(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-13
(45)【発行日】2022-06-21
(54)【発明の名称】洗浄装置、洗浄装置を備える撮像ユニット、および洗浄方法
(51)【国際特許分類】
H04N 5/225 20060101AFI20220614BHJP
B60S 1/62 20060101ALI20220614BHJP
B08B 7/02 20060101ALI20220614BHJP
【FI】
H04N5/225 430
B60S1/62 110A
B60S1/62 120D
B60S1/62 120B
B08B7/02
(21)【出願番号】P 2020182225
(22)【出願日】2020-10-30
【審査請求日】2021-11-12
【早期審査対象出願】
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】110001195
【氏名又は名称】特許業務法人深見特許事務所
(72)【発明者】
【氏名】岸 宣孝
【審査官】▲徳▼田 賢二
(56)【参考文献】
【文献】国際公開第2020/217600(WO,A1)
【文献】米国特許出願公開第2020/0282435(US,A1)
【文献】特開2013-080177(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/225
B60S 1/62
B08B 7/02
(57)【特許請求の範囲】
【請求項1】
撮像装置の視野に配置される透光体と、
前記透光体を振動させる振動体と、
前記振動体を駆動する駆動部と、
前記透光体の表面に異物が付着したか否かを判断する判断部と、
前記透光体を加温する加温部と、
前記駆動部および前記加温部を制御する制御部と、を備え、
前記制御部は、
前記判断部で前記透光体の表面に異物が付着したと判断した場合、前記透光体の振動が1.5×10
5m/s
2の振動加速度となるように前記駆動部を制御し、
前記透光体の振動が所定の振動加速度となるように前記駆動部を制御しても前記判断部で前記透光体の表面に異物が付着したと判断した場合、前記加温部で前記透光体を加温し、
前記透光体の加温後に、前記透光体の振動が共振周波数となるように前記駆動部を制御する、洗浄装置。
【請求項2】
前記駆動部で駆動する前記振動体のインピーダンスに関する値を検出する検出部をさらに備え、
前記判断部は、前記検出部で検出するインピーダンスに関する値の時間変化に基づき、前記透光体の表面に異物が付着したと判断する、請求項1に記載の洗浄装置。
【請求項3】
前記加温部は、前記制御部が前記透光体の振動が高次の共振周波数となるように前記駆動部を制御することで、前記透光体を加温する、請求項1または請求項2に記載の洗浄装置。
【請求項4】
前記制御部は、加温前の前記透光体の振幅が加温後の前記透光体の振幅よりも小さくなるように前記駆動部を制御する、請求項1~請求項3のいずれか1項に記載の洗浄装置。
【請求項5】
前記制御部は、加温前の前記透光体の振動が1.5×10
5m/s
2以上8.0×10
5m/s
2以下の振動加速度となるように前記駆動部を制御する、請求項4に記載の洗浄装置。
【請求項6】
前記透光体の表面に洗浄体を吐出させる吐出部をさらに備え、
前記制御部は、加温後に前記透光体を振動させても前記判断部で前記透光体の表面に異物が付着したと判断した場合、前記吐出部から前記洗浄体を吐出させる、請求項1~請求項5のいずれか1項に記載の洗浄装置。
【請求項7】
前記制御部は、加温中の異物の状態に基づき、前記加温部で前記透光体を加温する制御と、前記透光体の振動を共振周波数となるように前記駆動部を制御とを切り替える、請求項1~請求項6のいずれか1項に記載の洗浄装置。
【請求項8】
前記制御部は、
加温中の異物の状態に基づき、前記加温部で前記透光体を加温する制御と、前記透光体の振動を共振周波数となるように前記駆動部を制御とを切り替え、前記検出部で検出するインピーダンスに関する値の時間変化に基づき、加温中の異物の状態をモニタする、請求項
2に記載の洗浄装置。
【請求項9】
撮像装置の視野に配置される透光体と、
前記透光体を振動させる振動体と、
前記振動体を駆動する駆動部と、
前記透光体の表面に異物が付着したか否かを判断する判断部と、
前記駆動部を制御する制御部と、を備え、
前記制御部は、
前記判断部で前記透光体の表面に異物が付着したと判断した場合、前記透光体の振動が1.5×10
5m/s
2の振動加速度となるように前記駆動部を制御し、
前記透光体の振動が所定の振動加速度となるように前記駆動部を制御しても前記判断部で前記透光体の表面に異物が付着したと判断した場合、前記透光体の振動が高次の共振周波数となるように前記駆動部を制御し、
高次の共振周波数で前記透光体を振動後に、前記透光体の振動が共振周波数となるように前記駆動部を制御する、洗浄装置。
【請求項10】
前記撮像装置と、
請求項1~請求項9のいずれか1項に記載の前記洗浄装置と、を備える、撮像ユニット。
【請求項11】
撮像装置の視野に配置される透光体と、前記透光体を振動させる振動体と、前記振動体を駆動する駆動部と、前記透光体を加温する加温部と、を備える洗浄装置で前記透光体の表面を洗浄する洗浄方法であって、
前記透光体の表面に異物が付着したか否かを判断するステップと、
前記透光体の表面に異物が付着したと判断した場合、前記透光体の振動が1.5×10
5m/s
2の振動加速度となるように前記駆動部を制御するステップと、
前記透光体の振動が所定の振動加速度となるように前記駆動部を制御しても前記透光体の表面に異物が付着したと判断した場合、前記加温部で前記透光体を加温するステップと、
前記透光体の加温後に、前記透光体の振動が共振周波数となるように前記駆動部を制御するステップと、を含む、洗浄方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、洗浄装置、洗浄装置を備える撮像ユニット、および洗浄方法に関する。
【背景技術】
【0002】
車両の前部や後部に撮像ユニットを設けて、当該撮像ユニットで撮像した画像を利用して安全装置を制御したり、自動運転制御を行ったりすることが行われている。このような撮像ユニットは、車外に設けられることが多いため、外部を覆う透光体(レンズや保護ガラス)に雨滴、泥、塵埃等の異物が付着することがある。透光体に異物が付着すると、当該撮像ユニットで撮像した画像に付着した異物が映り込み、鮮明な画像が得られなくなる。
【0003】
そこで、透光体の表面に付着した異物を判別し、透光体を振動させて異物を除去する洗浄装置が開発されている(特許文献1)。また、透光体の表面に洗浄液を吐出し、透光体を振動させて異物を除去する洗浄装置が開発されている(特許文献2)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2012-138768号公報
【文献】特開2011-244417号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1に記載の洗浄装置は、透光体を振動することのみで、泥水などを除去できない場合があった。具体的に、当該洗浄装置では、透光体を振動することによって泥水中の水分が霧化してしまい、泥水中の泥の濃度が上昇して泥水などを上手く除去できない場合があった。
【0006】
また、特許文献2に記載の洗浄装置では、透光体の振動と洗浄液の吐出との組み合わせにより、透光体の異物を除去することができる。しかし、実走行において、透光体に付着する異物として雨滴のみがかかる状況が殆どであり、泥が付着することは稀である。そのため、特許文献2に記載の洗浄装置では、透光体の異物として水滴や微量の泥が付着した場合でも、洗浄液の吐出を行うので洗浄液の消費量が増大して洗浄効率が低い。
【0007】
そこで、本開示の目的は、透光体に付着した異物を効率的に除去することができる洗浄装置、洗浄装置を備える撮像ユニット、および洗浄方法を提供する。
【課題を解決するための手段】
【0008】
