(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-10
(45)【発行日】2022-06-20
(54)【発明の名称】高性能集積回路その他のデバイスの熱的及び構造的管理のための一体化熱スプレッダ及びヒートシンクを備えたモジュールベース
(51)【国際特許分類】
H01L 23/36 20060101AFI20220613BHJP
H05K 7/20 20060101ALI20220613BHJP
【FI】
H01L23/36 D
H05K7/20 B
(21)【出願番号】P 2021512893
(86)(22)【出願日】2019-09-12
(86)【国際出願番号】 US2019050854
(87)【国際公開番号】W WO2020056165
(87)【国際公開日】2020-03-19
【審査請求日】2021-03-08
(32)【優先日】2018-09-14
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503455363
【氏名又は名称】レイセオン カンパニー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】グプタ,アヌラーグ
(72)【発明者】
【氏名】ブルックス,デイヴィッド エー.
(72)【発明者】
【氏名】ハーンドン,メアリー ケー.
【審査官】佐藤 靖史
(56)【参考文献】
【文献】登録実用新案第3122382(JP,U)
【文献】国際公開第2014/128868(WO,A1)
【文献】特開2012-238733(JP,A)
【文献】特開2008-28283(JP,A)
【文献】特表2015-532531(JP,A)
【文献】特開2000-150743(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 23/36
H05K 7/20
(57)【特許請求の範囲】
【請求項1】
冷却すべき1つ以上のデバイスを載置するように構成され、カバーと前記カバーに接続されたヒートシンクとを含むモジュールベース;
を含む装置であって:
前記カバーが、第1封止層及び第2封止層、及び前記第1封止層と第2封止層との間の熱スプレッダを含み、前記第1封止層が、冷却すべき前記1つ以上のデバイスから熱エネルギを受けるように構成され、前記熱スプレッダが、前記第1封止層を通して受けた前記熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを前記第2封止層へと提供するように構成されており;
前記ヒートシンクが、前記第2封止層を通して熱エネルギを受け、前記熱エネルギを前記モジュールベースの外へ移送するように構成されており;かつ
前記第1封止層が、複数の開口部を含み、前記モジュールベースが、前記開口部を通して挿入された複数のタブをさらに含み、各タブは、冷却すべき1つ以上のデバイスのうちの少なくとも1つと前記熱スプレッダとの間に、前記第1封止層を通した熱的インターフェースを提供するように構成されている;
装置。
【請求項2】
前記第1封止層及び前記第2封止層のうちの少なくとも1つが、凹部を含み;
前記熱スプレッダは、前記凹部内に嵌合するように構成されている;
請求項1に記載の装置。
【請求項3】
前記熱スプレッダは複数の開口部を含み、前記熱スプレッダの開口部は、前記第1封止層の開口部に整合整列しており;
前記第2封止層は、複数の隆起したペデスタルを含み;かつ
前記タブは、前記熱スプレッダの前記開口部内に位置づけられ、前記の隆起したペデスタルに接触する;
請求項2に記載の装置。
【請求項4】
前記の隆起したペデスタルが、前記タブの1つ以上の材料によって生じるガルバニック腐食を防止するためにメッキされている、請求項3に記載の装置。
【請求項5】
前記モジュールベースは複数のクラッドをさらに含み、各クラッドは、前記タブのうちの1つの上に位置づけられ、前記第1封止層の前記開口部のうちの1つの内部に位置づけられる、請求項1に記載の装置。
【請求項6】
前記クラッドが、前記第1封止層の1つ以上の材料によって引き起こされるガルバニック腐食を防止するためにメッキされている、請求項5に記載の装置。
【請求項7】
前記タブ及び前記熱スプレッダは、共通の第1方向及び第2方向において熱伝導率が高く、共通の第3方向において熱伝導率が低い、請求項1に記載の装置。
【請求項8】
前記タブは、第1方向及び第2方向において熱伝導率が高く、第3方向において熱伝導率が低く;かつ
前記熱スプレッダは、前記第1方向及び前記第3方向において熱伝導率が高く、前記第2方向において熱伝導率が低い;
請求項1記載の装置。
【請求項9】
前記ヒートシンクは:
前記ヒートシンク内に流体を受け入れるように構成された少なくとも1つの入口;
前記流体が前記熱エネルギを吸収する間、前記流体を移送するように構成された1つ以上の通路;及び
前記ヒートシンクの外へ前記流体を供給するように構成された少なくとも1つの出口;を含む、
請求項1に記載の装置。
【請求項10】
前記ヒートシンクは前記1つ以上の通路内にフィン付き構造をさらに備える、請求項9に記載の装置。
【請求項11】
前記第1封止層及び前記第2封止層は金属を含み;
前記熱スプレッダはグラファイトを含み;かつ
前記タブは、グラファイト及び金属のうちの少なくとも1つを含む;
請求項1に記載の装置。
【請求項12】
前記熱スプレッダは、前記モジュールベースの熱的及び構造的性能を調整するために、1つ以上の金属で被覆されている、請求項1に記載の装置。
【請求項13】
前記タブは、前記第1封止層の熱膨張係数に実質的にマッチするように、前記タブの熱膨張係数を調整するために金属で被覆されている、請求項1に記載の装置。
【請求項14】
前記タブは、前記第1封止層の熱膨張係数と比較して熱膨張係数を低減するために金属で被覆されている、請求項1に記載の装置。
【請求項15】
前記熱スプレッダは、前記第1封止層及び前記第2封止層の1つ以上の材料によって引き起こされるガルバニック腐食を防止するためにメッキされている、請求項1に記載の装置。
【請求項16】
前記タブ及び前記熱スプレッダは、互いに起因するガルバニック腐食を防止するためにメッキされている、請求項1に記載の装置。
【請求項17】
冷却すべき1つ以上のデバイス;及び
前記1つ以上のデバイスを担持するモジュールベースであり、カバーと前記カバーに接続されたヒートシンクとを含むモジュールベース;
を含むシステムであって:
前記カバーが、第1封止層及び第2封止層、及び前記第1封止層と第2封止層との間の熱スプレッダを含み、前記第1封止層が、前記1つ以上のデバイスから熱エネルギを受けるように構成され、前記熱スプレッダが、前記第1封止層を通して受けた前記熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを前記第2封止層へと提供するように構成されており;
前記ヒートシンクが、前記第2封止層を通して熱エネルギを受け、前記熱エネルギを前記モジュールベースの外へ移送するように構成されており;かつ
前記第1封止層が、複数の開口部を含み、前記モジュールベースが、前記開口部を通して挿入された複数のタブをさらに含み、各タブは、冷却すべき1つ以上のデバイスのうちの少なくとも1つと前記熱スプレッダとの間に、前記第1封止層を通した熱的インターフェースを提供するように構成されている;
システム。
【請求項18】
前記第1封止層及び前記第2封止層のうちの少なくとも1つが、凹部を含み;かつ
前記熱スプレッダは、前記凹部内に嵌合するように構成されている;
請求項17に記載のシステム。
【請求項19】
前記熱スプレッダは複数の開口部を含み、前記熱スプレッダの開口部は、前記第1封止層の開口部に整合整列しており;
前記第2封止層は、複数の隆起したペデスタルを含み;かつ
前記タブは、前記熱スプレッダの前記開口部内に位置づけられ、前記の隆起したペデスタルに接触する;
請求項17に記載のシステム。
【請求項20】
前記モジュールベースは複数のクラッドをさらに含み、各クラッドは、前記タブのうちの1つの上に位置づけられ、前記第1封止層の前記開口部のうちの1つの内部に位置づけられる、請求項17に記載のシステム。
