連鎖移動試薬は、連鎖移動剤と乳化剤の両方として機能し、最終製品の分子構造及び分布を良好に制御できるとともに、外添乳化剤を除去する後続の煩瑣な操作を省略する。
4、このの方法で合成される重合体は、分子量が制御可能であり、分子量分布が狭く、単量体の適用範囲が広い。
5、従来のRAFT乳化重合で得た生成物に比べて、本発明で得た熱可塑性エラストマー製品は、高いメルトインデックス、良好な熱加工特性を備えながら、良好な粘弾性を有する。
【図面の簡単な説明】
【0013】
【
図1】本発明の実例1における各ブロックが完成した後に採取された重合体サンプルのGPC曲線図である。
【
図2】本発明の実例1で得たブロック生成物と従来のRAFT乳化重合により得られた同じ組成のブロック生成物とのGPC曲線の比較図であり、後者は、反応過程に亘って重合温度を70℃に維持する。
【
図3】本発明の実例2における各ブロックが完成した後に採取された重合体サンプルのGPC曲線図である。
【
図4】本発明の実例1と実例2で得た生成物のDSC曲線の比較図である。
【発明を実施するための形態】
【0014】
本願の発明者は研究したところ、RAFT乳化重合の反応温度が従来の50~80℃から30~60℃に低下すると、得られたアクリル酸エステル系のトリブロック熱可塑性エラストマーのメルトインデックスが大きく高まることを見出した。また、ソフトセグメントアクリル酸エステル系単量体の一部に、ハードセグメントとの相溶性がより良好であるとともにソフトセグメント構造と類似した単量体を共重合することによって、熱可塑性エラストマーのメルトインデックスを効果的に向上できるだけでなく、重合体の粘弾性、極性などの性能にも大きな影響を及ぼさない。最終的に得られた製品は、熱可塑性エラストマーの優れた弾性、高強度を有するだけでなく、高極性を有し、さらにその加工性能が大幅に向上する。
【0015】
本発明は、可逆的付加-開裂連鎖移動乳化重合による高メルトインデックス熱可塑性エラストマーの製造方法であって、
両親媒性高分子可逆的付加-開裂連鎖移動試薬0.6~3重量部を撹拌しながら水50~100重量部に溶解し、次に、α単量体5~15重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を30~80℃に昇温して、撹拌しながら、窒素を導入して酸素除去を5分間以上行い、第1水溶性開始剤0.014~0.1重量部を反応系に加え、30~60分間反応させた後、水酸化ナトリウム0.05~0.2重量部を含有する水酸化ナトリウム水溶液20~40重量部を加え、さらに30~60分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-Rで表されるブロック共重合体を得るステップ(1)と、
ステップ(1)の反応が終了した後、反応温度を30~60℃に変更して、β単量体15~30重量部とγ単量体0~45重量部を加え、次に、第2水溶性開始剤0.014~0.1重量部を加えて、90~240分間反応させた後、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-b-(β-co-γ)n4-Rで表されるブロック共重合体を得るステップ(2)と、
ステップ(2)の反応が終了した後、α単量体5~15重量部を加え、さらに30~60℃で90~240分間反応させて、水中に粒子として安定に分散してラテックスを形成する、式:X-AAn1-b-Stn2-b-αn3-b-(β-co-γ)n4-b-αn5-Rで表されるブロック共重合体を得るステップ(3)と、
得られた重合体ラテックスを解乳化、洗浄、乾燥した後、高メルトインデックスの熱可塑性エラストマーを得るステップ(4)と、を含む。
【0016】
ステップ1で使用される両親媒性高分子可逆的付加-開裂連鎖移動試薬は、一般構造式:
【数2】