本開示の一形態に係る洗浄装置は、撮像装置の視野に配置される透光体と、透光体を振動させる振動体と、振動体を駆動する駆動部と、透光体の表面に異物が付着したか否かを判断する判断部と、透光体を加温する加温部と、駆動部および加温部を制御する制御部と、を備え、制御部は、判断部で透光体の表面に異物が付着したと判断した場合、透光体の振動が1.5×105m/s2の振動加速度となるように駆動部を制御し、透光体の振動が所定の振動加速度となるように前記駆動部を制御しても判断部で透光体の表面に異物が付着したと判断した場合、加温部で透光体を加温し、透光体の加温後に、透光体の振動が共振周波数となるように駆動部を制御する。
【0009】
本開示の別の一形態に係る洗浄装置は、撮像装置の視野に配置される透光体と、透光体を振動させる振動体と、振動体を駆動する駆動部と、透光体の表面に異物が付着したか否かを判断する判断部と、駆動部を制御する制御部と、を備え、制御部は、判断部で透光体の表面に異物が付着したと判断した場合、透光体の振動が1.5×105m/s2の振動加速度となるように駆動部を制御し、共振周波数で透光体の振動が所定の振動加速度となるように前記駆動部を制御しても判断部で透光体の表面に異物が付着したと判断した場合、透光体の振動が高次の共振周波数となるように駆動部を制御し、高次の共振周波数で透光体を振動後に、透光体の振動が共振周波数となるように駆動部を制御する。
【0010】
本開示の一形態に係る撮像ユニットは、撮像装置と、上記に記載の洗浄装置とを備える。
【0011】
本開示の一形態に係る洗浄方法は、撮像装置の視野に配置される透光体と、透光体を振動させる振動体と、振動体を駆動する駆動部と、透光体を加温する加温部と、を備える洗浄装置で透光体の表面を洗浄する洗浄方法であって、透光体の表面に異物が付着したか否かを判断するステップと、透光体の表面に異物が付着したと判断した場合、透光体の振動が1.5×105m/s2の振動加速度となるように駆動部を制御するステップと、透光体の振動が所定の振動加速度となるように前記駆動部を制御しても透光体の表面に異物が付着したと判断した場合、加温部で透光体を加温するステップと、透光体の加温後に、透光体の振動が共振周波数となるように駆動部を制御するステップと、を含む。
【発明の効果】
【0012】
本開示によれば、制御部が、透光体を振動させても判断部で透光体の表面に異物が付着したと判断した場合、加温部で透光体を加温し、透光体の加温後に、透光体の振動が共振周波数となるように駆動部を制御するので、透光体に付着した異物を効率的に除去することができる。
【図面の簡単な説明】
【0013】
【
図1】実施の形態1に係る撮像ユニットの構成を説明するための斜視図である。
【
図2】実施の形態1に係る洗浄装置の断面構成を示す概略断面図である。
【
図3】実施の形態1に係る洗浄装置の各構成部材を示す分解斜視図である。
【
図4】実施の形態1に係る洗浄装置を撮像装置に配置した撮像ユニットの断面構成を示す概略断面図である。
【
図5】実施の形態1に係る撮像ユニットの洗浄装置の制御を説明するためのブロック図である。
【
図6】実施の形態1に係る洗浄装置の振動体の周波数特性である。
【
図7】実施の形態1に係る撮像ユニットの洗浄装置の動作を説明するための動作モードの遷移図である。
【
図8】実施の形態1に係る撮像ユニットの洗浄装置の動作を説明するためのフローチャートである。
【
図9】実施の形態1に係る撮像ユニットの洗浄装置において振動で異物を除去する駆動を説明するための図である。
【
図10】加温時間と共振周波数または電流値の差分値との関係を示すグラフである。
【
図11】実施の形態2に係る撮像ユニットの洗浄装置の動作を説明するための動作モードの遷移図である。
【
図12】滑落角と付着エネルギーとの関係の一例を説明する概略図である。
【
図13】滑落角と加速度との関係の一例を示す概略図である。
【
図14】実施の形態3に係る撮像ユニットの洗浄装置の動作を説明するためのフローチャートである。
【
図15】変形例に係る撮像ユニットの洗浄装置の制御を説明するためのブロック図である。
【
図16】保護カバーにヒータを設けた洗浄装置の断面構成を示す概略断面図である。
【
図17】保護カバーに設けるヒータに透明電極を利用した場合の構成を示す概略図である。
【発明を実施するための形態】
【0014】
以下に、本実施の形態に係る撮像ユニットについて図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
【0015】
(実施の形態1)
以下に、本実施の形態1に係る撮像ユニットについて図面を参照しながら説明する。
図1は、実施の形態1に係る撮像ユニット100の構成を説明するための斜視図である。
図2は、実施の形態1に係る洗浄装置10の断面構成を示す概略断面図である。
図3は、実施の形態1に係る洗浄装置10の各構成部材を示す分解斜視図である。
図4は、実施の形態1に係る洗浄装置10を撮像装置5に配置した撮像ユニット100の断面構成を示す概略断面図である。
【0016】
図1に示す撮像ユニット100から
図4に示す撮像装置5を除いた部分が洗浄装置10を構成している。洗浄装置10は、撮像装置5の前面に配置される保護カバー2に付着した異物を除去することで、撮像装置5の撮像範囲を洗浄している。
【0017】
実施の形態1に係る洗浄装置10は、保護カバー2を振動させて付着した異物を除去する構成と、保護カバー2に洗浄液(洗浄体)を吐出して付着した異物を除去する構成とを有する。筐体1に設けられ振動体12は、保護カバー2を振動させて付着した異物を除去する構成であり、保護カバー2に洗浄液を吐出する洗浄ノズル3は、保護カバー2に洗浄液を吐出して付着した異物を除去する構成である。なお、洗浄装置10は、洗浄ノズル3を設けずに、保護カバー2を振動させる振動体12のみを設ける構成でもよい。
【0018】
以下、保護カバー2を振動させて付着した異物を除去する洗浄装置10の構成についてさらに詳しく説明する。洗浄装置10は、保護カバー2と、保護カバー2を振動させる振動体12と、保護カバー2の外周縁で支持するリテーナー13と、を備える。振動体12は、保護カバー2と接着剤で接着されている。接着剤の材料はエポキシ樹脂等の硬い材料である。接着剤は、振動のロスを減らすため、ヤング率が高い方が望ましい。リテーナー13は、保護カバー2と接着剤で接着され、且つ、振動体12と固定されていると共に、保護カバー2の外周縁と接して、当該保護カバー2を支持する。
【0019】
保護カバー2の端部は、円筒状の振動体12の端部で保持されている。振動体12は、保護カバー2と接する面の反対側の面に中空円状の圧電体14を設けている。さらに、圧電体14は、振動体12と接する面の反対側の面に中空円状の電極を有する配線15を設けている。当該配線15に電圧を印加して圧電体14を筒状体の振動体12の貫通方向に振動させることにより、振動体12を介して保護カバー2を振動体12の貫通方向に振動させることができる。
【0020】
振動体12は、
図2に示すように、保護カバー2と接する第1筒状体と、張り出し部を介して第1筒状体と接続される第2筒状体とを含む。第1筒状体は、一方の端に保護カバー2および圧電体14を設ける部分を有し、他方の端に円形状に囲むように延伸している張り出し部を有している。張り出し部は、第1筒状体の底面を支持し、支持した位置から外側に向かって延伸している。張り出し部は、第1筒状体を支持する位置の外側の位置で第2筒状体により支持されている。第2筒状体は、張り出し部を支持する反対側の端に、円形状に囲むようにリング状の台を有している。なお、振動体12に設ける圧電体14の位置は、
図2に示す位置に限定されず、例えば、第2筒状体のリング状の台の下面に設けてもよい。また、中空円状の圧電体14ではなく矩形状の圧電体を同心円状に複数設けてもよい。
【0021】
なお、この洗浄装置10は、例えば、
図4に示すように、撮像装置5の光学素子の前面を保護カバー2で覆うように配置され、撮像ユニット100の洗浄装置10を構成している。撮像装置5は、例えば、内部に光学素子、撮像素子、センサ部品等を内蔵すると共に、それらを収納するケース部品を含む。
【0022】
洗浄装置10によれば、保護カバー2と振動体12との固定において、接着剤と機械的な固定とを併用することによって、保護カバー2と振動体12とを強固に保持すると共に、振動のロスを抑制できる。
【0023】
<保護カバー>