【請求項21】
前記ヒートシンクは:
前記ヒートシンク内に流体を受け入れるように構成された少なくとも1つの入口;
前記流体が前記熱エネルギを吸収する間、前記流体を移送するように構成された1つ以上の通路;及び
前記ヒートシンクの外へ前記流体を供給するように構成された少なくとも1つの出口;を含む、
請求項17に記載のシステム。
【請求項22】
前記ヒートシンクは前記1つ以上の通路内にフィン付き構造をさらに備える、請求項21に記載のシステム。
【請求項23】
前記1つ以上のデバイスが、基板の上に取り付けられた1つ以上の集積回路デバイスを備え;かつ
前記基板は前記モジュールベースの前記カバー上に取り付けられている;
請求項17記載のシステム。
【請求項24】
前記1つ以上の集積回路デバイスが、1つ以上の窒化ガリウム(GaN)集積回路デバイスを含み;かつ
前記基板は、炭化ケイ素(SiC)基板を含む;
請求項23記載のシステム。
【請求項25】
前記1つ以上の集積回路デバイスは1つ以上のモノリシックマイクロ波集積回路を含む、請求項23に記載のシステム。
【請求項26】
前記基板と前記モジュールベースの前記カバーとの間の熱的インターフェース材料の層をさらに含む請求項23記載のシステム。
【請求項27】
前記基板と前記タブとの間の熱インターフェース材料の層をさらに含む、請求項23記載のシステム。
【請求項28】
前記タブは、冷却すべき1つ以上のデバイスの少なくとも1つの基盤の熱膨張係数に実質的にマッチするように、前記タブの熱膨張係数を調整するために金属で被覆されている、請求項17に記載のシステム。
【請求項29】
前記タブは、冷却すべき前記1つ以上のデバイスの少なくとも1つの基板と前記タブとの間の熱インターフェース材料の層内の構造的応力を最小にするよう、金属で被覆される、請求項28に記載のシステム。
【請求項30】
第1封止層と第2封止層との間に熱スプレッダを位置づけるステップであり、前記第1封止層は、冷却すべき1つ以上のデバイスから熱エネルギを受け取るように構成され、前記熱スプレッダは、前記第1封止層を通して受け取った熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを前記第2封止層へと提供するように構成される、ステップ;
前記第1封止層及び前記第2封止層を互いに接続して、前記第1封止層と前記第2封止層との間に熱スプレッダを固定するステップ;
前記第1封止層内の開口部を通して複数のタブを挿入するステップであり、各タブは、前記第1封止層を通して、冷却すべき前記1つ以上のデバイスのうちの少なくとも1つと前記熱スプレッダとの間に熱的インターフェースを提供するように構成される、ステップ;及び
ヒートシンクを前記第2封止層に接続するステップであり、前記ヒートシンクは、前記第2封止層を通して熱エネルギを受け取り、前記熱エネルギを伝達するように構成される、ステップ;
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、冷却システムに向けられている。より具体的には、本開示は、高性能集積回路その他のデバイスの熱的及び構造的管理のために、一体化された熱スプレッダ及びヒートシンクを有するモジュールベースに向けられている。
【発明の概要】
【発明が解決しようとする課題】
【0002】
高性能集積回路は、多くの用途で使用されている。例えば、モノリシックマイクロ波集積回路(MIMICs)は、無線周波数スペクトルのマイクロ波帯域内で動作する集積回路である。集積回路がより小型化、高出力化し続けるにつれて、集積回路の冷却はますます困難になる。
【課題を解決するための手段】
【0003】
本開示は、高性能集積回路その他のデバイスの熱的及び構造的管理のための一体化された熱スプレッダ及びヒートシンクを有するモジュールベースを提供する。
【0004】
第1の実施形態に従った装置が、冷却すべき1つ以上のデバイスを担持(carry)するように構成されたモジュールベースを含む。モジュールベースは、カバーと、カバーに接続されたヒートシンクとを含む。カバーは、第1封止層及び第2封止層、並びに第1封止層と第2封止層との間の熱スプレッダを含む。第1封止層は、冷却すべき1つ以上のデバイスから熱エネルギを受け取るように構成される。熱スプレッダは、第1封止層を通して受け取った熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを第2封止層へと供給するように構成される。ヒートシンクは、第2封止層を通して熱エネルギを受け取り、熱エネルギをモジュールベースの外へ移送するように構成される。第1封止層は、複数の開口部を含む。モジュールベースは、開口部を通して挿入される複数のタブをさらに含む。各タブは、第1封止層を通して、冷却すべき1つ以上のデバイスのうちの少なくとも1つと熱スプレッダとの間に熱インターフェースを提供するように構成される。
【0005】
第2の実施形態に従ったシステムが、冷却すべき1つ以上のデバイスと、1つ以上のデバイスを担持するモジュールベースとを含む。モジュールベースは、カバーと、カバーに接続されたヒートシンクとを含む。カバーは、第1封止層及び第2封止層、並びに第1封止層と第2封止層との間の熱スプレッダを含む。第1封止層は、1つ以上のデバイスから熱エネルギを受け取るように構成される。熱スプレッダは、第1封止層を通して受け取った熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを第2封止層へと供給するように構成される。ヒートシンクは、第2封止層を通して熱エネルギを受け取り、熱エネルギをモジュールベースの外へ移送するように構成される。第1封止層は、複数の開口部を含む。モジュールベースは、開口部を通して挿入される複数のタブをさらに含む。各タブは、第1の封止層を通して、冷却すべき1つ以上のデバイスのうちの少なくとも1つと熱スプレッダとの間に熱インターフェースを提供するように構成される。
【0006】
第3の実施形態従った方法が、第1封止層と第2封止層との間に熱スプレッダを位置づけることを含む。第1封止層は、冷却すべき1つ以上のデバイスから熱エネルギを受け取るように構成される。熱スプレッダは、第1封止層を通して受け取った熱エネルギの少なくとも一部を拡散し、拡散した熱エネルギを第2封止層へと供給するように構成される。本方法はまた、第1封止層及び第2封止層を互いに接続して、第1封止層と第2封止層との間に熱スプレッダを固定することを含む。この方法は、第1封止層内の開口部を通して複数のタブを挿入するステップをさらに含む。各タブは、第1封止層を通して、冷却すべき1つ以上のデバイスのうちの少なくとも1つと熱スプレッダとの間に熱インターフェースを提供するように構成される。さらに、本方法は、ヒートシンクを第2封止層に接続することを含む。ヒートシンクは、第2封止層を通して熱エネルギを受け取り、熱エネルギを伝達するように構成される。
【0007】
他の技術的特徴は、以下の図面、説明、及び特許請求の範囲から当業者には容易に明らかとなり得る。
【0008】
本開示をより完全に理解するために、添付の図面と併せて、以下の説明を参照する。
【図面の簡単な説明】
【0009】
【
図1】本開示に従ったモジュールベースのための一体型熱スプレッダを備えた第1例のカバーを示す図である。
【
図2】本開示に従ったモジュールベースのための一体型熱スプレッダを備えた第2例のカバーを示す図である。
【
図3】本開示に従ったモジュールベースのための一体型熱スプレッダを備えた第3例のカバーを示す図である。
【
図4】本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理のための、一体化された熱スプレッダ及びヒートシンクを備えた例示的なモジュールベースを示す。
【
図5】本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理のための、一体化された熱スプレッダ及びヒートシンクを有するモジュールベースを使用するシステムの例を示す図である。
【