(式中、Zは炭素数4~12のアルキルチオ基、アルキル基、フェニル基又はベンジル基である。Sは硫黄原子である。Stはスチレン単量体単位である。AAはメタアクリル酸単量体単位又はアクリル酸単量体単位である。Xはイソプロピオン酸基、酢酸基、2-シアノ酢酸基又は2-アミノ酢酸基である。n
6はスチレン単量体単位の平均重合度であり、且つn
6=3~10である。n
7はメタアクリル酸単量体単位又はアクリル酸単量体単位の平均重合度であり、且つn
7=20~60である。)で表される。
【0017】
各単量体の転化率は重量法により測定される。
【0018】
設計分子量は下式により算出される。
【数3】
式中、M
n,
thは各ステップの反応が終了したときの重合体分子量の設計値であり、mは当該ステップの反応で添加される単量体の全質量であり、xは転化率であり、[RAFT]は反応開始前に添加される両親媒性可逆的付加-開裂連鎖移動試薬の物質の量であり、M
n,
RAFTは両親媒性可逆的付加-開裂連鎖移動試薬の分子量である。
【0019】
重合体の分子量のキャラクタリゼーションは、ゲル透過クロマトグラフィーWaters1525-2414-717GPC機器にて行われ、溶離液としてテトラヒドロフランが使用され、分布の狭いポリスチレン標準サンプルにより校正が行われる。
【0020】
重合体のガラス転移温度の測定はDSC Q200機器にて行われ、窒素ガスの雰囲気を用いて、10℃/分間の昇温速度で-50℃から150℃に加熱する。
【0021】
重合体のメルトインデックスの測定はメルトインデクサーにて行われ、テスト条件として温度190℃、圧力2.16kgとする。
【0022】
以下、図面及び実施例にて本発明を詳細に説明する。
【0023】
本発明の実施例で使用される両親媒性高分子可逆的付加-開裂連鎖移動試薬の化学構造式は以下のとおりである。
【数4】
両親媒性高分子可逆的付加-開裂連鎖移動試薬(1)
【数5】
両親媒性高分子可逆的付加-開裂連鎖移動試薬(2)
【0024】
実施例1:
ステップ1:両親媒性高分子可逆的付加-開裂連鎖移動試薬1.2重量部を撹拌しながら水70重量部に溶解し、次に、St単量体8重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を70℃に昇温し、撹拌しながら、窒素を導入して酸素除去を30分間行い、過硫酸カリウム0.03重量部を反応系に加え、60分間反応させた後、水酸化ナトリウム0.16重量部を含有する水酸化ナトリウム水溶液30重量部を加え、さらに30分間反応させて、X-AA
n1-b-St
n2-b-St
n3-Rで表されるブロック共重合体ラテックスを得た。
ステップ2:ステップ1の反応が終了した後、反応温度を40℃に変更し、BA単量体30重量部を加え、次に、VA044 0.05重量部を加え、180分間反応させた後、X-AA
n1-b-St
n2-b-St
n3-b-BA
n4-Rで表されるブロック共重合体ラテックスを得た。
ステップ3:ステップ2の反応が終了した後、St単量体8重量部を加え、さらに40℃で150分間反応させて、X-AA
n1-b-St
n2-b-St
n3-b-BA
n4-b-St
n5-Rで表されるブロック共重合体ラテックスを得た。
ステップ4:得られた重合体ラテックスを解乳化、洗浄、乾燥した後、高メルトインデックスの熱可塑性エラストマーを得た。
図1は各ブロックの反応が終了した後の重合体のGPC曲線であり、重合体の分子量が重合過程において徐々に増加しているから、得た生成物がブロック共重合体であることが明らかになった。重合過程に亘って製品のPDIがいずれも1.6未満であり、このことから、この重合過程はリビング重合であることを示している。