保護カバー2の材料は、例えば、ソーダガラスやホウケイサンガラス、アルミノシリケートガラスなどである。また、保護カバー2は、化学強化等で強度を上げた強化ガラスであってもよい。保護カバー2の表面には必要に応じて、ARコート・撥水コート・耐衝撃コートがコーティングされていてもよい。また、保護カバー2は、平面形状が円形であるが、これに限られない。例えば四角形、六角形、八角形等の多角形形状、楕円形状であってもよい。さらに、保護カバー2は、平面形状でなく、半球状の形状、半球に、円筒を連ねた形状や、半球よりも小さい曲面形状などであってもよい。
【0024】
<振動体>
振動体12にはおねじ17aのネジ切り加工がされている。振動体12の材料は、例えば、ステンレス、アルミニウム、鉄、チタン、ジュラルミン等の金属である。また、振動体12は、振動のロスを減らすため、なるべく剛性が高い方が望ましい。振動体12の表面には、接着剤の密着性を上げるために、酸化処理やアルマイト処理がすることが望ましい。なお、振動体12は、圧電体14によって振動を受ける。
【0025】
<リテーナー>
リテーナー13には、めねじ17bのネジ切り加工がされている。めねじ17bは、振動体12のおねじ17aと嵌合する設計となっており、リテーナー13を回転させることにより、締めこまれていく。リテーナー13の材料は、例えば、ステンレス、アルミニウム、鉄、チタン、ジュラルミン等の金属だけでなく、プラスチックであってもよい。また、リテーナー13の表面状態は、振動体12と同様である。ただし、リテーナー13は、必ずネジ切りがされている必要は無く、振動体12と強固に固定することが可能であれば、嵌め殺しやレーザー溶着などの色々な構造が考えられる。
【0026】
また、リテーナー13に保護カバー2よりも比重が大きい材料を使った場合、重心位置を保護カバー2の外周より外側にすることが可能であり、それによって保護カバー2の振幅領域を大きくするなどの調整をすることが可能である。
【0027】
<圧電体>
圧電体14は、接着剤によって振動体12に固定されている。圧電体14の材料は、例えばセラミックスである。圧電体14の下部の電極に電位を与えるため、配線15が圧電体14に接着剤によって固定されている。配線15の材料は、例えば、ステンレスや銅など導電性の高い金属である。配線15は、フレキシブルプリント基板(FPC)上に形成された配線であってもよい。FPCは、広く世の中で使われている技術であり、代表的なものとして、ポリイミド基板上に銅箔で配線形成されたようなものがある。圧電体14は、超音波振動しているため、ステンレスや銅などの配線を直接貼り付けると振動のロスを発生することがある。一方、FPCは、柔軟性があるため、振動を阻害されることなく圧電体14に電位を与えることができる。なお、振動変位時に、圧電体14へ加わる応力を、周辺の部品によって低減する構成としてもよい。これにより、圧電体14への入力電圧に対して、保護カバー2の変位が線形に増加し、良好な異物除去性能が得られる。
【0028】
<洗浄ノズル>
次に、保護カバー2に洗浄液を吐出させて付着した異物を除去する洗浄装置10の構成について説明する。筐体1には、
図1に示すように保護カバー2に洗浄液を吐出する開口部を有する洗浄ノズル3が設けられている。洗浄ノズル3は、筒状形状で開口部を設けた反対側の端部から洗浄液が供給され、開口部から保護カバー2の端に洗浄液を吐出する。洗浄ノズル3の先端は、撮像装置5の撮像範囲(視野)の外部にあり、開口部は、撮像装置5の画像に写り込む位置にはない。実施の形態1では、筐体1に洗浄ノズル3を1本設けた構成を示しているが、筐体1に洗浄ノズル3を複数本設けた構成であってもよい。また、洗浄装置10は、洗浄ノズル3に加えて、または洗浄ノズル3に代えて別の構成(たとえば、エアブロワなど)を備えてもよい。
【0029】
次に、洗浄装置の制御について図を用いて説明する。
図5は、本実施の形態1に係る撮像ユニット100の洗浄装置の制御を説明するためのブロック図である。
【0030】
撮像ユニット100は、撮像装置5、信号処理回路20、圧電駆動部30、圧電デバイス40、洗浄液吐出部50、洗浄駆動部60、インピーダンス検出部70、および電源回路80を含んでいる。信号処理回路20は、撮像装置5からの撮像信号を処理するとともに、圧電駆動部30および洗浄駆動部60に対して制御信号を供給する制御部である。
【0031】
また、信号処理回路20は、インピーダンス検出部70で測定した共振周波数および電流値に基づいて保護カバー2の表面に異物が付着したか否かを判断する判断部でもある。信号処理回路20は、撮像装置5で撮像した画像の変化に基づき、保護カバー2の表面に異物が付着したか否かを判断してもよい。さらに、信号処理回路20は、高調波の共振周波数で振動体12を振動させることで保護カバー2を加温する加温部でもある。洗浄液吐出部50は、洗浄ノズル3の開口部から洗浄液を吐出する構成を1つのブロックとして図示してある。
【0032】
信号処理回路20は、制御中枢としてのCPU(Central Processing Unit)、CPUが動作するためのプログラムや制御データ等を記憶しているROM(Read Only Memory)、CPUのワークエリアとして機能するRAM(Random Access Memory)、周辺機器との信号の整合性を保つための入出力インターフェイス等を設けてある。
【0033】
圧電駆動部30は、信号処理回路20からの制御信号と駆動電圧に応じた、周波数f、電圧Vの交流出力信号を生成する。圧電デバイス40は、
図2に示す圧電体14を有する振動体12により構成され、圧電体14に交流出力信号を印加することで、振動体12および保護カバー2を振動させて異物を除去する。
【0034】
振動体12は、保護カバー2を振動させることで、保護カバー2に付着した異物を除去する以外に、保護カバー2を振動させ、振動の機械的損失を利用して保護カバー2を加温することができる。信号処理回路20は、圧電駆動部30に対して基本波の共振周波数ではなく高調波の共振周波数で保護カバー2を振動させるように制御信号を供給することで、振動体12で発生する熱を利用して保護カバー2を加温する。保護カバー2を振動させるための電気エネルギーは、機械振動のほか、熱に変換される。保護カバー2を振動させることで、圧電駆動部30での振動の機械的損失による発熱と、誘電損失による発熱と、保護カバー2での振動の機械的損失による発熱とが同時に発生するため、保護カバー2を加熱する効率が高くなる。特に、高調波の共振周波数で保護カバー2を振動させた場合、基本波の共振周波数で保護カバー2を振動させた場合に比べて、圧電駆動部30および保護カバー2での振動回数が増えるので圧電駆動部30および保護カバー2での振動の機械的損失による発熱が大きくなる、つまり、振動のエネルギーを高めるほど、発熱量は大きくなる。
【0035】
図6は、実施の形態1に係る洗浄装置10の振動体12の周波数特性である。
図6の横軸は周波数(kHz)、縦軸はインピーダンス(ohm)である。
図6に示すように、振動体12の基本波S(一次)の共振周波数は、40kHz付近にあり、保護カバー2を数十μmの振幅で振動させ、保護カバー2に付着した異物(液滴)にキャピラリーウエーブを励振させて霧化させることができる。一方、高調波H(高次)の共振周波数は、470kHz付近にあり、保護カバー2の振幅が概ね基本波Sの1/20と小さくなり、保護カバー2に付着した液滴を霧化させることができない。しかし、高調波Hは、基本波Sに対して周波数が100倍と高いので、振動エネルギーは大きくなる。
【0036】
一般的に、振動エネルギーは振幅と周波数との2乗に比例する。そのため、振動体12を高調波Hで振動させる場合の振動エネルギーは、振動体12を基本波Sで振動させる場合の振動エネルギーと比べて25倍程度になる。この高調波Hの振動エネルギーを利用して保護カバー2を加温することができるが、保護カバー2の振幅は小さくなるので、液滴に含まれる泥粒子の摩擦による保護カバー2のコーティングの劣化を抑えることができる。このように、高調波Hを利用して保護カバー2を振動させることで、保護カバー2のコーティングを保護しながら保護カバー2を加温することができ、保護カバー2に付着した異物の泥成分を乾燥させることができる。高調波Hを利用して保護カバー2を振動させて加温する場合、保護カバー2が比熱の小さな材料であっても、速やかに加温することができる。
【0037】