図6】本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理を提供するための例示的な方法を示す。
【発明を実施するための形態】
【0010】
以下に説明する
図1乃至
図6、及び本明細書において本発明の原理を説明するために使用される様々な実施形態は、例示のためのものに過ぎず、決して本発明の範囲を限定するために解釈されるべきではない。当業者であれば、本発明の原理は、任意のタイプの適切に配置された装置又はシステムに実装することができることを理解するであろう。
【0011】
上述したように、モノリシックマイクロ波集積回路(MMIC)のような集積回路の冷却は、集積回路が小型化しパワーが増大するにつれて、ますます困難になってきている。MMICを冷却するための1つのアプローチは、MMICの基板と冷却構造との間に加えられる熱インターフェース材料(thermal interface material)の層を用いて、MMICの基板の表面を冷却構造に結合することを含む。冷却構造は、高熱伝導性材料(例えば、アルミニウム)で作ることができ、熱スプレッダ又はコールドプレートとして機能することができる。熱は、最終的に、液体冷却金属ヒートシンクのような遠隔地のヒートシンクを使用して、冷却構造から除去され得る。残念ながら、このアプローチは、MMIC内で生成される高い熱流束のために、また、冷却構造を介してMMICと最終ヒートシンクとの間に生成される高い熱抵抗のために、熱的に効率的でない場合がある。
【0012】
MMICを冷却する別のアプローチは、熱インターフェース材料の第1の層を使用してMMICを熱スプレッダに結合することを含み、熱スプレッダは、熱インターフェース材料の別の層を使用して冷却構造に結合される。このアプローチは、熱スプレッダ内での熱拡散を伴う冷却構造における熱流束を緩和するが、熱インターフェース材料の複数の層の使用が、アーキテクチャ内で望ましくない熱抵抗を追加してしまう。MMICを冷却するためのさらに別のアプローチは、MMIC-ヒートスプレッダ-冷却構造体アーキテクチャを、第3の熱インターフェース材料層を有する、液体冷却ヒートシンクのような最終的なヒートシンクに結合することを含む。このアプローチは、最終的なヒートシンクを冷却構造に近接させるが(それにより、離れた位置にあるヒートシンクによって生じる熱抵抗を制限する)、3層の熱インターフェース材料の使用が、追加の熱抵抗を生じ、それによって、アーキテクチャの熱冷却性能を制限してしまう。
【0013】
上述の問題に加えて、これらのタイプの冷却アプローチでは、シリコン又は炭化ケイ素MMIC基板、ポリマー熱インターフェース材料、モリブデン熱スプレッダ、アルミニウム冷却構造、及びアルミニウムヒートシンクのような複数の材料が、積層構造で使用されている。アーキテクチャ中に複数の材料が存在すると、種々の構成要素間の熱膨張係数のミスマッチ(mismatch)が生じる。このことは、部品の温度が変化するときに、部品が異なる速度で膨張したり収縮したりすることを意味し、このことは、集積回路が動作中に大量の熱を発生するときに一般的である。このことは、熱的歪みによって、構成要素自体に、種々の層の包装に、及び構成要素を含む全体の包装に生じる重大な構造的応力を生じさせる可能性がある。これらの応力は、種々の構成要素の望ましくない変形、又はパッケージ内の局部的な構造的故障を引き起こす可能性がある。熱的インターフェース材料は、本質的にコンプライアントであり、熱膨張係数の差を補償するのを助けるために使用されることがあるが、熱的インターフェース材料は、それ自体、望ましくない構造的応力を発生しやすい。さらに、熱的インターフェース材料の熱的性能は、本質的に、熱伝達の重大なボトルネックであり、それによって、熱抵抗を増加させる。さらに、熱インターフェース材料の使用に関連する材料及び処理コストは、パッケージ全体のコストを増加させる。さらに、パッケージングのアーキテクチャは、熱インターフェース材料の使用によってもたらされる制約のために、それらの幾何学的形状及びデバイス構成において制限され得る。
【0014】
本開示は、1つ以上の高性能集積回路その他のデバイス及びそれらの熱管理メカニズムの熱的及び構造的性能の改善を達成するための統合アプローチを提供する技術を記載する。以下により詳細に説明するように、パッケージングするための統合されたアプローチが提供され、このことは、モジュールベース内への熱スプレッダ及びヒートシンクを組み合わせ、それらを冷却すべき1つ以上の集積回路デバイス又は他のデバイスと共にパッケージ化することができる、る。いくつかの実施形態では、熱スプレッダは、熱分解グラファイト(TPG)その他の形態のグラファイトの1つ以上のシートを使用してモジュールベース内で実装される。TPGその他のグラファイト材料の熱伝導率の方向的変動のために、グラファイトは、その高い熱伝導率を特定の方向に利用するように好適に配向することができる。また、モジュールベース内には、小さなグラファイト片その他の高い熱伝導率及び低CTEタブが埋め込まれており、これらのタブは、冷却すべき1つ以上の集積回路デバイスその他のデバイス及びモジュールベースとインターフェースするために、好適に配置することができる。このタイプの構成は、冷却すべき1つ以上のデバイスから離れるように、改善された面内及び面を通る熱伝導を提供するのに役立つ。熱スプレッダは種々の形状に容易に調整することができ、熱スプレッダは種々の金属その他の高熱伝導性材料でクラッドすることができ、埋め込み材料の熱伝導率及び/又はCTEの制御を通して特定の用途のためにモジュールベースの熱的及び構造的性能を調整することができる。
【0015】
また、ヒートシンクは、モジュールベースの底部、又は熱スプレッダの反対側の側部などにおいて、モジュールベース構造全体に組み込まれる。ヒートシンクは、少なくとも1つの冷却液の流れをルーティングするために、或いは、そうでなければ、モジュールベースから熱を除去するために使用され得る。いくつかの実施形態では、ヒートシンクは、モジュールベースの底面その他の表面に機械加工することができる。他の実施形態では、ヒートシンクは、別々に製造され、次いで融着されるか、或いは、ろう付け又は熱圧縮ボンディングなどを介して、モジュールベースに接続され得る。
【0016】
これらの技術は、モジュールベース、熱スプレッダ及びヒートシンクを、単一の完全に一体化された熱管理構造に組み込むことを可能にし、これにより、構造自体及び構造を含む全体的なパッケージのサイズ及びコストを低減することができる。また、これらの技術は、パッケージ全体に使用される熱界面材料の数及び構成要素の数を減少させることができる。このことは、パッケージ全体の熱的及び構造的性能を著しく改善する助けとなり、パッケージ全体のサイズ及びコストをさらに低減することができる。さらに、これらの技術は、集積構造内及びパッケージ全体内に、高性能で密接にマッチした(closely-matched)材料セットを導入することを可能にする。このことは、CTEミスマッチを低減し、冷却すべき1つ以上のデバイスからの熱の除去を改善するのに役立ち、このことは、パッケージの予想される温度範囲にわたってパッケージにかかる応力を低減するのに役立つ。材料の選択におけるより大きな柔軟性は、潜在的に材料のガルバニックミスマッチ(mismatch)によって引き起こされる可能性がある腐食リスクを緩和するのにも役立つ。さらに、モジュールベース、熱スプレッダ及びヒートシンクを単一構造に一体化することにより、遠隔冷却から接合近熱輸送へのパラダイムシフトをサポートし、それにより、高熱流束デバイスの熱管理効率を大幅に向上させることができる。全体として、このことは、統合された熱管理アーキテクチャが、熱的性能、構造的性能及び腐食性能を同時に対処することを可能にする。
[0001]
図1は、本開示に従ったモジュールベースのための一体型熱スプレッダを備えた第1例のカバー100を示す。
図1に示すように、カバー100は、頂部封止層(top encapsulation layer)102及び底部封止層(bottom encapsulation