図2は、70℃でRAFT乳化重合で得た同じ組成のブロック共重合体と実例1で得た生成物とのGPC曲線を比較したものであり、前者は、反応過程に亘って反応温度を70℃に維持し、70℃で反応させて得たトリブロック共重合体のGPC曲線において、高分子量の位置で非常に顕著なショルダーピークがあり、最終的なPDIが3よりも大きく、一方、実例1では、最終的に得られた生成物にはショルダーピークがなく、しかも最終分子量の分布が狭いことが明らかになった。上記の2種類の重合体についてメルトインデクサーにて温度190℃、圧力2.16kgの条件でテストしたところ、70℃における製品の最終メルトインデックスは0.01g/10min未満であり、一方、実例1の製品のメルトインデックスは0.5g/10minに達した。
【0025】
実施例2:
ステップ1:両親媒性高分子可逆的付加-開裂連鎖移動試薬1.8重量部を撹拌しながら水70重量部に溶解し、次に、St単量体8重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を70℃に昇温し、撹拌しながら、窒素を導入して酸素除去を30分間行い、過硫酸アンモニウム0.045重量部を反応系に加え、60分間反応させた後、水酸化ナトリウム0.2重量部を含有する水酸化ナトリウム水溶液25重量部を加え、さらに30分間反応させて、X-AA
n1-b-St
n2-b-St
n3-Rで表されるブロック共重合体ラテックスを得た。
ステップ2:ステップ1の反応が終了した後、反応温度を45℃に変更し、BA単量体15重量部とBMA単量体15重量部を加え、次に、VA044 0.05重量部を加え、150分間反応させた後、X-AA
n1-b-St
n2-b-St
n3-b-(BA-co-BMA)
n4-Rで表されるブロック共重合体ラテックスを得た。
ステップ3:ステップ2の反応が終了した後、St単量体8重量部を加え、さらに45℃で180分間反応させて、X-AA
n1-b-St
n2-b-St
n3-b-(BA-co-BMA)
n4-b-St
n5-Rで表されるブロック共重合体ラテックスを得た。
ステップ4:得られた重合体ラテックスを解乳化、洗浄、乾燥した後、高メルトインデックスの熱可塑性エラストマーを得た。
図3は、各ブロックの反応が終了した後に得た重合体のGPC曲線であり、重合体の分子量が徐々に増加しているから、得た生成物がトリブロック共重合体であることが明らかになった。重合過程に亘って製品のPDIがいずれも1.6未満であり、このことから、この重合過程がリビング重合であることが明らかになった。
図4は、2種類の異なるトリブロック共重合体であるX-AA
n1-b-St
n2-b-St
n3-b-BA
n4-b-St
n5-R(実例1の製品)とX-AA
n1-b-St
n2-b-St
n3-b-(BA-co-BMA)
n4-b-St
n5-R(実例2の製品)とのDSC曲線の比較図であり、前者のソフトセグメント(BAセグメント)は、ガラス転移温度が約-50℃であり、ホモポリマーPBAのガラス転移温度(-56℃)に近く、且つ、ガラス転移温度の範囲が狭く、後者では、ソフトセグメント(BA-co-BMAセグメント)のガラス転移温度が約-20℃に高まるが、通常の室温よりもはるかに低く、熱可塑性エラストマーのソフトセグメントへの要求を満たし、また、ガラス転移温度の範囲が広くなるから、ソフトセグメントとハードセグメントとの間の相溶性がある程度向上することが分かった。最終的に得られた重合体は、温度190℃、圧力2.16kgの条件下でのメルトインデックスが1.25g/10minに達した。
【0026】
実施例3:
ステップ1:両親媒性高分子可逆的付加-開裂連鎖移動試薬0.6重量部を撹拌しながら水50重量部に溶解し、次に、St単量体5重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を80℃に昇温し、撹拌しながら、窒素を導入して酸素除去を15分間行い、過硫酸カリウム0.014重量部を反応系に加え、30分間反応させた後、水酸化ナトリウム0.05重量部を含有する水酸化ナトリウム水溶液20重量部を加え、さらに60分間反応させて、X-AAn1-b-Stn2-b-Stn3-Rで表されるブロック共重合体ラテックスを得た。