また、信号処理回路20は、洗浄液を保護カバー2に吐出して洗浄する制御信号を生成することができる。洗浄駆動部60は、信号処理回路20からの制御信号に基づいて洗浄液吐出部50より洗浄液を保護カバー2に吐出させる制御を行う。
【0038】
インピーダンス検出部70は、圧電体14に交流出力信号を印加して圧電デバイス40を動作させている場合に、圧電駆動部30の電流をモニタしている。
【0039】
次に、撮像ユニット100の洗浄装置10の動作について遷移図およびフローチャートに基づいて説明する。
図7は、実施の形態1に係る撮像ユニット100の洗浄装置10の動作を説明するための動作モードの遷移図である。
図8は、実施の形態1に係る撮像ユニット100の洗浄装置10の動作を説明するためのフローチャートである。まず、信号処理回路20は、圧電デバイス40をサーチモードで動作させて、保護カバー2の表面に異物が付着したか否かを判断する。圧電駆動部30は、圧電デバイス40をサーチモードで動作するために、駆動電圧VdrをV1とし、周波数fをスイープさせて交流出力信号を圧電体14に印加する。なお、圧電体14に印加する交流出力信号は、発熱抑制の観点から駆動電圧Vdrを小さくする方が望ましい。
【0040】
インピーダンス検出部70は、サーチモードで駆動電圧VdrをV1とし、周波数fをスイープさせて圧電デバイス40を動作させている間、圧電駆動部30の電流をモニタしている。具体的に、インピーダンス検出部70は、スイープさせた周波数fのうち、圧電駆動部30の電流が最大(または電流値の逆数であるインピーダンスが最小となる周波数を初期の共振周波数fr0、そのときの電流値をI0として測定している(ステップS101)。信号処理回路20は、測定した初期の共振周波数fr0、および電流値I0を、基準値の周波数fr、電流値Iとして記憶を更新する(ステップS102)。
【0041】
ここで、信号処理回路20は、圧電デバイス40の共振周波数の変化と、圧電デバイス40の最小インピーダンス(インピーダンスの最小値)の変化とを組み合わせて判断することで、保護カバー2の表面に異物が付着したことによる変動なのか、温度変化による変動なのかを正確に判断することができる。そのため、信号処理回路20では、共振周波数のみで保護カバー2の表面に異物が付着したか否かを判断するのではなく、共振周波数および電流値(または電流値の逆数であるインピーダンス)で保護カバー2の表面に異物が付着したか否かを判断する。つまり、信号処理回路20は、圧電デバイス40をサーチモードで動作させている間の共振周波数、そのときの電流値の変化で保護カバー2の表面に異物が付着したか否かを判断して、温度変化による圧電デバイス40の共振周波数の変化を除外している。
【0042】
一定時間後(たとえば、1秒後)、圧電駆動部30は、圧電デバイス40をサーチモードで動作するために、駆動電圧VdrをV1とし、周波数fをスイープさせて交流出力信号を圧電体14に印加する。そして、インピーダンス検出部70は、スイープさせた周波数fのうち、圧電駆動部30の電流が最大となる周波数を共振周波数fr1、そのときの電流値をI1として測定する(ステップS103)。
【0043】
信号処理回路20は、ステップS102で更新した基準値の周波数fr、電流値Iと共振周波数fr1、電流値I1との差分値を求め、当該差分値が予め定めてある閾値fth、Ithと比較する(ステップS104)。具体的には、信号処理回路20は、Δfr(=fr1-fr)≦-fth、およびΔI(=I1-I)≦-Ithの関係を満たしているか否かを判断する。つまり、信号処理回路20は、共振周波数が減少する変化量(Δfr)が閾値fth以下で、かつ電流値が減少する変化量(ΔI)が閾値Ith以下である場合、保護カバー2の表面に異物が付着したと判断する。
図7に示すサーチモード(1)では、測定した共振周波数が共振周波数fr0から共振周波数fr1に減少しており、保護カバー2の表面に異物が付着したと判断している。
【0044】
前述したように、信号処理回路20は、共振周波数の変化量(時間変化)のみで保護カバー2の表面に異物が付着したと判断するのではなく、インピーダンスに関する値である電流値の変化量(時間変化)で保護カバー2の表面に異物が付着したか否かを判断している。
【0045】
差分値が予め定めてある閾値fth、Ithより大きい場合(ステップS104でNO)、信号処理回路20は、処理をステップS102に戻し、ステップS104で測定した共振周波数fr1、および電流値I1を、基準値の周波数fr、電流値Iとして記憶を更新する。
【0046】
差分値が予め定めてある閾値fth、Ith以下の場合(ステップS104でYES)、信号処理回路20は、保護カバー2の表面に異物が付着したと判断する。圧電駆動部30は、信号処理回路20が保護カバー2の表面に異物が付着したと判断した場合、圧電デバイス40を第一の駆動モードで動作するために、駆動電圧VdrをV2(>V1)に設定し、駆動周波数fdrを基本波の共振周波数fr1とする交流出力信号を圧電体14に印加する(ステップS105)。
図7に示す第一の駆動モード(2)では、洗浄駆動部60を駆動せずに、圧電駆動部30のみを駆動する駆動モードで、駆動電圧VdrをV2、駆動周波数fdrを基本波の共振周波数fr1とする。
【0047】
保護カバー2の表面に異物が付着したと判断された場合、第一の駆動モードで保護カバー2を振動することにより保護カバー2の表面に付着した異物を霧化、または滑落させることができる。保護カバー2を第一の駆動モードで振動させた場合、保護カバー2の表面に付着した異物は当該振動の腹である保護カバー2の中央部に集まった後、霧化または滑落する。保護カバー2の表面に付着した異物を霧化、または滑落させるためには、信号処理回路20は、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御する必要がある。例えば、信号処理回路20は、保護カバー2の振動が1.5×105m/s2の振動加速度となるように圧電駆動部30を制御する。
【0048】
具体的に、保護カバー2の表面に付着した異物を霧化または滑落するための駆動について図を用いて説明する。
図9は、実施の形態1に係る撮像ユニット100の洗浄装置10において振動で異物を除去する駆動を説明するための図である。
図9では、横軸を駆動周波数f、縦軸を振動レベルを示す加速度(単位は、×10
5m/s
2)としている。
【0049】
まず、信号処理回路20では、あらかじめ設定した保護カバー2の振動レベルの目標値に対して、インピーダンス検出部70で検出した信号が一致するように圧電駆動部30を制御する。そのため、信号処理回路20では、図示しないが、インピーダンス検出部70で検出した信号を増幅する増幅回路、増幅回路で増幅した信号をデジタル信号に変換するAD回路、PID制御回路を含んでもよい。ここで、保護カバー2の振動レベルは、例えば、保護カバー2の中央部での変位の加速度とする。保護カバー2の振動レベルは、これに限られず、保護カバー2の中央部での変位量でもよい。
【0050】
信号処理回路20においてPID制御を行う場合、インピーダンス検出部70からの信号と目標値との偏差に対して、その比例、積分、および微分の3つの要素によって周波数を調整して、圧電駆動部30の駆動信号をフィードバック制御する。なお、圧電駆動部30の駆動信号の制御は、PID制御に限定されず、あらかじめ設定した保護カバー2の振動レベルの目標値に対して、インピーダンス検出部70で検出した信号が一致するように制御できれば、何れの制御でもよい。
【0051】
なお、保護カバー2の振動レベルをインピーダンス検出部70で検出すると説明したが、保護カバー2の振動レベルを検出する振動センサを別途設けてもよい。振動センサは、圧電体14で振動させた保護カバー2の振動レベルに関する信号を検出する検出部として動作する。振動センサは、例えば、超音波センサやマイクなどで、保護カバー2に対して非接触に設けられる。他の形態として、保護カバー2の一部に圧電体を形成し、圧電体の変形によって発生する電圧を検知してもよい。
【0052】
図9を用いて、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御する例について説明する。まず、保護カバー2を霧化モードで振動させる場合、信号処理回路20は、保護カバー2の振動が20×10