layer)104を含む。頂部封止層102は、一般に、冷却すべき1つ以上の集積回路デバイスその他のデバイスから熱エネルギを受け取るように動作する。底部封止層104は、一般に、除去のために、コールドプレート又は他のヒートシンクなどの下部構造へと熱エネルギを供給するように動作する。頂部封止層102も底部封止層もまた、一体化された熱スプレッダ106を収容するか、或いは実質的に又は完全に包囲する。
【0017】
封止層102、104の各々は、熱エネルギを輸送し、熱スプレッダを封止し或いは他の方法で受容するための任意の好適な構造を含む。封止層102及び104の各々は、任意の適切な材料から形成することができる。例えば、封止層102及び104の各々は、高い熱伝導率を有する銅、アルミニウム又は他の材料から形成することができる。封止層102及び104の各々はまた、任意の適切な方法で形成することができる。さらに、封止層102及び104の各々は、任意の適切なサイズ、形状及び大きさ(dimension)を有することができる。特定な例として、封止層102及び104の各々は、長さが約3.4インチ(約8.636cm)の側辺を有する正方形の形状を有することができる。もちろん、任意の他の適切なサイズ及び形状を、封止層102及び104について使用することができる。また、封止層102と104とが同一のサイズ及び形状を有する必要もない。
【0018】
熱スプレッダ106は、一般に、頂部封止層102によって受け取られた熱エネルギの少なくとも一部を拡散するように動作する。熱スプレッダ106はまた、この拡散される熱エネルギを、除去のために、底部封止層104に供給するように動作する。このようにして、熱スプレッダ106は、冷却すべき1つ以上の集積回路デバイスその他のデバイスから受け取った熱エネルギを、頂部及び底部封止層102、104のより広い領域にわたって、分配するのを助ける。このことは、底部封止層104からの熱エネルギの除去を容易にし、冷却すべき1つ以上の集積回路デバイスその他のデバイスの温度を低下させるのに役立つ。
【0019】
熱スプレッダ106は、熱エネルギを広げるための任意の好適な構造を含む。熱スプレッダ106は、任意の適切な材料から形成することができる。例えば、熱スプレッダ106は、熱分解グラファイト(TPG)、押出グラファイト、又はダイヤモンドから形成することができる。また、熱スプレッダ106は、層102及び104に封止される前に、1つ以上の材料でクラッド又はメッキされてもよい。また、熱スプレッダ106は、グラファイト又は他のシートを切断したり、グラファイト又は他の材料を押出したりすることによって、任意の適切な方法で形成することができる。いくつかの実施形態において、熱スプレッダ106は、TPG又は他のグラファイトの直交性(軸が異なる)熱伝導率特性を有効に利用するように、適切な好適配向に配置することもできる。さらに、熱スプレッダ106は、任意の適切なサイズ、形状及び大きさを有することができる。特定な例として、熱スプレッダ106は、短辺が約0.78インチ(約1.9812cm)の寸法と、長辺が封止層102又は104の長さ又は幅よりもわずかに短い寸法とを有する、長方形の寸法を有することができる。また、熱スプレッダ106は、直線状又は丸みを帯びたコーナーを有することができる。もちろん、熱スプレッダ106について、任意の他のサイズ及び形状を使用することができる。
【0020】
頂部封止層102は種々の開口部108を含み、各開口部108は、下にある熱スプレッダ106の一部へのアクセスを提供する。各開口部108は、任意の適切なサイズ、形状及び大きさを有することができる。特定の例として、各開口部108は、短辺約0.189インチ(約0.48006cm)の寸法、及び長辺約0.233インチ(約0.59182cm)寸法の長方形の形状を有することができる。各開口部108はまた、直線状又は丸いコーナーを有することができる。もちろん、開口部108について、他のサイズ及び形状を使用することができる。
【0021】
タブ(tab)110及びクラッド(cladding)112が各開口部108内に挿入される。各タブ110は、一般に、関連するクラッド112を介して受け取った熱エネルギを熱スプレッダ106へと下に供給するように動作する。各クラッド112は、一般に、冷却すべき1つ以上のデバイスから受け取った熱エネルギを関連するタブ110へと供給し、関連するタブ110を保護するように動作する。クラッド112は、熱圧縮接合、ろう付け、半田付け、溶接その他の任意の適切な方法で、頂部封止層102に取り付けることができる。
【0022】
各タブ110は、グラファイト(熱分解黒鉛又は押出黒鉛のような)、ダイヤモンド、又は金属(銅、銅タングステン、モリブデン、又は銅モリブデンのような)のような任意の適切な材料から形成することができる。いくつかの実施形態では、タブ110は、必要ではないが、熱スプレッダ106と同じ材料から形成される。また、タブ110は、TPG又は他のグラファイトから形成された場合のように、材料の直交性熱伝導率を利用するために好適に配向することができる。さらに、各タブ110は、グラファイト又は他のシートを切断すること、グラファイトその他の材料を押出すこと、又は材料を所望の形状に形成することなど、任意の適切な方法で形成することができる。加えて、各タブ110は、任意の適切なサイズ、形状、及び大きさを有することができる。特定の例として、各タブ110は、短辺約0.149インチ(約0.37846cm)の寸法、長辺約0.193インチ(約0.49022cm)の寸法、及び厚さ約0.01インチ(約0.0254cm)を有する直方体の形状を有することができる。各タブ110は、また、直線状又は丸みを帯びたコーナーを有することができる。もちろん、タブ110について任意の他のサイズ及び形状を使用することができる。
【0023】
各クラッド112は、銅、銅タングステン、モリブデン、銅モリブデン、アルミニウム、又は高い熱伝導率を有する他の材料のような任意の適切な材料から形成することができる。いくつかの実施形態において、クラッド112は、要求されないが、頂部封止層102と同じ材料から形成される。いくつかの実施形態において、クラッド112は、例えば、クラッド112がタングステンを用いて形成され、炭化ケイ素で形成される1つ以上のMMIC基板と共に使用される場合には、冷却すべき1つ以上の集積回路デバイスその他のデバイスの少なくとも1つの基板のCTEと実質的に一致するCTEを有する1つ以上の材料を用いて形成される。また、いくつかの実施形態において、クラッド112は、封止層102の異なる金属によって引き起こされる可能性のあるガルバニック腐食(galvanic corrosion)から保護するために、金属の薄層でメッキされる。特定の実施形態において、メッキはまた、クラッド112からのガルバニック腐食に対する保護を提供し、或いは熱スプレッダ106上の任意のメッキに対する保護を提供する。各クラッド112はまた、銅又は他のシートを切断すること、又は材料を所望の形状に形成することなど、任意の適切な方法で形成することができる。さらに、各クラッド112は、任意の適切なサイズ、形状、及び大きさを有することができる。特定の例として、各クラッド112は、短辺約0.189インチ(約0.48006cm)の寸法、長辺約0.233インチ(約0.59182cm)の寸法、及び厚さ約0.02インチ(約0.0508cm)を有する直方体の形状を有することができる。各クラッド112は、また、直線状又は丸いコーナーを有することができる。もちろん、クラッド112について他のサイズ及び形状を使用することができる。
【0024】
開口部108、タブ110及びクラッド112は、ここでは、熱スプレッダ106を、頂部封止層102を介して冷却すべき1つ以上のデバイスとインターフェースするために使用される。このことは、冷却すべき1つ又は複数のデバイスから離れて熱スプレッダ106へと伝わる熱伝導を改良するのに役立つ。本実施態様では、8つの開口部108、8つのタブ110及び8つのクラッド112が4×2の配列で示されているが、開口部108、タブ110及びクラッド112の任意の適切な数及び配列を使用することができることに留意されたい。例えば、