ステップ2:ステップ1の反応が終了した後、反応温度を50℃に変更し、BA単量体15重量部とBMA単量体45重量部を加え、次に、過硫酸カリウム0.014重量部を加え、240分間反応させて、水中に粒子として安定に分散してラテックスを形成するX-AAn1-b-Stn2-b-Stn3-b-(BA-co-BMA)n4-Rで表されるブロック共重合体を得た。
ステップ3:ステップ2の反応が終了した後、St単量体5重量部を加え、さらに50℃で90分間反応させて、X-AAn1-b-Stn2-b-Stn3-b-(BA-co-BMA)n4-b-Stn5-Rで表されるブロック共重合体ラテックスを得た。
ステップ4:得られた重合体ラテックスを解乳化、洗浄、乾燥して、高メルトインデックスの熱可塑性エラストマーを得た。
【0027】
実施例4:
ステップ1:両親媒性高分子可逆的付加-開裂連鎖移動試薬3重量部を撹拌しながら水100重量部に溶解し、次に、MMA単量体15重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を30℃に昇温し、撹拌しながら、窒素を導入して酸素除去を50分間行い、過硫酸アンモニウム0.1重量部を反応系に加え、60分間反応させた後、水酸化ナトリウム0.2重量部を含有する水酸化ナトリウム水溶液40重量部を加え、さらに60分間反応させて、X-AAn1-b-Stn2-b-MMAn3-Rで表されるブロック共重合体ラテックスを得た。
ステップ2:ステップ1の反応が終了した後、反応温度を30℃に変更し、EA単量体30重量部とEHMA単量体15重量部を加え、次に、過硫酸カリウム/亜硫酸ナトリウム(1:1)レドックス開始剤0.1重量部を加え、240分間反応させて、X-AAn1-b-Stn2-b-αn3-b-(EA-co-EHMA)n4-Rで表されるブロック共重合体ラテックスを得た。
ステップ3:ステップ2の反応が終了した後、MMA単量体15重量部を加え、さらに30℃で90分間反応させて、X-AAn1-b-Stn2-b-MMAn3-b-(EA-co-EHA)n4-b-MMAn5-Rで表されるブロック共重合体ラテックスを得た。
ステップ4:得られた重合体ラテックスを解乳化、洗浄、乾燥した後、高メルトインデックスの熱可塑性エラストマーを得た。
【0028】
実施例5:
ステップ1:両親媒性高分子可逆的付加-開裂連鎖移動試薬1.5重量部を撹拌しながら水80重量部に溶解し、次に、St単量体10重量部を加え、撹拌して予備乳化した後、反応器に加え、反応器を80℃に昇温し、撹拌しながら、窒素を導入して酸素除去を30分間行い、過硫酸カリウム0.03重量部を反応系に加え、30分間反応させた後、水酸化ナトリウム0.1重量部を含有する水酸化ナトリウム水溶液30重量部を加え、さらに30分間反応させて、X-AAn1-b-Stn2-b-Stn3-Rで表されるブロック共重合体ラテックスを得た。
ステップ2:ステップ1の反応が終了した後、反応温度を50℃に変更し、BA単量体20重量部とBMA単量体20重量部を加え、次に、VA044 0.03重量部を加え、90分間反応させて、X-AAn1-b-Stn2-b-Stn3-b-(BA-co-BMA)n4-Rで表されるブロック共重合体ラテックスを得た。
ステップ3:ステップ2の反応が終了した後、St単量体10重量部を加え、さらに50℃で240分間反応させて、X-AAn1-b-Stn2-b-Stn3-b-(BA-co-BMA)n4-b-Stn5-Rで表されるブロック共重合体ラテックスを得た。
ステップ4:得られた重合体ラテックスを解乳化、洗浄、乾燥した後、高メルトインデックスの熱可塑性エラストマーを得た。
【0029】
上記実施例は、本発明を説明するものであり、本発明を制限するものではなく、本発明の趣旨及び特許請求の範囲の特許範囲内で、本発明に対して行われるすべての修正や変化はすべて本発明の特許範囲に含まれるものとする。