5m/s
2の振動加速度となるように圧電駆動部30を制御する。駆動周波数fr0で保護カバー2を振動させている場合に、保護カバー2に異物が付着すると、振動レベルが小さくなり動作点が動作点1から動作点2に移動する。つまり、異物が付着していない保護カバー2の振動モードS1から、異物が付着した保護カバー2の振動モードS2に、振動モードが切り替わる。
【0053】
信号処理回路20は、動作点2の振動レベルに小さくなった保護カバー2の振動を、目標とする振動レベルの振動加速度=20×105m/s2まで戻すために、圧電駆動部30から圧電体14に供給される駆動信号の振幅電圧またはデューティ比を調整する。具体的に、信号処理回路20は、PID制御を行い、モード切替で指定された駆動信号の振幅電圧またはデューティ比の条件において、目標とする振動レベルにするために周波数を調整する。異物が付着した保護カバー2を振動加速度=20×105m/s2で振動させる動作点3では、駆動周波数が、駆動周波数fr0から低下して駆動周波数fr1となる。
【0054】
動作点3で、異物が付着した保護カバー2を振動加速度=20×105m/s2で振動させると、保護カバー2に付着した異物が振動により霧化され、異物が除去される。異物が付着した保護カバー2を振動加速度=20×105m/s2で振動させている場合に、保護カバー2から異物が除去されると、駆動周波数が低下して動作点が動作点3から動作点1に移動する。つまり、異物が付着した保護カバー2の振動モードS2から、異物が付着していない保護カバー2の振動モードS1に、振動モードが切り替わる。
【0055】
一方、保護カバー2を滑落モードで振動させる場合、信号処理回路20は、保護カバー2の振動が1.5×10
5m/s
2の振動加速度となるように圧電駆動部30を制御する。滑落モードで保護カバー2を振動させる場合、
図9に示すように、動作点は、動作点1a、動作点2a、動作点3a、動作点1aの順に移動し、駆動周波数は、駆動周波数fr0a、駆動周波数fr1a、駆動周波数fr0aの順に変化する。このように変化することで、信号処理回路20は、滑落モードで保護カバー2の振動が1.5×10
5m/s
2の振動加速度となるように維持することができる。
【0056】
しかし、保護カバー2の表面に付着した異物が泥などの有限の粒子で構成された不溶性の異物の場合、信号処理回路20は、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御するだけでは完全に異物を除去することは困難である。また、不必要に振動を続けると、異物に含まれる泥の粒子の振動により、保護カバー2の表面に傷がついたり、施されたコーティングが削られたりする問題が発生する。さらに、保護カバー2の表面から異物を滑落させる場合でも、粘度の高い異物(液滴)を完全に滑落させることは困難である。
【0057】
信号処理回路20は、予め定めた時間、第一の駆動モードで保護カバー2を振動させても共振周波数fr1が変化しない場合、保護カバー2の表面に付着した異物を除去できていないと判断できる。つまり、信号処理回路20は、測定した共振周波数に基づいて保護カバー2の表面に付着した異物を除去できたか否かを判断する(ステップS106)。
【0058】
保護カバー2の表面に付着した異物を除去できたと判断した場合(ステップS106でYES)、信号処理回路20は、処理をステップS101に戻し、駆動をサーチモードに戻す。一方、保護カバー2の表面に付着した異物を除去できていないと判断した場合(ステップS106でNO)、信号処理回路20は、圧電デバイス40を第二の駆動モード(加温モード)で動作させる。具体的に、圧電駆動部30は、圧電デバイス40を第二の駆動モードで動作するために、駆動電圧VdrをV2に設定し、駆動周波数fdrを高調波の共振周波数fr3(<fr1)とする交流出力信号を圧電体14に印加する(ステップS107)。
図7に示す第二の駆動モード(4)では、高調波の共振周波数fr3で保護カバー2を振動させるため圧電駆動部30を駆動する駆動モードで、駆動電圧VdrをV2、駆動周波数fdrを高調波の共振周波数fr3とする。なお、高調波の共振周波数fr3をサーチするために、信号処理回路20は、第二の駆動モード(4)の前に高調波サーチモード(3)で駆動する。
【0059】
次に、
図7に示す第二の駆動モード(4)では図示していないが、異物の乾燥状態をモニタするモニタモードで圧電デバイス40を動作させる。圧電駆動部30は、モニタモードで圧電デバイス40を動作するために、駆動電圧VdrをV1とし、周波数fをスイープさせて交流出力信号を圧電体14に印加する。そして、インピーダンス検出部70は、スイープさせた周波数fのうち、圧電駆動部30の電流が最大となる周波数を共振周波数fr2、そのときの電流値をI2として測定し、信号処理回路20は、測定した共振周波数fr2、電流値I2の変動量(Δfr2、ΔI2)を求める(ステップS108)。
【0060】
信号処理回路20は、測定した共振周波数fr2、電流値I2がほぼ変化しなくなったか否かを判断する(ステップS109)。具体的には、信号処理回路20は、Δfr2(=fr2(t+1)-fr2(t))=0、およびΔI2(=I2(t+1)-I2(t))=0の関係を満たしているか否かを判断する。つまり、保護カバー2の表面に付着した異物の温度が安定し、水分がなくなると、当該異物(泥)の質量が安定するので、測定した共振周波数fr2、電流値I2の変動がほぼなくなるためである。
【0061】
測定した共振周波数fr2、電流値I2が変化していると判断した場合(ステップS109でNO)、信号処理回路20は、処理をステップS107に戻し、第二の駆動モードの駆動を継続する。一方、測定した共振周波数fr2、電流値I2がほぼ変化していないと判断した場合(ステップS109でYES)、信号処理回路20は、圧電デバイス40を第三の駆動モードで動作させる。具体的に、圧電駆動部30は、圧電デバイス40を第三の駆動モードで動作するために、駆動電圧VdrをV2に設定し、駆動周波数fdrを基本波の共振周波数fr1とする交流出力信号を圧電体14に印加する(ステップS110)。
図7に示す第三の駆動モード(6)では、基本波の共振周波数fr1で保護カバー2を振動させるため圧電駆動部30を駆動する駆動モードで、駆動電圧VdrをV2、駆動周波数fdrを共振周波数fr1とする。乾燥した固形物の異物に対して保護カバー2の振幅が大きくなる振動加えることで、乾燥させた異物を保護カバー2からふるい落として除去する。なお、基本波の共振周波数fr1をサーチするために、信号処理回路20は、第三の駆動モード(6)の前にサーチモード(5)で駆動する。
【0062】
信号処理回路20は、予め定めた時間、第三の駆動モードで保護カバー2を振動させても共振周波数fr1が変化しない場合、保護カバー2の表面に付着した異物をふるい落とせていないと判断できる。つまり、信号処理回路20は、測定した共振周波数に基づいて保護カバー2の表面に付着した異物をふるい落としたか否かを判断する(ステップS111)。
【0063】
保護カバー2の表面に付着した異物をふるい落としたと判断した場合(ステップS111でYES)、信号処理回路20は、処理をステップS101に戻し、駆動をサーチモードに戻す。一方、保護カバー2の表面に付着した異物をふるい落とした除去できていないと判断した場合(ステップS111でNO)、信号処理回路20は、洗浄駆動部60を駆動させて洗浄液を吐出させて、圧電駆動部30も駆動する第四の駆動モード(洗浄液+振動)で動作させる(ステップS112)。信号処理回路20は、第四の駆動モードで動作させることで、保護カバー2に付着した異物をより強力に洗浄できる。信号処理回路20は、第四の駆動モードで動作させた後、処理をステップS101に戻し、駆動をサーチモードに戻す。
【0064】
なお、乾燥後も除去できない異物については、油分を含んだ粘性の高い異物と判断できるため、ステップS112では、洗浄液を保護カバー2に吐出させることにより洗浄する。また、保護カバー2のコーティングが劣化した場合、乾燥させた異物を保護カバー2からふるい落としにくくなる。このような場合、洗浄液を保護カバー2に吐出させるとともに、保護カバー2のコーティングのメンテナンスを行うようにユーザーに促してもよい。さらに、信号処理回路20は、洗浄液吐出部50および洗浄駆動部60を設けていない構成の場合、保護カバー2の表面に付着した異物を除去できていないと判断したとき(ステップS111でNO)、異物を除去できない旨のエラーをユーザーに返してもよい。