図1に示される構造は、4×2の配列に位置される8つのMMICデバイスその他のデバイスを冷却するために使用することができる。かくして、冷却すべき装置の他の数及び配列が、開口部108、タブ110及びクラッド112の他の数及び配置をもたらすことができる。一般に、1つ以上の開口部108、1つ以上のタブ110及び1つ以上のクラッド112を、冷却すべき各個のデバイスとともに使用することができ、また各個の開口部108、タブ110及びクラッド112を、冷却すべき1つ以上のデバイスとともに使用することができる。
【0025】
本実施態様における熱スプレッダ106は、底部封止層104内に形成された凹部114内に少なくとも部分的に嵌合する。凹部114は、熱スプレッダ106のサイズ及び形状と密接に一致して熱スプレッダ106の側面と良好に熱接触するような、サイズ及び形状にすることができる。いくつかの実施形態では、熱スプレッダ106は、凹部114内に完全に嵌合する。他の実施形態では、熱スプレッダ106は、凹部114内に部分的に嵌合し、頂部封止層102の底部の別の凹部(図示せず)内に部分的に嵌合する。いったん、熱スプレッダ106が凹部114内に位置づけられると、熱スプレッダ106を封止(encapsulate)するために、熱圧縮接合、ろう付け、半田付け又は溶接などによって、封止層102及び104を互いに取り付けることができる。各凹部114は、任意の適切な方法で、例えば、封止層をエッチングして凹部を形成することにより、或いは封止層を加工して凹部を含むことにより、封止層102又は104内に形成され得る。
【0026】
以下にさらに詳細に説明するように、
図1に示すカバー100は、ヒートシンクに固定することができる。このことは、熱スプレッダ106とヒートシンクとを一体化し、モジュールベースの少なくとも一部を形成する。冷却すべき1つ以上の集積回路デバイスその他のデバイスは、カバー100上又はカバー100に取り付けることができる。モジュールベースは、冷却すべき装置の熱的及び構造的管理の改善をサポートする。例えば、熱スプレッダ106と封止層102、104との間、又は底部封止層104とヒートシンクとの間で、いかなる熱界面材料も使用する必要はない。このことは、熱界面材料の1つ又は複数の層を削減することができ、それにより、パッケージ全体のコスト及び複雑さを低下させる。さらに、種々の構成要素の熱膨張係数は、モジュールベースにおいて密接にマッチさせることができ、このことは、モジュールベース、その構成要素及び冷却すべき1つ以上の装置に対する応力を低減するのに役立つ。
【0027】
いくつかの実施形態において、タブ110及び熱スプレッダ106は、熱分解グラファイトから形成される。熱分解グラファイトは、典型的には、2つの次元においてより高い熱伝導率を有し、第3の次元ではより低い熱伝導率を有する。特定の実施形態では、タブ110及び熱スプレッダ106は、
図1で識別されるx及びz次元において熱伝導率が高く、
図1で識別されるy次元において熱伝導率が低くなるように構成することができる。特定の例として、タブ110は、MMICのほぼ全寸法をy方向にスパンすることができるMMICの特定のトランジスタレイアウトを利用するために、この方法で好適に配向されてもよく、それによって、y方向に熱を拡散する必要性を低減又は排除する。この配置により、タブ110及び熱スプレッダ106は、冷却すべき1つ以上のデバイスから受け取った熱エネルギを、好適な方向に沿って拡散することができるようになる。この配置はまた、タブ110及び熱スプレッダ106が、冷却すべき1つ以上のデバイスから受け取った熱エネルギを、カバー100からの除去のために、底部封止層104へと効率的に伝達することを可能にする。
【0028】
図2は、本開示に従ったモジュールベースのための一体化された熱スプレッダを備えた第2例のカバー200を示す。
図2に示すように、カバー200は、頂部封止層202、底部封止層204及び一体化された熱スプレッダ206を含む。頂部封止層202は、種々の開口部208を含み、タブ210及びクラッド212が、開口部208の各々に挿入される。頂部封止層202、タブ210及びクラッド212は、上述の頂部封止層102、タブ110及びクラッド112と同一か、又は同様であっても良い。
【0029】
底部封止層204及び熱スプレッダ206は、上述の底部封止層104及び熱スプレッダ106と同様である。
図2の底部封止層204は、凹部214を含む。凹部214は、熱スプレッダ206のサイズ及び形状と密接に一致して熱スプレッダ206の側面と良好に熱接触するような、サイズ及び形状にすることができる。しかしながら、本実施形態では、凹部214は様々なペデスタル(pedestals)216を含み、ペデスタル216は、凹部214内での底部封止層204の隆起部分を表す。タブ210は、頂部封止層202の開口部208と整合した(aligned)熱スプレッダ206内の種々の開口部218内に位置づけることができ、ペデスタル216と接触することができる。選択的に、ペデスタル216は、少なくとも部分的に、熱スプレッダ206の開口部218に嵌合することができる。
【0030】
各ペデスタル216は、凹部内の隆起部分を表し、ペデスタル216を形成する領域の周囲で底部封止層204をエッチングすることなどにより、任意の適切な方法で形成することができる。また、熱スプレッダ206内の各開口部218は、グラファイトその他のシートを切断することによって、又は押出されたグラファイトその他の材料を切断することによって、任意の適切な方法で形成することができる。
【0031】
開口部208、タブ210及びクラッド212は、ここでは、熱スプレッダ206及び底部封止層204を、頂部封止層202を通して冷却すべき1つ以上のデバイスとインターフェースするために使用される。タブ210、クラッド212、熱スプレッダ206及び/又はペデスタル216は、互いからのガルバニック腐食又は封止層202、204からのガルバニック腐食から保護するために、1つ以上の金属でメッキされてもよい。再び、8つの開口部208、8つのタブ210及び8つのクラッド212が、ここでは4×2の配列で示されているが、開口部208、タブ210及びクラッド212の任意の適切な数及び配列を使用することができる。一般に、1つ以上の開口部208、1つ以上のタブ210及び1つ以上のクラッド212を、冷却すべき各個のデバイスとともに使用することができ、各個の開口部208、タブ210及びクラッド212を、冷却すべき1つ以上のデバイスとともに使用することができる。
【0032】
本実施形態における熱スプレッダ206は、底部封止層204内に形成された凹部214内に少なくとも部分的に嵌合する。いくつかの実施形態では、熱スプレッダ206は、凹部214内に完全に嵌合する。他の実施形態では、熱スプレッダ206は、凹部214内に部分的に嵌合し、頂部封止層202の底部の別の凹部(図示せず)内に部分的に嵌合する。いったん熱スプレッダ206が凹部214内に位置決めされると、熱スプレッダ206を封止するために、熱圧縮接合、ろう付け、半田付け又は溶接などによって、封止層202及び204を互いに取り付けることができる。タブ210は、頂部封止層202の開口部208を通して、及び熱スプレッダ206の開口部218を通していったん挿入されると、底部封止層204のペデスタル216と接触することができる。
【0033】
以下にさらに詳細に説明するように、
図2に示すカバー200は、ヒートシンクに固定することができる。このことは、熱スプレッダ206とヒートシンクを一体化し、モジュールベースの少なくとも一部を形成する。冷却すべき1つ以上の集積回路デバイスその他のデバイスを、モジュールベース上又はモジュールベースに実装することができる。モジュールベースは、上述のように冷却すべきデバイスの改良された熱的管理及び構造的管理をサポートする。
【0034】
いくつかの実施形態において、タブ210及び熱スプレッダ206は、熱分解グラファイトから形成される。特定の実施形態では、タブ210は、
図2で識別されたx及びz次元において高い熱伝導率を有し、
図2で識別されたy次元において低い熱伝導率を有するように構成することができる。また、特定の実施形態では、熱スプレッダ206は、
図2で識別されたx及びy次元において熱伝導率が高く、
図2で識別されたz次元において熱伝導率が低いように構成することができる。この配置により、タブ210は、冷却すべき1つ以上のデバイスから受け取った熱エネルギを、x次元に沿って熱スプレッダ206に効率的に伝達することができ、z次元に沿って底部封止層204に効率的に伝達することができる。結果として、この配置は、熱スプレッダ206においてx方向及びy方向に熱を拡散させると同時に、カバー200からの除去のために熱をz方向に底部封止層204へと直接に輸送することによって、効率的な三次元熱輸送を達成する。
【0035】
図1及び
図2において、タブ110又は210及び熱スプレッダ106又は206は、金属クラッド112、212、又は金属封止層102、202で覆われている場合には、「金属で被覆され」ていると言うことができる。また、タブ110又は210及び熱スプレッダ106又は206は、所望の方向においてより高い熱伝導率を有するように設計されている場合には、「好適に配向され」ていると言うことができる。さらに、タブ110又は210及び熱スプレッダ106又は206は、カバー100又は200上にまたはそこに取り付けられた1つ以上のデバイスからの熱エネルギの除去を容易にするように位置づけられている場合には、「好適に位置づけられ」ていると言うことができる。しかし、タブ110又は210及び熱スプレッダ106又は206において方向依存性熱伝導率を有する材料(熱分解グラファイトなど)を使用する必要はないことに留意されたい。例えば、熱分解グラファイト以外の形態のグラファイトは、三次元すべてにおいて高い熱伝導率を有することができる。
【0036】
いくつかの実施形態では、グラファイトは、熱スプレッダ106又は206を形成するために使用され、所定の用途のためにカバー100又は200の熱的及び構造的性能を調整するために、1つ以上の適切な金属その他の材料で被覆(clad)することができる。熱スプレッダ106又は206を形成するグラファイトを被覆するために使用できる例としては、銅、タングステン、銅タングステン、モリブデン又は銅モリブデンが挙げられる。また、熱スプレッダ106又は206を形成するグラファイトは、任意の好適な形状に形成することができ、これにより、熱スプレッダ106又は206を冷却すべきデバイスの特定の幾何学的形状に合わせることができ、ヒートシンクをカバー100又は200と共に使用できる。
【0037】
タブ110又は210上のクラッド112又は212の使用によって、カバー100又は200の頂部封止層102又は202が、冷却すべき1つ以上のデバイスと直接インターフェースすることが可能になる。例えば、冷却すべき1つ以上のデバイスは、炭化ケイ素基板その他の基板上に配置され、或いは他の方法で取り付けられる1つ以上の集積回路デバイスを表すことができる。クラッド112又は212は、1つ以上の集積回路デバイスから熱を除去するために、炭化ケイ素基板その他の基板と直接インターフェースすることができる。さらに、タブ110又は210上のクラッド112又は212の使用は、カバー100又は200の頂部に沿ったより一定した熱膨張係数を提供するのに役立ち、このことは、冷却すべき1つ以上のデバイスにかかる応力を低減するのに役立つ。
【0038】
図3は、本開示に従ったモジュールベースのための一体型熱スプレッダを備えた第3の例示的なカバー300を示す。
図3に示すように、カバー300は、頂部封止層302、底部封止層304及び一体化された熱スプレッダ306を含む。これらの構成要素302~306は、上述の対応する構成要素102~106又は202~206と同一又は類似であり得る。
【0039】
頂部封止層302は、種々の開口部308を含み、タブ310が、開口部308の各々に挿入される。各タブ310は、一般に、冷却すべき1つ以上のデバイスから受け取った熱エネルギを熱スプレッダ306へと提供するように動作する。しかしながら、タブ110、210とは異なり、タブ310はクラッド112、212の下に配置されない。代わりに、タブ310自体は、低い熱膨張係数(例えば、約4~約7 PPM/℃)及び高い熱伝導率を有する1つ以上の金属その他の適切な材料から形成することができる。いくつかの実施形態では、このことにより、タブ310と冷却すべき1つ以上のデバイスの少なくとも1つの基板との間で実質的なCTEマッチが達成される(例えば、冷却すべき1つ以上のデバイスの少なくとも1つの基板が、シリコン又は炭化シリコンを使用して形成される場合)。タブ310を形成するために使用される例示的な材料は、タングステン、銅タングステン又は銅モリブデンを含むことができる。
【0040】
各タブ310は、任意の適切なサイズ、形状及び大きさを有することができる。特定の例として、各タブ310は、短辺約0.189インチ(約0.48006cm)の寸法、長辺約0.233インチ(約0.59182cm)の寸法、及び厚さ約0.03インチ(約0.0762cm)を有する長方形の形状を有することができる。各タブ310はまた、直線状又は丸みを帯びたコーナーを有することができる。もちろん、他のサイズ及び形状をタブ310について使用することができる。
【0041】
タブ310は、ここでは、熱スプレッダ306を、頂部封止層302を通して冷却すべき1つ以上のデバイスとインターフェースするために使用される。再び、8つのタブ310がここでは4×2の配置で示されているが、タブ310の任意の適切な数及び配置を使用することができる。一般に、1つ以上のタブ310を、冷却すべき各個のデバイスと共に使用することができる。
【0042】
以下にさらに詳細に説明するように、
図3に示すカバー300は、ヒートシンクに固定することができる。このことは、熱スプレッダ306とヒートシンクを一体化し、モジュールベースの少なくとも一部を形成する。冷却すべき1つ以上の集積回路デバイスその他のデバイスを、モジュールベース上又はモジュールベースに実装することができる。モジュールベースは、上述のように冷却すべきデバイスの改良された熱的管理及び構造的管理をサポートする。
【0043】
いくつかの実施形態において、熱スプレッダ306は、熱分解グラファイトから形成される。特定の実施形態では、熱スプレッダ306は、
図3で識別されるx及びz次元においてより高い熱伝導率を有し、
図3で識別されるy次元においてより低い熱伝導率を有するように構成することができる。この配置により、熱スプレッダ306は、冷却すべき1つ以上のデバイスから受け取った熱エネルギをx次元に沿って効率的に拡散することができる。z方向の高い熱伝導率によって、熱スプレッダ306は、冷却すべき1つ以上のデバイスから受け取った熱エネルギを底部封止層304に効率的に輸送してカバー300から除去することが可能になる。
【0044】
図3において、タブ310及び熱スプレッダ306は、「金属で被覆され」、「好適に配向され」、及び「好適に位置づけられ」ていると言うことができる。また、いくつかの実施形態では、熱スプレッダ306を形成するためにグラファイトが使用され、1つ以上の適切な金属その他の材料で被覆することができ、上記のように所与の用途のためにカバー300の熱的及び構造的性能を調整できる。さらに、熱スプレッダ306を形成するグラファイトは、任意の好適な形状に形成することができ、これにより、熱スプレッダ306を、冷却すべき1つ以上のデバイスの特定の形状に合わせることができ、ヒートシンクをカバー300と共に使用することができる。低い熱膨張係数を有するタブ310の使用によって、タブ310が炭化ケイ素基板その他の基板と直接インターフェースできる場合など、カバー300の頂部封止層302が冷却すべき1つ以上のデバイスと直接インターフェースすることが可能になる。
【0045】
図1乃至
図3は、モジュールベース用の一体型の熱スプレッダを有するカバーの異なる実施形態を示しているが、カバー100、200、300は全て、動作中、同じ一般原理に従うことに留意されたい。各カバー100、200、300は、それらの頂部封止層102、202、302を通して、冷却すべき1つ以上のデバイスから熱エネルギを吸収することができる。その熱エネルギの少なくとも一部は、カバー100、200、300内の一体化された熱スプレッダ106、206、306に伝えられる。一体化された熱スプレッダ106、206、306は、熱エネルギをより大きな領域に亘って広げる。カバーの底部封止層104、204、304は、熱エネルギを受け取り、その熱エネルギを底部封止層104、204、304に取り付けられた下部ヒートシンクへと供給し、除去する。頂部封止層102、202、302内のタブ110、210、310は、冷却すべき1つ以上のデバイスから、頂部封止層102、202、302を通じた一体化された熱スプレッダ106、206、306への熱エネルギの通過を促進する。