【0065】
図8に示したフローチャートでは、ステップS109で測定した共振周波数fr2、電流値I2の変動量(Δfr2、ΔI2)で、保護カバー2の表面に付着した異物の乾燥が完了したか否かを判断している。しかし、異物の乾燥が完了したか否かの判断は、変動量(Δfr2、ΔI2)で判断する場合に限られず、付着した異物(泥)の量を見積もり、それにより加温時間を決定してもよい。
図10は、加温時間と共振周波数または電流値の差分値(Δfr、ΔI)との関係を示すグラフである。具体的に、異物(泥)の量は共振周波数または電流値の差分値(Δfr、ΔI)と対応しているので、信号処理回路20は、共振周波数または電流値の差分値(Δfr、ΔI)から異物(泥)の量を見積もることができ、
図10に示すグラフから加温時間を算出する。つまり、信号処理回路20は、付着した異物(泥)の量が多いと加温時間を長くする。
【0066】
また、洗浄液にはアルコールが含まれていることが多く、低温になると粘度が高くなり、保護カバー2を振動させても当該洗浄液を霧化しにくくなる。このような場合、保護カバー2を予め加温しておくことで洗浄液の粘度を低くして、保護カバー2の振動による洗浄液の霧化を促進することもできる。
【0067】
さらに、保護カバー2を基本波の共振周波数で振動させると保護カバー2の中央部の変位が大きくなる。一般的に、保護カバー2に超音波振動を印加すると、保護カバー2の表面に付着した異物(液滴)の接触角が小さくなることが知られている。そのため、保護カバー2を基本波の共振周波数で振動させると保護カバー2の中央部の液滴の接触角が小さく(すなわち濡れ性が大きい)、保護カバー2の周辺部の液滴の接触角は大きいままとなるので、保護カバー2の表面に付着した液滴は濡れ性の大きい中央部に集まってくる。この現象を利用することで、基本波の共振周波数で振動させた保護カバー2に洗浄液を吐出する場合、洗浄液を保護カバー2に全面に吐出しなくてもよくなるため、洗浄液の使用量を減らすことができる。
【0068】
以上のように、実施の形態1に係る撮像ユニット100では、撮像装置5と、洗浄装置10とを備えている。この洗浄装置10は、撮像装置5の視野に配置される保護カバー2と、保護カバー2を振動させる振動体12と、振動体12を駆動する圧電駆動部30と、保護カバー2の表面に異物が付着したか否かを判断する判断部と、保護カバー2を加温する加温部と、圧電駆動部30を制御する信号処理回路20と、を備える。信号処理回路20は、判断部で保護カバー2の表面に異物が付着したと判断した場合、保護カバー2の振動が1.5×105m/s2の振動加速度となるように圧電駆動部30を制御し、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御しても判断部で保護カバー2の表面に異物が付着したと判断した場合、加温部で保護カバー2を加温し、保護カバー2の加温後に、保護カバー2の振動が共振周波数となるように圧電駆動部30を制御する。
【0069】
これにより、実施の形態1に係る洗浄装置10は、信号処理回路20が、保護カバー2を振動させても判断部で保護カバー2の表面に異物が付着したと判断した場合、加温部で保護カバー2を加温し、保護カバー2の加温後に、保護カバー2の振動が共振周波数となるように圧電駆動部30を制御するので、保護カバー2に付着した異物を効率的に除去することができる。
【0070】
圧電駆動部30で駆動する振動体12のインピーダンスに関する値を検出するインピーダンス検出部70をさらに備え、判断部(信号処理回路20)は、インピーダンス検出部70で検出するインピーダンスに関する値の時間変化に基づき、保護カバー2の表面に異物が付着したか否かを判断することが好ましい。これにより、判断部は、保護カバー2の表面に異物が付着したか否かを判断することができ、適切に保護カバー2の洗浄を実行することができる。
【0071】
加温部は、信号処理回路20が保護カバー2の振動が高次の共振周波数となるように圧電駆動部30を制御することで、保護カバー2を加温することが好ましい。これにより、ヒータなどの加温する構成を別途設けることなく、保護カバー2を加温することが可能となる。また、高次の共振周波数で保護カバー2を振動させた場合、保護カバー2の振幅が基本波の共振周波数で振動させた場合に比べて小さくなるので、異物(例えば、液滴に含まれる泥粒子)の摩擦による保護カバー2のコーティングの劣化を抑えることができる。
【0072】
保護カバー2の表面に洗浄液を吐出させる洗浄ノズル3をさらに備え、信号処理回路20は、加温後に保護カバー2を振動させても判断部で保護カバー2の表面に異物が付着したと判断した場合、洗浄ノズル3から洗浄液を吐出させることが好ましい。これにより、保護カバー2に付着した異物をより強力に洗浄できる。
【0073】
信号処理回路20は、加温中の異物の状態に基づき、加温部で保護カバー2を加温する制御と、保護カバー2の振動を共振周波数となるように圧電駆動部30を制御とを切り替えることが好ましい。これにより、信号処理回路20は、異物の乾燥状態に基づき、さらに保護カバー2の加温を続けるか、ふるい落としの振動に切り替えることができる。
【0074】
信号処理回路20は、インピーダンス検出部70で検出するインピーダンスに関する値の時間変化に基づき、加温中の異物の状態をモニタすることが好ましい。これにより、信号処理回路20は、異物の乾燥状態を正確に把握することができる。
【0075】
洗浄装置10は、撮像装置5の視野に配置される保護カバー2と、保護カバー2を振動させる振動体12と、振動体12を駆動する圧電駆動部30と、保護カバー2の表面に異物が付着したか否かを判断する判断部と、圧電駆動部30を制御する信号処理回路20と、を備える。信号処理回路20は、判断部で保護カバー2の表面に異物が付着したと判断した場合、保護カバー2の振動が1.5×105m/s2の振動加速度となるように圧電駆動部30を制御し、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御しても判断部で保護カバー2の表面に異物が付着したと判断した場合、加温部で保護カバー2の振動が高次の共振周波数となるように圧電駆動部30を制御し、高次の共振周波数で保護カバー2を振動後に、保護カバー2の振動が共振周波数となるように圧電駆動部30を制御する。
【0076】
洗浄装置10で保護カバー2の表面を洗浄する洗浄方法であって、保護カバー2の表面に異物が付着したか否かを判断するステップと、保護カバー2の表面に異物が付着したと判断した場合、保護カバー2の振動が1.5×105m/s2の振動加速度となるように圧電駆動部30を制御するステップと、保護カバー2の振動が所定の振動加速度となるように圧電駆動部30を制御しても保護カバー2の表面に異物が付着したと判断した場合、加温部で保護カバー2を加温するステップと、保護カバー2の加温後に、保護カバー2の振動が共振周波数となるように圧電駆動部30を制御するステップと、を含む。
【0077】
(実施の形態2)
実施の形態1に係る洗浄装置10では、保護カバー2の表面に付着した異物を振動により洗浄する第一の駆動モードにおいて、駆動電圧VdrをV2(>V1)に設定して強い振動を保護カバー2に加えていた。実施の形態2に係る洗浄装置では、保護カバーの表面に付着した異物を滑落させる程度の弱い振動を保護カバーに加える第一の駆動モードを採用する。
【0078】
図11は、実施の形態2に係る撮像ユニットの洗浄装置の動作を説明するための動作モードの遷移図である。なお、実施の形態2に係る撮像ユニットおよび洗浄装置の構成は、実施の形態1に係る撮像ユニットおよび洗浄装置の構成と同じであるため、同じ構成について同じ符号を付して詳細な説明を繰り返さない。
【0079】
まず、サーチモード(1)では、駆動電圧VdrをV1とし、周波数fをスイープさせて圧電デバイス40を動作させている間、圧電デバイス40の共振周波数をサーチしている。信号処理回路20は、