【0046】
図1乃至3は、モジュールベース用の一体型熱スプレッダ106、206、306を備えたカバー100、200、300の例を示しているが、
図1乃至3には様々な変更を加えることができる。例えば、各カバー100、200、300及びそれらの個々の構成要素は、任意の適切なサイズ、形状、及び大きさを有することができる。また、各カバー100、200、300の構成要素は、必要に応じて、又は所望により複製又は省略することができる。さらに、
図1乃至3のうちの1つ以上に示される任意の特徴を
図1乃至3の他の部分で使用することができ、
図1乃至3に示される任意の特徴の組み合わせをカバーの一実施形態で使用することができる。特定の例として、
図2のペデスタル216及び開口部218は、
図1及び
図3のカバー100及び300に使用することができる。さらに、「頂部」及び「底部」という用語は、ここでは、異なる封止層間を区別するために使用されるが、製造又は使用中にカバーの特定の配向を要求するものではない。「第1」及び「第2」という用語は、どの封止層が第1の封止層であり、どの封止層が第2の封止層であるかに拘わらず、異なる封止層を参照するために使用することができる。
【0047】
図4は、本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理のための、一体化された熱スプレッダ及びヒートシンクを備えた例示的なモジュールベース400を示す。
図4に示すように、モジュールベース400は、カバー402及びヒートシンク404を含む。カバー402は、一般に、一体化された熱スプレッダを含み、上述のカバー100、200、300のいずれか、又は本開示の教示に従って設計されたその他のカバーを表すことができる。
【0048】
ヒートシンク404は、カバー402から、故にカバー402に取り付けられた1つ以上のデバイスから熱エネルギを除去するように構成される。この例では、ヒートシンク404は、流体がヒートシンク404の通路406を通って流れることを可能にする流体ベースの熱交換器である。流体は、カバー402及びヒートシンク404から熱エネルギを除去し、対流熱除去を支持する。流体は、少なくとも1つの入口408を通じてヒートシンク404に入り、少なくとも1つの出口410を通じてヒートシンク404から出る。この特定の実施形態において、単一の入口408から2つの出口410に流体を供給する通路406が存在する。しかしながら、通路406、入口408及び出口410のこの配置は、例示のためのものに過ぎない。
【0049】
ヒートシンク404は、種々の折り曲げられたフィン(folded fins)412、又はカバー402及びヒートシンク404から通路406を流れる流体へと熱エネルギを伝達するのを助ける他の構造を含むことができる。例えば、折り曲げられたフィン412は、通路406を流れる流体と接触するヒートシンク404の表面積を増加させることができる。このことは、熱エネルギがヒートシンク404のより大きな表面積を通過することができるので、流体への熱エネルギの伝達を改善するのに役立つ。折り曲げられたフィン412は、ヒートシンク404の表面積を増加させる任意の適切なフィン付き構造その他の構造を含む。いくつかの実施形態では、ヒートシンク404内に、1インチ当たり60フィンのような、多数の折り曲げられたフィン412が形成され得る。この例に見られるように、折り曲げられたフィン412は、カバー402内に位置された熱スプレッダ及びタブの下又は近くに位置するようヒートシンク404内に位置づけられ得る。
【0050】
ヒートシンク404は、熱圧縮接合、ろう付け、半田付け又は溶接などの任意の適切な方法で、モジュールベース400のカバー402に取り付けることができる。種々の孔414又は他の開口が、カバー402及びヒートシンク404を通して形成され、それによりモジュールベース400をより大きな装置又はシステムに固定するために、ボルトその他のコネクタを孔414に挿入することができる。しかしながら、モジュールベース400を取り付けるための他の機構を使用することができることに留意されたい。
【0051】
図4は、高性能集積回路その他のデバイスの熱的及び構造的管理のための、一体化された熱スプレッダ及びヒートシンクを備えたモジュールベース400の一例を示すが、
図4には、様々な変更を加えることができる。例えば、多数の熱交換器設計をヒートシンク404に使用することができ、ヒートシンク404は、
図4に示す特定の設計に限定されない。他のヒートシンク(流体ベースの熱交換器を使用しないものを含む)を、モジュールベース400内に使用することができる。
【0052】
図5は、本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理のために、一体化された熱スプレッダ及びヒートシンクを備えたモジュールベースを使用する例示的なシステム500を示す。
図5に示すように、システム500は、カバー402(カバー100、200、又は300など)及びヒートシンク404を含む、モジュールベース400の少なくとも1つの例を含む。
【0053】
少なくとも1つのデバイス502が、モジュールベース400上又はそこに取り付けられる。各デバイス502は、一般に、モジュールベース400を使用して除去されるべき熱エネルギを生成する任意の適切な構造を表す。例えば、デバイス502は、基板506に取り付けられるか、基板上に形成されるか、或いは基板506によって担持される(carried)1つ以上の集積回路504を含むことができる。1つ以上の集積回路504は、窒化ガリウム集積回路、又はモノリシックマイクロ波集積回路などの他の高性能集積回路を表すことができる。基板506は、シリコン基板、炭化シリコン基板、又は他の基板を表すことができる。しかしながら、他の任意の適切なデバイスが、モジュールベース400上に、又はモジュールベース400に取り付けられ得ることに留意されたい。
【0054】
冷却すべき装置502とモジュールベース400との間には、モジュールベース400への適切な熱伝達を確実にするために、熱インターフェース材料の層508を位置づけることができる。また、熱インターフェース材料の層508は、必要に応じて、デバイス502の再加工を容易にするのに役立ち得る。いくつかの実施形態において、熱インターフェース材料の層508は、少なくとも基板506とカバー402のタブ110、210、310の上方表面との間に位置づけられる。冷却すべきデバイス502とモジュールベース400との間の層508には、任意の適切な熱インターフェース材料を使用することができる。いくつかの実施形態において、熱インターフェース材料の層508は、モジュールベース400と共に使用される唯一の熱インターフェース材料である。上述のように、このことは、熱性能を改善し、モジュールベース400及びシステム500全体のコストを低減するのに役立つ。
【0055】
モジュールベース400のヒートシンク404が流体ベースの熱交換器である場合、システム500は、流体マニホルド510をさらに含むことができる。流体マニホルド510は、より冷たい流体をヒートシンク404に提供し、ヒートシンク404からより温かい流体を受けるために使用される。このようにして、流体マニホルド510は、モジュールベース400から、したがって、デバイス502から熱エネルギを除去するのに役立つ。いくつかの実施形態では、流体マニホルド510は、冷却剤を複数のモジュールベース400又はヒートシンク404へと同時に送達するために、複数のモジュールベース400又は複数のヒートシンク404とインターフェースすることができる。流体マニホルド510は、流体を送達し、受け取るように構成された任意の適切な構造を含む。
【0056】
図5は、高性能集積回路又は他のデバイスの熱的及び構造的管理のために、一体化された熱スプレッダ及びヒートシンクを備えたモジュールベースを使用するシステム500の一例を示すが、
図5には、様々な変更を加えることができる。例えば、システム500は、任意の適切な数のデバイス502、モジュールベース400及びマニホルド510を含むことができる。また、モジュールベース400は、任意の他の適切な方法で使用することができ、
図5に示す特定のシステム500で使用する必要はない。
【0057】
図6は、本開示に従った高性能集積回路その他のデバイスの熱的及び構造的管理を提供するための例示的方法600を示す。説明を簡単にするために、方法600は、
図5のモジュールベース400及びシステム500を含むものとして説明される。しかしながら、方法600は、任意の適切なモジュールベースの使用を含むことができ、モジュールベースは任意の適切なシステムで使用することができる。
【0058】
図6に示すように、熱スプレッダがステップ602において形成され、頂部及び底部封止層がステップ604において形成される。このことは、例えば、熱スプレッダ106、206、306を形成するために、グラファイトシートを切断若しくは他の方法で形成すること、又は押出黒鉛(extruded graphite)を加工することを含み得る。このことは、熱スプレッダ206に開口部218を形成することを任意に含み得る。このことはまた、銅又は他のプレートを切断し、プレートをエッチングして、封止層102~104、202~204、302~304の各々を形成することを含み得る。封止層の形成中に、開口部108、208、308が、頂部封止層102、202、302内に形成され得る。また、封止層の形成中に、少なくとも1つの凹部114、214、314を、封止層102~104、202~204、302~304のうちの1つ以上に形成することができる。
【0059】
熱スプレッダは、ステップ606において封止層間に配置され、封止層は、ステップ608において封止層間に熱スプレッダを固定するために互いに結合される。このことは、例えば、熱スプレッダ106、206、306を凹部114、214、314に配置し、封止層102~104、202~204、302~304の間に熱スプレッダ106、206、306を挟むことを含み得る。このことはまた、熱圧縮接合、ろう付け、半田付け、溶接その他の方法で、封止層102~104、202~204、302~304を接続して、封止層102~104、202~204、302~304の間に熱スプレッダ106、206、306を固定することを含み得る。
【0060】
ステップ610において、頂部封止層のためのタブが形成される。このことは、例えば、タブ110、210を形成するためにグラファイトシート又は押出グラファイトを切断又は他の方法で加工すること、又は金属その他の材料からタブ310を形成することを含み得る。任意に、このことはまた、タブ110、210のためのクラッド112、212を形成することを含み得る。タブは、ステップ612において、頂部封止層に固定される。このことは、例えば、頂部封止層102、202、302の開口部108、208、308にタブ110、210、310を配置することを含み得る。このことはまた、タブ110、210、310を頂部封止層102、202、302の他の部分に熱圧縮接合、ろう付け、半田付け、溶接その他の任意の適切な方法で接続することを含み得る。前述したように、タブ110、210、310は、頂部封止層102、202、302を通じた熱的インターフェースを、熱スプレッダ106、206、306又は底部封止層104、204、304に提供する。タブ110、210、310の個数及び位置は、冷却すべきデバイス502の個数及び位置などの様々な要因に基づいて変化させることができる。
【0061】
ステップ614においてヒートシンクが形成される。このことは、例えば、鋳造、射出成形、アディティブ又はサブトラクティブ製造、又は任意の他の適切なプロセスを通して、ヒートシンク404を形成することを含み得る。ヒートシンクの形成中に、適当な通路406、注入口408、及びヒートシンク404の出口410を形成することができる。ヒートシンクは、ステップ616において、カバーの底部封止層に結合される。このことは、例えば、ヒートシンク404と底部封止層104、204、304とを熱圧縮接合、ろう付け、半田付け、溶接その他の任意の適切な方法で接続することを含み得る。
【0062】
この時点で、完成されたモジュールベースが形成され、ステップ618において、モジュールベースを使用して、全体のシステムの形成が完了され得る。このことは、例えば、1つ以上のデバイス502をモジュールベース400の上又はそこに(おそらく、熱インターフェース材料の層508を使用して)取り付けることを含み得る。このことはまた、モジュールベース400をマニホルド510に流体的に結合することを含み得る。モジュールベースを使用してシステム全体を形成するために、他のいかなる行為又は追加行為も発生する可能性がある。
【0063】
図6は、高性能集積回路その他のデバイスの熱的及び構造的管理を提供するための方法600の一例を示しているが、
図6には、様々な変更を加えることができる。例えば、一連のステップとして示されているが、
図6の様々なステップは、重複し、並列に発生し、異なる順序で発生し、或いは任意の回数で発生しても良い。また、
図6に示されるステップのサブセットが、異なるエンティティによって実行され得る。例えば、異なるエンティティは、モジュールベース400の様々なコンポーネントを形成し、モジュールベース400を形成するためにコンポーネントを組み立て、モジュールベース400をシステム全体へと統合することができる。
【0064】
本特許明細書を通して使用されている特定の単語及び語句の定義を示すことは有利であろう。用語「含む」及び「備える」並びにそれらの派生語は、限定のない包含を意味する。用語「又は」は内包的に「及び/又は」を意味する。「関連する」という用語は、それらの派生語と同様に、「含む」、「含まれる」、「相互接続する」、「含有する」、「内包される」、「接続する」、「結合する」、「通信する」、「協働する」、「インターリーブする」、「併設する」、「近接する」、「拘束する」、「有する」、「所有する」、「関係を有する」などの意味を有する。用語「少なくとも1つ」は、アイテムのリストとともに使用される場合、リストされたアイテムの1つ以上の異なる組み合わせを使用できることを意味し、またリスト内の1つのアイテムのみを要することをも意味する。例えば「A、B及びCのうち少なくとも1つ」は、
以下の組み合わせのいずれをも含むことができる。A、B、C、A及びB、A及びC、B及びC、並びにA及び B及びC。
【0065】
本特許明細書の説明は、特定の要素、工程又は機能が、クレームの範囲に含まれなければならない必須又は重要な要素であることを意味するものとして読むべきではない。また、クレームの何れも、添付されたクレーム又はクレーム要素の何れに関しても、「手段」又は「ステップ」の正確な語が特定のクレームにおいて明示的に使用され、続いて、機能を特定する特定の語句が使用されない限り、米国特許法第112条(f)を援用することは意図されていない。機能クレームは、本明細書に記載した実施形態に限定されない。クレーム内の「機構」、「モジュール」、「デバイス」、「ユニット」、「構成要素」、「要素」、「部材」、「装置」、「機械」、「システム」、「処理装置」、「処理デバイス」又は「コントローラ」のような用語の使用は、クレーム自体の特徴によってさらに修正又は強化された、当業者に既知の構造を指すことが理解され、意図されており、米国特許法第112条(f)を援用することは意図されていない。
【0066】
本開示は、特定の実施形態及び一般的に関連する方法を記載してきたが、これらの実施形態及び方法の変更及び順列は、当業者には明らかであろう。従って、例示的な実施形態の上述の説明は、本開示を定義したり、限定したりしない。以下の特許請求の範囲によって定義されるように、本開示の精神及び範囲から逸脱することなく、他の変化、置換、及び変形も可能である。