図11に示すサーチモード(1)において、測定した共振周波数が共振周波数fr0から共振周波数fr1に減少しており、保護カバー2の表面に異物が付着したと判断している。
【0080】
信号処理回路20が保護カバー2の表面に異物が付着したと判断した場合、圧電デバイス40を第一の駆動モードで動作する。実施の形態2の第一の駆動モードでは弱振動モードを適用する。すなわち、弱振動モードでは、保護カバー2の振動が1.5×105m/s2以上8.0×105m/s2以下の振動加速度となるように圧電駆動部30を制御して、保護カバー2の振幅を例えば5.5μm以下に抑えている。保護カバー2を弱振動モードで振動させることで、保護カバー2の表面に付着した粘度の低い液滴などの異物を滑落させて洗浄する。
【0081】
保護カバー2を弱振動モードで振動させて異物を滑落させる原理について説明する。まず、滑落角と付着エネルギーの関係について説明する。滑落角とは、液滴を水平な固体表面上に付着させ、固体表面を水平から徐々に傾斜させたときに、液滴が下方に滑り始めるときの、水平面と固体表面との角度である。
図12は、滑落角と付着エネルギーとの関係の一例を説明する概略図である。
【0082】
図12に示す関係はWolframの提唱した付着エネルギーの計算式で表すことができる。
【0083】
【0084】
Eは付着エネルギー、rは接触半径、mは液滴質量、gは重力加速度、θは滑落角を示す。上記数式は、水とパラフィンの滑落角θが液滴51と固体52との接触面の半径rに比例することから実験的に見出した値で、滑落角θでは液滴51の重力の傾斜方向成分と接触円周縁部にはたらく付着力がつり合っていると仮定している。また、この指標は実験的に液量や傾斜角などに左右されない、液体と固体の組合せだけで一意的に決定される評価指標とされている。
【0085】
上記数式から、滑落角θが小さくなると付着エネルギーEが小さくなることがわかる。即ち、滑落角θが小さくなると、液滴51が固体表面に付着しにくくなる。
【0086】
洗浄装置10においては、保護カバー2を所定の振動加速度で振動させることによって、滑落角θを小さくし、液滴が保護カバー2の表面に留まろうとする付着エネルギーEを小さくしている。これにより、保護カバー2に付着する液滴を除去しやすくしている。
【0087】
図13は、滑落角と振動加速度との関係の一例を示す概略図である。
図13においては、振動加速度の変化に対する滑落角の変化を示す。なお、振動加速度の算出は以下に記載の方法で行った。
【0088】
共振周波数60kHz付近の振動体12の圧電体14に、電源(Keysight社:E26104A)とファンクションジェネレータ(Tektronix社:AGF1022)とにより信号を供給して振動を励振させる。振動体12の振動により励振した保護カバー2の変位をレーザー変位計(オリンパス社:BX51M)にて検出し、マルチメータ(Keysight社:2110)とオシロスコープ(Tektro社:オシロスコープTBS1104)とにより計測した。振動加速度をα、周波数をf、振幅(変位量)をAとし、α=(2πf)2Aの式により振動加速度を算出した。
【0089】
図13に示すように、振動加速度αが1.5×10
5m/s
2以上8.0×10
5m/s
2以下であるとき、滑落角θは40度以下になる(
図13の「A1」参照)。滑落角θが40度以下になると、液滴の付着エネルギーEは、保護カバー2の表面から外部へ滑落していく力よりも小さくなる。このため、保護カバー2において変位量が最大となる部分、即ち、保護カバー2の中央部に液滴が集まらず、液滴は保護カバー2の外部へ流れていく。これにより、液滴の除去性能が向上する。
【0090】
また、振動加速度αが3.5×10
5m/s
2以上5.5×10
5m/s
2以下であるとき、滑落角θは22度以下になる(
図13の「A2」参照)。滑落角θが22度以下になると、液滴の付着エネルギーEは、更に小さくなる。このため、液滴が保護カバー2の外部へ流れていきやすくなり、更に、液滴の除去性能が向上する。
【0091】
振動加速度αが1.5×105m/s2より小さいとき、又は8.0×105m/s2より大きいとき、滑落角θは40度より大きくなる。滑落角θが40度より大きくなると、液滴の付着エネルギーEは、保護カバー2の表面から外部へ滑落していく力よりも大きくなる。このため、保護カバー2において変位量が最大となる部分、即ち、保護カバー2の中央部に液滴が集まる。
【0092】
したがって、振動加速度αは、1.5×105m/s2以上8.0×105m/s2以下であることが好ましい。より好ましくは、振動加速度αは、3.5×105m/s2以上5.5×105m/s2以下である。振動加速度αが当該所定の範囲に制御されることによって、保護カバー2の表面に付着した液滴の滑落性が他の範囲に比べて向上する。
【0093】
保護カバー2を弱振動モードで振動させて異物を滑落させる場合、実施の形態1のように保護カバー2を弱振動モードで振動させて液滴を霧化させるときよりも保護カバー2の振幅を小さくすることができる。弱振動モードでは、振幅を小さくできるので、液滴に含まれる泥粒子の摩擦による保護カバー2のコーティングの劣化を抑えることができる。
【0094】
図11に示す第一の駆動モード(2)では、洗浄駆動部60を駆動せずに、圧電駆動部30のみを駆動する駆動モードで、駆動電圧VdrをV1、駆動周波数fdrを基本波の共振周波数fr1とする。第一の駆動モード(2)の駆動電圧Vdrをサーチモードの駆動電圧VdrをV1と同じとしているが、振動加速度αが1.5×10
5m/s
2以上8.0×10
5m/s
2以下となる駆動電圧VdrであればV1に限られず何れの電圧でもよい。
【0095】
保護カバー2を弱振動モードで振動させることで、保護カバー2の表面に付着した粘度の低い液滴などの異物を滑落し、極めて小さな水滴や粘度の高い泥水などが残る。残った異物に対して、信号処理回路20は、第二の駆動モードで駆動して保護カバー2を加熱する。
図11に示す第二の駆動モード(4)では、高調波の共振周波数fr3で保護カバー2を振動させるため圧電駆動部30を駆動する駆動モードで、駆動電圧VdrをV2、駆動周波数fdrを共振周波数fr3とする。なお、高調波の共振周波数fr3をサーチするために、信号処理回路20は、第二の駆動モード(4)の前に高調波サーチモード(3)で駆動する。
【0096】
保護カバー2を弱振動モードで振動させることで、保護カバー2の表面に付着した大きな液滴(泥水も含む)が滑落するので、第二の駆動モードの加熱で保護カバー2の表面に残った小さな水滴、泥水を素早く乾燥することができる。
【0097】
図11に示す第三の駆動モード(6)では、基本波の共振周波数fr1で保護カバー2を振動させるため圧電駆動部30を駆動する駆動モードで、駆動電圧VdrをV2、駆動周波数fdrを共振周波数fr1とする。なお、基本波の共振周波数fr1をサーチするために、信号処理回路20は、第三の駆動モード(6)の前にサーチモード(5)で駆動する。第三の駆動モード(6)では、第一の駆動モード(2)での駆動電圧VdrをV1よりも大きいV2とすることで、保護カバー2の振幅を大きくして乾燥させた異物を保護カバー2からふるい落として除去する。異物をふるい落とす際の振動エネルギーは、大きいほうが乾燥させた異物の脱落を促進させやすい。
【0098】
以上のように、実施の形態1に係る洗浄装置10では、信号処理回路20が、加温前の保護カバー2の振幅(第一の駆動モード(2))が加温後の保護カバー2の振幅(第三の駆動モード(6))よりも小さくなるように圧電駆動部30を制御する。特に、信号処理回路20は、加温前の保護カバー2の振動が1.5×105m/s2以上8.0×105m/s2以下の振動加速度となるように圧電駆動部30を制御することが好ましい。
【0099】
これにより、実施の形態2に係る洗浄装置10は、加温前の保護カバー2の振幅が加温後の保護カバー2の振幅よりも小さいので、液滴に含まれる泥粒子の摩擦による保護カバー2のコーティングの劣化を抑えることができる。また、保護カバー2を弱振動モードで振動させた場合、実施の形態1のように保護カバー2を強く振動させたときに比べ、保護カバー2の表面に残った液滴が中央部で乾燥せずに表面に分散して乾燥する。そのため、第三の駆動モードで乾燥させた異物を保護カバー2からふるい落とす際に、乾燥させた異物との摩擦によるコーティングの削れを保護カバー2の中央部に局在化させずに表面全体に均一化できる。
【0100】
(実施の形態3)
実施の形態1に係る洗浄装置10では、測定した共振周波数fr2、電流値I2がほぼ変化しなくなったと判断した場合に保護カバー2の表面に付着した異物の乾燥が完了したと判断した。実施の形態3に係る洗浄装置では、加温中は、泥水の水分が徐々に揮発して質量が減少し、やがて水分が完全になくなると安定することを利用して、保護カバー2の表面に付着した異物の乾燥が完了したと判断できる。
【0101】
図14は、実施の形態3に係る撮像ユニットの洗浄装置の動作を説明するためのフローチャートである。なお、実施の形態3に係る撮像ユニットおよび洗浄装置の構成は、実施の形態1に係る撮像ユニットおよび洗浄装置の構成と同じであるため、同じ構成について同じ符号を付して詳細な説明を繰り返さない。
【0102】
また、実施の形態3では、
図8に示すステップS108、S109に代えて
図14に示すステップS208で、保護カバー2の表面に付着した異物の乾燥が完了したか否かを判断している。なお、
図14に示すフローチャートでは、ステップS208以外、
図8に示すフローチャートと同じ処理であるため、同じ処理については同じステップ番号を付して詳細な説明を繰り返さない。
【0103】
具体的に、ステップS208では、信号処理回路20が、第二の駆動モード(加温)時に、異物の乾燥状態をモニタするモニタモードを定期的に挿入する。つまり、信号処理回路20は、圧電デバイス40の共振周波数の変化と、圧電デバイス40の最小インピーダンスの変化とを組み合わせて異物の質量の変化を検知して異物の乾燥状態をモニタする。
【0104】
信号処理回路20は、ステップS102で更新した基準値の周波数fr、電流値Iと第二の駆動モード(加温)時に測定した共振周波数fr1、電流値I1との差分値を求め、当該差分値が予め定めてある閾値fth2(<fth)、Ith2(<Ith)と比較する(ステップS208)。信号処理回路20は、Δfr(=fr1-fr)≦-fth2、およびΔI(=I1-I)≦-Ith2の関係を満たしているか否かを判断する。つまり、信号処理回路20は、共振周波数が減少する変化量(Δfr)が閾値fth2以下で、かつ電流値が減少する変化量(ΔI)が閾値Ith2以下である場合、保護カバー2の表面に付着した異物の乾燥が完了したか否かを判断する。
【0105】
差分値が予め定めてある閾値fth2、Ith2より大きい場合(ステップS208でNO)、信号処理回路20は、処理をステップS107に戻し、第二の駆動モードの駆動を継続する。一方、差分値が予め定めてある閾値fth2、Ith2以下の場合(ステップS208でYES)、信号処理回路20は、圧電デバイス40を第三の駆動モードで動作させる。第三の駆動モードでは、乾燥させた異物を保護カバー2からふるい落として除去する。なお、加温中は、泥水の水分が徐々に揮発して質量が減少するので、閾値fth2、Ith2は、異物の付着を判断する閾値fth、Ithより小さくなる。また、異物を乾燥後に第三の駆動モードでの振動を加えなくても、異物が剥離して自重落下することがある。その場合、差分値(Δfr、ΔI)がほぼ0(ゼロ)となるので、信号処理回路20は、保護カバー2の表面に付着した異物が残留しているか、剥離しているかを判断することができる。
【0106】
(その他の変形例)
前述の実施の形態に係る洗浄装置では、第二の駆動モードで動作して保護カバー2を加温する方法として、高調波の共振周波数fr3で保護カバー2を振動させ、当該振動の機械的損失を利用して保護カバー2を加温する。しかし、これに限られず、保護カバー2に加熱するためのヒータなどの加温部を設けてもよい。
図15は、変形例に係る撮像ユニットの洗浄装置の制御を説明するためのブロック図である。
図15に示すブロック図では、加温制御部90およびヒータ91を設けた以外、
図5に示すブロック図と同じであるため、同じ構成には同じ符号を付して詳細な説明を繰り返さない。
【0107】
加温制御部90は、信号処理回路20から保護カバー2を加温するとの制御信号に基づき、ヒータに供給する電流を制御する。ヒータ91は、保護カバー2の周縁部(撮像装置5の撮像範囲の外側)に設けられている。
図16は、保護カバー2にヒータ91を設けた洗浄装置10aの断面構成を示す概略断面図である。なお、
図16に示す洗浄装置10aの概略断面図では、ヒータ91を設けた以外、
図2に示す洗浄装置10の概略断面図と同じであるため、同じ構成には同じ符号を付して詳細な説明を繰り返さない。
【0108】
ヒータ91は、例えばドーナツ状の電熱線ヒータで、保護カバー2の周縁部に貼り付けられている。ヒータ91の材料は、例えばニクロム線などでもよい。また、ヒータには、撮像装置5の撮像範囲の邪魔にならない透明電極(例えば、ITO)を利用することもできる。
図17は、保護カバー2に設けるヒータに透明電極を利用した場合の構成を示す概略図である。
図17に示す保護カバー2には、表面全体に透明電極91aが製膜されており、当該透明電極91aと電気的に接続する端子92が保護カバー2の端部に設けられている。端子92は、加温制御部90と配線93を介して電気的に接続されている。そのため、加温制御部90からの電流が、配線93および端子92を介して透明電極91aに供給されることで透明電極91aが発熱して保護カバー2を加温できる。
【0109】
さらに、保護カバー2を加温する方法は、ヒータなど保護カバー2を直接加温する手段に限定されず、赤外線光源を用いた加温や温風を用いた加温などの間接的に加温する手段に限定でもよい。赤外線光源を用いた加温では、保護カバー2のガラスが赤外線を吸収する性質を利用しており、撮像装置の近傍に設けた赤外線光源からガラスに向かって赤外線を照射することで、ガラスを加熱する。一般に、長波長(2μm~)の赤外線は、ガラス骨格による赤外吸収損失が支配的となり、ガラスを透過せず熱となって吸収される。
【0110】
前述の実施の形態に係る撮像ユニットでは、特に撮像装置5の構成については詳しく説明していないが、撮像装置5として、カメラ、LiDAR,Raderなどを含んでもよい。
【0111】
前述の実施の形態に係る撮像ユニットの洗浄装置では、保護カバー2を振動させる洗浄、洗浄液吐出部50により洗浄液を吐出する洗浄を例示したが、これに限定されるものではない。たとえば、洗浄液吐出部50によりエアを吐出する洗浄で保護カバー2の表面に付着した異物を除去してもよい。
【0112】
前述の実施の形態に係る撮像ユニットでは、
図1で示したように1本の洗浄ノズル3を筐体1に設ける構成であると説明したが、これに限られず、複数本の洗浄ノズル3を筐体1に設ける構成であってもよい。
【0113】
前述の実施の形態に係る撮像ユニットは、車両に設けられる撮像ユニットに限定されず、撮像装置5の視野に配置される透光体を洗浄する必要がある用途の撮像ユニットに対しても同様に適用することができる。
【0114】
前述の実施の形態に係る撮像ユニットでは、信号処理回路20が、共振周波数の変化と、圧電デバイス40の最小インピーダンスの変化とを組み合わせて、保護カバー2の表面に異物が付着したか否かを判断している。しかし、これに限られず、信号処理回路20は、撮像装置5で撮像した画像に基づいて、保護カバー2の表面に異物が付着したか否かを判断してもよい。具体的に、保護カバー2の表面に異物が付着したと信号処理回路20が判断する撮像装置5の画像情報の1つとして、撮像装置5で撮像した画像の時間変化があり、一例として撮像装置5で撮像した画像の明度積分値の時間変化である。これに限られず、撮像装置5で撮像した画像の時間変化として、例えば、撮像した画像のエッジのぼやけを画像処理の一つである周波数スペクトルで評価し、周波数スペクトルの時間変化で異物が保護カバー2の表面に付着したと判断してもよい。
【0115】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0116】
1 筐体、2 保護カバー、3 洗浄ノズル、5 撮像装置、10,10a 洗浄装置、12 振動体、13 リテーナー、14 圧電体、15 配線、20 信号処理回路、30 圧電駆動部、40 圧電デバイス、50 洗浄液吐出部、60 洗浄駆動部、70 インピーダンス検出部、80 電源回路、90 加温制御部、91 ヒータ、100 撮像ユニット。